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ON PROPERLY ESSENTIAL CLASSICAL CONFORMAL

DIFFEOMORPHISM GROUPS

STEFAN MÜLLER AND PETER SPAETH

Abstract. We prove that various classical conformal diffeomorphism
groups, which are known to be essential [1], are in fact properly essential.
This is a consequence of a local criterion on a conformal diffeomorphism
in the form of a cohomological equation. Furthermore, we study the
orbit of a tensor field under the action of the conformal diffeomorphism
group for these classical conformal structures. On every closed contact
manifold, we find conformal contact forms that are not diffeomorphic.

1. Introduction and statement of main results

Following A. Banyaga [1], we consider geometrical structures defined as
(oriented) conformal classes σ of some tensor field τ on a smooth manifold
M , where two such tensor fields τ and τ ′ are considered equivalent if and
only if τ ′ = efτ for some smooth function f on M . We write σ = [τ ]
for the (oriented) conformal structure, or τ ∈ σ if σ = [τ ], and (M,σ) for
the (oriented) conformal manifold. The conformal structure σ = [τ ] is an
orientation of M if τ is a volume form, a conformal symplectic structure if τ
is a symplectic form, and a contact structure if τ is a contact form. In any
of these three cases, σ is called an (oriented) classical conformal structure.

For τ ∈ σ we denote by

C∞
ad,+(M, τ) = {f ∈ C∞(M) | ef τ ∈ σ}

the set of admissible conformal rescaling factors of the given tensor field τ .
If τ ′ = egτ , there is a natural 1 − 1 correspondence between C∞

ad,+(M, τ)

and C∞
ad,+(M, τ ′) given by f 7→ f − g. If τ is a contact form or a volume

form, then C∞
ad,+(M, τ) = C∞(M), whereas if τ is a symplectic form on a

manifold of dimension greater than two, then by the closedness condition,
C∞
ad,+(M, τ) consists of the constant functions only.

The group Diff(M) of diffeomorphisms of M acts on conformal classes of
tensor fields. Indeed, if τ ′ = ef τ , and ϕ ∈ Diff(M), then ϕ∗τ ′ = ef◦ϕϕ∗τ ,

2010 Mathematics Subject Classification. 53A30, 53D35.
Key words and phrases. Essential and properly essential conformal group, classical

conformal diffeomorphism group, cohomological equation, orbit of tensor field, contact
structure, closed Reeb orbit, contact invariant, conformal symplectic structure, complete
Liouville vector field, symplectic involution, Banyaga’s conformal invariant, Gottschalk-
Hedlund theorem.

1

http://arxiv.org/abs/1107.5861v1
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and ϕ∗τ and ϕ∗τ ′ define the same (oriented) conformal structure. We denote
by

Diff+(M,σ) = {ϕ ∈ Diff(M) | ϕ∗σ = σ}

= {ϕ ∈ Diff(M) | ϕ∗τ = efτ for some f ∈ C∞
ad,+(M, τ)}

the group of automorphisms (or conformal (diffeomorphism) group) of the
oriented conformal structure σ = [τ ], and write

C∞
+ (M, τ) = {f ∈ C∞(M) | ∃ϕ ∈ Diff+(M,σ) such that ϕ∗τ = efτ},

for the set of conformal factors of those diffeomorphisms that preserve the
oriented conformal structure σ = [τ ]. If τ ′ = egτ , there is a natural 1 − 1
correspondence between C∞

+ (M, τ) and C∞
+ (M, τ ′) given by f 7→ f+g◦ϕ−g

provided ϕ∗τ = efτ . If τ ∈ σ, we also consider the group

Diff(M, τ) = {ϕ ∈ Diff(M) | ϕ∗τ = τ} ⊂ Diff+(M, [τ ])

of automorphisms of the tensor field τ .

Definition 1. The (oriented) conformal diffeomorphism group Diff+(M,σ)
is called inessential if there exists τ ∈ σ such that Diff(M, τ) = Diff+(M,σ),
and essential otherwise. The group Diff+(M,σ) is called properly essential
if

(1)
⋃

τ∈σ

Diff(M, τ) ( Diff+(M,σ).

In the article [1], Banyaga proved that many classical conformal structures
carry essential conformal groups. We show that their conformal groups are
in fact properly essential. More precisely, we prove the following theorem.

Theorem 2. The conformal diffeomorphism groups of the following confor-
mal manifolds (M,σ) are properly essential.

(i) (M, ξ) a contact manifold,
(ii) (M, [ω]) a conformal symplectic manifold that supports a complete

Liouville vector field, and
(iii) (M,σ) an oriented manifold.

