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Abstract—The class of poset metrics is very large and For a word X € Fy, the sphere with radiug centered
contains some interesting families of metrics. A family of at X is defined as the set of Words]ﬁj; whoseP-distance
metrics, based on posets \{vhlch are formed from disjoint chais dfrom X isat mostR, i.e. {Y : Y € F", dp(X,Y) < R}.
which have the same size, is examined. A necessary an . . g . .
sufficient condition, for the existence of perfect single+eor- A codeC is an R-perfectP-code if the sPh?_reS with radius
correcting codes for such poset metrics, is proved. R centered at the codewords@fform a partition OﬂF‘g (the

I~ . . spheres are disjoint and their unionki§). Perfect codes is
Index Terms—Disjoint uniform chains, perfect codes, poset - . .
codes. one of the most fascinating topics in coding theory. They
were considered for various metrics and especially for the
Hamming scheme. Perfect poset codes were considered first
) ) ) ) .in [B], where it is proved that there are no such codes if
The classic coding theory consider codes in the Hammifgy hoset consists of two disjoint chains with equal sizes. |
schemel[l]. Let", denotes a finite field wity elements. he Hamming scheme the only family of nontrivial perfect
For two wordsX = (z1,%2,...,@n), ¥ = (y1,42,---,Un)  codes are 1-perfect codes o¥gr They exist for each length
in Fy, the Hamming distance betweghandY’, dy (X,Y), k_q

: > . . : =4 > ir size isg™*.
is the number of positions in whick and Y differ. An m q—1’ k> 1, and their size isy If the poset

(n,M,d) codeC over F, is a subset of sizell of F”, consists of one chain of lengththen an(n, ¢*,n — k + 1)

such that for each two codewords,Y € C, we have MDS code [1] is an(n — k)-perfect code[[5],[[7]. Perfect

dg(X,Y) > d. This definition was generalized by Nieder-COdeS were also considered for other various posetslby [8],

reiter [2], [3], [4], [5] as defined in the sequel. [9], (0], [11]. . . .

The poset metric was defined by Bruladi, Graves, an An [7_1’]{] code C over F, IS a linear subs_pace. with
Lawrencel[5]. LetP be an arbitrary finite poset of cardinal-dimensionk of F. A cdos:et of Cis a translate of, i.e. given
ity n whose partial order relation is denoted byIf A C P awordX € F?, X+C={X+Y : Y €C}is a coset of.
then (A) denotes the smallest ideal A which containsd, C hasg™~* disjoint cosets, each one of sig&. The union
ie., of these cosets iffiy, i.e. these;”~* cosets form a partition

A%z 0 Gy e z<y)} of F. A coset leader is a word with minimumP-weight in
the coset. Ann, k, dp] P-codeC overF, is ann, k] code
having a minimumpP-distancedp. An (n, M,dp) P-code
C overFF, is a set of A/ word all have lengthm, such that
the P-distance between any two distinct codeword€ aé
at leastdp.

The rest of this paper is organized as follows. In Sediibn Il
we prove the result of the paper, thag-ary perfect single-
error-correcting uniform poset code with chains of length
¢ > 1 exists if and only ifm = % The section consists
6f three parts. First, we prove the necessary condition for

e existence of a perfect code. This condition apply to both
near and nonlinear codes. Next, we present two type of

|. INTRODUCTION

For a wordz = (x1,2,...,2,) € Fy, let supgz) denotes
the support of, i.e. suppgz) = {i : x; # 0}. We define the
P-weight of z, wp(x), to be the cardinality ofsupfx)),
i.e.wp(x) = [(supfz))|. For two vectorsX,Y € [y the P-
distancedp(X,Y), is defined bylp(X,Y) = wp(X -Y).
An (n,M,dp) P-codeC over [, is a subset of sizel/
of Fy, such that for each two codewords,Y € C, we
havedp(X,Y) > dp, i.e., the minimumP-distance of the
code isdp. If P is an antichain (isolated points) then thes
definitions coincide with those of the Hamming metric. Th
definition of poset codes given inl[5] is a generalization q

a different definition given by Niederreiterl[211[3L1[4] fo codes which are essential in our construction: perfectaing

a generalization to the Hamming metric. His generalizatioé}ror-correcting codes in the Hamming scheme and MDS
relates to posets which consist of disjoint chains. Rosep-

