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SOJOURN TIMES AND THE FRAGILITY INDEX

MICHAEL FALK AND MARTIN HOFMANN

Abstract. We investigate the sojourn time above a high threshold of a con-

tinuous stochastic process Y = (Yt)t∈[0,1] on [0, 1]. It turns out that the

limit, as the threshold increases, of the expected sojourn time given that it is

positive, exists if the copula process corresponding to Y is in the functional

domain of attraction of of an extreme value process. This limit coincides with

the limit of the fragility index corresponding to (Yi/n)1≤i≤n as n and the

threshold increase.

If the process is in a certain neighborhood of a generalized Pareto process,

then we can replace the constant threshold by a general threshold function

and we can compute the asymptotic sojourn time distribution. An extreme

value process is a prominent example. Given that there is an exceedance at t0

above the threshold, we can also compute the asymptotic distribution of the

time cluster length, which the process spends above the threshold function.

1. Introduction

Let Y = (Yt)t∈[0,1] be a stochastic process with continuous sample paths, i.e.,

Y ∈ C[0, 1], and identical continuous marginal distribution functions (df) F , say.

We investigate in this paper the sojourn time of Y above a threshold s

S(s) :=

∫ 1

0

1(Yt > s) dt,

under the condition that there is an exceedance, i.e., S(s) > 0. Sojourn times of

stochastic processes have been extensively studied in the literature, with emphasis

on Gaussian processes and Markov random fields, we refer to Berman [3] and the

literature given therein. We will investigate the sojourn time under the condition

that the copula process C := (F (Yt))t∈[0,1] corresponding to Y is in the functional

domain of attraction of an extreme value process η, say.

Denote byNs :=
∑n

i=1 1(s,∞)(Yi/n) the number of exceedances among (Yi/n)1≤i≤n

above the threshold s. The fragility index (FI) corresponding to (Yi/n)1≤i≤n is de-

fined as the asymptotic expectation of the number of exceedances given that there
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2 M. FALK AND M. HOFMANN

is at least one exceedance:

FI := lim
sր

E(Ns | Ns > 0)

The FI was introduced in Geluk et al. [7] to measure the stability of a stochastic

system. The system is called stable if FI = 1, otherwise it is called fragile. The

collapse of a bank, symbolized by an exceedance, would be a typical example,

illustrating the FI as a measure of joint stability among a portfolio of banks.

It turns out that the limit, as the threshold increases, of the expected sojourn

time given that it is positive, exists if the copula process corresponding to Y is in

the functional domain of attraction of an extreme value process. This limit coin-

cides with the limit of the FI corresponding to (Yi/n)1≤i≤n as n and the threshold

increase.

For such processes, which are in a certain neighborhood of a generalized Pareto

process, we can replace the constant threshold by a threshold function and we can

compute the asymptotic sojourn time distribution above a high threshold function.

An extreme value process is a prominent example. Given that there is an exceedance

Yt0 > s at t0 above the threshold s, we can also compute the asymptotic distribution

of the cluster length, that the process spends above the threshold function.

This paper is organized as follows. In Section 2.1 we recall some mathemati-

cal framework from functional extreme value theory and provide basic definitions

and tools. In particular we consider a functional domain of attraction approach

for stochastic processes, which is more general than the usual one based on weak

convergence. In Section 2.3 we apply the framework from Section 2.1 to copula pro-

cesses and derive characterizations of the domain of attraction condition for copula

processes. In Section 3 we use the results from Section 2.3 to compute the limit

limsր E(S(s) | S(s) > 0) as the threshold s increases of the mean sojourn time,

conditional on the assumption that it is positive. We show that this limit coincides

with the FI. In Section 4 we replace the constant threshold by a threshold function

and we compute the limit distribution of the sojourn time for those processes, which

are in a certain neighborhood of a generalized Pareto process. Given that there is

an exceedance at t0, we compute in Section 5 the asymptotic distribution of the

cluster length that the process spends above a high threshold function.

To improve the readability of this paper we use bold face such as ξ, Y for stochas-

tic processes and default font f , an etc. for non stochastic functions. Operations

on functions such as ξ < a or (ξ − bn)/an are meant componentwise. The usual
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abbreviations df, fidis, iid and rv for the terms distribution function, finite dimen-

sional distributions, independent and identically distributed and random variable,

respectively, are used.

2. Definitions and Preliminaries

2.1. Extreme Value Processes and the Functional D-Norm. An extreme

value process (EVP) ξ = (ξt)t∈[0,1] in C[0, 1] := {f : [0, 1] → R : f continous},

equipped with the sup-norm ‖f‖∞ = supt∈[0,1] |f(t)|, is a stochastic process with

the characteristic property that its distribution is max-stable, i.e. ξ has the same

distribution as max1≤i≤n(ξi − bn)/an for independent copies ξ1, ξ2, . . . of ξ and

some an, bn ∈ C[0, 1], an > 0, n ∈ N (cf. de Haan and Ferreira [9]).

We call a process η ∈ C−[0, 1] := {f ∈ C[0, 1] : f < 0} a standard EVP, if it

is an EVP with standard negative exponential (one-dimensional) margins, P (ηt ≤

x) = exp(x), x ≤ 0, t ∈ [0, 1].

We denote in what follows by C̄−[0, 1] := {f ∈ C[0, 1] : f ≤ 0} the set of all

continuous function on [0, 1] that do not attain positive values.

