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FORMAL PLETHORIES

TILMAN BAUER

TL;DR. Unstable operations in a generalized cohomology theory E give rise to a
functor from the category of algebras over E to itself which is a colimit of repre-

sentable functors and a comonoid with respect to composition of such functors. In
this paper I set up a framework to study the algebra of such functors, which I call
formal plethories. I show that the “logarithmic” functors of primitives and inde-
composables give linear approximations of formal plethories by bimonoids in the
2-monoidal category of bimodules over a ring.
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1. INTRODUCTION

Let k be a commutative ring and denote by kAlgk the category of representable
endofunctors Algk → Algk of k-algebras. From an algebro-geometric point of
view, these can be considered as affine schemes over k with a structure of a k-
algebra on them. Composition of such representable endofunctors constitutes a
non-symmetric monoidal structure ○ on kAlgk; a plethory is an object F ∈ kAlgk
which is a comonoid with respect to ○, i.e. a representable functor F∶Algk → Algk
with natural transformations F → id and F → F ○ F such that coassociativity and
counitality conditions are satisfied. The algebra of plethories was first studied by
Tall and Wraith [TW70] and then extended by Borger and Wieland [BW05]. The
aim of this paper is to extend the theory of plethories to the setting of graded for-
mal schemes and to study linearizations of them. The motivation for doing this
comes from topology.

Let K be a homotopy commutative ring spectrum representing a cohomology
theory K∗. For any space X, K∗(X) is naturally a algebra over the ring of coefficient
K∗ of K; furthermore, there is an action

Kn(Km) ×Km(X) → Kn(X)

by unstable operations. Here Km denotes the mth space in the Ω-spectrum associ-
ated to K. The bigraded K∗-algebra K∗(K∗) almost qualifies as the representing ob-
ject of a plethory, but not quite. In order for K∗(K∗) to have the required structure
maps (the ring structure on the spectrum of this ring must come from a coaddition
and a comultiplication, for instance), one would have to assume that K∗(Kn) is a
finitely generated free K∗-module in order to have a Künneth isomorphism, but
this is almost never the case. A solution to this is to pass to the category of pro-
K∗-algebras. If X is a CW-complex, we define K∗(X) ∈ Pro−AlgK∗ to be the system

{K∗(F)}F⊆X indexed by all finite sub-CW-complexes F of X. We then assume:

(1.1) K∗(Kn) is pro-finitely generated free for all n.

Note that we do not require that K∗(F) be free for all finite sub-CW-complexes
F ⊆ X, or even for any such F. We merely require that K∗(F) is pro-isomorphic to
a system that consists of free K∗-modules.

This passing to pro-objects gives the theory of plethories a whole new flavor.

Definition. Let k be a graded commutative ring. A formal scheme over k is a functor
F∶Algk → Set which is a filtered colimit of representable functors. A formal k-algebra
scheme over k is a functor F∶Algk → Algk whose underlying functor to Set is a formal
scheme.

Theorem 1.2. The category kÂlgk of formal algebra schemes is complete and cocomplete
and has a monoidal structure ○ given by composition of functors. Similarly, the category
Schk of formal schemes has an action of kÂlgk.

In contrast, the category kAlgk is in fact not complete – it does not have an initial
object, for example.

Definition. A formal plethory is a comonoid in kÂlgk with respect to ○. A comodule
over a formal plethory P is a formal scheme X with a coaction X → P ○X.
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Example 1.3. Let K be a ring spectrum satisfying (1.1). Then K∗(Kn) represents
a formal plethory, and K∗(X) represents a comodule over this plethory for any
space X.

Thus formal plethories provide an algebraic framework for studying unstable
cohomology operations. Algebraic descriptions of unstable cohomology opera-
tions are not new: in [BJW95], unstable algebras and unstable modules were stud-
ied in great depth from a monadic point of view. Plethories were first introduced
in [TW70], and a framework similar to our formal plethories has been indepen-
dently developed by Stacey and Whitehouse [SW09] using filtrations instead of
pro-objects.

Note that there is an unstable Adams-Novikov spectral sequence

ExtK∗(K∗)
(K∗X, K∗) Ô⇒ π∗(XK̂)

converging conditionally to the homotopy groups of the unstable K-completion of
X. The Ext group of the left is the nonlinear comonad-derived functor of homo-
morphisms of comodules over the plethory represented by K∗(K∗). Since this is
generally very difficult to compute, it is desirabe to find good linear approxima-
tions to the formal plethory represented by K∗(Kn) and its comodules, such that
the Ext computation takes place in an abelian category. For this, it is useful to
introduce the concept of a 2-monoidal category.

Definition ([AM10]). A 2-monoidal category is a category C with two monoidal
structures (⊗, I) and (○, J)with natural transformations

ζ∶ (A ○ B)⊗ (C ○D) → (A⊗C) ○ (B⊗D)

and

∆I ∶ I → I ○ I, µJ ∶ J ⊗ J → J, ι J = ǫI ∶ I → J,

satisfying various compatibility conditions explicated in Section 8.
A bilax monoidal functor F∶ C → D between 2-monoidal categories is functor

which is lax monoidal with respect to ⊗, oplax monoidal with respect to ○, and
whose lax and oplax monoidal structures satisfy certain compatibility conditions
(cf. Section 8).

Loosely speaking, a 2-monoidal category is the most general setting in which
one can define a bimonoid (an object with a multiplication and a comultiplication
that are compatible with eachother). A bilax monoidal functor is the most general
notion of functor which sends bimonoids to bimonoids.

Example 1.4. If (C,⊗, I) is a cocomplete monoidal category then (C,⊗, I,⊔,∅) be-
comes a 2-monoidal category (the other monoidal structure being the categorical
coproduct). In particular, the category of formal algebra schemes is 2-monoidal
with the composition product and the coproduct.

Example 1.5. The category kModk of bimodules over a (graded) commutative ring
k is 2-monoidal with respect to the two-sided tensor product k⊗k and the left-right
tensor product ⊗k.

Example 1.6. The category kM̂odk of formal bimodules, i.e. ind-representable addi-
tive functors Modk →Modk, is 2-monoidal.
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The main result of this paper about linearization of formal plethories concerns

the functors of primitives P∶Coalg+k → Modk and of indecomposables Q∶Alg+k →
Modk.

Theorem 1.7. The functors of primitives and indecomposables extend to bilax monoidal
functors

P ,Q∶ kÂlgk → kM̂odk .

This means that a formal plethory F gives rise to two bimonoids P(F), Q(F).
The usefulness for cohomology operations comes from the existence of an edge
map

ExtQK∗K∗(QK∗X, K∗) → ExtK∗K∗(K
∗X, K∗)

which is an isomorphism in interesting cases. We will study these topological ap-
plications and computations made possible by this theory in a forthcoming paper.

Finally, if one desires to leave the worlds of pro-categories, one can do so after
dualization because of the following theorem.

Theorem 1.8. Assume that k ⊗ k is flat over k. Then the full subcategory kM̂odk
′

of

kM̂odk consisting of pro-finitely generated free k-modules is equivalent, as a 2-monoidal
category, to the full subcategory of right k-flat modules in kModk (cf. Example 1.5).

Corollary 1.9. Let K be a multiplicative homology theory such that K∗(Kn) and PK∗(Kn)
are flat K∗-modules for all n. Assume that K∗ ⊗ K∗ is flat over K∗. Then PK∗K∗ is a bi-
monoid in kModk, and for any pointed space X, PK∗(X) is a comodule over it.

Proof. By the flatness condition and the Lazard-Govorov theorem [Laz69, Gov65],
{K∗(F)}F⊆Kn

, where F runs through all finite sub-CW-complexes of Kn, is ind-

finitely generated free. By the universal coefficient theorem [Boa95, Thm 4.14],
this implies that condition (1.1) is also satisfied. Thus K∗(K∗) represents a formal
plethory by Example 1.3, and applying the functor Q gives a bimonoid QK∗(K∗)
by Thm. 1.7. Under the additional flatness assumption on PK∗(K∗), QK∗(K∗) is in
fact pro-finitely generated free, and Thm. 1.8 yields that PK∗(K∗) is a bimonoid in

kModk. With a similar reasoning, PK∗(X) is a comodule over this bimonoid. �

1.1. Outline of the paper. In Section 2, we set up notation and terminology to
deal with the kind of monoidal categories that come up in this context, and with
pro-objects and ind-representable functors. In Sections 3–7, we study formal bi-
modules and formal plethories and the structure of their categories and prove the
first part of Thm. 1.2. In Section 8, we recall the definition of 2-monoidal cate-
gories and functors between them, define the objects of the title of this paper, along
with their linearizations, formal rings and bimonoid, and prove the second part of
Thm.1.2. The long Section 9 is devoted to the study of the linearizing functors of
primitives and indecomposables and culminates in a proof of Thm. 1.7. The final
Section 10 deals with dualization and the proof of Thm. 1.8. There are two appen-
dices: in Appendix A, we review some background on ind- and pro-categories
and how the indexing categories can be simplified. This is needed for Appendix B,
which contains an exposition of how enrichments of categories lift to pro- and
ind-categories.
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2. FUNCTORS WHICH ARE FILTERED COLIMITS OF REPRESENTABLE FUNCTORS

In this section we will set up some category-theoretic terminology to talk about
enrichments, monoidal structures, and ind-representable functors.

2.1. Two-algebra.

Definition. A 2-ring is a bicomplete closed symmetric monoidal category. If (V ,⊗, I)
is a 2-ring, define a left 2-module over V to be a category C which is enriched and
tensored over V and which has all colimits. A right 2-module over V is a category C
which is enriched and cotensored over V with all limits. A 2-bimodule is a category
C which is both a left and a right 2-module with respect to the same enrichment.

Notation. We will typically denote the internal hom object of a 2-ring by V(X, Y)
and the enrichment of a 2-module by C(X, Y). We will use the symbol ⊗ for the
symmetric monoidal structure of V , ⊗ for the left module structure of C over V ,
and hom(−,−) for the right module structure of C over V .

Remark 2.1. If V is a 2-ring and C is a left 2-module over V then the opposite
category Cop is a right 2-module over V and vice versa.

Example 2.2. Any bicomplete category is a 2-bimodule over the category of sets:
the left and and right 2-module structures are given by

S⊗X =∐
s∈S

X and hom(S, X) =∏
s∈S

X.

Example 2.3. The category SetZ of Z-graded sets is a 2-ring with enrichment given
by

SetZ(X, Y)(n) =∏
i∈Z

Set(X(i), Y(i + n))

and tensor product by

(X ×Y)(n) = ∐
i+j=n

X(i) ×Y(j).

The unit object is the singleton in degree 0.

A left 2-module (right 2-module, bimodule) over SetZ is a precisely a cocom-
plete (resp. complete, bicomplete) category C with a Z-action on objects by a shift
functor Σ

n∶ C → C (n ∈ Z). The Z-grading on its morphism sets is determined by
the shift functor: C(X, Y)(n) = C0(X, Σ

nY), where the right hand side denotes the
unenriched homomorphism sets.

Definition. A morphism of 2-bimodules F∶ C → D over a fixed 2-ring V is an enriched
functor C → D. This implies the existence of canonical morphisms α∶ L ⊗ F(X) →
F(L⊗X) and β∶ F(hom(L, X)) → hom(L, F(X)) given by the adjoints of

L → C(X, L⊗X)
F
Ð→ D(F(X), F(L⊗X))

and

L → C(hom(L, X), X)
F
Ð→D(F(hom(L, X)), F(X)),

respectively. We call F left strict if α is a natural isomorphism, and right strict if β is
a natural isomorphism.
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Example 2.4. Let C, D be two bicomplete categories with a Z-action by a shift

functor Σ
n. By Example 2.3, this is equivalent with being a 2-bimodule over SetZ.

Then a functor F∶ C → D is a morphism of 2-bimodules if F commutes with the
shift functor, i.e. if the maps α and β give mutually inverse maps between Σ

nF(X)
and F(ΣnX).

Definition. A 2-algebra C over a 2-ring (V ,⊗, I) is a 2-bimodule C with a monoidal
structure (⊠, J) such that the functors −⊠X and X ⊠−∶C → C are enriched functors
for all X ∈ C.

Although C × C is a V-category by the diagonal enrichment, we do not require
the functor ⊠∶C × C → C to be thus enriched.

To make the structure maps more explicit, the enrichment gives

a natural map α∶ L⊗(X ⊠Y) → (L⊗X) ⊠Y(2.5)

a natural map β∶hom(L, X) ⊠Y → hom(L, X ⊠Y)(2.6)

Note that a 2-algebra, even if it is symmetric, is not required to be closed monoidal
(⊠ need not have a right adjoint) and thus is not necessarily a 2-ring.

Note also that the definition of a 2-algebra is symmetric: if C is a 2-algebra over
V then so is Cop.

Example 2.7. A 2-algebra over the category of (ungraded) sets is simply a monoidal
category. A 2-algebra over Z-graded sets is a Z-graded category with a monoidal
structure ⊠ which is equivariant under grading shifts in either variable.

Example 2.8. Let k be a (not necessarily commutative) ring, V the category of
abelian groups, and C = kModk the category of k-bimodules. Then kModk is a
2-bimodule over V , and the tensor product of k-bimodules ⊗k, using the right mod-
ule structure on the left and vice versa, makes kModk into a 2-algebra.

Lemma 2.9. Let (C,⊠, J) be a 2-algebra over (V ,⊗, I). Let X, Y ∈ C and K, L ∈ V . There
are natural maps

µ∶ I ⊗ J → J, ζ∶ (K ⊗ L) ⊗ (M⊠N) → (K⊗M) ⊠ (L⊗N)

and

µ′∶ J → hom(I, J), ζ′∶hom(K, M) ⊠hom(L, N) → hom(K⊗ L, M ⊠N)

which make ⊗ and hom monoidal functors V ×C → C.

Proof. The map µ is adjoint to the map I → D(J, J) classifying the unit map of D.
The map ζ is the composite

(K⊗ L) ⊗ (M⊠N) ≅K⊗(L⊗ (M⊠N))(2.10)

K⊗α
ÐÐ→K⊗(M⊠ (L⊗N))

α
Ð→ (K⊗M)⊠ (L⊗N)).

The assertion about ζ′ follows from passing to the 2-algebra Cop. �

Definition. A lax morphism of 2-algebras F∶ C → D over a fixed 2-ring V is a mor-
phism of 2-modules with a natural transformation φ∶ F(X) ⊠ F(Y) → F(X ⊠Y) and
a morphism φ0∶ JD → F(JC) which make F into a lax monoidal functor, and which
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is compatible with the enrichment in the sense that the following diagrams com-
mute:

I C(JC, JC) D(F(JC), F(JC))

D(JD, JD) D(JD, F(JC))

idJC

idJD F

(φ0)∗
φ∗0

C(X, X′) D(FX, FX′) D(FX ⊠ FY, FX′ ⊠ FY)

C(X ⊠Y, X′ ⊠Y) D(F(X ⊠Y), F(X′ ⊠Y)) D(FX ⊠ FY, F(X′ ⊠Y)).

−⊠Y

F −⊠ FY

F φ∗
φ∗

Similarly, the previous diagram with appliction of Y⊠− and FY⊠− instead of −⊠Y
and −⊠ FY is required to commute.

An oplax morphism of 2-algebras is a morphism F∶ C → D such that Fop∶ Cop →Dop

is a lax morphism of 2-algebras. More explicitly, it is a morphism of 2-modules
with a natural transformation ψ∶ F(X⊠Y) → F(X)⊠(Y) and a morphism ψ0∶ F(JC) →
JD making F into an oplax monoidal functor, and which is compatible with the en-
richment in a similar sense as above.

A strict morphism of 2-algebras is a morphism F as above with is both lax and

oplax with φ = ψ−1 and φ0 = ψ−1
0 .

It will be useful later to express the conditions for being a lax/oplax morphism
of 2-algebras in terms of the maps µ, ζ of Lemma 2.9 and α, β from the definition
of a morphism of 2-modules.