The same statement holds for the identity components of these conformal
diffeomorphism groups. We also discuss compact symplectic manifolds as
well as more general noncompact symplectic manifolds in Section 4. The
condition in part (ii) of the theorem means that M admits a smooth vector
field X with LXω = ω, that in addition has a well-defined flow everywhere
onM for all times. This list includes for example T ∗N , where N is a smooth
manifold, with its standard symplectic form, and in particular R2n = T ∗Rn,
as well as Stein manifolds, and the symplectizations of contact manifolds.

We also consider the orbit of a tensor field τ ∈ σ under the action of the
conformal diffeomorphism group Diff+(M,σ), that is

O(τ) = {τ ′ | τ ′ = ϕ∗τ for some ϕ ∈ Diff+(M,σ)}.
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Then O(τ) ∼= Diff+(M,σ)/Diff(M, τ), and moreover, O(τ) can be identified
naturally with the subset C∞

+ (M, τ) ⊂ C∞
ad,+(M, τ) via the relation τ ′ = ef τ .

For noncompact manifolds M , we say that the orbit O(τ) of τ is maximal
if C∞

+ (M, τ) = C∞
ad,+(M, τ). If M is compact, and τ induces a volume form

on M , every function f ∈ C∞
+ (M, τ) satisfies an obvious average value con-

straint, which will be discussed in detail case by case below. We say that
O(τ) is maximal if C∞

+ (M, τ) consists of all smooth functions in C∞
ad,+(M, τ)

that satisfy this necessary constraint on the average value with respect to
the induced volume form. The notion of maximality depends only on the
conformal class of τ . Indeed, suppose τ and τ ′ = egτ ∈ σ, and that O(τ) is
maximal. Then there exists ϕ ∈ Diff+(M,σ) such that ϕ∗τ = τ ′. Moreover,
if f ∈ C∞

ad,+(M, τ ′), then f + g ∈ C∞
ad,+(M, τ), and if f satisfies the con-

straint on the average value with respect to τ ′, then f + g satisfies the same
constraint with respect to τ . By the maximality hypothesis, there exists
ψ ∈ Diff+(M,σ) such that ψ∗τ = ef+gτ . Then (ϕ−1 ◦ψ)∗τ ′ = ef τ ′, proving
O(τ ′) is maximal.

If µ is a volume form on a closed manifold, it is well-known that O(µ)
is maximal by Moser’s argument. The same holds for open manifolds M
provided every vector field on M is complete, due to the nondegeneracy of
the volume form and vanishing of the top dimensional cohomology. More-
over, Banyaga [1, Section 3.4] proved that if (M,ω) is a symplectic manifold
supporting a complete Liouville vector field, then the symplectic form ω
has maximal orbit. For (M,ω) a compact symplectic manifold, the notion
of maximality is meaningless, since C∞

+ (M,ω) = C∞
ad,+(M,ω) = {0}. For

closed contact manifolds, we will demonstrate the following theorem. Un-
der a certain additional hypothesis, the same statement holds for general
contact manifolds. See Section 3 for details.

Theorem 3. For (M, ξ) a closed contact manifold, and α any contact form,
the orbit O(α) is not maximal.

Our proofs differ from the methods employed by Banyaga, who proved
the essentiality of a conformal group to be equivalent to the non-vanishing
of a certain conformal invariant. This non-vanishing in turn is often a con-
sequence of the non-triviality of O(τ), together with transitivity properties
of the group Diff+(M,σ). In this work, we find local obstructions to equa-
tion (1) in order to prove our stronger result Theorem 2. In Section 2 we
single out the obstruction for a conformal diffeomorphism to preserve any
of the tensor fields in a conformal class. We then discuss contact structures,
conformal symplectic structures, and orientations in Sections 3, 4, and 5,
respectively. The relation of Banyaga’s conformal invariant to the property
of being properly essential is discussed in Section 6. In Section 7 we con-
sider conformal factors that can be any non-vanishing function, and allow
the possibility of diffeomorphisms reversing the orientation of the conformal
class σ, in the sense that ϕ∗τ = fτ for some negative smooth function f .
The last section contains some final remarks and defines a new invariant of
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a contact diffeomorphism. This paper originated with the problems solved
in Section 3.

2. Diffeomorphisms preserving a conformal structure

Let (M,σ) be a conformal manifold, and ϕ a conformal diffeomorphism.
If τ ∈ σ, then there exists a smooth function f on M such that ϕ∗τ = ef τ .
Suppose τ ′ ∈ σ is any other tensor field in the conformal class of τ , then
τ ′ = egτ for a smooth function g on M . The diffeomorphism ϕ preserves τ ′,
that is, egτ = ϕ∗(egτ) = eg◦ϕ+f τ , if and only if

(2) f = g − g ◦ ϕ.