The following characterization is essentially due to Giné et al. [8]; we refer also

to Aulbach et al. [2].

Proposition 2.1. A process η ∈ C−[0, 1] is a standard EVP if, and only if there ex-

ists a number m ≥ 1 and a stochastic process Z ∈ C̄+[0, 1] := {f ∈ C[0, 1] : f ≥ 0}

with the properties

(1) max
t∈[0,1]

Zt = m, E(Zt) = 1, t ∈ [0, 1],

such that for compact subsets K1, . . . ,Kd of [0, 1] and x1, . . . , xd ≤ 0, d ∈ N,

(2) P (ηt ≤ xj , t ∈ Kj, 1 ≤ j ≤ d) = exp

(

−E

(

max
1≤j≤d

(

|xj |max
t∈Kj

Zt

)))

.

Conversely, every stochastic process Z ∈ C̄+ satisfying (1) gives rise to a stan-

dard EVP. The connection is via (2). We call Z generator of η.

According to de Haan and Ferreira [9, Corollary 9.4.5] the condition maxt∈[0,1] Zt =

m in (1) can be replaced by the condition E
(

maxt∈[0,1] Zt

)

< ∞. The number

m = E
(

maxt∈[0,1] Zt

)

is uniquely determined, see Remark 3.3. Therefore, we call

m the generator constant of η.

The preceding characterization implies in particular that the fidis of η are mul-

tivariate negative EVD with standard negative exponential margins: We have for

0 ≤ t1 < t2 · · · < td ≤ 1

(3) − log(Gt1,...,td)(x) = E

(

max
1≤i≤d

(|xi|Zti)

)

=: ‖x‖Dt1,...,td

, x ≤ 0 ∈ R
d,
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where ‖·‖Dt1,...,td

is a D-norm on R
d (cf. Falk et al. [5]).

Let E[0, 1] be the set of all bounded real-valued functions on [0, 1] which are

discontinuous at a finite set of points. Moreover, denote by Ē−[0, 1] the set of those

functions in E[0, 1] which do not attain positive values.

For a generator process Z ∈ C̄+[0, 1] as in Proposition 2.1 and all f ∈ E[0, 1] set

‖f‖D := E

(

sup
t∈[0,1]

(|f(t)|Zt)

)

.

Obviously, ‖·‖D defines a norm on E[0, 1], called a D-norm with generator Z; see

Aulbach et al. [2] for further details.

The following result is established in Aulbach et al. [2].

Lemma 2.2. Let η be a standard EVP with generator Z. Then we have for each

f ∈ Ē−[0, 1]

(4) P (η ≤ f) = exp (−‖f‖D) = exp

(

−E

(

sup
t∈[0,1]

(|f(t)|Zt)

))

.

Conversely, if there is some Z with properties (1) and some η ∈ C−[0, 1] which

satisfies (4), then η is standard max-stable with generator Z.

The representation P (η ≤ f) = exp (−‖f‖D), f ∈ C̄−[0, 1], of a standard EVP

is in complete accordance with the df of a multivariate EVD with standard negative

exponential margins via a D-norm on R
d as developed in Falk et al. [5, Section 4.4].

Note that for d ∈ N the function

f(t) =

d
∑

i=1

xi1{ti}(t), ti ∈ [0, 1], xi < 0, i = 1, . . . , d

is an element of Ē−[0, 1] with the property

P (η ≤ f) = exp
(

−‖x‖Dt1,...,td

)

.

So representation (4) incorporates all fidis of η.

Just like in the uni- or multivariate case, we might consider

H(f) := P (Y ≤ f), f ∈ Ē−[0, 1],

as the df of a stochastic process Y in C̄−[0, 1].

2.2. Functional Domain of Attraction. According to Aulbach et al. [2] we say

that a stochastic process Y ∈ C[0, 1] is in the functional domain of attraction of

a standard EVP η, denoted by Y ∈ D(η), if there are functions an ∈ C+[0, 1],

bn ∈ C[0, 1], n ∈ N, such that

(FuDA) lim
n→∞

P

(

Y − bn
an

≤ f

)n

= P (η ≤ f) = exp (−‖f‖D)
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for any f ∈ Ē−[0, 1]. This is equivalent to

(FuDA’) lim
n→∞

P

(

max
1≤i≤n

Yi − bn
an

≤ f

)

= P (η ≤ f)

for any f ∈ Ē−[0, 1], where Y1,Y2, . . . are independent copies of Y .

There should be no risk of confusion with the notation of domain of attraction

in the sense of weak convergence of stochastic processes as investigated in de Haan

and Lin [10]. But to distinguish between these two approaches we will consistently

speak of functional domain of attraction in this paper, when the above definition

is meant. Actually, this definition of domain of attraction is less restrictive as the

next lemma shows; it is established in Aulbach et al. [2].

Lemma 2.3. Suppose that Y is a continuous process in C̄−[0, 1]. If the sequence of

continuous processes Xn := max1≤i≤n ((Yi − bn)/an)) converges weakly in C̄−[0, 1],

equipped with the sup-norm ‖·‖∞, to the standard EVP η, then Y ∈ D(η) in the

sense of condition (FuDA).

2.3. Domain of Attraction for Copula Processes. The sojourn time distribu-

tion of a stochastic process with identical continuous univariate margins does not

depend on this marginal df but on the corresponding copula process. We, therefore,

recall in this section results for copula processes established in Aulbach et al. [2].