Lemma 2.11. Let F∶ C → D be a lax morphism of 2-algebras. Then the following diagrams
commute:

I ⊗ JD I ⊗ F(JC) F(I ⊗ JC)

JD F(JC)

µ

id⊗φ0 α

φ0
F(µ)

(K⊗ L)⊗ (F(X) ⊠ F(Y)) (K⊗ L) ⊗ F(X ⊠Y) F((K⊗ L) ⊗ (X ⊠Y))

(K⊗ F(X)) ⊠ (L⊗ F(Y)) F(K⊗X) ⊠ F(L⊗Y) F((K⊗X) ⊠ (L⊗Y))

ζD

id⊗φ α

α⊠ α φ

F(ζC)

We leave the formulation of the analogous other three assertions (for oplax mor-
phisms, and for ζ′ and β, and hom for lax and oplax morphisms) to the reader,
along with the proofs, which are standard exercises in adjunctions. �

2.2. Ind-representable functors. For any category C, denote by Ind−C its ind-
category, whose objects are diagrams I → C with I a small filtering category, and
by Pro−C its pro-category, whose objects are diagrams J → C with J a small cofil-
tering category. See App. A for the definition of morphisms, along with possible
simplifications on the type of indexing categories we need to allow.
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We collect some easy limit and colimit preservation properties and adjoints in
the following lemma.

Lemma 2.12. Let V be a 2-ring with a set of small generators.

(1) Filtered colimits commute with finite limits in V .
(2) Let Small∶ V → Ind−V be the functor that sends an object V ∈ V to the ind-object

consisting of all small subobjects of V . Then there are adjunctions

Small ⊢ (colim∶ Ind−V → V) ⊢ (V ↪ Ind−V)

In particular, the inclusion functor V → Ind−V commutes with limits, the colimit
functor Ind−V → V commutes with all limits and colimits, and Small commutes
with all colimits.

(3) If C is a V-2-bimodule then the inclusion functor C → Pro−C commutes with
finite limits.

Proof. (1) holds because V has a set of small generators. Indeed, if J is a filtered
category, F is a finite category, and X∶ J × F → V is a functor then

V(S, colim
J

lim
F

X) = colim
J

lim
F
V(S, X) = lim

F
colim

J
V(S, X) = V(S, lim

F
colim

J
X)

for each small generator S.
The first adjunction of (2) also uses this fact: let X∶ I → V be an element of Ind−V

and Y ∈ V Then

C(Y, colim
i

X(i)) =C(colim Small(Y), colim X(i)) = lim
K<Y
C(K, colim X(i))

=
K small

lim
K<Y

colim
i
C(K, X(i)) = Ind−C(Small(Y), X),

where K runs through all small subobjects of Y. Finally, (3) is a standard fact for
pro-categories [AM69]. �

The following result is proved in Appendix B:

Theorem 2.13. If V is a 2-ring then so is Ind−V . If C is a 2-bimodule over V then Pro−C
is a 2-bimodule over Ind−V . If C is a 2-algebra over V then Pro−C is also a 2-algebra over
Ind−V . �

Corollary 2.14. Let V be a 2-ring with a set of small generators and C be a 2-bimodule
(2-algebra) over V . Then also Pro−C is a 2-bimodule (2-algebra) over V .

Proof. The enrichment of Pro−C over Ind−V becomes an enrichment over V by
passing to the colimit. The left 2module structure is given by

L⊗X = Small(L) ⊗X,

where the left hand symbol ⊗ is being defined and the right hand symbol is the
left 2-module structure from Thm. 2.13. Lemma 2.12(2) shows that this is indeed
a left 2-module structure. The right 2-module structure must therefore be defined
as

hom(L, X) = hom(Small(L), X). �

In our situation (of a 2-ring V with a set of small generators), we thus have an
enrichment over V and one over Ind−V , but we will use the V-enrichment much
more often. The notation Pro−C(X, Y) will always refer to the V-enrichment.
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Recall that a V−functor F∶ C → V is called representable if there is a (necessarily
unique) object A ∈ C such that F(X) =map(A, X) ∈ V for all X.

Definition. Let C be a 2-bimodule over V . A V-functor F∶ C → V is called ind-
represented by A ∈ Pro−C if F = C(A, ι(−)) for some A ∈ Pro−C, where ι∶ C ↪ Pro−C
denotes the inclusion as constant pro-objects.

An ind-representable functor is the same as an ordinary representableV-functor
F′∶Pro−C → V . Indeed, a representable functor F′ gives rise to an ind-representable
functor F = F′ ○ ι. On the other hand, since any representable functor commutes
with all limits and any object X∶ I → C in Pro−C is the I-limit in Pro−C of the dia-
gram X∶ I → C ↪ Pro−C, F′ is uniquely determined by its images on constant pro-
objects. In conjunction with the enriched Yoneda Lemma [Kel05], this also shows
that the ind-representing object A of an ind-representable functor F is uniquely
determined by F.

Lemma 2.15. The category of ind-representable functors C → V has all limits and finite
colimits and the inclusion into the category of all functors preserves and reflects them.

Proof. Since the category of ind-representable functors C → V is equivalent to
(Pro−C)op by assigning to an ind-representable functor its ind-representing object,
the statement about limits is the universal property of the colimit. The existence
of finite (in fact all) colimits in (Pro−C)op follows from the completeness of C and
[Isa02], and the preservation and reflection is a consequence of the fact that finite
limits in Pro−C can be computed levelwise. �

Infinite colimits in the category of ind-representable functors generally differ
from the colimit in the category of all functors.

3. FORMAL BIMODULES

Fix a commutative base ring K. Let k be a graded commutative K-algebra. We
denote by Modk the category of graded right k-modules. This is a 2-bimodule over
ModK, the category of graded K-modules.

For K-algebras k and l, a k-l-bimodule is an object in Modk with a left l-action
on the underlying object in ModK which commutes with the k-action. Alterna-
tively, it is a k ⊗K l-module. This can also be thought of as a representable K-
linear functor M∶Modk → Modl . Namely, given a bimodule M, the functor given
by Modk(M,−)∶Modk → Ab obtains a right l-module structure from the left l-
structure on M. Conversely, if M is a k-module representing a functor into l-
modules, consider the map

l
id⊗η
ÐÐÐ→ l ⊗Modk(M, M) →Modk(M, M),

where η∶K → Modk(M, M) maps 1 to the identity map. The adjoint of this map
gives a left module structure on M.

This leads to the following generalizing definition:

Definition. Let k, l be K-algebras. A formal k-l-bimodule is an ind-representable

functor F∶Modk →Modl . Denote the category of formal bimodules by kM̂odl .

We will now study the structure given by formal bimodules explicitly.



10 TILMAN BAUER

Lemma 3.1. For any formal k-l-bimodule F, there is a unique bigraded pro-k-module
M = {M(i)}i∈I = {Mq

p(i)}i∈I, p,q∈Z such that

F(X) = Pro−Modk(M, X)

with the structure of a left l-module, i.e. a K-algebra map

µ∶ l → Pro−Modk(M, M).

If F is a formal bimodule, we will denote the associated pro-k-module M byOF,
and conversely we will write F = Spf (M). Here we are borrowing notation from
the nonlinear situation of formal schemes discussed in the next section.

Note that there are proper inclusions

{pro-k-l-bimodules} ⊊ {l-module objects in Pro−Modk} ⊊ kM̂odl

An object in all three categories is given by a diagram {M(i)}i∈I of k-modules, but:

● In bimodules, compatible maps l ⊗K M(i) → M(i) are required;
● in l-module objects in Pro−Modk, certain maps l ⊗M(i) → M(j) are re-

quired;

● in kM̂odl , maps Small(l)⊗K M(i) → M(j) are required.

We want to spell out the last point in the following description, which is a direct
result of Theorem 2.13. Let ⊗K denote the left 2-module structure of Pro−Modk
over ModK given by Corollary 2.14, and let homK denote the right 2-module struc-
ture. Note that for N∶ I → Modk, homK(M, N) is not the same as the objectwise
application i ↦ homK(M, N(i)), rather it is homK(Small(M), N).

Corollary 3.2. A formal k-l-bimodule F is given by a pro-k-module M = OF together
with a map

l ⊗K M → M

such that M ≅ K ⊗K M → l ⊗K M → M is the identity and the two maps

l ⊗K l ⊗K M ⇉ l ⊗K M → M

are equal.

Example 3.3. Let M ∈Modl and N ∈ Pro−Modk. Then the cotensor hom(M, N) ∈
Pro−Modk (cf. Cor. 2.14) represents an object in kM̂odl . The left l-action is given,
using Corollary 3.2, as the adjoint of the map

M⊗K l ⊗K homK(M, N)
M⊗kl→M
ÐÐÐÐÐ→ M⊗K homK(M, N) → N.

4. FORMAL ALGEBRA AND MODULE SCHEMES

In the previous section, the definition of an algebra/module was lifted from
ModK, but we can make this more general and also lift the additive structure from
sets.

Let k, l be graded commutative rings. Let Algk be the category of graded
commutative unital k-algebras. We denote by Schk the category of affine formal
schemes over k, i.e. Schk = (Pro−Algk)

op. In this section we will study certain
functors from Algk to Modl and to Algl , i.e. l-module and l-algebra structures on
formal schemes.
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Definition. A formal l-module scheme over k is an ind-representable functor

F∶Algk →Modl .

Denote by kĤopfl the category of formal module schemes.

This is an l-enriched version of commutative formal group schemes. A formal
Z-module scheme is precisely a commutative formal group scheme over k. This
definition of a formal module scheme generalizes the notion of formal A-modules
[Haz78, Chapter 21], which is the special case where k is an l-algebra.

Definition. A formal l-algebra scheme over k is an ind-representable functor

F∶Algk → Algl .

Denote by kÂlgl the category of formal algebra schemes.

This is a pro-version of what is called a k-l-biring in [TW70, BW05], but that
terminology suggests a similarity with bialgebras, which is something completely
different, so we will stick to our terminology.

We will now study the structure given by formal module schemes and formal

algebra schemes explicitly. Note that there is a forgetful functor U∶ kÂlgl → kĤopfl ,
which means that the object representing a formal algebra scheme is equal to the
object representing the underlying formal module scheme, but has more structure.

Lemma 4.1. For any formal l-module scheme F over k, there is a unique bigraded pro-k-
algebra A = {A(i)}i∈I = {Aq

p(i)}i∈I, p,q∈Z such that

F(R) = Pro−Algk(A, R) for any R ∈ Algk.

This pro-algebra A comes with the structure of a co-l-module, i.e. with pro-k-algebra maps

ψ+∶A
q
p → Aq′

p ⊗k Aq′′
p (coaddition)

ǫ0∶A
q
p → kp (cozero)

as well as an additive and multiplicative map

λ∶ l → Pro−Algk(A
∗
∗, A∗∗) (l-module structure).

These maps are such that ǫ0 is the counit for ψ+, λ0 = η ○ ǫ0, λ−1 is the antipode vor ψ+,
and such that ψ+ is associative and (graded) commutative. Furthermore, λ takes values in
the sub-graded set of pro-algebra maps that commute with ψ+ and ǫ0.

A formal l-algebra scheme F consists of the same data and in addition an associative,
(graded) commutative pro-k-algebra map

ψ×∶A
q
p → Aq′

p′ ⊗k Aq′′

p′′ (comultiplication)

as well as an additive and multiplicative map extending ǫ0:

ǫ∶ l → Pro−Algk(A
∗
∗, k) (unit).

such that λa is comultiplication with ǫa, ǫ1 the counit for ψ×, and such that ψ× distributes
over ψ+.
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As before for modules, we write A = OF and F = Spf (A) if F is ind-represented
by A, thinking of A as the ring of functions on the formal scheme F and of F as the
formal spectrum of the pro-algebra A.

Since the constant functor F(R) = l is not ind-representable, we cannot phrase
the l-module and unit data as a map on representing objects. However, just as in
Corollary 3.2, it follows from Cor.2.14 that we can describe λ and ǫ in adjoint form
as maps l ⊗ A → A and l ⊗ A → k, respectively, satisfying additional properties.

Note that k
η
Ð→ A

ǫλ
Ð→ k is a k-algebra map, hence the identity, for all λ ∈ l. Denote

by A+ the kernel of ǫ0. Since the short exact sequence of pro-k-modules

0→ A+ → A
ǫ0
Ð→ k → 0

splits, we can and will identify A+ with the cokernel of k → A.
The terminal example of an l-algebra or module scheme O over k is the trivial

l-algebra (or module) O(A) = 0. Here OO = k, ψ+ and ψ× are the identity, and
ǫλ = idk for all λ ∈ l.

Although the initial l-algebra is clearly l itself, it is not obvious what the ini-
tial l-algebra scheme might be, if it exists. The following construction gives the
somewhat surprising answer.

Definition. Let M ∈Modl be an l-module. Then

hom(M, k) ∈ Pro−Algk

represents a formal l-module scheme over k. (In this formula, the hom is the
right module structure of Pro−Algk over Set.) Its structure is given as follows:
if +∶M(i) ×M(i) → M(j) is a component of the addition map on M, it gives rise to
a coaddition

ψ+∶hom(M(j), k) → hom(M(i) ×M(i), k) → hom(M(i), k)⊗k hom(M(i), k).

If 0 ∈ M(i), the cozero is given by

ǫ0∶hom(M(i), k) → hom({0}, k) = k.

The l-module structure l ⊗ hom(M, k) → hom(M, k) is the adjoint of

(l ×M)⊗hom(M, k)
µ⊗id
ÐÐÐ→ M⊗ hom(M, k)

eval
ÐÐ→ k.

Note that this last evaluation map is adjoint to a map of l-modules

ek∶M → Pro−Algk(hom(M, k), k)

which can be extended to a map

(4.2) eA∶M → Spf (hom(M, k)) (A) = Pro−Algk(hom(M, k), A)

by the unique k-algebra map k → A.

Lemma 4.3. Let M be an l-module. Then the formal module scheme Spf (hom(M, k))
is the best possible representable approximation to the constant functor M with value M.
More precisely, let F denote the category of all functors Algk → Modl . Then for any
F ∈ kĤopfl , the map e induces an isomorphism

kĤopfl(Spf (hom(M, k)) , F)
e∗
Ð→ F(M, F).
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Proof. Let f ∶M → F(k) = Pro−Algk(OF, k) be the evaluation at the pro-k-algebra
k of a natural transformation in F(M, F). This map is adjoint to a map of pro-
algebras M ⊗OF → k, which in turn is adjoint to a map of pro-algebras OF →
hom(M, k). Since the original map was a map of l-modules, this map represents a
map of l-module schemes. �

Example 4.4 (The initial formal algebra scheme). The functor Spf (hom(l, k)) is a
formal l-algebra scheme over k. We have already seen that it is a formal module
scheme, and the comultiplication occurs in the same way. The unit is given by the
evaluation map l ⊗hom(l, k) → k.

Lemma 4.5. The formal algebra scheme Spf (hom(l, k)) is the initial object in kÂlgl .

Proof. The adjoint of the unit map l⊗OF → k for a formal algebra scheme F accord-
ing to Lemma 2.14 gives the unique map OF → hom(l, k). �

The functor Spf (hom(l, k)) can be described explicitly. It assigns to a k-algebra
A the set of all l-tuples of complete idempotent orthogonal elements of A, i.e. tu-

ples (ai)i∈l with ai = 0 for almost all i ∈ l, ∑i ai = 1, aiaj = 0 if i ≠ j and a2
i = ai. The

addition and multiplication are defined by

((ai)i∈l + (bj)j∈l)m = ∑
i+j=m

aibj, ((ai)i∈l(bj)j∈l)m = ∑
ij=m

aibj.

The reader can check that this indeed defines a complete set of idempotent orthog-
onals if (ai) and (bj) are so.

If the algebra A has no zero divisors, i.e. no nontrivial orthogonal elements,
then an l-tuple of elements as above has to be of the form δi, where (δi)j = δij
(i, j ∈ l). Thus in this case, Spf (hom(l, k)) (A) = l, independently of A. Thus for
these A, the map eA of (4.2) is an isomorphism.