That is, ϕ preserves a tensor field in the conformal class σ if and only if there
exists a solution g ∈ C∞

ad,+(M, τ) to the cohomological equation (2). Thus we
have the following lemma, which provides a local criterion for a conformal
diffeomorphism to not preserve any tensor field in the given conformal class,
and in particular, for the conformal group to be properly essential.

Lemma 4. Let ϕ ∈ Diff+(M,σ) be a conformal diffeomorphism, τ ∈ σ, and
ϕ∗τ = ef τ . Suppose ϕ has a fixed point at which f does not vanish. Then
ϕ /∈ Diff(M, τ ′) for any τ ′ ∈ σ, and Diff+(M,σ) is properly essential.

Proof. If x ∈M is a fixed point of ϕ with f(x) 6= 0, then g(x)−g ◦ϕ(x) = 0,
and by equation (2), ϕ does not preserve any τ ′ ∈ σ. So ϕ is contained
in the right-hand side of equation (1), but not in the set on the left-hand
side. �

If ϕ is as in the lemma, its conformal factor with respect to τ ′ = egτ ∈ σ
equals f + g ◦ϕ− g. In particular, at x ∈M this conformal factor coincides
with f(x) 6= 0 for all τ ′ ∈ σ. Therefore, if σ is the conformal class of a contact
form, a symplectic form, or a volume form, then ϕ does not preserve the
volume form at the point x induced by τ ′ for all τ ′ ∈ σ. On the other
hand, every diffeomorphism in Diff(M, τ ′) must preserve that volume form.
We obtain another criterion for a conformal group to be properly essential,
which is more general (but less applicable) than the previous one if σ is a
classical conformal structure.

Lemma 5. Let σ be the conformal class of a contact form, a symplectic
form, or a volume form, and ϕ ∈ Diff+(M,σ) a conformal diffeomorphism,
such that for all τ ∈ σ, ϕ does not preserve the volume form induced by τ .
Then Diff+(M,σ) is properly essential.

3. Contact structures

Consider R2n+1 with coordinates (x, y, z) = (x1, . . . , xn, y1, . . . , yn, z), and
its standard contact structure ξ = kerα, where α is the standard contact
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form dz −
∑n

i=1 yidxi, so that the contact vector field of a smooth function
H on R2n+1 is given by

XH =

n
∑

i=1

(

−
∂H

∂yi

)

∂

∂xi
+

n
∑

i=1

(

∂H

∂xi
+ yi

∂H

∂z

)

∂

∂yi
+

(

H −

n
∑

i=1

yi
∂H

∂yi

)

∂

∂z
.

Let H(x, y, z) = z−
∑n

i=1 xiyi. Its contact flow is ϕt
H(x, y, z) = (etx, y, etz),

and (ϕt
H)∗α = etα. The contact diffeomorphisms ϕt

H all fix the points
(0, y, 0), and thus equation (2) evaluated at any of the points (0, y, 0) reads
t = 0. Thus for t > 0, there exists no solution g to equation (2), and conse-
quently, the contact diffeomorphism ϕt

H does not preserve any contact form
that determines ξ. Alternatively, it is apparent that for t > 0, ϕt

H expands
any volume form at the points (0, y, 0). This can also be seen directly; a
rectangular solid centered there expands to a larger rectangular solid. But a
diffeomorphism preserving a contact form say α′ also preserves the volume
form α′ ∧ (dα′)n induced by it. The same argument works for the Hamil-
tonian F (x, y, z) = 2z −

∑n
i=1 xiyi with flow ϕt

F (x, y, z) = (etx, ety, e2tz)
and fixed point (0, 0, 0). Cutting off H or F in a neighborhood of a fixed
point and using Darboux’s theorem produces a diffeomorphism satisfying the
hypothesis of Lemma 4 on any contact manifold (M2n+1, ξ). That proves
Theorem 2 (i).

Given two contact forms α and α′ = efα, we consider the problem of the
existence of a diffeomorphism ϕ with ϕ∗α = α′. IfM is compact, an obvious
necessary condition on the function f ∈ C∞(M) is given by the following
lemma. Denote by

(3) µ =
1

∫

M
α ∧ (dα)n

· α ∧ (dα)n

the normalized canonical volume form on M .