Let Y = (Yt)t∈[0,1] ∈ C[0, 1] be a stochastic process with identical continuous

marginal df F . Set

U = (Ut)t∈[0,1] := (F (Yt))t∈[0,1],

which is the copula process corresponding to Y .

We conclude from de Haan and Lin [10] that the process Y is in the domain

of attraction of an EVP if, and only if each Yt is in the domain of attraction of a

univariate extreme value distribution together with the condition that the copula

process converges in distribution to a standard EVP η, that is
(

max
1≤i≤n

n(U
(i)
t − 1)

)

t∈[0,1]

→D η

in C[0, 1], where U (i), i ∈ N, are independent copies of U . Note that the univariate

margins determine the norming constants, so the norming functions are necessarily

the constant functions an = 1/n, bn = 1, n ∈ N. Lemma 2.3 implies that U is in

the functional domain of attraction of η.

Suppose that the rv (Yi/d)
d
i=1 is in the ordinary domain of attraction of a mul-

tivariate EVD (see, for instance, Falk et al. [5, Section 5.2]). Then we know from

Aulbach et al. [1] that the copula Cd corresponding to the rv (Yi/d)
d
i=1 satisfies the
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equation

(5) Cd(y) = 1− ‖1− y‖Dd
+ o (‖1− y‖∞) ,

as ‖1− y‖∞ → 0, uniformly in y ∈ [0, 1]d, where the D-norm is given by

‖x‖Dd
= E

(

max
1≤i≤d

(

|xi|Zi/d

)

)

, x ∈ R
d.

The following analogous result for the functional domain of attraction was es-

tablished in Aulbach et al. [2].

Proposition 2.4. Suppose that U ∈ C̄+[0, 1] is a copula process. The following

equivalences hold:

U ∈ D(η) in the sense of condition (FuDA)

⇐⇒ P

(

U − 1 ≤
f

n

)

= 1−

∥

∥

∥

∥

f

n

∥

∥

∥

∥

D

+ o

(

1

n

)

, f ∈ Ē−[0, 1], as n → ∞,

⇐⇒ P (U − 1 ≤ |c| f) = 1 + c ‖f‖D + o(c), f ∈ Ē−[0, 1], as c ↑ 0,(6)

Note that condition (6) holds if

(6’) P (U − 1 ≤ g) = 1− ‖g‖D + o(‖g‖∞)

as ‖g‖∞ → 0, uniformly for all g ∈ Ē−[0, 1] with ‖g‖∞ ≤ 1. It is an open problem

whether (6’) and (6) are, actually, equivalent conditions.

3. Sojourn Times and the Fragility Index

Let Y = (Yt)t∈[0,1] ∈ C[0, 1] be a stochastic process with identical continuous

marginal df F . We investigate in this section the mean of the sojourn time of Y

above a threshold s

S(s) =

∫ 1

0

1(Yt > s) dt,

under the condition that there is an exceedance, i.e., S(s) > 0. In particular we es-

tablish its asymptotic equality with the limit of the FI corresponding to (Yi/n)1≤i≤n.

Before we present the main results of this section we need some auxiliary results.

Put for n ∈ N

Sn(s) :=
1

n

n
∑

i=1

1(Yi/n > s),

which is a Riemann sum of the integral S(s). We have

Sn(s) →n→∞ S(s)

and, thus,

P (Sn(s) ≤ x) →n→∞ P (S(s) ≤ x)
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for each x ≥ 0 such that P (S(s) = x) = 0. As a consequence we obtain

P (Sn(s) ≤ x | Sn(s) > 0) =
P (0 < Sn(s) ≤ x)

P (Sn(s) > 0)

→n→∞
P (0 < S(s) ≤ x)

P (S(s) > 0)

= P (S(s) ≤ x | S(s) > 0)

for each such x > 0. This conclusion requires the following argument.

Lemma 3.1. We have

P (Sn(s) = 0) →n→∞ P (S(s) = 0),

Proof. We have

P (Sn(s) = 0) ≤ P (Sn(s) ≤ ε) →n→∞ P (S(s) ≤ ε) = P (S(s) = 0) + δ,

where ε, δ > 0 can be made arbitrarily small. This implies lim supn→∞ P (Sn(s) =

0) ≤ P (S(s) = 0). We have, on the other hand,

P (S(s) = 0) = P

(

⋂

n∈N

{Sn(s) = 0}

)

≤ lim inf
n→∞

P (Sn(s) = 0),

which implies the assertion. �

We have

Sn(s) =
1

n

n
∑

i=1

1(F (Yi/n) > F (s))

=
1

n

n
∑

i=1

1(Ui/n > c)

almost surely, where c := F (s).

Note that

FIn(s) := E(nSn(s) | Sn(s) > 0)

= E

(

n
∑

i=1

1(Ui/n > c) | Sn(s) > 0

)

=

n
∑

i=1

P
(

Ui/n > c | Sn(s) > 0
)

=

n
∑

i=1

P (Ui/n > c)

P (Sn(s) > 0)

= n
1− c

1− P (Sn(s) = 0)
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is the FI of level s corresponding to Yi/n, 1 ≤ i ≤ n. The FI was introduced in

Geluk et al. [7] to measure the stability of a stochastic system. The system is called

stable if FI = 1, indicating tail independence of the Yi/n, 1 ≤ i ≤ n, otherwise it

is called fragile. For an extensive investigation and extension of the FI we refer to

Falk and Tichy [6]. The following theorem is the first main result of this section.