Example 4.6 (The identity functor). The identity functor id∶Algk → Algk is repre-
sented by the bigraded k-algebra

(Oid)p = k[ep]
Here ep has bidegree (p, p), and k[ep] denotes the free graded commutative al-
gebra on ep, i.e. polynomial if p is even and exterior if p is odd. The coad-

dition is given by ψ+(ep) = ep ⊗ 1 + 1 ⊗ ep, and the comultiplication (Oid)qp →
(Oid)q′p′ ⊗ (Oid)q′′p′′ is given by ψ×(ep) = ep′ ⊗ ep′′ . The unit map is the canonical

isomorphism k ⇆ Algk(k[e0], k).
Example 4.7 (The completion-at-zero functor). The functor F(X) = Nil(X) is a
non-unital k-algebra scheme over k represented by the pro-k-algebra scheme

(ONil)p = k[[ep]] =def k[ep]/(en
p)}n

with the structure induced by the canonical map Oid → ONil. Obviously this for-
mal k-module scheme cannot have a unital multiplication since the unit element
in a ring is never nilpotent. In an algebro-geometric picture, a nontrivial (formal)
ring scheme always needs at least two geometric points, 0 and 1, whereas the kind
of formal groups that appear in topology as cohomology rings of connected spaces
only have one geometric point, given by the augmentation ideal.
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Example 4.8 (The formal completion functor). The lack of a unit of the previous
example can be remedied in much the same way as for ordinary algebras, namely,
by taking a direct product with a copy of the base ring. We define the functor

F = Spf (hom(k, k))×Nil∶Algk → Algk

Obviously, this functor is represented by hom(k, k)⊗k k[[ep]]. The addition is de-
fined componentwise, whereas the multiplication is defined as follows. Since Nil
is a formal k-module scheme, it has a ring map

µ∶hom(k, k) ǫ0
Ð→ k → Pro−Algk(Nil, Nil).

Using this module structure of Nil over Ind(hom(k, k),−), we define the multipli-
cation by

(λ1, x1)(λ2, x2) = (λ1λ2, µ(λ1, x2)+ µ(λ2, x1)+ x1x2).
The unit for the functor F is given by

(ǫ, ǫ0)∶ k → Pro−Algk(hom(k, k), k)×Pro−Algk(k[[ep]], k).
Example 4.9 (The divided power algebra). Another example of a non-unital Z-
algebra scheme over k is given by the divided power algebra. Let H = ⊕∞i=0 k⟨xi⟩
denote the divided polynomial algebra, i.e. the Hopf algebra with

xixj = (i + j
i
)xi+j

ψ+(xn) = ∑
i+j=n

xi ⊗ xj

Let H(n) denote the quotient algebra H/(xn+1, xn+2, . . . ). Then Γ = {H(n)}n≥0

represents a formal Z-module scheme over k. For a generalized construction along
these lines, see Section 6. This can be given the structure of a non-unital algebra
scheme by defining ψ×(xn) = n!(xn ⊗ xn).
Example 4.10 (The Λ-algebra). Let Λ = k[[c1, c2, . . . ]] be the power series pro-
algebra, where we think of cn as the nth symmetric polynomial in x1, x2, . . . (with
c0 = 1). We then define a formal ring scheme structure on Spf (Λ) by

∞∏
i,j=1

(1+ t(xi ⊗ 1))(1+ t(1⊗ xj)) = ∞∑
n=0

ψ+(cn)tn ∈ (Λ⊗k Λ)[[t]]
and

∞∏
i,j=1

(1+ t(xi ⊗ xj)) = ∞∑
n=0

ψ×(cn)tn ∈ (Λ⊗k Λ)[[t]]
For a ∈ Z, the unit is given by

(1+ t)a = ∞∑
n=0

ǫa(cn)tn, or, ǫa(n) = (a
n
).

The polynomial version of this construction represents the functor which asso-
ciates to a ring its ring of big Witt vectors [Haz78, Chapter 17.2]. From a topological

point of view, this formal ring scheme is isomorphic with Spf (K0(BU)), with the
addition and multiplication induced by the maps BU×BU → BU classifying direct
sums resp. tensor products of vector bundles.
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For the sake of concreteness, the coaddition in Λ is easily described:

ψ+(cn) = ∑
i+j=n

ci ⊗ cj,

whereas the comultiplication does not have a handy closed formula:

ψ×(c1) = c1 ⊗ c1

ψ×(c2) = c2
1 ⊗ c2 + c2 ⊗ c2

1 − 2c2⊗ c2

ψ×(c3) = c3
1 ⊗ c3 + c3 ⊗ c3

1 − 3c3⊗ c1c2 − 3c1c2 ⊗ c3 + c1c2 ⊗ c1c2 etc.

Example 4.11 (Operations of cohomology theories). Let R, S be homotopy com-
mutative ring spectra. Denote by Sn the nth space in the Ω-spectrum associated to
S. Assume that Sn is a filtered colimit of CW-complexes Sn,i such that R∗(Sn,i) is

a finitely generated free R∗-module for all i and n. Let Fn = Spf((R∗(Sn,i))i). This
is a formal scheme over R∗, and it acquires the structure of a formal S∗-algebra
scheme by means of the maps

Sn × Sn → Sn (loop structure)

and

Si × Sj → Si+j (multiplication).

The condition on the Sn is necessary to ensure that these maps translate to coalge-
bra structures by a Künneth isomorphism. The unit map ǫ∶S∗ → Pro−AlgR∗(R∗S∗, R∗)
is induced by application of R∗ to an element of S∗ = π∗S = [S0, Sn].
Remark 4.12 (The forgetful functor). An object F ∈ kÂlgl is represented by a pro-k-
algebraOF with additional structure, which in particular equips OF with a comul-
tiplication

(4.13) l
ǫ
Ð→ Pro−Algk(OF, k) unit

ÐÐ→ Pro−Algk(OF,OF) forget
ÐÐÐ→ Pro−Modk(OF,OF)

At first glance one might think that this equips us with a forgetful functor kÂlgl →

kM̂odl . This is not true since (4.13) is not a map of K-modules (or even abelian
groups) in general. There are interesting functors from algebra schemes to bimod-
ules (defined in Section 9), but the forgetful functor is not one of them.

However, a functor Algk → Algl can of course be composed with the forgetful
functor to Modl , giving a functor from algebra schemes to module schemes.

5. THE STRUCTURE OF THE CATEGORY OF FORMAL BIMODULES

In this section we will study the algebraic structure of kM̂odl , the category of
formal bimodules, in more detail. The main points are that this category is a 2-
bimodule over Modl (Lemma 5.1) and the existence of an approximation to the
objectwise tensor product of modules over l, making it into a 2-algebra (Thm. 5.5.

Recall from Cor. 2.14 that Pro−Modk is a 2-bimodule over ModK.

Lemma 5.1. The category kM̂odl is a 2-bimodule over Modl .

We will denote the left 2-module structure by ⊗l and the right 2-module struc-
ture by homl .
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Proof. Let F, G∶Modk → Modl be objects of kM̂odl . Then the enrichment is given
by the l-module of l-linear natural transformation G → F, i.e. by the equalizer

kM̂odl(G, F)→ Pro−Modk(OF,OG)⇉ Pro−Modk(l ⊗K OF,OG),
where the two maps are given by the map l ⊗K OF →OF of Cor. 3.2 and by

Pro−Modk(OF,OG) → Pro−Modk(l ⊗K OF, l ⊗K OG)→ Pro−Modk(l⊗K OF,OG).
By the commutativity of l, this is again an l-module.

The right 2-module structure homl(M, F) is given objectwise: homl(M, F)(R) =
Modl(M, F(R)). To see that this is representable, we can write homl(M, F) =
Spf (M⊙l OF), where M⊙l OF is the coequalizer

M⊗K l ⊗K OF ⇉ M⊗K OF → M⊙l OF.

Here the first map is the adjoint µ#∶ l ⊗OF → OF of the left module structure map
µ∶ l → Pro−Modk(OF,OF) (Cor. 3.2) and the second map is induced by the right
action M⊗K l → M.

The left 2-module structure M ⊗l F is given by M ⊗l F = Spf (homl(M,OF)),
which is represented by the equalizer

homl(M,OF)→ hom(M,OF) ⇉ hom(M⊗K l,OF). �

The left 2-module structure approximates the functor N ↦ M ⊗l F(N) in the
following sense. Clearly N ↦ M⊗l F(N) is not representable in general because it
is not right exact if M is not flat. Denote by F the category of all additive functors
Modk →Modl , representable or not.

Lemma 5.2. For F, G ∈ kM̂odl and M ∈Modl , there is a natural adjunction isomorphism

F(M⊗l F(−), G) ≅ kM̂odl(M⊗l F, G)
Proof.

F(M⊗l F(−), G) ≅F(F, Modl(M, G(−)))
= kM̂odl(F, homl(M, G)) ≅ kM̂odl(M⊗l F, G). �

For formal bimodules, we will consider a tensor product which is a variant of
the Sweedler product [Swe74]:

Definition. Let F, G ∈ kM̂odl . Define their tensor product F⊗l G as

F⊗l G = Spf (OF
l⊗kOG) ,

where l⊗k, the Sweedler product, is the following equalizer in Pro−Modk:

(5.3) OF
l⊗kOG → OF ⊗k OG ⇉ homK(l,OF ⊗kOG).

The maps are given by

OF ⊗kOG → hom(l,OF)⊗kOG
β
Ð→ hom(l,OF ⊗kOG)

(and similarly for OG), where the first map is the adjoint of the structure map
l → Pro−ModK(OF,OF), and the second map is the natural transformation (2.6).

The l-action on the pro-k-module is given by either of the composites of (5.3),

which actually factors through OF
l⊗k OG → hom(l,OF

l⊗k OG) because the two
possible composites into hom(l, hom(l,OF ⊗kOG)) coincide.
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One should think about the Sweedler product as the submodule of OF ⊗k OG
where the l-actions on the left and the right factor agree.

As a corollary of Lemma 5.2 we get the following result:

Corollary 5.4. Let F, G ∈ kM̂odl . Let P ∈ kM̂odl⊗l be the functor P = Spf (OF ⊗k OG).
Then F ⊗k G “tries to be” the functor P̃ given by P̃(M) = coeq(l ⊗ P(M) ⇉ P(M)),
where the two maps are given by the two l-actions on P(M). That is, for H ∈ kM̂odl ,
there is an adjunction isomorphism

F(P̃, H) ≅ kM̂odl(F⊗l G, H).
The tensor product equips kM̂odl with a symmetric monoidal structure (with

unit homK(l, k)). This symmetric structure is compatible with the enrichment:

Theorem 5.5. The symmetric monoidal category ( kM̂odl ,⊗l , homK(l, k)) is a symmet-
ric 2-algebra over (Modl ,⊗l , l).
Proof. We have already seen that kM̂odl is a 2-module over Modl and that ⊗l is a
symmetric monoidal structure. It remains to show that the functor F ↦ F⊗l G is
enriched over Modl , i.e. that the Z-linear map

kM̂odl(F, F′) → kM̂odl(F⊗l G, F′ ⊗l G)
is in fact l-linear. But this is true by the construction of the l-action on F ⊗l G and
F′ ⊗l G, where we are free to choose the map induced by the l-action on F and
F′. �

6. THE STRUCTURE OF THE CATEGORY OF FORMAL MODULE SCHEMES

In this section we will study enrichments and free/cofree adjunctions for formal
module schemes. Only in this section, l is a not necessarily commutative ring.

Lemma 6.1. The forgetful functor V∶ kĤopfZ → Schk has a left adjoint Fr.

Proof. Let F ∈ Schk. We will construct the left adjoint Fr as Fr = Spf (Γ(OF)) for
a certain functor Γ. This should be the cofree cocommutative cogroup object in
pro-algebras. Since as a right adjoint, Γ has to commute with limits, it suffices to
construct Γ(A) for a constant pro-algebra A ∈ Algk. In the setting of algebras in-
stead of pro-algebras, an explicit description of the cofree bialgebra on an algebra
is quite hard (see [Swe69, Chapter VI], [PT80] for fields, [Tak82] for characteristic p,
[Fox93] for the general noncocommutative case) unless one restricts to irreducible
coalgebras [NR79], and the antipode is yet another problem [Ago09]. The situation
for pro-algebras is actually much simpler and resembles the irreducible case.

Note that the inclusion Algk → Pro−Algk does not send the cofree construction
to the cofree construction!

For a k-module M, denote by ΓN(M) the coalgebra in pro-k-modules

ΓN(M) = ∞∏
n=0

Γ
n
N(M) =

∞∏
n=0

(M⊗kn)Σn
,

where the product is taken in the category Pro−Modk and the symmetric group
Σn acts by signed permutation of the tensor factors. Since

ΓN(M)⊗k ΓN(M) ≅ ∞∏
m,n=0

(M⊗km)Σm ⊗k (M⊗kn)Σn =
∞∏

m,n=0

(M⊗km+n)Σm×Σn
,
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the canonical restriction maps

Γ
m+n
N (M) = (M⊗km+n)Σm+n

→ (M⊗km+n)Σm×Σn = Γ
m
N(M)⊗k Γ

n
N(M)

induce a cocommutative comultiplication ΓN(M) → ΓN(M)⊗k ΓN(M). Further-

more, the projection ǫ0∶ΓN(M) → Γ
0
N(M) = k is a cozero. There is also natural

transformation π∶ΓN(M)→ M given by projection to the Γ
1
N-factor. Note that due

to the failure of the tensor product to commute with infinite products, lim ΓN(M)
is not a coalgebra.

To see that this is the cofree cocommutative coalgebra, let C be a pro-k-module
with a cocommutative comultiplication ψ∶C → C⊗C. Given a coalgebra map C →
ΓN(M), composing with π gives a k-module map C → M. Conversely, given a k-

module map f ∶C → M, define a map f̃ = ( f̃ )n∶C → ΓN(M) = ∏n Γ
n
N(M) by ( f̃ )n =

( f ⊗⋯⊗ f ) ○ψn, where ψn∶C → (C⊗kn)Σn
denotes the (n− 1)-fold comultiplication

of C. It is clear that this gives an adjunction isomorphism.
If A is an algebra in Algk then there is a map

µ′∶ΓN(A)⊗k ΓN(A)→ A; µ′(x⊗ y) = π(x)π(y)
which, by the universal property of ΓN(A) as the cofree coalgebra, lifts to a unique
coalgebra map

µ∶ΓN(A)⊗k ΓN(A)→ ΓN(A).
This makes ΓN(A) a bialgebra (or, more precisely, a formal commutative monoid
scheme) and π a k-algebra map. It is easy to see that it is the cofree object on the
algebra A.

This cofree bialgebra does in general not have an antipode. Note that the cat-
egory of Hopf algebras is a full subcategory of the category of bialgebras: an an-
tipode, if it exists, is unique, and any bialgebra map between Hopf algebras au-
tomatically respects the antipode (much like a monoid map between groups is a
group map).

It is straightforward that the union of any increasing chain of Hopf subalgebras
Hi of a bialgebra A is again a Hopf subalgebra of A. Also, given two Hopf sub-
algebras H1, H2 of a bialgebra A, let H be the image of H1 ⊗k H2 under the map

H1⊗k H2 → A⊗k A
µ
Ð→ A. Then H is a Hopf subalgebra of A which contains H1 and

H2 as Hopf subalgebras. Therefore, the union of all Hopf subalgebras of ΓN(A) is
itself a Hopf subalgebra Γ(A) ⊆ ΓN(A).

Any map of bialgebras f ∶H → ΓN(A) with H a Hopf algebra has its image in
Γ(A) since otherwise the image of f in ΓN(A) would be a Hopf subalgebra of A
not contained in Γ(A). Therefore, Fr = Spf(Γ(O(−))) is the left adjoint of V. �

Denote by F the category of all functors Algk →ModZ, representable or not. Let
Fr∶Set →ModZ also denote the free Z-module functor. The following lemma says
that Fr(F) is the best representable approximation to the functor R↦ Fr(F(R)) for
a formal scheme F ∈ Schk.

Corollary 6.2. For F ∈ Schk, G ∈ kĤopfZ, there is a natural adjunction isomorphism

F(Fr○F, G) ≅ kĤopfZ(Fr(F), G).
Proof. F(Fr ○F, G) ≅ Schk(F, G) ≅

Lemma 6.1 kĤopfZ(Fr(F), G). �



FORMAL PLETHORIES 19

Corollary 6.3. Fr(Spf (k)) = Spf (hom(Z, k)).
Proof. Both functors are characterized as a best approximations to the constant
functor Z, hence equal. More precisely, note that Spf (k) is the constant functor

with value the singleton, thus for any G ∈ kĤopfZ we have

kĤopfZ(Fr(Spf (k)), G) ≅
Cor. 6.2

F(Z, G) ≅
Lemma 4.3 kĤopfZ(Spf (hom(Z, k)) , G).