Lemma 6. Let (M2n+1, ξ) be a compact contact manifold, and α a contact
form. If efα is diffeomorphic to α, i.e. there exists a contact diffeomorphism
ϕ with ϕ∗α = efα, then the Ln+1-norm of ef is equal to 1, or in other
words, e(n+1)f has average value 1, with respect to the volume form µ. In
particular, if the smooth function f has positive average value with respect to
µ, then efα is not diffeomorphic to α. The same conclusion holds if f ≤ 0
everywhere, and f is negative at some point.

Proof. The first statement follows from the change of variables formula ap-
plied to ϕ∗(α ∧ (dα)n) = e(n+1)fα ∧ (dα)n. Jensen’s inequality applied to
the exponential function shows that f has nonpositive average value. On

the other hand, (ϕ−1)∗α = e−f◦ϕ−1

α, so that −f ◦ϕ−1 also has nonpositive
average value, which is impossible if f ≤ 0 but not identically zero. �

In contrast to the situation for volume forms, this necessary condition is
not sufficient. The proof requires a series of lemmata.
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Lemma 7. If two contact forms α and α′ are diffeomorphic, then their Reeb
flows ϕt

R and ϕt
R′ are conjugate.

Proof. If α′ = ϕ∗α, then ϕ∗R
′ = R, and thus ϕ ◦ ϕt

R′ ◦ ϕ−1 = ϕt
R. �

Lemma 8. Every closed contact manifold (M, ξ) supports a contact form
that has a closed Reeb orbit with trivial normal bundle.

Since we have not been able to find a proof of this fact anywhere, we give
a proof here.

Proof. We prove the lemma by induction on n, where 2n+1 is the dimension
of M . The degenerate case n = 0 is trivial. Choose a contact form α on
(M, ξ) that is carried by an open book decomposition with binding K ⊂M .
By the induction hypothesis, the contact structure ξ|K on K induced by
the contact form α|K supports a contact form that has a closed Reeb orbit
with trivial normal bundle. Thus there exists a smooth function f on K
such that efα|K has such a closed Reeb orbit γ. Since the normal bundle
of K in M is trivial, f extends to a smooth function g on M , and egα is a
contact form on M with kernel ξ that restricts to efα|K on K. As in the
proof of the contact neighborhood theorem, see for example [4], we can find
a smooth function h on M that vanishes on K, such that the Reeb flow of
eg+hα restricts to the Reeb flow of efα|K on K. Then γ is the desired closed
Reeb orbit of the contact form eg+hα on M . �

Lemma 9. Let α be a contact form and γ be a closed Reeb orbit with trivial
normal bundle. Then there exists a contact form α′ that induces the same
contact structure as α and that is standard near γ. In particular, all Reeb
orbits of α′ near γ are closed and have the same period as γ.

Proof. On the normal bundle of γ, consider the contact structure ξ0 induced
by the standard contact form α0 = dθ −

∑

i yidxi, where the coordinate θ
parameterizes γ, and xi and yi are normal coordinates. By the contact
neighborhood theorem, ξ0 is diffeomorphic near γ to the contact structure
induced by α. Therefore there exists a smooth function f , locally defined
in a neighborhood of γ, so that efα is locally diffeomorphic to α0. Since γ
has trivial normal bundle, f extends to a globally defined smooth function
g, and the contact form α′ = egα is locally diffeomorphic to α0 near γ. �

Lemma 10. Every closed contact manifold (M2n+1, ξ) with contact form α
supports another contact form not diffeomorphic to α. If M is compact, this
contact form can be chosen so that its induced volume form has the same
total volume as the volume form induced by α.

Proof. Let α′ be a contact form for ξ as in the previous lemma. For a generic
contact form α′′, its closed Reeb orbits of any fixed period are isolated as
smooth maps S1 → M . Thus by Lemma 7, α′′ cannot be diffeomorphic
to α′. The contact form α on (M, ξ) may be diffeomorphic to one of the
above contact forms α′ or α′′, but not both. If M is compact, we can
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modify α′ and α′′ to induce volume forms of total volume equal to the total
volume of the volume form induced by α. If α is generic in the above sense,
write α′ = efα, and choose a nonempty open subset U of M that does not
intersect the neighborhood of γ filled out by closed Reeb orbits of α′, and a
function g compactly supported inside U , such that e(n+1)(f+g) has average
value 1 with respect to the volume form µ in equation (3) induced by α.
But e(n+1)(f+g)α ∧ (dα)n is the volume form induced by the contact form
ef+gα, and the Reeb flow of the latter coincides with the Reeb flow of efα in
a neighborhood of γ. Thus α and ef+gα are not diffeomorphic. Otherwise,
observe that if α′′ = ehα is generic, then so is eh+cα for any real constant
c. This constant can be chosen so that e(n+1)(h+c) has the correct average
value. �

Thus the orbit of any contact form α on a closed contact manifold is not
maximal, and the proof of Theorem 3 is complete. It would be interesting
to have a complete understanding of the orbit O(α) of a contact form α.
This problem seems to be very difficult.