Theorem 3.2. Let Y be a stochastic process in C[0, 1] with identical continuous

marginal df F . Suppose that the copula process U = (F (Yt))t∈[0,1] corresponding to

Y is in the functional domain of attraction of an EVP η with generator constant

m ≥ 1 as in Proposition 2.1. Then we have

lim
n→∞

lim
sր

FIn(s)

n
= lim

sր
lim
n→∞

FIn(s)

n
= lim

sր
E(S(s) | S(s) > 0) =

1

m
.

Proof. Expansion (5) implies for n ∈ N

P (Sn(s) > 0)

= 1− P

(

n
∑

i=1

1(Ui/n > c) = 0

)

= 1− P (Ui/n ≤ c, 1 ≤ i ≤ n)

= 1− Cn(c, . . . , c)

= (1− c) ‖(1, . . . , 1)‖Dn
+ o

(

(1 − c) ‖(1, . . . , 1)‖Dn

)

= (1− c)E

(

max
1≤i≤n

Zi/n

)

+ o

(

(1− c)E

(

max
1≤i≤n

Zi/n

))

as c ↑ 1 and, thus,

FIn(s)

n
=

1− c

P (Sn(s) > 0)

=
1

E
(

max1≤i≤n Zi/n

)

+ o
(

E
(

max1≤i≤n Zi/n

))

as c ↑ 1. We, thus, obtain

lim
n→∞

lim
sր

FIn(s)

n
= lim

n→∞

1

E
(

max1≤i≤n Zi/n

) =
1

E (max0≤t≤1 Zt)
=

1

m
.

We have, on the other hand,

lim
n→∞

FIn(s)

n
= lim

n→∞

1− c

1− P (Sn(s) = 0)
=

1− c

1− P (S(s) = 0)
.

Since U ∈ D(η), we obtain from the equivalent condition (6)

lim
sր

lim
n→∞

FIn(s)

n
= lim

sր

1− c

1− P (S(s) = 0)

= lim
sր

1− c

1− P (Y ≤ s)
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= lim
sր

1− c

1− P (U ≤ c)

= lim
sր

1− c

1− (1− (1 − c) ‖1‖D + o(1 − c))

=
1

‖1‖D

=
1

E (max0≤t≤1 Zt)

=
1

m
,

where 1 is the constant function on [0, 1]. Moreover, by the dominated convergence

theorem

FIn(s)

n
= E(Sn(s) | Sn(s) > 0)

=
E(Sn(s))

P (Sn(s) > 0)

→n→∞
E(S(s))

P (S(s) > 0)

= E(S(s) | S(s) > 0).

�

Remark 3.3. While the generatorZ of a standard EVP η is in general not uniquely

determined, the generator constant m = E
(

supt∈[0,1] Zt

)

= ‖1‖D is.

Remark 3.4. Under the conditions of Theorem 3.2 we have

P (S(s) > 0) = (1− c)m+ o(1− c) as c ր 1 and E(S(s)) = 1− F (s).

To apply the preceding result to generalized Pareto processes defined below, we

add an extension of Theorem 3.2. It is shown by repeating the preceding arguments.

We call a copula process U = (Ut)t∈[0,1] (upper) tail continuous, if the process

Uc0 := (max(c0, Ut))t∈[0,1] is a.s. continuous for some c0 < 1. Note that in this

case Uc is a.s. continuous for each c ≥ c0.

A stochastic process Y = (Yt)t∈[0,1] is said to have ultimately identical and

continuous marginal df Ft, t ∈ [0, 1], if Ft(x) = Fs(x), 0 ≤ s, t ≤ 1, x ≥ x0 with

F1(x0) < 1, and F1(x) is continuous for x ≥ x0.

Theorem 3.5. Let Y = (Yt)t∈[0,1] be a stochastic process with ultimately identical

and continuous marginal df. Suppose that the copula process pertaining to Y is tail

continuous and that it is in the functional domain of attraction of an EVP η, whose

finite dimensional marginal distributions are given by

Gt1,...,td(x) = exp

(

−E

(

max
1≤i≤d

|xi|Zti

))

,
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0 ≤ t1 < · · · < td ≤ 1, x ≤ 0 ∈ R
d, d ∈ N. We require that the stochastic process

Z = (Zt)t∈[0,1] is a.s. continuous and that its components satisfy 0 ≤ Zt ≤ m a.s.,

E(Zt) = 1, t ∈ [0, 1], for some m ≥ 1. Then we have

lim
n→∞

lim
sր

FIn(s)

n
= lim

sր
lim
n→∞

FIn(s)

n

= lim
sր

E(S(s) | S(s) > 0)

=
1

E (max0≤t≤1 Zt)
.