�

Lemma 6.4. The forgetful functor V∶ kĤopfl → Schk creates Schk-split coequalizers.
This means: Let f , g∶ F → G ∈ kĤopfl be two maps of formal module schemes with

coequalizer ǫ∶V(G) → Q in Schk. Given right inverses s∶V(G) → V(F) of f , g in Schk
as well as t∶Q → V(G) of ǫ, then Q carries the structure of a formal l-module scheme and
is, with this structure, the coequalizer in kĤopfl .

Proof. Since OQ → OG ⇉ OF is a split equalizer in Pro−Algk, it is in particular an
absolute coequalizer, and tensoring with any other pro-k-algebra will preserve this
property. Thus the comultiplication on I takes values in

ker(OG×G → OF×F) = OQ×G ×OG×G OG×Q = OQ ⊗kOQ,

where the last identity holds again because F → Q splits. �

As a result of Duskin’s formulation of the Beck monadicity theorem [Dus69],
see also [Bor94, Theorem 4.4.4], Lemmas 6.1 and 6.4 imply

Corollary 6.5. The forgetful functor V is monadic, i. e. the category kĤopfZ is equivalent
to the category of algebras for the monad Fr. �

Lemma 6.6. The forgetful functor V commutes with filtered colimits.

Proof. Let {Ai}i∈I in Pro−Algk be a cofiltered system of pro-algebras representing
formal l-module schemes. In particular, for each i ∈ I there is a cofiltered category
Ji and a functor A′i ∶ Ji → Algk representing Ai ∈ Pro−Algk. By [AM69, Prop. A.4.4],
its limit in Pro−Algk can be presented as the functor A′∶K → Algk, where K is the
category with objects (i, j) with i ∈ I and j ∈ Ji, and where a morphism from (i, j)
to (i′, j′) consist of a morphism φ∶ i → i′ and a map A′i′(j′) → Ai(j) representing
Aφ. Then A′∶K → Algk is given by A′(i, j) = A′i(j) and it represents the limit of
Ai. The coaddition on every Ai is represented by a map µi∶ Ji → Ji and a k-algebra
map A′(i, µi(j)) → A′(i, j)⊗k A′(i, j). This equips A′ (as a pro-k-algebra indexed
by K) with a coaddition. The cozero and linearity maps descend to A′ in a similar
way. �

Theorem 6.7. The category kĤopfZ is complete and cocomplete.

Proof. A category of algebras over a monad is always complete if the base cate-
gory is (in our case Schk). For cocompleteness, by a standard theorem for monads
[Bor94, Prop. 4.3.4], it suffices to construct coequalizers. Thus let F ⇉ G be two

morphisms in kĤopfZ with coequalizer Q in Schk. Consider the category of formal
module schemes C′ with an epimorphism Q → C′ of underlying formal schemes
such that G → Q → C′ is a map of formal module schemes. Since small limits exist

in kĤopfZ, the limit of these C′ will be the equalizer once we show that Pro−Algk
is well-powered, i.e. the category of C′ is in fact small. It suffices to show that the
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category Pro−Modk is well-powered since every sub-pro-algebra is in particular
a sub-pro-module. By [AM69, Prop. 4.6], a monomorphism in Pro−Modk can be
represented as a levelwise monomorphism. Thus if A∶ I →Modk represents a pro-
k-module with # Sub(A(i)) = αi for some cardinals αi then # Sub(A) ≤ ∏i∈I αi; in
particular, it is a set. �

Corollary 6.8. Let F∶ I → kĤopfZ be a diagram of formal module schemes with colimit
colim F. Denote by colimF F the colimit of F as a diagram of functors in F. Then for any
formal module scheme G ∈ kĤopfZ, we have a natural isomorphism

F(colimF F, G) ≅ kĤopfZ(colim F, G).
Proof. F(colimF F, G) ≅ limF(F, G) = lim kĤopfZ(F, G) = kĤopfZ(colim F, G). �

Corollary 6.9. The category kĤopfZ is a 2-bimodule over Set, and the forgetful functor
V∶ kĤopfZ → Schk is a functor of 2-bimodules.

Proof. By Example 2.3, a bicomplete category with a shift functor Σ
n is a 2-bimodule

over sets, and a functor between two such categories is a functor of 2-modules

if it commutes with shifts. The category kĤopfZ has a shift functor given by(ΣnF)(R) = Σ
n(F(R)), using the shift on Modl , and the forgetful functor obviously

commutes with this shift. �

The morphisms in kĤopfZ, i.e. the set of natural transformations of ModZ-

valued functors, obviously form a Z-module, and if F ∈ kĤopfZ and G ∈ kĤopfl
then kĤopfZ(F, G) is naturally an l-module.

For M ∈Modl and F ∈ kĤopfl , let homl(M, F) denote the functor Algk →ModZ

which sends R to Homl(M, F(R)). Thus homl(M, F) can be expressed as the si-
multaneous equalizer of

hom(M, F)⇉ hom(M ×M, F)
and

hom(M, F)⇉ hom(M× l, F),
where the maps in the first diagram are induced by the addition on M and by

hom(M, F) ∆
Ð→ hom(M, F)2 → hom(M2, F2) hom(M2,+)

ÐÐÐÐÐÐ→ hom(M2, F),
and the maps in the second diagram are the map induced by scalar multiplication
on M and by

hom(M, F)→ hom(M× l, F × l) hom(M×l,⋅)
ÐÐÐÐÐÐ→ hom(M× l, F).

As a limit of representable functors, this functor is representable as well. Denote
the representing object of homl(M, F) by M⊙l F.

We have a adjunctions

(6.10) kĤopfZ(G, homl(M, F)) ≅ Fl(G(−)⊗Z M, F) ≅Modl(M, kĤopfZ(G, F)).
The functor G(−)⊗Z M in the middle is not representable unless M is flat. In any
case, there is an optimal approximation by a representable functor.
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Lemma 6.11. There is a functor ⊗Z∶ kĤopfZ ×Modl → kĤopfl with a natural transfor-
mation of l-modules (G⊗Z M)(R)→ G(R)⊗Z M

which produces an adjunction isomorphism for F ∈ kĤopfl :

kĤopfl(G⊗Z M, F) ≅ Fl(G(−)⊗Z M, F).
Proof. Let N be a Z-module. If N ⊗ S denotes the left module structure of ModZ

over sets, we can express the tensor product N⊗Z M as a coequalizer

N⊗ (M ×M)⇉ N ⊗M,

where one map is the addition on M and the other map is given by

N⊗ (M2) ∆⊗(M2)
ÐÐÐÐÐ→ (N2)⊗ (M2)→ (N ⊗M)2 +Ð→ N⊗M

Modelled by this, we define in the category kĤopfZ:

G⊗Z M = coeq(F⊗ (M×M)⇉ F⊗M)
The claim then follows from Cororallies 6.8 and 6.9. �

Corollary 6.12. The forgetful functor Resl
Z∶ kĤopfl → kĤopfZ has both a left and a

right adjoint.

Proof. For G ∈ kĤopfZ, the left adjoint is given by G⊗Z l. This follows from (6.10)

and Lemma 6.11 along with the observation that Resl
Z = homl(l,−).

The right adjoint is given by homZ(l, G), which becomes a formal l-module
scheme by the left action of l on itself by multiplication. �

Corollary 6.13. The forgetful functor V∶ kĤopfl → Schk has a left adjoint Frl . For
F ∈ Schk, G ∈ kĤopfl , there is a natural adjunction isomorphism

F(Frl ○F, G) ≅ kĤopfl(Frl(F), G).
The category kĤopfl is complete, cocomplete, and equivalent to the category of algebras
for the monad Frl .

Proof. The forgetful functor factors as kĤopfl
U
Ð→ kĤopfZ → Schk and both have

left adjoints by Cor. 6.12 and Lemma 6.1. The adjunction follows from Cor. 6.2 and
Lemma 6.11. Since by Cor. 6.12, U has left and right adjoints, it commutes with all

limits and colimits and thus creates kĤopfZ-split coequalizers. By the monadicity
theorem, V is therefore monadic, and using Lemma 6.6, V commutes with filtered

colimits. Therefore [Bor94, Prop. 4.3.6], kĤopfl is complete and cocomplete. �

By the functoriality in the l-module variable, the right 2-module structure of

kĤopfl extends to bimodules:

homl ∶ lModl′ × kĤopfl → kĤopfl′ .

Similarly, there is a tensor-type functor

⊗l′ ∶ l′Modl × kĤopfl′ → kĤopfl .

given by the coequalizer in kĤopfl′

F⊗Z l′ ⊗Z M ⇉ F⊗Z M → F⊗l′ M
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These are of particular interest if l, l′ are commutative, α∶ l → l′ is a ring map, and
l′ is considered an l′ − l-bimodule by means of right and left multiplication.

Corollary 6.14. Let l → l′ be a map of commutative rings, and let Resl′
l denote the

restriction functor from kĤopfl′ to kĤopfl . Then −⊗l l′ is left adjoint and homl(l′,−)
is right adjoint to Resl′

l . �

For l = l′, we obtain thus:

Corollary 6.15. For a graded commutative ring l, the category kĤopfl is a 2-bimodule
over Modl . �

6.1. Tensor products of formal module schemes. In this subsection, all rings are
again assumed to be graded commutative. Our next objective is to construct the

tensor product F ⊗l G of two formal l-module schemes in kĤopfl . There are two
equivalent characterizations of what this tensor product is supposed to accom-
plish.

Definition. A functor ⊗l ∶ kĤopfl
2
→ kĤopfl together with an l-bilinear natural

transformation F ×G → F ⊗l G is called a tensor product of formal module schemes if

the following two equivalent conditions hold for F, G, H ∈ kĤopfl :

(1) There is an adjunction kĤopfl(F⊗l G, H) ≅ F(F(−)⊗l G(−), H), where the
F(−)⊗l G(−) is the objectwise tensor product of l-modules.

(2) Any l-bilinear natural transformation of formal module schemes F ×G →
H factors uniquely through a morphism of formal modules schemes F ⊗l
G → H.

This concept is a dual and l-module enhanced version of the tensor product of
bicommutative Hopf algebras [Goe99]. It is immediate from this definition that if
a tensor product exists then it will be unique.

Theorem 6.16. The tensor product of formal l-module schemes over k exists.

Proof. As in several proofs before, it suffices to write the tensor product of two
l-modules as a combination of limits, colimits, and free l-module functors. To get
an idea for the construction, first consider tensor products of ordinary l-modules.
For sets X, Y, define

Frl(X, Y) = colim(Frl(X)×Y ← X ×Y → X × Frl(Y)).
There is a canonical map η∶Frl(X, Y) → Frl(X ×Y). On the left hand summand,
this is given the map Frl(X)×Y → Frl(X ×Y) which is adjoint to

Y →map(X, X ×Y) Frl
Ð→map(Frl(X), Frl(X ×Y)),

and similarly on the right hand side. Furthermore, if M, N are l-modules, their
module structure can be described as monad actions Frl(M) → M, Frl(N) → N,
and those give rise to a map µ∶Frl(M, N)→ M ×N.

Then the tensor product M ⊗l N of two l-modules can be constructed as the
coequalizer of

Frl(Frl(M, N))⇉ Frl(M ×N)
where one map uses η followed by the multiplication on l and the other is l(µ).
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We mimick this construction for formal module schemes as follows. Let

(6.17) Frl(F, G) = colim (Frl(F)×G ← F ×G → F × Frl(G))
be the pushout in the category kĤopfl , which exists by Cor. 6.13. By the adjunction
of the same corollary, there is a map η̃∶Frl(F, G)→ Frl(F×G) compatible with η as

well as a map µ̃∶Frl(F, G)→ F ×G. Define F⊗l G as the coequalizer in kĤopfl of

(6.18) Frl(Frl(F, G))⇉ Frl(F ×G).
Property (1) follows immediately from the adjunction in Cor. 6.13. �

We record how ⊗l behaves on free formal module schemes:

Lemma 6.19. Let X, Y ∈ Schk. Then

Frl(X)⊗l Frl(Y) ≅ Frl(X ×Y).
Proof. After applying Frl once more, the natural maps

X ×Y → Frl(X)× Frl(Y) ⇉ Frl(Frl(X), Frl(Y))
split the coequalizer defining Frl(X)⊗l Frl(Y) and therefore give an isomorphism
with Frl(X ×Y). �

We will denote the representing object of F⊗l G by OF
l⊠kOG =def OF⊗l G.

Using Example 2.7, we thus summarize:

Lemma 6.20. The symmetric monoidal category ( kĤopfl ,⊗l , hom(l, k)) is a 2-algebra
over Set. �

Theorem 6.21. The symmetric monoidal category ( kĤopfl ,⊗l , hom(l, k)) is a 2-algebra
over (Modl ,⊗l , l).
Proof. We need to see that the map in Set

kĤopfl(F, F′) −⊗l G
ÐÐÐ→ kĤopfl(F⊗l G, F′ ⊗l G)

is in fact a map in Modl . To see this, note that it factors as a map

kĤopfl(F, F′) =Fl(F, F′)
⊗l G(−)
ÐÐÐÐ→Fl(F(−)⊗l G(−), F′(−)⊗l G(−))

→Fl(F(−)⊗l G(−), F′ ⊗l G)
Characterization (1) of ⊗l
ÐÐÐÐÐÐÐÐÐÐÐÐÐ→

≅ kĤopfl(F⊗l G, F′ ⊗l G).
All maps in this diagram are l-module maps. �

It is useful to have an alternative description of ⊗l in terms of ⊗Z:

Lemma 6.22. There is a coequalizer diagram in kĤopfl

l ⊗Z (F⊗Z G)⇉ F⊗Z G → F⊗l G.

The two maps are given by the (2.5) and the l-action on F and G, respectively. �
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7. THE STRUCTURE OF THE CATEGORY OF FORMAL ALGEBRA SCHEMES

The category of formal algebra schemes behaves differently from the category
of module schemes or bimodules in that it does not have an enrichment over Modl
or Algl . It does not fit into our framework of 2-algebras or 2-modules. We are
already lacking a 2-ring structure on the category Algl .

As an immediate consequence of the tensor product construction (Subsection 6.1)
we obtain:

Corollary 7.1. For F ∈ kÂlgl , the multiplication F(−)× F(−) → F(−) can be uniquely
extended to a map of formal l-module schemes

µ×∶ F⊗l F → F.

This map is in fact a map of formal l-algebra schemes (by the commutativity of the multi-
plication of F). �

The 2-module structure on kĤopfl over Modl does not descend to a 2-module

structure on kÂlgl . The only remnant of it is a cotensor-like functor which pairs an

algebra and an algebra scheme and gives a formal scheme. For this, let F ∈ kÂlgl
and let R ∈ Algl . Recall from Section 6 the construction of a right module structure

homl(M, F) for an l-module M and F ∈ kĤopfl . Define hom(R, F) to be the functor
which sends a k-algebra T to the set of algebra maps R → F(T). We can thus write
hom(R, F) as the simultaneous equalizer of

homl(R, F) ⇉ homl(R × R, F)
and

homl(R, F) ⇉ F,

where the first couple of maps are given by the multiplication on R and

homl(R, F) ∆
Ð→ homl(R, F)2 → homl(R × R, F × F) homl(R×R,⋅)

ÐÐÐÐÐÐÐ→ homl(R × R, F),
respectively, and the second couple of maps are given by evaluation at 1 ∈ R
and the constant map with value η(1) ∈ F. As a limit of representable functors,
hom(R, F) is representable. We write R ⊙l OF for the pro-k-algebra representing
hom(R, F).

8. FORMAL RINGS AND FORMAL PLETHORIES

We have seen in the previous sections that the categories kM̂odl , kĤopfl , and

kÂlgl are symmetric monoidal categories with respect to the tensor product of for-

mal bimodules resp. formal module schemes. On kÂlgl , this tensor product is

actually the categorical coproduct; on kĤopfl , it is not. Furthermore, we have vari-
ous left and right 2-module structures over Modl and Algl . The aim of this section

is to construct a second monoidal structure ○ on the categories kM̂odk and kÂlgk
which corresponds to composition of ind-representable functors. These monoidal
structures have an interesting compatibility with the tensor product monoidal
structure.