. . 05€05de with minimum Hamming distance two. In the third
b'°°”.‘ fmd Tsfa§mar1 (6] considered the posets_ln which Ert of the section we prove that the necessary condition is
the disjoint chains have the same length. In this paper

: ; ) i Wso sufficient by presenting a construction of perfect sode
will also qonS|der these po_sets. Th|_s family of posets wi r the related parameters. The constructed codes are.linea
be called in the sequel thaniform chains posat. Finally, in Sectio Il we conclude with problems for furthe

T. Etzion is with the Department of Computer Science, Temhni research.

— lIsrael Institute of Technology, Haifa 32000, Israel. (dmaet-

zion@cs.technion.ac.il). 1
This work was supported in part by the Israeli Science FotimddlSF), - L-PERFECT UNIFORM CHAINS POSET CODES
Jerusalem, Israel, under Grant 230/08. . In this section we will prove a necessary and sufficient
The work was partially done when the author visited the Gelriterfac- dition for th ist f1 fect codes in th nif
ultaire Bernoulli at EPFL, Lausanne, Switzerland in Julyi 2Osupported condrtion for the existence or L-perrect codes In the ummor

by the Swiss National Science Foundation. chains poset. Throughout this section a perfect code is


http://arxiv.org/abs/1107.5708v1

always an 1-perfect code. Assume that we havehains, cosets. Each coset leader is a word of lengthand H-
each one of lengt, i.e., the length of the code is= m¢. weight less than two. I is such a word then the cosef
This poset will be denoted throughout this section By s defined byclxdéf{x +Y : Y € G }. Each vectorX

The poset related to the Hamming metric will be denoted ¥ F-weight less than two can be identified by a different
this section byH. A code in the Hamming metric will be element ofy € .

denoted byC, while a code in the uniform chains poset will
be denoted byC.

Lemma 3: If m = qq__ll and « is a primitive element in

the fieldF» then the matrix

A. Necessary conditions

In this subsection we derive a necessary condition for the H=[a"a" a® - o™
existence of a perfedP-code.

Lemma 1: The size of a sphere, in the uniform chainsvherea’ is represented by a vector of lengtroverF,, is a
poset, with radius one does not depend on the center of fhrity-check matrix of a perfedin, m — k, 3] H-code over
sphere, and this size is equiak (¢ — 1)m. F,.

Proof: The fact that the size of the sphere does not pyoof: 74 is a parity-check matrix of a perfedf-code

depend on its center is easily verified. Hence, w.l.o.g;, Iengthﬁ if and only if in the ©=! columns ofH
(without loss of generality) we can compute the size of @, 4o anEVl\IO distinct columng 72*(,1md5 cTF. such
sphere _centered_ at the allzero wor_d. Ther_e is exactly Oyt o = By Clearly, o' = Bad i;‘ ar;d only if a’iﬂ _
word W|t_h P-weight zero. Words W|thP_-we|ght One are i+l Therefore, sincer’ # af, 0 < i < j < ¢ — 2, it
words with exactly one nonzero coordinate in one of t llows thata™ = 3 for a primitive element} € F,. Thus,
positions which corresponds to the bottom of a chain. Eagh. parity-check matrix of perfedtn, m — k, 3] ;{—code.
nonzero alphabet letter can be used in these positionse Ther ’ ’ m
arem chains and; — 1 nonzero alphabet letters for a total . - .
of (¢—1)m wordzqof weight one. 1Phus, the size of a sphere_By lemmal3 if follows that each C.OS@[? IS |d¢nt|f|ed