Example 3.6. Consider the d-dimensional EVD G(x) = exp(−‖x‖p), x ≤ 0 ∈ R
d,

d ≥ 2, where the D-norm is the usual p-norm ‖x‖D =
(

∑d
i=1 |xi|

p
)1/p

= ‖x‖p,

x ∈ R
d, with 1 ≤ p ≤ ∞. The case p = ∞ yields the maximum-norm ‖x‖∞. Let

the rv (Z1, . . . , Zd) be a generator of ‖·‖p, i.e., 0 ≤ Zi ≤ c a.s., E(Zi) = 1, 1 ≤ i ≤ d

with some c ≥ 1, and ‖x‖p = E (max1≤i≤d(|xi|Zi)), x ∈ R
d. The rv (Z1, . . . , Zd)

can be extended by linear interpolation to a generator Z = (Zt)t∈[0,1] of a standard

EVP η: Put for i = 1, . . . , d− 1

Z(1−ϑ) i−1

d−1
+ϑ i

d−1

:= (1− ϑ)Zi−1 + ϑZi, 0 ≤ ϑ ≤ 1,

which yields a continuous generator Z = (Zt)t∈[0,1]. In this case we have

1

E (max0≤t≤1 Zt)
=

1

E (max1≤i≤d Zi)
=

1

‖(1, . . . , 1)‖p
=

1

d1/p
,

i.e., the generator constant is d1/p. This example implies, in particular, that a

standard EVP η, whose finite dimensional marginal distributions Gt1,...,td are given

by Gt1,...,td = exp(−‖x‖p), x ≤ 0 ∈ R
d, d ≥ 1, does not exist.

Example 3.7 (Generalized Pareto Process (GPP)). Let Z = (Zt)t∈[0,1] ∈ C̄+[0, 1]

with 0 ≤ Zt ≤ m a.s., E(Zt) = 1, t ∈ [0, 1], for some m ≥ 1, and let U be a rv that

is uniformly on (0, 1) distributed and which is independent of Z. Then the process

Y :=
1

U
Z ∈ C̄+[0, 1]

is an example of a generalized Pareto process (GPP) (cf. Buishand et al. [4]), as its

univariate margins are (in its upper tails) standard Pareto distributions:

Ft(x) = P (Zt ≤ xU)

=

∫ m

0

P
( z

x
< U

)

(P ∗ Zt)(dz)

= 1−
1

x
E(Zt)

= 1−
1

x
, x ≥ m, t ∈ [0, 1].
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We have, moreover, by Fubini’s theorem

P

(

−
1

Y
≤ f

)

= 1− ‖f‖D

for all f ∈ Ē−[0, 1] with ‖f‖∞ ≤ 1/m, i.e., the GPP V := −1/Y = −U/Z has the

property that its df is in its upper tail equal to

W (f) := P (V ≤ f) = 1 + log(G(f)), f ∈ Ē−[0, 1], ‖f‖∞ ≤ 1/m,

where G(f) = P (η ≤ f) is the df of the EVP η with D-norm ‖·‖D and generator

Z (cf. Aulbach et al. [2, Section 4]).

The preceding representation of the upper tail of the df of a GPP V in terms of

1 + log(G) is in complete accordance with the unit- and multivariate case (see, for

example, Falk et al. [5, Chapter 5]).

We call in general a stochastic process V ∈ C̄−[0, 1] a standard GPP, if there

is an ε0 > 0 such that P (V ≤ f) = P (−U/Z ≤ f) for all f ∈ Ē−[0, 1] with

‖f‖∞ ≤ ε0.

Note that the copula process pertaining to the GPP Z/U is in its upper tail given

by the shifted standard GPP 1+V , which satisfies the conditions of Theorem 3.5.

We, therefore, obtain for the GPP process Z/U

lim
n→∞

lim
sր

FIn(s)

n
= lim

sր
E(S(s) | S(s) > 0) =

1

E (max0≤t≤1 Zt)
.

4. Sojourn Time Distribution

In this section we compute the asymptotic sojourn time distribution of such

processes, which are in a certain neighborhood of a standard GPP. A standard

EVP is a prominent example. In this setup we can replace the constant threshold

s by a threshold function.

The sojourn time distribution of a standard GPP is easily computed as the

following lemma shows. This distribution is independent of the threshold level s,

which reveals another exceedance stability of a GPP. Note that we replace the

constant threshold line s in what follows by a threshold function sf(t), where f ∈

Ē−[0, 1] is fixed and s is the variable threshold level.

Lemma 4.1. Let V ∈ C̄−[0, 1] be a standard GPP, i.e. there is an ε0 > 0 such

that P (V ≤ g) = P (−U/Z ≤ g) for all g ∈ Ē−[0, 1] with ‖g‖∞ ≤ ε0, where U

is uniformly on (0, 1) distributed and independent of the generator Z = (Zt)t∈[0,1],

which is continuous and satisfies 0 ≤ Zt ≤ m, E(Zt) = 1, t ∈ [0, 1], for some

m ≥ 1. Choose f ∈ Ē−[0, 1]. Then there is an s0 > 0 such that the sojourn time
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df Hf of V above sf is given by

P

(∫ 1

0

1 (Vt > sf(t)) dt > y |

∫ 1

0

1 (Vt > sf(t)) dt > 0

)

=

∫m‖f‖∞

0
P
(

∫ 1

0
1 (|f(t)|Zt > u) dt > y

)

du

∫m‖f‖∞

0
P
(

∫ 1

0
1 (|f(t)|Zt > u) dt > 0

)

du

=: 1−Hf (y), 0 ≤ y ≤ 1, s0 ≤ s < 0,

provided the denominator is greater than zero. Note that Hf (0) = 0, Hf (1) = 1.

Example 4.2. Any continuous df F on [0, 1] can occur as a sojourn time df. Take

Zt = 1, 0 ≤ t ≤ 1, which provides the case of complete dependence of the margins of

the corresponding standard EVP η. Choose a continuous df F : [0, 1] → [0, 1] and

put f(t) = F (t)− 1, 0 ≤ t ≤ 1. Then the sojourn time df equals F , Hf (y) = F (y),

y ∈ [0, 1].