The situation of a category with two such monoidal structures has been stud-
ied, although not with our examples in mind [AM10, Val08, JS93], and they are
known as 2-monoidal categories. As always with higher categorical concepts, there
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is much leeway in the definitions as to what level of strictness one wants to re-
quire; Aguiar and Mahajan’s definition of a 2-monoidal category [AM10, Section
6] is the laxest in the literature and fits our application, although in our case more
strictness assumptions could be made.

Definition (Aguiar-Mahajan). A 2-monoidal category is a category Cwith two monoidal
structures (⊗, I) and (○, J)with natural transformations

ζ∶ (A ○ B)⊗ (C ○D)→ (A⊗C) ○ (B⊗D)
and

∆I ∶ I → I ○ I, µJ ∶ J ⊗ J → J, ι J = ǫI ∶ I → J,

such that:

(1) the functor ○ is a lax monoidal functor with respect to⊗, the structure maps
being given by ζ and µJ ;

(2) the functor ⊗ is an oplax monoidal functor with respect to ○, the structure
maps being given by ζ and ∆I ;

(3) (J, µJ , ι J) is a ⊗-monoid;
(4) (I, ∆I , ǫI) is a ○-comonoid.

A 2-monoidal category is the most general categorical setup where a bialgebra
can be defined, although in this context it is more common to call it a bimonoid.

Definition (Aguiar-Mahajan). A bimonoid in a 2-monoidal category C as above is
an object H with a structure of a monoid in (C,⊗, I) and a structure of a comonoid
in (C, ○, J) satisfying the compatibility condition that the monoid structure maps
are comonoid maps and the comonoid structure maps are monoid maps.

To make sense of the compatibility condition, notice that if H is an ⊗-monoid
with multiplication µ and unit ι, then so is H ○H by virtue of the maps

(H ○H)⊗ (H ○H) ζ
Ð→ (H⊗H) ○ (H⊗H) µ○µ

ÐÐ→ H ○H

and

I
∆I
Ð→ I ○ I

ι○ι
Ð→ H ○H;

similarly if H is a ○-comonoid with comultiplication ∆ and counit ǫ then so is
H⊗H by virtue of the maps

H⊗H
∆⊗∆
ÐÐ→ (H ○H)⊗ (H ○H) ζ

Ð→ (H⊗H) ○ (H⊗H)
and

H ⊗H
ǫ⊗ǫ
ÐÐ→ J ⊗ J

µ J
Ð→ J.

Finally, we define the correct notion of a functor between 2-monoidal categories
in order to map bimonoids to bimonoids:

Definition (Aguiar-Mahajan). A bilax monoidal functor F∶C → D between 2-monoidal
categories is a functor which is lax monoidal with respect to ⊗ and oplax monoidal
with respect to ○ and whose lax structure φ and oplax structure ψ are compatible
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in the sense that the following diagrams commute:

(8.1)

I J I F(I) F(I ○ I) F(J)⊗ F(J) J ⊗ J

F(I) F(J) I ○ I F(I) ○ F(I) F(J ⊗ J) F(J) J

φ0

∆I

F(∆I)

ψ

φ0 ○ φ0

ψ0⊗ ψ0

φ µJ

F(µJ) ψ0

ι J

φ0

F(ι J)

ψ0

(8.2)

F(A ○ B)⊗ F(C ○D) (FA ○ FB)⊗ (FC ○ FD) (FA⊗ FC) ○ (FB⊗ FD)

F((A ○ B)⊗ (C ○D)) F((A⊗C) ○ (B⊗D)) F(A⊗C) ○ F(B⊗D)

ψ⊗ ψ

φ

ζ

φ ○ φ

F(ζ) ψ

Proposition 8.3 ([AM10, Cor. 6.53]). Bilax monoidal functors preserve bimonoids and
morphisms between them. �

Proposition 8.4. Let F∶C → D, G∶D → C be functors between 2-monoidal categories.
Assume

(1) F is left adjoint to G;
(2) F is strictly monoidal with respect to (⊗, I);
(3) G is strictly monoidal with respect to (○, J).

Then F is bilax if and only if G is.

Proof. Let η∶ id → G ○ F denote the unit and ǫ∶ F ○G → id the counit of the adjunc-
tion.

Firstly, F will be oplax monoidal with respect to ○ by means of the maps F(J)→ J

adjoint to J
≅
Ð→ G(J) and the adjoint of

A ○ B
η○η
ÐÐ→ G(F(A)) ○G(F(B)) ψ−1

G
ÐÐ→
≅

G(F(A) ○ F(B)),
and similarly G will be lax monoidal with respect to ⊗.

Under the given conditions, the following composites are identities:

I
(φF)0
ÐÐÐ→
≅

F(I) F((φG)0)
ÐÐÐÐÐ→ F(G(I)) ǫ

Ð→ I

J
η
Ð→ G(F(J)) G((ψF)0)

ÐÐÐÐÐ→ G(J) (ψG)0
ÐÐÐ→
≅

J.

If G is bilax then the first diagram in (8.1) commutes for F because it can be factored
as:

I I J

F(I) F(G(I))

F(J) F(G(J))

(φF)0

ι J

F((φG)0)

F(ι J)

ǫ

F(G(ι J))

F((ψG)
−1
0 )

ǫ

The lower rectangle commutes because G was assumed to be bilax monoidal. The
other diagrams follow by similar exercises in adjunctions. �
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In the context of this paper, the new monoidal structures ○ are defined as fol-
lows.

Definition. Let k be a commutative ring. Consider the following setups:

(1) l is a K-algebra, M ∈ Pro−Modl , and F ∈ kM̂odl .

(2) l is a commutative ring, M ∈ Pro−Modl , and F ∈ kĤopfl .

(3) l is a commutative ring, M ∈ Pro−Algl , and F ∈ kÂlgl .

In each of these cases, define a functor ○l by

Spf (M) ○l F = colim hom(M(i), F),
where the colimit is taken in (Pro−Modk)op and Schk, respectively, and hom de-
notes homl in the first two cases and the algebra homomorphism object hom in
the last case.

We denote the corresponding operation on representing objects by

M ⊙̂l OF =OSpf(M)○l F = lim M(i)⊙l OF.

As a consequence of the various 2-module structures exhibited in Sections 5, 6,
and 7, we obtain:

Corollary 8.5. (1) For l a K-algebra, M ∈ Pro−Modl , F ∈ kM̂odl , and N ∈Modk,
there is a natural isomorphism

Pro−Modk(OSpf(M)○l F, N)→ Pro−Modl(M, F(N))
(2) For l a ring, M ∈ Pro−Modl , F ∈ kĤopfl , and N ∈ Algk, there is a natural

isomorphism

Pro−Algk(OSpf(M)○l F, N)→ Pro−Modl(M, F(N))
(3) For l a ring, M ∈ Pro−Algl , F ∈ kÂlgl , and N ∈ Algk, there is a natural

isomorphism

Pro−Algk(OSpf(M)○l F, N)→ Pro−Algl(M, F(N))
Proof. For the proof of (1), note that Spf (N) is a small object in the category kM̂odZ =(Pro−Modk)op and thus

kM̂odZ(Spf (N) , Spf (M) ○l F) = kM̂odZ(Spf (N) , colim
i

homl(M(i), F))
= colim

i
kM̂odZ(Spf (N) , hom(M(i), F))

= colim
i

Modl(M(i), F(N)) = Pro−Modl(M, F(N)).
For (2) and (3), the proofs are formally the same. �

If k, l, m are K-algebras then by Cor. 8.5, additional structure on M gives rise to
additional structure in the target: the product ○l extends to products

○l∶ lM̂odm × kM̂odl → kM̂odm

○l∶ lM̂odm × kĤopfl → kĤopfm

○l∶ lĤopfm × kÂlgl → kĤopfm

○l∶ lÂlgm × kÂlgl → kÂlgm .
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All of these products represent compositions G ○ F of functors. By associativity of
the composition of functors, all of these products are associative in the appropriate
sense, i.e. the first and last operations are associative, the second is a tensoring over
the first, and the third is a tensoring over the fourth.

When k = l = m, the first and fourth versions of the composition product define

monoidal structures on kM̂odk and kÂlgk, respectively, but they are neither sym-
metric nor closed. The identity functors in the various categories are units for ○l .
We summarize this in the following lemma.

Lemma 8.6. The category ( kM̂odk, ○k, id) is a 2-algebra over Modk. The category
( kÂlgk, ○k, id) is a 2-algebra over Set. Finally, the category kĤopfk is tensored over
both kM̂odk and kÂlgk. �

We can finally define the object of the title of this paper.

Definition. A formal k-coalgebra is a comonoid in ( kM̂odk, ○k, id). A formal plethory
is a comonoid in ( kÂlgk, ○k, id).

The rest of this section is devoted to proving the following theorem:

Theorem 8.7. The categories ( kM̂odk,⊗k, ○k) and ( kÂlgk,⊗k, ○k) are 2-monoidal cate-
gories.

In the next section, we will produce bilax monoidal functors between these two
2-monoidal categories.

Proof. The case of kÂlgk follows from abstract nonsense because in that category,
⊗k is the categorical coproduct, and any monoidal category is automatically 2-
monoidal with respect to the categorical coproduct [AM10, Example 6.19], cf. Ex-

ample 1.4. The case of kM̂odk (Example 1.6, however, requires some work. To de-

fine ζ, consider more generally the functor ○l ∶ lM̂odm × kM̂odl → kM̂odm and first

assume that m = Z. Let F1, G1 ∈ lM̂odZ and F2, G2 ∈ kM̂odl . Let OF1
∶ I → Modl ,

OG1
∶ J → Modl be representations of the corresponding pro-l-modules. Then we

have a map

(F1 ○Z F2)⊗m (G1 ○l G2) = colim
i∈I,j∈J

hom(OF1
(i), F2)⊗m hom(OG1

(j), G2)
Lemmas 5.5, 2.9
ÐÐÐÐÐÐÐÐ→ colim

i,j
hom(OF1

(i)⊗ZOG1
(j), F2⊗l G2)

=(F1 ⊗Z G1) ○l (F2 ⊗l G2).
The general case follows from writing F⊗l G as the coequalizer of l⊗Z F⊗Z G ⇉

F⊗Z G (Lemma 6.22).
The remaining structure maps are easier:

● ι J = ǫI ∶ I → J: this map Spf (homK(k, k)) → Spf (k) is adjoin to the multipli-
cation k⊗K k → k. Note that this map has a left inverse π∶ J → I given by
the evaluation-at-1 map hom(k, k) → k.
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● ∆I ∶ I → I ○ I: We define ∆I on representing objectsOI ⊙̂kOI → OI = homK(k, k)
as the adjoint of

k⊙k (homK(k, k) ⊙̂k homK(k, k)) enrichment
ÐÐÐÐÐÐ→
Lemma 8.6

(k⊙k homK(k, k)) ⊙̂k homK(k, k)
eval⊙̂kid
ÐÐÐÐÐ→k ⊙̂k homK(k, k) = k⊙k homK(k, k)

eval
ÐÐ→k.

● µJ ∶ J ⊗k J → J: Since J = Spf (k) and k k⊗k k ≅ k, ∆J is defined as this isomor-
phism.

That ζ is compatible with the associativity isomorphisms of ○ and⊗k follows easily
from Lemma 2.9 and the definition. We will verify the various unitality conditions
required in a 2-monoidal category.

(1) J is a monoid with respect to ⊗: Since Spf (k)⊗k Spf (k) µ J
Ð→
≅

Spf (k), asso-

ciativity is obvious. For unitality, observe that

Spf (k) ≅ Spf (homK(k, k))⊗k Spf (k) ι J⊗Kid
ÐÐÐ→ Spf (k)⊗k Spf (k) ≅ Spf (k)

is the identity map as well.
(2) I is a comonoid with respect to ○: The associativity is immediate from the

definition of ∆I and the counitality follows from the fact that

k ≅ k⊙k k
id⊙kOιJ
ÐÐÐÐÐ→ k⊙k homK(k, k) eval

ÐÐ→ k

is the identity map, and similarly for the left counit.

�

It makes little sense to talk about bimonoids in kÂlgk because every plethory is
a bimonoid in a unique way:

Proposition 8.8. The forgetful functor from bimonoids in kÂlgk to formal plethories is
an equivalence of categories.

Proof. This follows again from the fact that⊗k is the categorical coproduct in kÂlgk
and that a monoid structure with respect to the categorical coproduct always exists
uniquely (cf. [AM10, Example 6.42]). �

9. PRIMITIVES AND INDECOMPOSABLES

For any Hopf algebra A over k, there are two particularly important k-modules:
the module of primitive elements PA = {a ∈ A ∣ ψ(a) = a⊗ 1+ 1⊗ a} and the mod-

ule of indecomposable elements QA = A+/(A+)2, where A+ denotes the augmen-
tation ideal with respect to the counit ǫ∶A → k. In this section, I will consider the
analogous notions for pro-algebras and formal module and algebra schemes, and
prove compatibility with the various products studied so far, making these func-
tors into morphisms of 2-algebras and into bilax monoidal functors of 2-monoidal
categories.

Throughout this section, we will restrict to the case K = Z for formal bimodules.
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9.1. Indecomposables. Let Alg+k be the category of augmented graded commu-

tative unital k-algebras, i.e. algebras A with an algebra morphism A
ǫ
Ð→ k such

that the composite with the algebra unit k
η
Ð→ A

ǫ
Ð→ k is the identity. Passing to

pro-categories, the inclusion

Pro−(Alg+k )→ (Pro−Algk)+
is an equivalence. We denote its opposite category, the category of pointed formal
schemes, by Sch+k .

Now let M ∈ Pro−Modk and k ⊕M ∈ Pro−Alg+k the square-zero extension, i.e.
the algebra where η∶ k ↪ k ⊕M is a unit map and the multiplication is given by

decreeing that M2 = 0. The augmentation is given by the projection ǫ∶ k⊕M → k.

Definition. The left adjoint of k⊕−∶Pro−Modk → Pro−Alg+k is denoted by A ↦
Q(A), the module of indecomposables of the augmented pro-algebra A.

If A+ = ker(ǫ∶A → k) is the augmentation ideal, then QA ≅ A+/(A+)2, in par-

ticular, the left adjoint exists and is defined levelwise. If F ∈ kĤopfl is a formal
module scheme then it induces a new functor

F+ = Pro−Alg+k (OF,−)∶Alg+k →Modl .

The left hand side of

F+(k⊕M) = Pro−Alg+k (OF, k⊕M) ≅ Pro−Modk(Q(OF), M).
is thus in Modl , thus Q(OF) actually represents an object of kM̂odl and Q yields a
functor

Q = Spf (Q) ∶ kĤopfl → kM̂odl .

This functorQ is also a right adjoint, as we will see now. Recall from Cor. 6.13 that

the functor forgetful functor V∶ kĤopfl → Schk has a left adjoint Frl . There is also

a pointed version, i.e. a left adjoint Fr+l = Spf (Γ+l ) of V+∶Sch+k → kĤopfl , given by

Fr+l (F) = Spf (Γl(O+F)). In particular, Γ
+

l (k⊕M) = Γl(M) as k-coalgebras.

For B = Spf (M) ∈ kM̂odl we obtain a ring map

l
µ
Ð→ Pro−Modk(M, M) k⊕−

ÐÐ→ Pro−Alg+k (k⊕M, k⊕M) Γ
+

Ð→ Pro−Algk(ΓM, ΓM)
In this way, Fr(B) = FrZ(B) obtains an l-module scheme structure. We obtain an
adjunction

kĤopfl(Fr(B), F) ≅ kM̂odl(B,Q(F)).
Lemma 9.1. For B ∈ kM̂odZ, we have

Frl(B) ≅ Fr(l ⊗Z B) (cf. Lemma 5.1)

Proof. Let F ∈ kĤopfl . Then we have

kĤopfl(Frl(B), F) ≅ kM̂odZ(B,Q(F))
≅ kM̂odl(l ⊗Z B,Q(F)) ≅ kĤopfl(Fr(l⊗Z B), F). �

Lemma 9.2. The functor Q∶ kĤopfl → kM̂odl is a right strict morphism of 2-modules
over Modl . The functor Fr∶ kM̂odl → kĤopfl is a left strict morphism of 2-modules over
Modl .
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More explicitly, for M ∈Modl , F ∈ kĤopfl , and B ∈ kM̂odl , the canonical maps

β∶Q(homl(M, F))→ homl(M,Q(F))
and

α∶M⊗l Fr(B)→ Fr(M⊗l B)
are isomorphisms.

