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Abstract

A spectral theory of linear operators on rigged Hilbert gsa@Gelfand triplets) is devel-
oped under the assumptions that a linear opefator a Hilbert spacé is a perturbation
of a selfadjoint operator, and the spectral measure of tifedggint operator has an ana-
lytic continuation near the real axis. It is shown that thexists a dense subspaXeof
H such that the resolveni ¢ T) ¢ of the operatoil has an analytic continuation from
the lower half plane to the upper half plane for ang X, even whernT has a continuous
spectrum orR, as anX’-valued holomorphic function, whed¢ is a dual space of. The
rigged Hilbert space consists of three spaXes H c X'. Basic tools of the usual spec-
tral theory, such as spectra, resolvents and Riesz profecéire extended to those defined
on a rigged Hilbert space. They prove to have the same piep&s those of the usual
spectral theory. The results are applied to estimate expg@heecays of the semigroups
of linear operators.

Keywords: generalized eigenvalue; resonance pole; rigged Hillpade; Gelfand triplet;
generalized function

1 Introduction

A spectral theory of linear operators on topological vedpaces is one of the funda-
mental tools in functional analysis. Spectra of linear apens provide us with much
information about the operators. However, there are phenarthat are not explained by
spectra. For example, a solutigft) of a linear evolution equatiotix/dt = Tx on an infi-
nite dimensional space can decay exponentialljirmsreases even if the linear operator
does not have spectrum on the left half plane. Such an exgahdecay of a solution is
known as Landau damping in plasma physics [5], and is oftesemied for Schrodinger
operators[[11], 19]. Now it is known that such an exponentialay can be induced by
resonance poles or generalized eigenvalues.

In the literature, resonance poles are defined as followsT be a selfadjoint operator
(for simplicity) on a Hilbert spac&{ with the inner product{, -). The spectruna-(T) of
T lies on the real axis. By the definition of the spectrum, tsoheent @ — T)* diverges
in norm whent € o(T). However, the matrix element{ T) ¢, ¢) for some “good”
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function¢ € H may exist ford € o(T), and the functionf (1) = ((1 — T) !¢, ¢) may
have an analytic continuation from the lower half plane soupper half plane through an
interval ono(T). Then, the analytic continuation may have poles on the wippié plane,
which is called a resonance pole or a generalized eigenvilugeneral, the pole is not
an eigenvalue of , however, it is expected to have similar properties to eigkres.

The defects in such an approach to resonance poles areithabdttobvious that there
exists an eigenvector associated with a resonance polee &im eigen-equation for a
resonance pole is not defined, a corresponding eigenspdcanaaigebraic multiplicity
are not defined. The purpose in this paper is to give a coroectulation of resonance
poles in terms of operator theory on rigged Hilbert spacesfé@d triplets).

To explain our idea based on rigged Hilbert spaces, let usidenthe multiplication
operatorM : ¢(w) — we(w) on the Lebesgue spaté(R). The resolvent is given as

(@=M716.0) = [ T=oow@do

In general, the integral in the right hand side divergesifer R. However, if¢ andy
have analytic continuations near the real axis, the quaintithe right hand side has an
analytic continuation from the lower half plane to the upipalf plane, which is given by

fR ﬁqﬁ(w)aﬁ(w)dw + 22 V=1g()u ().

Let X be a dense subspaceld{R) consisting of functions having analytic continuations
near the real axis. A mapping, which maps X to the above value, defines a continuous
linear functional onX, that is, an element of the dual spaxXe if X is equipped with a
suitable topology. Motivated by this idea, we define thedmeperatoA(2) : X — X' to

be

ﬁﬁw(‘“)‘p(‘“)dw + 20 V=1p()p(2) (Im(2) > 0),

AUIS =1 I, [ F e x=1eRL @)

[ oHee)ds (im(1) < 0),

for y, ¢ € X, where(-|-) is a paring for X’, X). When Im@) < 0, A(1) = (1 - M),
while when Im@) > 0, A(1)y is not included in_?(R) but an element oX’. In this sense,
A(1) is called the analytic continuation of the resolveni\fin the generalized sense. In
this manner, the tripleX c L?(R) c X’, which is called the rigged Hilbert space or the
Gelfand triplet[[8] 16], is introduced.

In this paper, a spectral theory on a rigged Hilbert spacedpgsed for an operator
of the formT = H + K, whereH is a selfadjoint operator on a Hilbert spakg whose
spectral measure has an analytic continuation near thexesglwhen the domain is re-
stricted to some dense subspacef H, as aboveK is an operator densely defined on
X satisfying certain boundedness conditions. Our purposeiis/estigate spectral prop-
erties of the operator = H + K. At first, the analytic continuatioA(1) of the resolvent
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(1-H): H — H is defined as an operator froxiinto X’ in the same way as EQ.(1.1).

In general A1) : X — X’ is defined on a nontrivial Riemann surfaceio$o that when

A lies on the original complex plane, it coincides with thealsesolvent { — H)™1. By
using the operatoA(1) and a rigged Hilbert space, resonance poles are defineein th
following way : If the equation

(id — AQ)K ) = 0 (1.2)

has a nonzero solutiom in X’, such a is called a generalized eigenvalue (resonance
pole) andu is called a generalized eigenfunction, wh&re: X’ — X’ is a dual operator
of K. Whena4 lies on the original complex plane, the above equation isiced to the
usual eigen-equatiom(— T)u = 0. In this manner, resonance poles and corresponding
eigenfunctions are naturally obtained without using magtements.