In contrast, by Darboux’s theorem, locally near a point x all contact forms
on a contact manifold M are diffeomorphic. These local diffeomorphisms
can be constructed using Moser’s argument so that they coincide with the
identity map near the boundary of a larger local chart, and thus extend
to global diffeomorphisms of M that exchange the two contact forms near
x ∈M .

Note however that these Darboux neighborhoods do not contain any
closed Reeb orbits, since a contact form on an open contact manifold may
not admit any, as is the case for the standard contact form on R2n+1. In gen-
eral one may have to consider other invariants of the contact form in order
to distinguish contact forms in the same conformal class on open manifolds.
However, the preceding lemmata also prove the following result.

Proposition 11. If (M, ξ) admits a contact form having a closed Reeb orbit
with trivial normal bundle, and α is any contact form, then the orbit O(α)
is not maximal.

4. Conformal symplectic structures

Let ω be a symplectic form on a smooth manifold M of necessarily even
dimension 2n, and σ its (oriented) conformal class. If n = 1, ω is just
an area form, and σ the induced orientation on the surface M . We assume
henceforth that the dimension 2n ≥ 4, and postpone the dimension two case
to the next section. Due to the closedness assumption, any other symplectic
structure in the same conformal class is of the form eλω for a real constant
λ. In other words, C∞

ad,+(M,ω′) = R for any ω′ ∈ [ω].

Suppose first that M is compact. Let ϕ ∈ Diff+(M,σ) be a conformal
symplectic diffeomorphism, and ϕ∗ω = eµω for a real constant µ. By the
change of variables formula, nµ = 0, and thus µ = 0. That means every
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conformal diffeomorphism of σ preserves ω, and in fact, any symplectic form
eλω ∈ σ. Thus if M is compact, Diff+(M,σ) is trivially inessential.

Now suppose that M is noncompact. Since all the functions f on the
left-hand side of equation (2) are constant, it suffices to find one conformal
diffeomorphism ϕ with µ 6= 0.

Lemma 12. If there exists a conformal diffeomorphism ϕ ∈ Diff+(M,σ)
with ϕ∗ω = eµω and µ 6= 0, then Diff+(M,σ) is properly essential, and
Diff+(M,σ) is inessential otherwise. In particular, if Diff+(M,σ) is essen-
tial it is properly essential.

Suppose that M supports a complete Liouville vector field X, i.e. LXω =
ω. Note that then M is necessarily noncompact. By our assumption, X
integrates to a globally defined flow ϕt, and the identity ϕ∗

tω = etω holds,
or ϕt has conformal factor t ∈ R.

Let M = T ∗N with coordinates q ∈ M and p in the fiber direction, and
its standard symplectic form dp ∧ dq =

∑

i dpi ∧ dqi. Then the smooth
vector field p ∂/∂p is a complete Liouville vector field. This includes the
case of R2n = T ∗Rn with its standard symplectic structure. If M is a Stein
manifold, it also admits a globally defined complete Liouville vector field [1].
For M × R the symplectization of a contact manifold M with symplectic
form −d(eθα), where α is a contact form on M and θ the variable in the
R direction, the vector field ∂/∂θ is complete Liouville. Theorem 2 (ii) is
proved.

Since the conformal factor µ is globally constant, diffeomorphisms as in
Lemma 12 can of course not be constructed locally as in the case of contact
structures in the previous section. Global constructions are most easily
achieved as time-one maps of complete vector fields, and this is precisely
the situation of Theorem 2 (ii). As a partial converse, we have the following
lemma. Recall that by Lemma 12, the hypothesis implies that Diff+(M,σ)
is properly essential.

Lemma 13. Suppose there exists ϕ ∈ Diff0(M,σ) ⊂ Diff+(M,σ), such that
ϕ∗ω = eµω for a (and thus any) ω ∈ σ, with nonzero conformal factor
µ ∈ R. Then (M,ω) supports a Liouville vector field, and in particular, ω
is exact.

Proof. Choose an isotopy ϕt from ϕ0 = id to ϕ1 = ϕ with ϕ∗
tω = eµtω. If

Xt denotes its infinitesimal generator, then

ϕ∗
t (d(ιXtω)) = ϕ∗

t (LXtω) =
d

dt
(ϕ∗

tω) = (
d

dt
µt) · e

µtω = ϕ∗
t ((

d

dt
µt) · ω).