: : : with an elementy € F .. Hence, we will denot€; instead
with radius one isl + (¢ — 1)m. ] P i . 1

Since the size of sphere should divide the size of ¢fd Ci° and WI’ItE'y—i—-Y mstead_ OfX +Y. _ )
spaceF™, |ng| = ¢", it follows that1+(g—1)m = p*, where Lemma 4: If Xl. is a Worql inC{* and X, is a word in
g = p" andp is a prime. It implies thafp” — 1)m = pt —1 Ci” thenX; + X5 is a word inC*, whereyi, vz, 73 € Fys
and hence: must dividest. Thereforept = p™* = ¢*, i.e. andys =y +72.

1+ (g — 1)m = ¢*. Thus, we have Proof: We distinguish between four cases.
Theorem 1. If C is a P-code with/ chains of lengthn  Case 1:If v; = —y, then X1 = Vi + 71, Xo = Yo + 70
k ) )
thenm = £ and|C| = ¢™~*. Y1,Ys € C1. Hence,X; + Xo = Y1 +Ys € (.
Finally, we characterize perfeét-codes. The first lemma c55e 2:|f 1 = M2, A € Fy\ {0,—1}, thenX; = Y; +7,
is a simple observation. Xo=Ys+7, Y1,Y2 €C1. Hence,X; + Xo =Y, + Yo +

Lemma 2: If C is a P-code with minimumpP-distance ) | 1)72 € C%, 73 = (A+ 1)72, since the coset leaders

three then the spheres with radius one centered at 9 are both of weight one and share the same nonzero
codewords ofC are disjoint. coordinate.

qkTI;Eorenll Z:WL_it C dbe a](;’-co;jehof Iefn.gthn :dmﬁ ~  Case 3if v1 # 72 andy; = 0thenX; = Yy, Xo = Yo+,
= ¢ with ¢ codewords. If the minimunP-distance Y1,Ys € Cy. Hence, X, + Xo = Vi + Yo + 7 € C°.

of C is three therC is a perfectP-code.
P Case 4:lf 1 # v2 andy;, 2 € Fr\{0} thenX; = Y1+,

Proof: By Lemmal2, in aP-codeC with minimum
P-distance three the spheres with radius one centered atfhie= Y2172, 11,12 € C1. Hence.X; + X5 = Yi+Ya+m +

codewords ofC are disjoint. By Theorefl 1, a perfebtcode 72- L€173 = 71+72, 1.€.93—71 =72 = 0. Let—y; = Ao,
C of lengthn = m¢ = £=1¢ hasq™* codeword. Since 2 = A20%%, 93 = Azad?, wherel < ji,ja,js < m — 1

) L apd i, A2, A3 € F, \ {0}. Hence, the word withH -weight
by Lemmdl, the size ofan 1 sphere does not depend Onthpﬁee with \; at positionji, 1 < i < 3 is a codeword in

. _ o qk,1 .
Cirltfr’ it follows that & .cc.)de(C of .Iengthn g1 ¢ with C1. ThereforeX; + X, are contained in the same coset as
q codewords and minimun®-distance three is pen‘sct.leLXer%_71_72 = Y1 +Ya+73. ThusX; + X5 € CJ°.

B. Codes from the Hamming scheme The second codé; is an[n,n—1, 2] co_de overtys. This
) _ code also known to be an MDS code is easily constructed.
~ Two types of codes in the Hamming scheme are th&, the construction, of perfecP-codes, which follows
ingredient for our construction of perfeetcodes. The finite \ye need another property to be satisfied by this code. If
field F,» has an important rolg i_n_ their construction. Fot%y’O. .., 0) is a codeword o€, such thatr, y € F\ {0},
these cgnstructlons let bg a primitive ele:g??t i g . then_there is N3 ¢ ]Fg sm_Jch thaty = Bz. A generator_
The first type of code is a perfefh = —-,m — k,3] matrix for such a code is given for example by the following

q
H-code overF,, £ > 1. Such a code&’; has¢* disjoint (n — 1) x n matrix.