If we take, on the other hand, f(t) = −1, t ∈ [0, 1], then Hf has all its mass at

1, i.e., Hf (y) = 0, y < 0, and Hf (1) = 1. These examples show in particular that

the sojourn time df Hf can be continuous as well as discrete.

Proof. The assertion is an immediate consequence of standard rules of integration

together with conditioning on U = u:

P

(∫ 1

0

1 (Vt > sf(t)) dt > y

)

= P

(∫ 1

0

1 (U < s |f(t)|Zt) dt > y

)

du

=

∫ 1

0

P

(∫ 1

0

1 (u < s |f(t)|Zt) dt > y

)

du,

where substituting u by su yields

= s

∫ 1/s

0

P

(∫ 1

0

1 (|f(t)|Zt > u) dt > y

)

= s

∫ m‖f‖∞

0

P

(∫ 1

0

1 (|f(t)|Zt > u) dt > y

)

du

if s ≤ 1/(m ‖f‖∞). This implies the assertion. �

Next we will extend the preceding lemma to processes ξ ∈ C̄−[0, 1] which are in

certain neighborhoods of a standard GPP V . Precisely, we require that for a given

function f ∈ Ē−
1 [0, 1] :=

{

f ∈ Ē−[0, 1] : ‖f‖∞ = 1
}

(7) P (ξ > sf) = P (V > sf) + o(s)
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and

(8) P (ξ ≤ sf) = P (V ≤ sf) + o(s)

as s ↓ 0.

An example of a process satisfying conditions (7) and (8) is a standard EVP η,

which follows by Lemma 4.5 below together with equation (4). The next lemma

follows from elementary computations.

Lemma 4.3. For each standard GPP V there exists s0 > 0 such that for 0 ≤ s ≤ s0

and for each f ∈ Ē−[0, 1] with ‖f‖∞ ≤ 1

(i)

P (V ≤ sf) = 1− sE

(

max
t∈[0,1]

(|f(t)|Zt)

)

= 1− s ‖f‖D ,

(ii)

P (V > sf) = sE

(

min
t∈[0,1]

(|f(t)|Zt)

)

.

The next result extends the Lemma 4.1 to processes, which satisfy condition (7)

and (8).

Proposition 4.4. Suppose that ξ ∈ C̄−[0, 1] has identical univariate margins and

that it satisfies condition (7) as well as (8). Choose f ∈ Ē−
1 [0, 1]. Then the

asymptotic sojourn time distribution of ξ, conditional on the assumption that it is

positive, is given by

P

(∫ 1

0

1 (ξt > sf(t)) dt > y |

∫ 1

0

1 (ξt > sf(t)) dt > 0

)

→s↓0 1−Hf (y),

where the sojourn time df Hf is given in Lemma 4.1.

Proof. We establish this result via establishing convergence of characteristic func-

tions. Put Is :=
∫ 1

0
1(ξt > sf(t)) dt, s > 0. Without loss of generality we can

assume that the function f is one-sided continuous at its points of discontinuity.

The characteristic function of the rv Is, conditional on the event that it is positive,

is

E (exp (itIs) | Is > 0) =

∫

{Is>0}
exp(itIs) dP

P (Is > 0)
.

Note that 0 ≤ Is ≤ 1. By the dominated convergence theorem we have

∫

{Is>0}

exp(itIs) dP =

∫

{Is>0}

∞
∑

k=0

(itIs)
k

k!
dP

=

∞
∑

k=0

(it)k

k!

∫

{Is>0}

Iks dP
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= P (Is > 0) +

∞
∑

k=1

(it)k

k!

∫

Ω

Iks dP

= P (Is > 0) +

∞
∑

k=1

(it)k

k!
E
(

Iks
)

.(9)

From condition (8) we obtain

P (Is > 0) = 1− P (Is = 0)

= 1− P (ξ ≤ sf)

= 1− P (V ≤ sf) + o(s)

= s

(

E

(

max
t∈[0,1]

|f(t)Zt|

)

+ o(1)

)

(10)

as s ↓ 0.

From Fubini’s theorem and condition (7) we obtain for k ∈ N

E(Iks ) = E

(

(∫ 1

0

1(ξt > sf(t)) dt

)k
)

= E

(

∫ 1

0

. . .

∫ 1

0

k
∏

i=1

1 (ξti > sf(ti)) dt1 . . . dtk

)

=

∫ 1

0

. . .

∫ 1

0

E

(

k
∏

i=1

1 (ξti > sf(ti))

)

dt1 . . . dtk

=

∫ 1

0

. . .

∫ 1

0

P (ξti > sf(ti), 1 ≤ i ≤ k) dt1 . . . dtk.

We have by condition (7)

P (ξti > sf(ti), 1 ≤ i ≤ k) ≤ P (ξt1 > s) = P (ξ0 > s) = P (V0 > s) + o(s)

uniformly for t1, . . . , tk ∈ [0, 1] and, thus, P (ξti > sf(ti), 1 ≤ i ≤ k) /s is uniformly

bounded. Condition (7) together with the dominated convergence theorem now

implies

E(Iks )

s
=

∫ 1

0

. . .

∫ 1

0

P (ξti > sf(ti), 1 ≤ i ≤ k)

s
dt1 . . . dtk

=

∫ 1

0

. . .