Since µ 6= 0, the map t 7→ µt cannot be constant everywhere. After rescaling,
we obtain a Liouville vector field on (M,ω). �

Corollary 14. If ω is not exact, then Diff0(M,σ) is inessential.

Note that the last part of the lemma as well as its corollary also follow from
the action of Diff+(M,σ) on the second deRham cohomology H2(M,R).
More generally, for non-exact ω, Lemma 12 can be restated as follows.
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Lemma 15. If the symplectic manifold (M,ω) is not exact, then Diff+(M,σ)
is inessential if the action (by multiplication) of Diff+(M,σ) on H2(M,R)
fixes the cohomology class of ω, and it is properly essential otherwise.

5. Orientations

LetM = Rn equipped with the standard volume form µ = dx1∧· · ·∧dxn,
and σ the induced orientation on Rn. Let ρ : R → R be a smooth function
with ρ(r) = r/n near r = 0, and define a smooth vector field X on Rn

by
∑

i ρ(xi)∂/∂xi. Then LXµ = λµ with λ =
∑

i ρ
′(xi), and since µ is a

volume form, the flow ϕt of X satisfies ϕ∗
tµ = eftµ, where ft =

∫ t

0 λ ◦ ϕs ds.
The flow ϕt has a fixed point at the origin 0 ∈ Rn, and ft(0) = t. Applying
Lemma 4 to the diffeomorphism ϕt for any t 6= 0 proves Diff+(M,σ) is
properly essential.

Now letMn be any oriented smooth manifold. After cutting off the vector
field X, the diffeomorphism ϕ1 is supported in the unit ball B ⊂ Rn. Thus
for any local chart ψ : U → V ⊂M with B ⊂ U ⊂ Rn, the map ψ ◦ϕ1 ◦ψ

−1

extends to a global diffeomorphism of M . If µ is a volume form defining the
orientation σ of M , then ψ∗µ = vdx1 ∧ · · · ∧ dxn for some smooth function
v on U . The diffeomorphism ψ ◦ ϕ1 ◦ ψ

−1 has a fixed point at ψ(0), and its
conformal factor at that point equals 1. Again by Lemma 4, Diff+(M,σ) is
properly essential. The proof of Theorem 2 (iii) is now complete.

6. Banyaga’s conformal invariant

Let σ be a conformal structure on a smooth manifold M , and τ ∈ σ.
For ϕ ∈ Diff+(M,σ), denote by f = fϕ the unique smooth function on M

given by ϕ∗τ = ef τ . Banyaga defined a conformal invariant of (M,σ) by the
cohomology class of the cocycle Dτ : Diff+(M,σ) → C∞(M), Dτ (ϕ) = fϕ−1 ,

in H1(Diff+(M,σ), C∞(M)). The conformal group Diff+(M,σ) is essential
if and only if this conformal invariant does not vanish [1].

We note that

Dτ ((ϕ
−1)k) =

k−1
∑

i=0

fϕ ◦ ϕk.

The relation of Banyaga’s conformal invariant to the property of being prop-
erly essential is the following. We begin with a special case of a theorem
of W. H. Gottschalk and G. A. Hedlund, which is most useful when M is
compact.

Theorem 16. [5, Theorem 14.11] Let ϕ be a homeomorphism ofM , f a con-
tinuous function on M , and N ⊂M a compact minimal set under ϕ. That
means N is closed and nonempty, and each orbit O(x) = {ϕn(x) | n ∈ Z},
x ∈ N , is dense in N . Then the following statements are equivalent.

(i) there exists y0 ∈ N such that the sequence (for k a positive integer) of

Birkhoff sums
∑k−1

i=0 fϕ ◦ ϕk(y0) is bounded uniformly,
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(ii) the sequence of Birkhoff sums
∑k−1

i=0 fϕ ◦ ϕk(y) is bounded uniformly
in y ∈ N and k a positive integer,

(iii) there exists a continuous function g on N solving the cohomological
equation f(y) = g(y)− g ◦ ϕ(y) for all y ∈ N .