X = (11, T10, 020,205 T 1y -5 Tinl)s

1 a0 00 where (z1 ,22,...,2m) € C/, 1 < j < /{, and
0 1 0 0 « 5J 5J 5J 1_ _
(i1,19,...,i¢) € Ca. X has H-weight two andP-weight
G=10 1 0 a two only in one of the following two cases:
oo Lo Case 1:z5; andx; are the only nonzero entries iXi for
0 0 0 --- 1 « Som61§s<t(§m. ) .
_ ) In this case(0,...,0,251,0,...,0,2¢1,0,...,0) € C}*
Lemma 5: The code form_ed by_ the generator matfixs for a codeword(i, is,. .., is) € Co which hasH-weight
an[n,n—1,2] code ovetF . in which for each codeword of ,i |aast two. W.l.o g. assume that # 0 and hence
the form(z,y,0...,0), 2,y € Fgr \ {0} there is noj € I, (x12,T29,...,Tm2) € Ci* is a nonzero word. Therefore,

such thaty = fa. the H-weight of X is at least three, a contradiction.

) _Proof: The length  of th_e cod_e_, its dimension anq:ase 2:xzs 1 andz, o are the only nonzero entries i for
minimum H-distance are easily verified from the structurgy a1 < o < .

of the generator matriz. All the codewor_ds of_the form | this  case 0,...,0,241,0,...,0) c Cili
(:c,y,Of.i,O), 2,y € Fge \ {0} arekcontalned. inthe et 0.2,,,0,...,0) € C, where(i, is, ..., i) € Ca.
{(«,07,0,...,0) = 0 <i< ¢~ 2.}'1 It is readily jance, the words of weight one in the coséfs and C2>
verified that there is ng € If, such thata ™ = fa’, have the nonzero entry in the same coordinate. It implies

thati, = ~i, for somey € I, a contradiction to Lemmid 5.
C. A Product Construction for Perfect Codes Thus, the cod& is ag-ary perfectP-code of lengthm/.

There are several product constructions for non-binary u
perfect codes in the Hamming schernel [12]] [13]] [14]] [15], Corollary 11 A g-ary perfectP-code with:m chains of
[16], [17]. The construction that we present for perfést length/ > 1 exists if and only ifm = L=t
codes is a generalization for the constructions in [16]].[17
For our construction we will use the two cod@sand(C, in l1l. CONCLUSIONS
the Hamming scheme. We construct the following céle  We settled the existence problem of 1-perfect codes with
the uniform chains poset metric. Over an alphabet with
letters,q a power of a prime, these codes with chains of
. length ¢ > 1 exist if and only ifm = q;__ll. Other perfect
(21,7, 22,5,y Tm,;) € Cy'y (i1,i2,...,i¢) € Ca} codes for these posets are known when there is only one
chain or when each chain is of length one (the Hamming
metric). The main open problem for future research is to
consider R-perfect codesR > 1, for the uniform chains

poset metrics in which there is more than one chain and the

def
(C:{('rl,la' "7x1,fax2,17" 'aIQ,lv" '7'rm,17" '7xm,f) :

Lemma 6: The codeC is a linear code.
Proof: We only have to prove that for any two
codewordsX,Y € C also X + Y is a codeword inC. Let

Xo= (@ 08205 Tty Ty T ) length of the chains is greater than one.
Where(xlyj,:cgyj, C ,xmyj) S C;j, and(il,ig, C ,’L'[) € C,.
LetY = (y1,1, e Y1 Y21, 5Y20 -5 Ymdy - - 7ym72)1 ACknOWIedgement
where  (y1;,y2,5, - Ym.j) € Cij’ and The author would like to thank Marcelo Firer for intro-
(ti,t2,....t)) € Co. Let Z = X + Y = ducing the poset metrics for him.
(2’171, ey R1 Ay R2 Dy ey B2y ey Bmy Ly e ey Zmyg).
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