Proof. Let N ∈ Pro−Modk be a test object. Then

Q(homl(M, F))(N) =Pro−Modk(Q(M⊙l OF), N)
≅ kĤopfZ

op(M⊙l OF, Γ(N))
≅Modl(M, kĤopfZ

op(OF, Γ(N)))
≅Modl(M, Pro−Modk(QOF, N))
≅Pro−Modk(M⊙l QOF, N) = homl(M,Q(F))(N).

The statement about Fr follows by adjointness. �

The functor Q is not strict with respect to the tensor product ⊗l of formal mod-
ule schemes (Thm. 6.21). This can already be seen by observing that for the unit of
⊗l , Spf (hom(l, k)),

Q(hom(l, k)) = ( ∏
λ∈l−{0}

k)/( ∏
λ∈l−{0}

k)2 = 0,

which is different from the unit homZ(l, k) of kM̂odl .

Lemma 9.3. The functor Fr∶ kM̂odl → kĤopfl is a strict morphism of 2-algebras, i.e.
there are natural isomorphisms

hom(l, k) → Γ(homZ(l, k))
and

ψ∶Γ(M) l⊠k Γ(N)→ Γ(M l⊗k N)
making Γ = OFr into a strict monoidal functor.

Proof. For l = Z, this follows from Cor. 6.3 and Lemma 6.19. For general l, the first
map is an isomorphism since

Γ(homZ(l, k)) ≅
Lemma 9.2

homZ(l, Γ(k)) ≅ homZ(l, hom(Z, k)) ≅ hom(l, k).
For the second isomorphism recall from Lemma 6.22 that the top row in the

following diagram is an equalizer:

ΓM l⊠k ΓN ΓM Z⊠k ΓN hom(l, ΓM Z⊠k ΓN)

Γ(M l⊗k N) Γ(M Z⊗k N) hom(l, Γ(M Z⊗k N))
The bottom row is also an equalizer because Γ commutes with limits and is right
strict by Lemma 9.2. The desired isomorphism is thus induced on the left. �

Corollary 9.4. The functorQ∶ kĤopfl → kM̂odl is a lax morphism of 2-algebras.
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Proof. On representing objects, we need to produce natural transformations

ψ0∶Q(hom(l, k))→ homZ(l, k)
and

ψ∶Q(A l⊠k B)→ QA l⊗k QB.

making Q into a lax monoidal functor, and satisfying the compatibility relation for
the enrichments. Since Q(hom(l, k)) = 0, ψ0 is the zero map.

The map ψ comes from the fact that Q is left adjoint to Γ. Explicitly, it is given
as the adjoint of

A l⊠k B
ηA

l⊠kηB
ÐÐÐÐÐ→ (ΓQA) l⊠k (ΓQB) Lemma 9.3

ÐÐÐÐÐÐ→
≅

Γ(QA l⊗k QB). �

9.2. Primitives. The situation for primitives is almost, but not quite dual to that of
indecomposables. Whereas for indecomposables, we considered a pair of adjoint
functors (Fr,Q) where Q was defined levelwise, there will be a pair (P , Cof) of
functors where Cof is defined levelwise.

A functor B∶Modk →Modl in kM̂odl can be propagated to a functor

Cof(B)∶Algk →Modl in kĤopfl

by forgetting the k-algebra structure. To see that this is representable, note that
the forgetful functor Pro−Algk → Pro−Modk has a left adjoint given levelwise by
Sym∶Pro−Modk → Pro−Algk, the free commutative algebra on a pro-k-module.

Explicitly, for M ∈Modk, Sym(M) is the the k-algebra⊕∞i=0 Symi(M), where Symi(M) =
M⊗ki/(m1⊗m2 −m2⊗m1). The adjunction

(9.5) Pro−Algk(Sym(M), R) ≅ Pro−Modk(M, R)
shows that it indeed represents Cof(B) if M = OB.

This algebra has a cozero Sym(M) → Sym0(M) = k and a coaddition given by

decreeing that all elements of M = Sym1(M) are primitive. Furthermore, if M = OB

for a formal bimodule B ∈ kM̂odl , then it has an l-action defined by

l → Pro−Modk(M, M)→ Pro−Algk(Sym(M), Sym(M)),
which makes the formal l-module scheme structure over k explicit. Note that
Sym(M) is in fact a pro-Hopf algebra. Summarizing, we have constructed an
enriched functor

Cof∶ kM̂odl → kĤopfl .

Definition. The left adjoint of Cof is denoted by P = OP, the formal bimodule of
primitives of a formal module scheme.

Of course, one could define the primitives P(C) for a pointed coalgebra C, but
we will make no use of that. Dually to the situation for indecomposables, we can
think of P(A) explicitly as those elements in A such that ψ+(a) = a⊗1+1⊗ a, but it
would require unnecessary elaboration to say what this means in our pro-setting.

For F ∈ kĤopfZ, there is an alternative useful construction of P(F). Note that
there are two maps

Fr(F) ⇉ F



FORMAL PLETHORIES 33

given by the module scheme structure (Cor. 6.5) and by the map represented by
the inclusionOF ↪ ΓZ(OF). Then P(F) is the coequalizer of these two maps in the

category kM̂odZ.

Lemma 9.6. The functor P is left inverse to Fr and the functor Q is left inverse to Cof.
More precisely, for B ∈ kM̂odl , the natural map

Fr(B)→ Cof(B)
has adjoints P(Fr(B)) → B and B → Q(Cof(B)) which are isomorphisms. Moreover,
if X ∈ Schk then P(Fr(X)) = U(X), where U denotes the forgetful functor Schk →(Pro−Modk)op.

Proof. One adjoint is an isomorphism if and only if the other is, so it suffices to
check this for P(Fr(B)), which follows from the second claim on a general formal
scheme X. In that case, note that the coequalizer defining P(Fr(X)),

Fr(Fr(X)) ⇉ Fr(X) → P(Fr(X))
splits by the canonical inclusion X → Fr(X), thus the composite X → P(Fr(X))
gives the claimed isomorphism. �

Lemma 9.7. The functor Cof∶ kM̂odl → kĤopfl is right strict morphism of 2-modules
over Modl , and the functor P ∶ kĤopfl → kM̂odl is left strict, i.e. for M ∈ Modl , F ∈
kĤopfl , and B ∈ kM̂odl , the natural maps

β∶homl(M, Cof(B))→ Cof(homl(M, B))
and

α∶M⊗l P(F)→ P(M⊗l F)
are isomorphisms.

Proof. Let T ∈ kĤopfZ be a test object. Then

kĤopfZ(T, Cof(homl(M, B))) ≅Pro−Modk(M⊙l OB, P(OT))
=Modl(M, kM̂odZ(P(T), B)
=Modl(M, kĤopfZ(T, Cof(B)))
= kĤopfZ(T, homl(M, Cof(B))).

The statement about P follows from adjointness. �

Proposition 9.8. The functor P ∶ kĤopfl → kM̂odl is an oplax morphism of 2-algebras
over Modl . The oplax structure ψ∶P(F ⊗l G) → P(F)⊗l P(G) is an isomorphism if F,
G, P(F), and P(G) are represented by pro-flat k-modules.

Proof. Recall that the unit of ⊗l in kĤopfl is Spf (hom(l, k)), whereas the unit of

⊗l in kM̂odl is homZ(l, k). The augmentation ideal of hom(l, k) consists those
functions f ∶ l → k such that f (0) = 0; the primitives consist of those functions that
are a fortiori additive. Thus,

P(hom(l, k)) = homZ(l, k).
The tensor product in kĤopfl was defined in (6.18) as

F⊗l G = coeq(Frl(F ×G)⇉ Frl(Frl(F, G)))
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where Frl(F, G) = Frl(F)×G ∪ F × Frl(G) (cf. (6.17)). Let us first assume that l = Z

and denote the forgetful functor kĤopfl → (Pro−Modk)op = kM̂odZ by U. Then
we have the adjunctions

kM̂odZ(P(F⊗Z G), B))
≅ kĤopfZ(F⊗Z G, Cof(B))
= eq( kĤopfZ(FrZ(F ×G), Cof(B))⇉ kĤopfZ(FrZ(FrZ(F, G)), Cof(B)))

=
Lemma 9.6

eq( kM̂odZ(U(F×G), B)⇉ kM̂odZ(U(FrZ(F, G)), B))
= kM̂odZ(coeq(U(FrZ(F, G))⇉ U(F×G)), B).

Since the coequalizer of U(FrZ(F))⇉ U(F) is P(F), there is a canonical fork

U(FrZ(F, G))⇉ U(F×G)→ P(F)⊗Z P(G),
or in terms of representing objects, a fork of pro-k-modules

POF ⊗k POG →OF ⊗kOG ⇉ (ΓOF ⊗kOG)×OF⊗kOG (OF ⊗k ΓOG)
which is an equalizer if OF,OG, POF, POG are all pro-flat k-modules.

For general l, we can write F⊗l G as a coequalizer (Lemma 6.22)

l ⊗Z F⊗Z G ⇉ F⊗Z G → F⊗l G,

which by the previous steps and Lemma 9.7, and since P , as a left adjoint, com-
mutes with coequalizers, gives an equalizer

P(OF
l⊠kOG)→ POF ⊗k POG ⇉ homZ(l, POF ⊗k POG),

which is, by definition, POF
l⊗k POG. �

The following corollary follows immediately from the adjunctions.

Corollary 9.9. The functor Cof is a lax morphism of 2-algebras, i.e. for B, C ∈ kM̂odl ,
there are natural transformations

φ0∶Spf (hom(l, k)) → Cof(Spf (homZ(l, k))) and

φ∶Cof(B)⊗l Cof(C)→ Cof(B⊗l C)
turning Cof into a lax monoidal functor. �

9.3. Primitives and indecomposables of formal algebra schemes. We will now
consider what the additional structure of a formal algebra scheme maps to under
the functors P and Q.

Let F ∈ kÂlgl be a formal l-algebra scheme over k and let R ∈ Alg+l be an l-
algebra augmented by ǫR∶R → l. Then hom(R, F) is a pointed formal scheme over

k by the map Spf (k) → hom(R, F) adjoint to R
ǫR
Ð→ l

ǫ
Ð→ F(k). This produces thus a

functor

hom(−, F)∶Alg+l → (Sch+k )op

which has a right adjoint

F+ = l ×F(k) F(−)∶Alg+k → Alg+l ,

an augmented version of F with F+(k) = l.
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Proposition 9.10. Given F ∈ kÂlgl and B ∈ kM̂odl , there is a natural Alg+l -isomorphism

F+(k⊕OB) ≅ l ⊕Q(F)(OB).
Proof. Equivalently, we need to see that

(9.11) Pro−Alg+k (OF, k⊕OB) ≅ Pro−Alg+k (OF, k)⊕Pro−Modk(QOF,OB).
An augmented pro-algebra map OF → k⊕OB consists of a pair ( f , g)with f ∶OF →
k and g∶OF → B such that f is an algebra map, g is a k-module map, and g(ab) =
f (a)g(b) + g(a) f (b). We produce the isomorphism (9.11) by sending ( f , g) to( f , a ↦ g(a − f (a))). To see that this is an isomorphism of l-algebras, with the
square-zero structure on the right hand side, we note that the comultiplication ψ×
restricts to a map

ψ×∶ (OF)+ → (OF)+ ⊗k (OF)+
because, dually, multiplication with 0 on either side gives 0. Thus the product of
any two maps in Pro−Modk(QOF, B) is zero. �

Corollary 9.12. For R ∈ Alg+l and F ∈ kÂlgl ,

Q(hom(R, F)) ≅ homl(Q(R),Q(F)).
Proof. This follows from the adjunction of the previous proposition: for M ∈Modk,

Pro−Modk(Q(R⊙l OF), M) ≅Pro−Alg+k (R⊙l OF, k⊕M)
≅Alg+l (R, Pro−Alg+k (OF, k⊕M))
≅Alg+l (R, l ⊕Pro−Modk(QOF, M))
≅Modl(QR, Pro−Modk(QOF, M))
≅Pro−Modk(QR⊙l QOF, M). �

To understand how P behaves with respect to the pairing

hom∶Algl × kÂlgl → Schk

of Section 7, we need the following lemma, whose proof is a short series of stan-
dard adjunctions and will be left to the reader.

Lemma 9.13. Let M ∈ Modl , F ∈ kÂlgl , and denote by U(F) ∈ kĤopfl the formal
module scheme obtained by forgetting the multiplicative structure. Then there is a natural
isomorphism

hom(Sym(M), F) ≅ homl(M, U(F)).
�

To even make sense of a compatibility statement of P with hom(R, F), the latter
has to have a Hopf algebra structure. By naturality in the R-variable, this hap-
pens if R is a Hopf algebra, Denote the category of l-Hopf algebras (or Z-module
schemes over l) by ZHopfl .

Proposition 9.14. For R ∈ ZHopfl and F ∈ kÂlgl , there is a natural map

β∶P(hom(R, F))→ homl(P(R),P(F)).
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Proof. The natural map β is given as the adjoint of the map

hom(R, F) → Cof(homl(P(R),P(F)))
which is the composite

hom(R, F) ǫ∗

Ð→hom(Sym(P(R)), F) Lemma 9.13
ÐÐÐÐÐÐ→

≅
homl(P(R), U(F))

η
Ð→homl(P(R), Cof(P(F))) Lemma 9.7

ÐÐÐÐÐÐ→
≅

Cof(homl(P(R),P(F))).
where ǫ∶Sym(P(R)) → R and η∶ F → Cof(P(F)) are counit and unit of the respec-
tive adjunctions. �

The transformation β will in general not be an isomorphism. Indeed, if we
choose R = l[z] as a polynomial ring then hom(R, F) = homl(l, U(F)) = U(F) by
Lemma 9.13 and thus P(hom(R, F)) ≅ P(F). On the other hand, P(R) = P(l[z])
is in general greater than l (for instance if l has positive characteristic), and thus
homl(P(R),P(F)) ≠ P(F).
Lemma 9.15. The following diagram commutes:

P(homl(PR, U(F))) P(hom(Sym PR, F))

homl(PR,P(F)) P(hom(R, F))

Lemma 9.13

Modl-enrichmentβ

β

ǫ∗

Proof. By adjointness of P and Cof, it suffices to show that the exterior of the fol-
lowing diagram commutes:

CofP(homl(PR, U(F))) homl(PR, U(F)) hom(Sym PR, F)

Cof hom(PR,P(F)) hom(R, F)

homl(PR, CofP(F)) homl(PR, U(F)) hom(Sym PR, F)

η

Cof(β)

Lemma 9.13

≅

ǫ∗

Lemma 9.7≅

ǫ∗ Lemma 9.13

≅

η⊙ id

In fact, the smaller pentagon on the left already commutes because Cof and P are
enriched functors. �

From Corollary 7.1 we find that the multiplication µ× on F gives rise to mor-
phisms of bimodule schemes

Q(F)⊗l Q(F) Cor. 9.4
ÐÐÐÐ→Q(F⊗l F) Q(µ×)ÐÐÐÐ→Q(F)

and, under the conditions in Prop. 9.8 for P being strict,

P(F)⊗l P(F) Prop. 9.8
ÐÐÐÐÐ→ P(F⊗l F) P(µ×)ÐÐÐÐ→ P(F)

Thus both Q(F) and P(F) are algebras in ( kM̂odl ,⊗l , Spf (homZ(l, k))).
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Proposition 9.16. Assume F, G ∈ kÂlgl are such that F, G, P(F), P(G), Q(F), and
Q(G) are pro-flat k-modules. Then the lax structure ofQ of Cor. 9.4 factors as a a map

Q(F)⊗l Q(G)→ Q(F)⊗l P(G)×Q(F)⊗lQ(G) P(F)⊗l Q(G)→ Q(F⊗l G).
For F = G, this makes Q(F) into a two-sided module over the algebra P(F).
Proof. By commutativity, it suffices to produce the factorization

Q(F)⊗l Q(G)→Q(F)⊗l P(G)→Q(F⊗l G)
First assume l = Z. The first step is to produce a factorization in Pro−Modk

Q(OF
Z⊠k OG)→ QOF ⊗k (OG)+ → QOF ⊗k QOG,

where (OG)+ denotes the augmentation ideal of OG.