The implications (iii) ⇒ (ii) and (ii) ⇒ (i) are trivial, and the content of
the theorem is the assertion that (i) ⇒ (iii). The function g is unique up to
an additive constant. Indeed, if g1 and g2 are continuous functions such that
g1(y)−g1◦ϕ(y) = f(y) = g2(y)−g2◦ϕ(y), then (g1−g2)(y) = (g1−g2)(ϕ(y))
is constant on each orbit. Since the orbits are dense and g1 and g2 are
continuous, they coincide up to a constant. The axiom of choice guarantees
the existence of at least one compact minimal set N [5, Appendix]. If ϕ is
minimal, that is, every orbit is dense, andM is compact, then one can choose
N =M in the theorem. Without the assumption of compactness of N , it is

only true that boundedness of the sequence of partial sums
∑k−1

i=0 fϕ ◦ϕ
k(y)

implies that f is a coboundary, i.e. there exists a continuous function g on
N that satisfies the relation f = g − g ◦ ϕ, but not the converse [2, 6].

Corollary 17. Suppose ϕ ∈ Diff+(M,σ), and there exists a compact min-
imal set N ⊂ M , such that for some x ∈ N the sequence Dτ ((ϕ

−1)k)(x)
is unbounded. Then ϕ /∈ Diff(M, τ ′) for any τ ′ ∈ σ, and consequently,
Diff+(M,σ) is properly essential. In particular, if x ∈M is a periodic point
of ϕ, that is ϕm(x) = x for some integer m ≥ 1, and Dτ ((ϕ

−1)m)(x) 6= 0,
then ϕ /∈ Diff(M, τ ′) for any τ ′ ∈ σ, and Diff+(M,σ) is properly essential.

The last part of the corollary in the case m = 1 is precisely Lemma 4.

Proof. Assume ϕ ∈ Diff(M, τ ′), where τ ′ = egτ for a smooth function g
on M . Then by equation (2), f = g − g ◦ ϕ on M . By the theorem,
the sequence Dτ ((ϕ

−1)k)(x) is bounded, a contradiction. To prove the last
statement, note that the orbit O(x) of x is a compact minimal set, and the
sequence Dτ ((ϕ

−1)k)(x) is bounded if and only if Dτ ((ϕ
−1)m)(x) = 0. �

It would be interesting to have a necessary and sufficient condition for the
proper essentiality of the conformal group Diff+(M,σ) in terms of Banyaga’s
conformal invariant, such as a smooth and global version of the Gottschalk-
Hedlund Theorem, where ϕ is a diffeomorphism, f is a smooth function,
and g is also smooth and satisfies f = g − g ◦ ϕ on all of M . The question
of existence and regularity of solutions to various flavors of cohomological
equations, such as Livšic theory or Livšic regularity, and other bounded
implies coboundary type results, is studied in a myriad of papers in the
literature.

We remark however that if g is a function onM that satisfies f = g−g◦ϕ
on all ofM , smoothness of f alone is not enough to guarantee the smoothness
of g. Indeed, for an irrational number θ, choose a sequence of integers
nk ≥ 2k, k ≥ 1, such that 0 < nkθ − [nkθ] ≤ 2−nk , where [x] as usual
denotes the greatest integer less than or equal to x, and define nk = −n−k
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for k < 0. Then the (real) function f : S1 → R defined by

f(e2πit) =
∑

j 6=0

1

j2

(

1− e2πinjθ
)

e2πinjt,

is smooth, and the (real) function g : S1 → R defined by

g(e2πit) =
∑

j 6=0

1

j2
e2πinjt,

is only C0 but not C1. In fact, the example can easily be modified so that
the function f is smooth, and g is Ck but not Ck+1 for any k ≥ 0, or
even L2 but not C0. On the other hand, it is immediate to check that
g(x)− g(e2πiθx) = f(x). See [3, 7] for details.

7. Diffeomorphisms reversing the orientation of a conformal

structure

In this section, we allow the function f in the equation ϕ∗τ = fτ to
be any smooth function that vanishes nowhere, and drop the subscript +
wherever applicable. For example, we define

C∞
ad(M, τ) = {f ∈ C∞(M) | fτ ∈ σ}

the set of nowhere vanishing functions that can appear as conformal rescaling
factors of τ . Again if τ ′ = gτ , there is a natural 1 − 1 correspondence
between C∞

ad(M, τ) and C∞
ad(M, τ ′) given by f 7→ f/g. For simplicity, we

assume M is connected, so that f is either everywhere positive (as in the
rest of the paper) or everywhere negative. If τ is a contact form or a volume
form, then C∞

ad(M, τ) consists of all nowhere zero functions, whereas if τ
is a symplectic form and dimM ≥ 4, then by the closedness condition,
C∞
ad(M, τ) is comprised of nonzero constant functions only. Similarly we

define Diff(M,σ) ⊃ Diff+(M,σ) the automorphism group of the unoriented
conformal structure σ by

Diff(M,σ) = {ϕ ∈ Diff(M) | ϕ∗τ = fτ for some f ∈ C∞
ad(M, τ)}.