∫ 1

0

P (Vti > sf(ti), 1 ≤ i ≤ k) + o(s)

s
dt1 . . . dtk

→s↓0

∫ 1

0

. . .

∫ 1

0

E

(

min
1≤i≤k

|f(ti)Zti |

)

dt1 . . . dtk.(11)

From equations (9)-(11) we obtain
∫

{Is>0}

exp(itIs) dP
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= s(1 + o(1))

(

E

(

max
t∈[0,1]

|f(t)Zt|

)

+

n
∑

k=1

(it)k

k!

(∫ 1

0

. . .

∫ 1

0

E

(

min
1≤i≤k

|f(ti)Zti |

)

dt1 . . . dtk

)

)

+

∞
∑

k=n+1

(it)k

k!
E(Iks ),

where n ∈ N is chosen such that for a given ε > 0 we have
∑∞

k=m+1 1/k! ≤ ε.

As Is ∈ [0, 1], we obtain E(Iks ) ≤ E(Is) = s
(

E
(

mint∈[0,1] |f(t)Zt|
)

+ o(1)
)

by

condition (8) and, thus,
∫

{Is>0}

exp(itIs) dP

= s(1 + o(1))

(

E

(

max
t∈[0,1]

|f(t)Zt|

)

+

n
∑

k=1

(it)k

k!

(∫ 1

0

. . .

∫ 1

0

E

(

min
1≤i≤k

|f(ti)Zti |

)

dt1 . . . dtk

)

+O(ε)

)

as s ↓ 0. Since ε > 0 was arbitrary we obtain

lim
s↓0

∫

{Is>0} exp(itIs) dP

P (Is > 0)

= 1 +

∑∞
k=1

(it)k

k!

(

∫ 1

0 . . .
∫ 1

0 E (min1≤i≤k |f(ti)Zti |) dt1 . . . dtk

)

E
(

maxt∈[0,1] |f(t)Zt|
)

=: ϕ(t), t ∈ R.

An inspection of the preceding arguments shows that ϕ is the characteristic function

of the sojourn time df Hf , which completes the proof. �

We conclude this section by showing that a standard EVP η satisfies condition

(7) and (8) and, thus, Proposition 4.4 applies.

Lemma 4.5. Let η be a standard EVP with generator Z. Then we obtain for

f ∈ Ē−[0, 1]

(i) P (η > f) ≥ 1− exp

(

−E

(

inf
0≤t≤1

(|f(t)|Zt)

))

,

(ii) lim
s↓0

P (η > sf)

s
= E

(

inf
0≤t≤1

(|f(t)|Zt)

)

.

Proof. Due to the continuity of η and Z it is sufficient to consider f ∈ Ē−[0, 1] with

sup0≤t≤1 f(t) < 0. Let {t1, t2, . . . } be a denumerable dense subset of [0, 1], which

contains those finitely many points ti at which the function f(t) is discontinuous.
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The continuity from above of an arbitrary probability measure implies

P





⋂

j∈N

{

ηtj > f(tj)
}



 = lim
m→∞

P
(

ηtj > f(tj), 1 ≤ j ≤ m
)

.

The first assertion of the lemma follows if we show that for arbitrary m ∈ N

(12) P
(

ηtj > f(tj), 1 ≤ j ≤ m
)

≥ 1− exp

(

−E

(

min
1≤j≤m

(|f(tj)|Ztj ))

))

.

From Aulbach et al. [2] we deduce that

ξt := −
1

ηt
, 0 ≤ t ≤ 1,

defines a continuous max-stable process ξ = (ξt)0≤t≤1 on [0, 1] with standard

Fréchet margins. By Proposition 3.2 in Giné et al. [8] we know that

ξ =D max
i

Yi

in C̄+[0, 1], where Y1,Y2, . . . are the points (functions in C̄+[0, 1]) of a Poisson

processN with intensity measure ν given by dν = dσ×dr/r2 on C̄+[0, 1]×(0,∞) =:

C[0, 1]+ = {h ∈ C[0, 1] : h ≥ 0, h 6= 0}. By C̄+
1 [0, 1] we denote the space of those

functions h in C̄+[0, 1] with ‖h‖∞ = sup0≤t≤1 |h(t)| = 1. The (finite) measure σ

is given by σ(·) = mP (Z̃ ∈ ·), where Z̃ := Z/m and m is the generator constant

pertaining to Z. Note that m coincides with the total mass of σ.

We, therefore, obtain

P (ηtj > f(tj), 1 ≤ j ≤ m)

= P

(

−
1

ηtj
>

1

|f(tj)|
, 1 ≤ j ≤ m

)

= P

(

ξtj >
1

|f(tj)|
, 1 ≤ j ≤ m

)

= P





m
⋂

j=1

⋃

i

{

Yi(tj) >
1

|f(tj)|

}





= P





m
⋂

j=1

{

N

({

g ∈ C[0, 1]+ : g(tj) >
1

|f(tj)|

})

> 0

}





= 1− P





m
⋃

j=1

{

N

({

g ∈ C[0, 1]+ : g(tj) >
1

|f(tj)|

})

= 0

}





= 1− P

(

ω : ∃j ∀i : Yi(tj) ≤
1

|f(tj)|

)

≥ 1− P

(

ω : ∀i ∃j : Yi(tj) ≤
1

|f(tj)|

)
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= 1− P

({

N

({

g ∈ C[0, 1]+ : max
1≤j≤m

(

1

|f(tj)| g(tj)

)

< 1

})

= 0

})