The adjunction between V+∶ kĤopfZ

op
→ Pro−Alg+k and Γ+ gives a unit map

OG
η′

Ð→ Γ
+(V+(OG)) = Γ((OG)+)

which together with the unit adjunction OF
η
Ð→ ΓQOF gives a map

(9.17) OF
Z⊠kOG → Γ

+(k⊕QOF
Z⊠k Γ

+V+OG)
Lemma 6.19
ÐÐÐÐÐÐ→

≅
Γ
+((k⊕QOF)⊗+k V+OG).

Here ⊗+k denotes the tensor product of augmented pro-k-algebras, i.e. the oper-
ation classifying the smash product of two pointed formal schemes. Since the
augmented algebra k⊕QOF is a square-zero extension, so is

(k⊕QOF)⊗+k V+OG ≅ k⊕ (QOF ⊗k (OG)+).
The composite of (9.17) with the isomorphism

Γ
+((k⊕QOF)⊗+k V+OG) ≅ Γ

+(k⊕ (QOF ⊗k (OG)+)) ≅ Γ(QOF ⊗k (OG)+)
has an adjoint ψ̃∶Q(OF

Z⊠k OG) → QOF ⊗k (OG)+, which is the desired factoriza-
tion.

To show that this map factors further through QOF ⊗k POG, it suffices by the
flatness assumption on QOF to show that

Q(OF
Z⊠k OG) → QOF ⊗ (OG)+ id⊗ψ+

ÐÐÐÐ→ QOF ⊗ (OG)+⊗ (OG)+
is null. This map fits into a diagram

QOF ⊗ (OG)+⊗ (OG)+ Q(OF
Z⊠k (OG ⊗OG)) Q ((OF

Z⊠k OG)⊗2)

QOF ⊗ (OG)+ Q(OF
Z⊠kOG) Q(OF

Z⊠kOG)2.

ψ̃ ≅

QA⊗ ψ+

ψ̃

Q(id Z
⊠kψ+)

Q(ψ+)

∆

≅

The composites Q(OF
Z⊠kOG)→ Q(OF

Z⊠k (OG⊗OG)) from the lower right hand
corner to the upper middle entry are induced by the inclusions η × id, id×η∶OG →
OG ⊗OG and thus both compose to the zero map when followed with ψ̃.
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It remains to produce a formal bimodule map Q(F)⊗l P(G) → Q(F ⊗l G) for
arbitrary rings l. For this, consider the diagram

Q(F⊗l G) Q(F⊗Z G) Q(l⊗Z F⊗Z G)

l ⊗ZQ(F⊗Z G)

Q(F)⊗l Q(G) Q(F)⊗ZQ(G) l ⊗Q(F)⊗ZQ(G).

ψ̃

Lemma 9.2

ψ̃

The upper row is not necessarily a coequalizer, but a fork, coming from the char-
acterization of the tensor product from Lemma 6.22. The lower row is the coequal-
izer defining the tensor product of formal bimodules. Therefore the dotted map
exists. �

9.4. Primitives and indecomposables of formal plethories. Now let F ∈ kÂlgk
be a formal plethory with the flatness assumptions of Prop. 9.16. By Lemma 9.4
and Prop. 9.8, P(F) andQ(F) are both algebras with respect to the ⊗k-product. By
Prop. 9.16, Q(F) is also P(F)-bimodule algebra with respect to ⊗k.

Lemma 9.18. The functor Cof∶ kM̂odk → kÂlgk is strict monoidal with respect to the
○k-product.

Proof. The unit isomorphism Spf (k[z]) → Cof(Spf (k)) is represented by the canon-

ical isomorphism Sym(k) ≅ k[z]. If B, C ∈ kM̂odk, we construct an isomorphism

Cof(B) ○k Cof(C) = colim
i

hom(Sym(OB(i)), Cof(C))
≅

Lemma 9.13
colim

i
homk(OB(i), U(Cof(C)))

≅
Lemma 9.7

colim
i

Cof(homk(OB(i), C))
≅Cof(colim

i
homk(OB(i), C)) ≅ Cof(B ○k C).

Although Cof is a right adjoint, it does commute with filtered colimits (used in the
last line) because its representing functor Sym is induced up from Modk → Algk to
Pro−Modk → Pro−Algk by objectwise application. �

Theorem 9.19. The functor Cof is a bilax monoidal functor.

Proof. It was shown in Lemma 9.18 and Corollary 9.9 that Cof is strict monoidal
with respect to ○k and lax monoidal with respect to ⊗k, and it remains to check the
compatibility conditions (8.1) and (8.2).

For the unitality diagrams in (8.1), first recall that the comparison map between
the units ι J ∶ I → J is given as

k → homZ(k, k); 1↦ id in kM̂odk

and

k[x] = Sym(k)→ hom(k, k); x ↦ id in kÂlgk;

note that since the source, I, is a constant pro-object, we can disregard the pro-
structure in the target and simply map to its inverse limit.
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The commutativity of the first diagram in (8.1) follows from the factorization

k
ιhomZ(k,k)
ÐÐÐÐÐ→ homZ(k, k) ↪ U(hom(k, k)),

where U is the forgetful functor from Pro−Algk to Pro−Modk and the last map is
the inclusion of linear maps into all maps.

For the second diagram in (8.1), we proceed in two steps. First we use the ten-

soring ⊙̂l between lM̂odm and kĤopfl from Lemma 8.6 to prove that the following
diagram commutes:

Sym(homZ(k, k))

hom(k, k) Sym(homZ(k, k) ⊙̂l homZ(k, k))

homZ(k, k) ⊙̂l U hom(k, k) homZ(k, k) ⊙̂l U Sym(homZ(k, k))

Sym homZ(k, k) ⊙̂l hom(k, k) Sym homZ(k, k) ⊙̂l Sym homZ(k, k)

φ0

µ

F(∆k)

β

id ○φ0

≅ ≅

id ○φ0

The commutativity of the top rectangle is Lemma 2.11, while the commutativity of
the lower square is the naturality of the isomorphism of Lemma 9.13. The result
then follows from the commutativity of the diagram

hom(k, k) homZ(k, k) ⊙̂l U hom(k, k)

hom(k, k) ⊙̂k hom(k, k) Sym homZ(k, k) ⊙̂ hom(k, k)
µ

∆k

φ0 ⊙̂k id

≅

The commutativity of the third unitality diagram in (8.1) is formal because ⊗k

is the categorical coproduct in kÂlgk.
It remains to show the commutativity of (8.2). We proceed similarly as above

and first note that the following diagram commutes for A, B, C, D representing

objects of kM̂odk because of Lemma 2.11:

Sym(A ⊙̂k B) k⊠k Sym(C ⊙̂k D) Sym((A ⊙̂k B) k⊗k (C ⊙̂k D))

(A ⊙̂k Sym(B)) k⊠k (C ⊙̂k Sym(D)) Sym((A k⊗k C) ⊙̂k (B k⊗k D))

(A k⊗k C) ⊙̂k (Sym(B) k⊠k Sym(D)) (A k⊗k C) ⊙̂k Sym(B k⊗k D)

φ

≅ Sym(ζ)

ζ

id ⊙̂kφ

≅
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The result then follows from the commutativity of the following diagram:

(Sym A ⊙̂k Sym B) k⊠k (Sym C ⊙̂k Sym D) (A ⊙̂k Sym B) k⊠k (C ⊙̂k Sym D)

(Sym A k⊠k Sym C) ⊙̂k (Sym B k⊠k Sym D)

(Sym(A k⊗k C)) ⊙̂k (Sym B k⊠k Sym D) (A k⊗k C) ⊙̂k (Sym B k⊠k Sym D)

Sym(A k⊗k C) ⊙̂k Sym(B k⊗k D) (A k⊗k C) ⊙̂k Sym(B k⊗k D)

≅

ζ

φ ⊙̂k id

≅

ζ

id ⊙̂kφ

≅

id ⊙̂kφ

�

Lemma 9.20. The functor Q∶ kÂlgk → kM̂odk is a strict monoidal functor with respect
to the ○k-product.

Proof. The unit isomorphism Spf (k)→ Q(Spf (k[z])) is the canonical isomorphism

Q(k[z]) ≅ k. If F, G ∈ kÂlgk, without loss of generality F ∈ Pro−Alg+k , we construct
an isomorphism

Q(F) ○kQ(G) = colim
i

hom(QF(i),Q(G))
≅

Cor. 9.12
colim

i
Q(homk(OF(i), G))

≅Q(colim
i

homk(OF(i), G)) ≅ Q(F ○k G).
As in the proof of Lemma 9.18, Q commutes with filtered colimits because its rep-

resenting functor Q is induced up from Alg+k →Modk to Pro−Alg+k → Pro−Modk
by objectwise application. �

Theorem 9.21. The functor Q is a bilax monoidal functor.

Proof. It was shown in Lemma 9.20 and Cor. 9.4 that Q is strictly monoidal with
respect to ○k and lax monoidal with respect to ⊗k. As in Thm. 9.19, it remains to
check the compatibility conditions (8.1) and (8.2). The proofs proceed in the same
way, utilizing Lemma 2.11 throughout. �

Corollary 9.22. The functors P ∶ kÂlgk → kM̂odk and Fr∶ kM̂odk → kÂlgk are bilax
monoidal functors.

Proof. This follows immediately from Thm. 9.19 and Thm. 9.21 in conjunction with
Prop. 8.4. �

It follows that P(F) and Q(F) are formal k-coalgebras if F is a formal plethory.
In fact, by Lemma 8.3, more is true:

Theorem 9.23. Let F ∈ kÂlgk be a formal plethory. Then P(F) and Q(F) ∈ kM̂odk are
bimonoids. �

As a corollary of Prop. 9.16, we also get a stronger statement for Q(F):
Corollary 9.24. The bimonoid Q(F) is also a two-sided module over P(F) with respect
to the ⊗k-product.
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10. DUALIZATION

In this section, we will consider the dualization of bimodules. We will show that
the subcategory of kM̂odl consisting of objects represented by pro-finitely gener-
ated free k-modules is equivalent to the category kModl of ordinary k-l-bimodules.

10.1. Bimodules. Let F ∈ kM̂odl be a formal bimodule. Define F∨ to be the object
in lModk (F∨)qp = F(k[q])p = Pro−Modk((OF)qp, k).
From this description, it is obvious that it is a k-module (because Modk(OF, k) is)
and that it is an l-module (because F∶Modk →Modl).

Conversely, given an object B ∈ lModk, we can define a dual

(∨B)qp = Spf(homk(Bq
p, k)) ∈ kM̂odl (cf. Example 3.3).

To be explicit, this is the pro-k-module {Homk(F, k)} where F runs through all
finitely generated k-submodules of B.

These functors are not equivalences of categories, but suitable restrictions are.

Denote by kM̂odl
′

the full subcategory of formal bimodules which are represented

by pro-(finitely generated free) k-modules, and kModl
′ the full subcategory of k-l-

bimodules which are flat as k-modules.

Lemma 10.1. The restrictions of the functors (−)∨∶ kM̂odl
′

→ kModl
′ ∶∨(−) are inverse

equivalences of categories.

Proof. First assume l = Z. By the Govorov-Lazard theorem [Laz69, Gov65], the

category of flat k-modules kM̂odZ
′

is equivalent to the category of ind-finitely gen-
erated free k-modules. Since the category of finitely generated free k-modules is

self-dual by the functor Modk(−, k), the opposite category of kM̂odZ is thus iso-

morphic to pro-finitely generated free k-modules by the functors ∨(−) and (−)∨.

The case for general l follows because the forgetful functors kM̂odl
′

→ kM̂odZ
′

and kModl
′ → kModZ

′ are faithful. �

Lemma 10.2. The category kModl is a 2-bimodule over Modl . The functor ∨(−) is a left
strict and the functor (−)∨ is a right strict morphism of 2-bimodules.

Proof. The homomorphism set kModl(B, C) is naturally an l-module because l is
commutative. The left action of Modl is given by the usual tensor product M⊗l B,
which is again a left l-module by the commutativity of l. The right action is given
by homl(M, B).

It is straightforward to check that (−)∨ and ∨(−) are enriched functors. To see

that (−)∨ is right strict, we need to verify that

hom(M, F)∨ ≅ hom(M, F∨),
which is true since both sides are given by Homl(M, F(k)). To see that ∨(−) is left
strict, we check the identity

M⊗l
∨B ≅ ∨(M⊗l B)

by noting that the left hand side is represented by homl(M, homk(B, k)), whereas
the right hand side is represented by homk(M ⊗l B, k). These are equal by the
standard hom-tensor adjunction. �
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Note that the Modl-enrichment of kModl
′ and kM̂odl

′

does not descend to a 2-
bimodule structure on these categories. For example, if B ∈ kModl

′ then M⊗l B is

in general not flat unless M is a flat l-module. On the other hand, for B, C ∈ kModl
′,

kModl(B, C) need not be a flat l-module.

Let F ∈ kM̂odl and B ∈ mModl . In Section 5 we defined an object B⊗l F ∈ kM̂odm

as part of the left module structure of kM̂odl over Modl .

Lemma 10.3. Let F ∈ kM̂odl and B ∈ mModl . Then there is a natural map

B⊗l F → (∨B) ○ F

which is an isomorphism if B ∈ mModl
′. Similarly, there is a natural map

B ○ F∨ → (B⊗l F)∨
which is an isomorphism if B ∈ mModl

′.

Proof. Let ev∶B ⊙m hom(B, l) → l be the adjoint of the identity of hom(B, l). By

Corollary B.3(1), there is a natural map in kM̂odl
op

:

B⊙m (hom(B, l) ⊙̂l OF)→ (B⊙m hom(B, l)) ⊙̂l OF
ev ⊙̂ idOF
ÐÐÐÐÐ→OF.

This map adjoins to a map in kM̂odm

hom(B, l) ⊙̂l OF → homl(B,OF),
which induces the desired map.

Note that as functors of B, both sides of the morphism map colimits of l-modules
to limits in Pro−Modk. Thus to show that the map is an isomorphism for l-flat B,
it suffices to let B = ln be a single finitely generated free l-module. In that case the
map is the identity on On

F.
The second map is given by the canonical map B⊗l F(k) → (B⊗l F)(k) given

by Lemma 5.2. Since N ↦ B⊗ F(N) is representable if B is l-flat, this map is an

isomorphism forB ∈ lModm
′. �

Lemma 10.4 ([AM10, Example 6.18]). For B, C ∈ kModk, define B ○C = B⊗k C, where
the tensor product uses the right module structure on B and the left module structure on
C. Also define B k⊗k C to be the tensor product over k⊗ k. Then the category kModk is a
2-monoidal category with respect to ○ and k⊗k.

Theorem 10.5. The functors (−)∨ and ∨(−) are bilax monoidal functors.

Proof. The unit of ○ in kM̂odk is Spf (k), the unit of ○ in kModk is k, and we have

that Spf (k)∨ = k and ∨k = Spf (k). Thus we find that ∨(−) and (−)∨ strictly preserve
the units.

We now show that ∨(−) is lax monoidal with respect to the ○-products. There is
a natural transformation

∨(B ○C) =Spf (hom(B ○C, k))
=Spf (hom(B, hom(C, k))) = B⊗k

∨C
Lemma 10.3
ÐÐÐÐÐÐ→ ∨B ○ ∨C,

and this map is an isomorphism if B ∈ kModk
′.
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We now show that (−)∨ is lax monoidal with respect to the ○-products. There is
a natural transformation

F∨ ○G∨ =F(k) ○G(k)
→Pro−Modk(OF ⊗kOG, k)

Lemma B.3(2)
ÐÐÐÐÐÐÐ→Pro−Modk(OF, Prok(OG, k)) = (F ○G)∨.