From now on, assume σ is one of the classical conformal structures. We note
that if τ ∈ σ, then −τ ∈ σ, and Diff(M, τ) = Diff(M,−τ). Thus Diff(M,σ)
is essential or properly essential, respectively, whenever Diff+(M,σ) is.

Let τ ∈ σ, and ϕ ∈ Diff(M,σ) such that ϕ∗τ = fτ for some everywhere
positive or negative function f on M . If τ ′ = gτ ∈ σ is any other tensor
field in the same (unoriented) conformal class, then ϕ∗(gτ) = (g ◦ϕ)fτ , and
thus ϕ preserves the tensor field τ ′ if and only if (g ◦ ϕ)f = g. Since g ◦ ϕ
everywhere on M has the same sign as g, we have the following result.

Lemma 18. If there exists a conformal diffeomorphism ϕ ∈ Diff(M,σ) such
that ϕ∗τ = fτ for some τ ∈ σ and a negative function f , then Diff(M,σ)
is properly essential. Otherwise Diff(M,σ) is essential or properly essential,
respectively, if and only if Diff+(M,σ) is.
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For the automorphism group of an unoriented conformal symplectic struc-
ture on a compact manifoldM2n with n > 1, this lemma can be reformulated
as follows.

Lemma 19. The group of (not necessarily orientation-preserving) confor-
mal symplectic diffeomorphisms of a compact symplectic manifold (M,ω) of
dimension 2n ≥ 4 consists of all (anti-)symplectic diffeomorphisms ϕ, that
is, ϕ∗ω = ω or −ω. It is properly essential, and in particular essential, if
and only if (M,ω) admits a symplectic involution ϕ, i.e. ϕ∗ω = −ω.

This holds for example for CPn with the Fubini-Study symplectic form
ωFS, since the reflection in RPn ⊂ CPn, z 7→ z, reverses the sign of ωFS.
This also reverses the sign of the induced volume form ωn

FS if and only if
n is odd. For T 2n with any symplectic structure ω =

∑

i cidxi ∧ dyi with
constant coefficients (e.g. the standard symplectic structure), the diffeomor-
phism (x, y) 7→ (y, x) reverses the sign of ω.

8. Some final remarks

Lemma 20. The subset
⋃

τ∈σ

Diff(M, τ) ⊂ Diff+(M,σ)

is closed under inverses and conjugation by conformal diffeomorphisms in
Diff+(M,σ). Thus this subset forms a normal subgroup of Diff+(M,σ) if
and only if it is closed under composition.

Proof. Suppose τ ∈ σ, ϕ ∈ Diff(M, τ), and ψ ∈ Diff+(M,σ). Then ϕ∗τ = τ ,
and ψ∗τ = ef τ for some smooth function f on M . ψ−1 ◦ϕ ◦ψ preserves the
tensor field ef τ ∈ σ. The remaining statements are obvious. �

Corollary 21. Suppose the conformal group Diff+(M,σ) is properly essen-
tial. Then if the set ∪τ∈σDiff(M, τ) is closed under composition, Diff+(M,σ)
is not a simple group.

The same argument applies to the automorphism groups of unoriented
conformal structures, or the identity components of any of the above groups.
IfM is a closed and connected contact manifold, then Diff0(M, ξ) is a simple
group according to T. Rybicki [8], and thus the union of Diff0(M,α) over all
contact forms α with kerα = ξ can never form a group. On the other hand,
the group generated by the latter equals Diff0(M, ξ) by the same argument,
or more precisely, any contact diffeomorphism in Diff0(M, ξ) can be written
as a finite composition of diffeomorphisms, each of which preserves some
contact form (that varies for different factors) with kernel ξ. In other words,
if ϕ∗α = efα for a contact diffeomorphism ϕ, isotopic to the identity in the
group of contact diffeomorphisms, then ϕ = ϕk ◦ · · · ◦ ϕ1 for some integer k,
smooth functions fi, and contact diffeomorphisms ϕi preserving the contact
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forms efiα (and isotopic to the identity in the group of diffeomorphisms
preserving efiα), and f can be written

f =

k
∑

i=1

(fi − fi ◦ ϕi) ◦ ϕi−1 ◦ · · · ◦ ϕ1.

The next statement follows immediately from the preceding discussion.

Proposition 22. The minimal number of factors in the above decomposi-
tion of a contact diffeomorphism is a contact invariant (it is conjugation
invariant), and this invariant is nontrivial on Diff0(M, ξ).
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