= 1− exp

(

−ν

({

g ∈ C[0, 1]+ : max
1≤j≤m

(

1

|f(tj)| g(tj)

)

< 1

}))

= 1− exp

(

−ν

({

(h, r) ∈ C̄+
1 [0, 1]× (0,∞) : r > max

1≤j≤m

(

1

|f(tj)| h(tj)

)}))

= 1− exp

(

−

∫

C̄+

1
[0,1]

∫ ∞

max1≤j≤m(1/(|f(tj)|h(tj)))

1

r2
dr σ(dh)

)

= 1− exp

(

−

∫

C̄+

1
[0,1]

min
1≤j≤m

(|f(tj)|h(tj))σ(dh)

)

= 1− exp

(

−E

(

min
1≤j≤m

(

|f(tj)|Ztj

)

))

,

which is inequality (12). Next we establish the inequality

(13) lim sup
s↓0

P (η > sf)

s
≤ E

(

min
1≤j≤m

(|f(tj)|Ztj )

)

.

The inclusion-exclusion theorem implies

P (η > sf)

≤ P





m
⋂

j=1

{

ηtj > sf(tj)
}





= 1− P





m
⋃

j=1

{

ηtj ≤ sf(tj)
}





= 1−
∑

∅6=T⊂{1,...,m}

(−1)|T |−1P





⋂

j∈T

{

ηtj ≤ sf(tj)
}





= 1−
∑

∅6=T⊂{1,...,m}

(−1)|T |−1 exp

(

−sE

(

max
j∈T

(

|f(tj)|Ztj

)

))

=: 1−H(s)

= H(0)−H(s),

where the function H is differentiable and, thus,

lim sup
s↓0

P (η > sf)

s

≤ − lim
s↓0

H(s)−H(0)

s

= −H ′(0)
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=
∑

∅6=T⊂{1,...,m}

(−1)|T |−1E

(

max
j∈T

(

|f(tj)|Ztj

)

)

= E

(

min
1≤j≤m

(

|f(tj)|Ztj

)

)

,

since
∑

∅6=T⊂{1,...,m}(−1)|T |−1 maxj∈T aj = min1≤j≤m aj for arbitrary numbers

{a1, . . . , am} ∈ R, which can be seen by induction. This implies equation (13).

Part (ii) is a straightforward consequence of (i) and (13). �

5. Cluster Length

The considerations in the previous section enable us also to compute the limit

distribution of the cluster length above the threshold sf of a process ξ ∈ C̄−[0, 1],

which is in the neighborhood of a standard GPP. Precisely, we require the following

variant of condition (7). Choose 0 ≤ a ≤ b ≤ 1, and denote by C̄−[a, b] the set of

continuous functions f : [a, b] → (−∞, 0]. We suppose that for f ∈ C̄−[a, b]

(14) P (ξt > sf(t), t ∈ [a, b]) = P (Vt > sf(t), t ∈ [a, b]) + o(s)

as s ↓ 0, where V = (Vt)t∈[0,1] is a standard GPP. Note that

P (Vt > sf(t), t ∈ [a, b]) = sE

(

min
a≤t≤b

(|f(t)|Zt)

)

+ o(s), s ∈ (0, s0),

and that we allow the case a = b. We do not require ξ to have identical marginal

distributions. A standard EVP η satisfies condition (14); an inspection of the proof

of Lemma 4.5 shows that it remains true with the interval [0, 1] replaced by [a, b].

The cluster length above sf of the process ξ with inspection point t0 ∈ [0, 1) is

defined by

τt0(s) := sup {L ∈ (0, 1− t0] : ξt > sf(t), t ∈ [t0, t0 + L)}

under the condition that ξt0 > sf(t0).

Proposition 5.1. Suppose that ξ ∈ C̄−[0, 1] satisfies condition (14). Then we

have for u ∈ [0, 1− t0) and f ∈ C̄−[a, b] with f(t0) < 0

lim
s↓0

P (τt0(s) > u | ξt0 > sf(t0)) =
E (mint0≤t≤u(|f(t)|Zt))

|f(t0)|
.

Proof. We have for u ∈ [0, 1− t0)

P (τt0(s) > u | ξt0 > sf(t0)) =
P (ξt > sf(t), t ∈ [t0, t0 + u])

P (ξt0 > sf(t0))

=
P (Vt > sf(t), t ∈ [t0, t0 + u]) + o(s)

P (Vt0 > sf(t0)) + o(s)

=
E (mint0≤t≤t0+u(|f(t)|Zt))

|f(t0)|
+ o(1)
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as s ↓ 0. �

The asymptotic cluster length τt0 , as s ↓ 0, with inspection point t0 ∈ [0, 1) has,

consequently, the continuous df

P (τt0 ≤ u) = 1−
E (mint0≤t≤t0+u(|f(t)|Zt))

|f(t0)|

for 0 ≤ u < 1− t0, and possibly positive mass at 1− t0:

P (τt0 = 1− t0) =
E (mint0≤t≤1(|f(t)|Zt))

|f(t0)|
.

Its expected value is, therefore, given by

E (τt0) =

∫ 1−t0

0

P (τt0 > u) du

=
1

|f(t0)|

∫ 1−t0

0

E

(

min
t0≤t≤t0+u

(|f(t)|Zt)

)

du

=
1

|f(t0)|
E

(
∫ 1

t0

min
t0≤t≤u

(|f(t)|Zt) du

)

.
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