The arrow is an isomorphism if F ∈ kĤopfk
′

.
We now study the compatibility with the other monoidal structure, i.e. ⊗k on

kM̂odk and k⊗k on kModk. Note that the unit in kM̂odk is Spf (hom(k, k)), whereas
the unit in kModk is k⊗K k. We have

O∨(k⊗k) = homk(k⊗ k, k) = hom(k, k).
For (−)∨, we have a comparison map

k⊗K k → Spf (hom(k, k))∨ = homk(hom(k, k), k)
which is adjoint to

k⊗K k⊗k hom(k, k) = k⊗hom(k, k) evaluate
ÐÐÐÐ→ k,

but this map is not necessarily an isomorphism. It is if k⊗ k is flat over k (in this

case, hom(k, k) = homk(k⊗ k, k) ∈ kM̂odk
′

).
To show that ∨(−) is oplax monoidal with respect to ⊗k and k⊗k, consider the

diagram

O∨(B k⊗kC) homk(B⊗k C, k) homk(k⊗ B⊗k C, k)

homK(k, Modk(B⊗k C, k))

O∨B
k⊗kO∨C homk(B, k)⊗khomk(C, k) homK(k, homk(B, k)⊗khomk(C, k))

Both rows are equalizers, and the vertical maps are iso if B, C ∈ kModk
′.

The oplax monoidal structure for (−)∨ is given by the canonical map

F∨ k⊗k G∨ =Pro−Modk(OF, k) k⊗k Pro−Modk(OG, k)
→Pro−Modk(OF

k⊗kOG, k) = (F⊗k G)∨.

By duality (Lemma 10.1), since ∨(−) is strongly monoidal on kModl
′, so is (−)∨ on

kM̂odl
′

. �

We summarize the main results of this section in the following theorem.

Theorem 10.6. Assume that k⊗K k is flat over k. Then the categories kM̂odk
′

⊆ kM̂odk
and kModk

′ ⊆ kModk are full 2-monoidal subcategories, and the functors (−)∨ and ∨(−)
are inverse strong bimonoidal equivalences between them.
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Proof. The only point left to show is that kM̂odk
′

and kModk
′ are closed under

the two monoidal structures. This is obvious for kModk
′: if B, C are flat as right

k-modules then so are B ○C and B k⊗k C. It follows for kM̂odk
′

by Thm. 10.5 and
Lemma 10.3. �

APPENDIX A. PRO-CATEGORIES AND LATTICES

In this appendix, I will review some background results about pro- and ind-
categories.

Throughout, I will make use of ends and coends. We denote the end of a functor
F∶ Iop ⊗ I → C by

∫
i

F(i, i) = eq
⎛
⎝∏i∈I F(i, i) ⇉ ∏

i→j∈I
F(i, j)⎞⎠

and the coend of a functor G∶ I ⊗ Iop → C by

i

∫ F(i, i) = coeq
⎛
⎝ ∐i→j∈I

F(i, j) ⇉∐
i∈I

F(i, i)⎞⎠ .

Recall that a category I is cofiltered if each finite diagram X∶ F → I has a cone,
i.e. an object i together with a natural transformation consti → X in the category
of functors from F to I. Let Pro denote the (2-) category of all small cofiltered
categories. If C is any category, the category Pro−C has as objects pairs (I, X)
where I ∈ Pro and X∶ I → C is a diagram; morphisms are defined by

Pro−C((I, X), (J, Y)) = lim
j∈J

colim
i∈I
C(X(i), Y(j)).

It is easy to show (cf. for example [EH76, Thm. 2.1.6]) that Pro−C is equivalent
to the subcategory of objects indexed by cofiltered posets in which every ascend-
ing chain is finite. The dual of this property is usually called “cofinite”, but I will
refrain from calling this property “cocofinite” or “finite” and use the term “noe-
therian” and the dual property “artinian.”

If I is a meet-semilattice (a poset with all finite limits), then I is in particular a
cofiltered poset – the meet lim F of a finite set F ⊆ X is a cone – but the converse
is not true. Let Lat be the category of all noetherian meet-semilattices. It will be
technically convenient to work with the full subcategory Lat(C) of Pro−C gener-
ated by objects indexed by posets in Lat. The following lemma shows that this will
usually not be a loss of generality.

Lemma A.1. Let C be a category closed under finite limits. Then the natural inclusion
Lat(C)↪ Pro−C is an equivalence.

Proof. We already know that the inclusion Lat(C) → Pro−C is full and faithful,
and it remains to show that every object X∶ I → C in Pro−C is isomorphic to one
in Lat(C). We may assume that I is a noetherian cofiltered poset. We define a
relation ≤ on the set of finite subsets of I by F ≤ F′ iff F is cofinal in F′, i.e. for
each x ∈ F′ there is a y ∈ F such that y ≤ x. This relation is transitive and reflexive
and thus induces a partial order on the set Fin(I) = {F ⊆ I ∣ F finite}/ ∼, where
F ∼ F′ ⇐⇒ F ≤ F′ and F′ ≤ F. The poset Fin(I) is noetherian if I is. Furthermore,
Fin(I) is closed under meets: F ∧ F′ = F ∪ F′.

There is a canonical inclusion functor ι∶ I → Fin−I given by singletons.
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Now let X∶ I → C be a diagram representing an object in Pro−C. Consider
RKanι X given by

(RKan
ι

X)(F) = lim
F

X,

which exists because C was assumed to have finite limits. I claim that X and
RKanι X are isomorphic in Pro−C. There is a canonical map RKanι X → X given
by

X({i}) = X(i).
To see this is an isomorphism in Pro−C, we need to construct for each F ∈ Fin−I an
object i′ ∈ I and a map X(i′) → limF X such that suitable diagrams commute. But
since I is cofiltered, there is a cone i′ → F and compatible maps X(i′) → X(i) for
each i ∈ F, thus a map X(i′) → lim X ○ F. �

We need to simplify even further. If I, J are two noetherian semilattices, denote

by I J the set of all monotonic functions from J to I. There is a partial order on

I J given by f ≤ f ′ iff f (j) ≤ f (j′) for all j ∈ J. In fact, I J is again a semilattice:

( f ∧ g)(i) = f (i)∧ g(i). However, I J is usually not noetherian.
Let Lat′(C) be the category with the same objects as Lat(C), but where the mor-

phisms are defined as follows: given two objects X∶ I → C, Y∶ J → C,

Lat′(C)(X, Y) = colim
f ∈I J
∫
j∈J

C(X( f (j)), Y(j)).

Lemma A.2. The canonical functor φ∶Lat′(C)→ Lat(C), given by the identity on objects
and on morphisms by

(αj∶X( f (j)) → Y(j)) ∈ ∫
j

C(X( f (j)), Y(j))↦ αj0 ∈ colim
i
C(X(i), Y(j0)),

is an equivalence of categories.

Proof. As described for instance in [DH76], a morphism in Lat(C) is given by a
not necessarily monotonic function f ∶ J → I and compatible maps X( f (j)) → Y(j)
subject to the condition that for each arrow j ≤ j′ in J, there is an object i ∈ I such
that i ≤ f (j) and i ≤ f (j′). Given such a nonmonotonic function, we can produce a

monotonic function f̃ ∶ J → I by

f̃ (j) = lim
j′≥j

f (j′),
using the noetherian condition on J (therefore the set {j′ ∣ j′ ≥ j} is finite) and

the lattice condition on I (finite limits exist). We have that f̃ ≤ f and thus we get

an induced compatible set of maps α̃j∶X( f̃ (j)) → Y(j) representing the same map

as α in Lat(C).Thus φ is full. For faithfulness, let f , g∶ J → I be two monotonic
maps and αj∶X( f (j)) → Y(j) and β j∶X(g(j)) → Y(j) two maps such that φ(α) =
φ(β). This means that for every j there exists an element h(j) ≤ f (j) ∧ g(j) such
that αj∣X(h(j)) = β j∣X(h(j)) =∶ γj. Again, by possibly choosing smaller h(j), we can

assume that h is monotonic. Thus h ≤ f and h ≤ g, and γ ≤ α, γ ≤ β. Therefore, α
and β represent the same class of maps in colim

f ∈I J
∫

j∈J
C(X( f (j)), Y(j)). �
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APPENDIX B. PRO- AND IND-CATEGORIES AND THEIR ENRICHMENTS

Let (V ,⊗) be a 2-ring and C a 2-bimodule over V . In this section, we will study
the structure of the categories Ind−V and Pro−C with respect to monoidality and
enrichments. The examples we will use in this paper are:

(1) For a graded commutative K-algebra k, V =ModK (graded K-modules) and
C =Modk;

(2) V = Set, the category of graded sets, and C = Algk for a graded commuta-
tive ring k.

Lemma B.1. Let V be a 2-ring. Then so is the category Ind−V , and the inclusion V →

Ind−V as well as the colimit Ind−V colim
ÐÐÐ→ V are strict monoidal functors.

Proof. The fact that Ind−V is cocomplete follows from the fact that Ind−V always
has filtered colimits, and that finite coproducts and coequalizers can be computed
levelwise. By [Isa02], Ind−V is also complete. (The appendix of [AM69] is often
cited for this fact, but it only proves it for small categories.)

Let Ii
Xi
Ð→ V represent objects of Ind−V (i = 1, 2), where Ii are filtered categories.

Then the symmetric monoidal structure on Ind−V is defined by

X1 ⊗X2∶ I1 × I2 → V , (X1 ⊗X2)(i1, i2) = X1(i1)⊗X2(i2).
Since ⊗ is closed in V , it commutes with all colimits in V , and thus colim∶ Ind−V →
V is strict monoidal.

We define an internal hom object Ind(X1, X2) as follows: we may assume the
indexing categories I1, I2 are artinian join-semilattices (by the dual of Lemma A.1).
Then the poset of monotonic maps from I1 to I2 is also a lattice. This will be the

indexing set of Ind(X1, X2). For such an α ∈ I2
I1 , Ind(X1, X2) is given by

Ind(X1, X2)(α) = ∫
i1

map(X1(i1), X2(α(i1))).
To see that ⊗ and Ind are adjoint, we compute

Ind−V(X1, Ind(X2, X3)) = lim
i1

colim
α∈I3

I2
V(X1(i1),∫

i2

map(X2(i2), X3(α(i2))))

= lim
i1

colim
α∈I3

I2
∫
i2

V(X1(i1), map(X2(i2), X3(α(i2))))

=
Lemma A.2

lim
i1

lim
i2

colim
i3
V(X1(i1), map(X2(i2), X3(i3)))

= lim
i1,i2

colim
i3
V(X1(i1)⊗X2(i2), X3(i3))

= Ind−V(X1 ⊗X2, X3).
�

This construction leads us out of the category Lat(C) because I2
I1 is not artinian,

but we can always apply the equivalence Ind−C → Lat(C) to get back an isomor-
phic internal hom object in Lat(C).
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Unfortunately, the category Pro−C is not a 2-ring even if C is. The analogous
definition of a symmetric monoidal structure (X1 ⊗ X2)(i1, i2) = X1(i1) ⊗ X2(i2)
on Pro−C is unproblematic, but this structure is not closed. However, Pro−C is a
2-bimodule over Ind−V . We will first define the structure and then prove that it
gives rise to an enrichment.

Definition.

(1) Define a functor ⊗∶ Ind−V × Pro−C → Pro−C as follows. Let L ∈ Ind−V
be indexed by an artinian join-semilattice J and M ∈ Pro−C be indexed
by a noetherian meet-semilattice I. Then L ⊗M is indexed by the meet-
semilattice α∶ Jop → I, and

(L⊗M)(α) =
j∈J

∫ L(j)⊗M(α(j)).)
(2) Define a functor Ind∶Pro−C ×Pro−C → Ind−V as follows. Let M ∈ Pro−C

be indexed by a noetherian meet-semilattice I and N ∈ Pro−C by a noether-
ian meet-semilattice J. The object Ind(M, N) ∈ Ind−V is indexed by the

opposite lattice of the meet-semilattice I J and is given by

Ind(M, N)(α) = ∫
j

map(M(α(j)), N(j)).

(3) Define a functor hom∶ Ind−V × Pro−C → Pro−C by assigning to L∶ I → C
and M∶ J → C, where I is cofiltered and J is filtered, the object indexed by
Iop × J and given by

hom(L, M)(i, j) = hom(L(i), M(j)).
Lemma B.2. With the structure given above, the category Pro−C is a 2-bimodule over
Ind−V .

Proof. Let M, N ∈ Pro−C and L, H ∈ Ind−V . We need to see:

(1) (H⊗ L)⊗M ≅ H⊗ (L⊗M).
(2) Pro−C(L⊗M, N) ≅ Ind−V(L, Ind(M, N))
(3) Pro−C(L⊗M, N) ≅ Pro−C(M, hom(L, N))

(1): Let I
M
Ð→ C, J1

H
Ð→ V , and J2

L
Ð→ V be representations. Then we have for

α∶ Jop
1 × Jop

2 → I:

((H⊗ L)⊗M) (α) =
j1∈J1
j2∈J2

∫ H(j1)⊗ L(j2)⊗M(α(j1, j2))

=

j2

∫
⎛⎜⎝H(j1)⊗

j1

∫ L(j2)⊗M(α(j1, j2))⎞⎟⎠
= (H ⊗ (L⊗M))(α#),

where α#∶ Jop
2 → I J1 is the adjoint of α.
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(2) As before, pick representatives I1
M
Ð→ C, I2

N
Ð→ C, J

L
Ð→ V . We compute

Pro−C(L⊗M, N) = lim
i2

colim
α∶Jop

→I1

C (∫ j
L(j)⊗M(α(j)), N(i2))

≅ lim
i2

colim
α∶Jop→I1

∫
j
C (L(j)⊗M(α(j)), N(i2))

= lim
i2

lim
j

colim
i1
C(L(j)⊗M(i1), N(i2))(*)

= lim
i2,j

colim
i1
V (L(j), map (M (i1) , N(i2))

= lim
j

colim
β∶I2→I1

∫
i2
V(L(j), map(M(β (i2)), N(i2)))

= lim
j

colim
β∶I2→I1

V(L(j), Ind(M, N)(β))
= Ind−V(L, Ind(M, N)).

(3) Pick representatives as in (2). We pick up the computation at (*):

lim
i2

lim
j

colim
i1
C(L(j)⊗M(i1), N(i2)) = lim

i2,j
colim

i1
C (M(i1), hom (L (j) , N(i2))

=Pro−C(M, hom(L, N)).
�

Now assume that (C,⊠, J) is a 2-algebra over V . We define a symmetric monoidal
structure ⊠ on Pro−C by (M ⊠N)(i, j) = M(i)⊠N(j). The unit is the constant ob-
ject J. Furthermore, there is a homomorphism object Pro(M, N) indexed by J and
given by

Pro(M, N)(j) = colim
i

Hom(M(i), N(j)).
Lemma B.3. The category Pro−C with the structure above is a 2-algebra over Ind−V .
More precisely,

(1) Let M, N ∈ Pro−C and L ∈ Ind−V . Then there is a natural map L⊗ (M⊗N)→(L⊗M)⊗N which is an isomorphism if N is pro-constant.
(2) There is a natural morphism

Pro−C(X⊗Y, Z) → Pro−C(X, Pro(Y, Z))
which is an isomorphism if X consists of small objects, i.e. if C(X(i),−) commutes
with directed colimits for all i, or if Y is pro-constant.

Proof. (1): Pick representatives I1
M
Ð→ C, I2

N
Ð→ C, J

L
Ð→ ModK. For α∶ Jop → I1, i2 ∈ I2,

we have

((L⊗M)⊗N) (α, i2) =(
j∈J

∫ L(j)⊗M(α(j)))⊗N(i2)

=

j∈J

∫ L(j)⊗M(α(j))⊗N(i2)
= (L⊗ (M⊗N))(α × consti2).
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Since L ⊗ (M ⊗ N) is indexed by the larger category of all functors Jop → I1 ×
I2, this only defines a natural pro-map L ⊗ (M ⊗ N) → (L ⊗M)⊗ N, which is an
isomorphism if I2 = {i2}.
(2): The natural map

Pro−C(X⊗Y, Z) = lim
k

colim
i,j
C(X(i)⊗Y(j), Z(k))

= lim
k

colim
i,j
C(X(i), map(Y(j), Z(k))

→ lim
k

colim
i
C(X(i), colim

j
(Y(j), Z(k))

=Pro−C(X, Pro(Y, Z)).
is an isomorphism if X(i) is small or J = {j0}. �
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