Similarly, an analytic continuation of the resolvent®fin the generalized sense is
defined to be

Ri=A) o (id— K*A(1)) : X = X'. (1.3)

When A lies on the original complex plane, this is reduced to thealsesolvent { —
T)~1. With the aid of the generalized resolveRt, basic notions in the usual spectral
theory, such as eigenspaces, algebraic multiplicitieg)tfoontinuougesidual spectra,
Riesz projections are extended to those defined on a riggbdrHspace. It is shown that
they have the same properties as the usual theory. For egathpl generalized Riesz
projectionIly for an isolated resonance polg is defined by the contour integral of the

generalized resolvent.
1

Iy = di: X - X'. 14
= v R L4
Properties of the generalized Riesz projeclifyis investigated in detail. It is proved that
the range of the generalized Riesz projection around aatesshfesonance pole coincides
with the generalized eigenspace of the resonance pole. #rgtibng € X proves to be
uniquely decomposed as = u; + up, Whereu; € IlpX andu, = (id — Ig)X, both of
which are elements of’. These results play an important role when applying thertheo
to dynamical system$§|[4]. The generalized Riesz projedimund a resonance polg

on the left half plane (resp. on the imaginary axis) definetabls subspace (resp. a
center subspace) in the generalized sense, both of whidubspaces oX’. The results

in the present paper enable us to investigate the asympitiavior and bifurcations of
an infinite dimensional dynamical system with the aid of thaldgpaceX’, even when a
given dynamical system is defined &n Such a dynamics induced by a resonance pole is
not captured by the usual eigenvalues.

Many properties of the generalized spectrum (the set ofusamigies ofR;) will be
shown. In general, the generalized spectrum consists @dheralized continuous spec-
trum, the generalized residual spectrum and the genedatisent spectrum (the set of
resonance poles). If the operatérsatisfies a certain compactness condition, the Riesz-
Schauder theory on a rigged Hilbert space applies to coadhat the generalized spec-
trum consists only of a countable number of resonance palesd finite multiplicities.

It is remarkable that even if the operafbrhas the continuous spectrum (in the usual




sense), the generalized spectrum consists only of a cdantaimber of resonance poles
when K satisfies the compactness condition. Since the topologhermtal space’
is weaker than that on the Hilbert spagg the continuous spectrum daf disappears,
while eigenvalues remain to exist as the generalized spactihis fact is useful to es-
timate embedded eigenvalues. Eigenvalues embedded imthi@wous spectrum is no
longer embedded in our spectral theory. Thus, the Rieseq@iop is applicable to obtain
eigenspaces of them. Our theory is used to estimate an exti@ndecay of the semi-
groupe‘/‘_th generated by/-1T. It is shown that resonance poles induce an exponential
decay of the semigroup even if the operatdr1T has no spectrum on the left half plane.

A spectral theory developed in this paper is applied to ab#tion problem of infinite
dimensional nonlinear dynamical systemslin [4]. [In [4], &ulgation structure of an
infinite dimensional coupled oscillators is investigatgdieans of rigged Hilbert spaces.
It is shown that when a resonance pole, which is obtained blitiearization of the
system around a steady state, gets across the imaginagysaxiparameter of the system
varies, then a bifurcation occurs. Applications to Scimgdr operators will appear in a
forthcoming paper.

Throughout this pape(-) and R(-) denote the domain and range of an operator,
respectively.

2 Spectral theory on a Hilbert space

This section is devoted to a review of the spectral theorypefreurbed selfadjoint operator
on a Hilbert space to compare the spectral theory on a riggbdrtispace developed after
Sec.3. LetH be a Hilbert space ov&. The inner product is defined so that

(@, y) = (6. &) = alg. ¥), (2.1)

wherea is the complex conjugate @ € C. Let us consider an operatdr := H + K
defined on a dense subspaceHofwhereH is a selfadjoint operator, ariflis a compact
operator orH{ which need not be selfadjoint. Latandv = v, be an eigenvalue and an
eigenfunction, respectively, of the operalodefined by the equatiatv = Hv+ Kv. This
is rearranged as

(A -H)(id - (1 -H)K)v =0, (2.2)

whereid denotes the identity ofi{. In particular, whent is not an eigenvalue di, it is
an eigenvalue of if and only ifid — (A — H)"!K is not injective in/. Since the essential
spectrum is stable under compact perturbations (see Kalp, fhe essential spectrum
oe(T) of T is the same as that &f, which lies on the real axis. In general(T) includes
both of the continuous spectrum and eigenvalues. Sfnisea compact perturbation, the
spectrum outside the real axis consists of the discreterspecfor anys > 0, the number
of eigenvalues satisfyingm(1)| > ¢ is finite, and their algebraic multiplicities are finite.
Eigenvalues may accumulate only on the real axis. To findwemaes embedded in the
essential spectrume(T) is a dificult and important problem. In this paper, a new spectral
theory on rigged Hilbert spaces will be developed to obtacrhsembedded eigenvalues
and corresponding eigenspaces.



LetR, = (1 - T)™! be the resolvent, which is given by

R = (- HY ™ (id— K@ - H)?) "p, ge. (2.3)

Let A; be an eigenvalue df outside the real axis, ang be a simple closed curve en-
closing 4; separated from the rest of the spectrum. The projectioneaogtneralized
eigenspac®/; := 1 Ker(1; — T)" is given by

1

m =
"oorvC1

R,dA. (2.4)

Let us consider the semigrouﬁamTt generated byv-1T. Since V-1H generates
theCo-semigroupe‘/‘_lHt andK is compact,V-1T also generates tf&°-semigroup (see
Kato [12]). It is known thaeV-1" is obtained by the Laplace inversion formula (Hille

and Phillips [10])

V-1Tt 1 oV V-1t 1

eV = Iimf eV (A -T)dA, XxYyeR, (2.5)
2n V=1 %> J _x-v"1y

fort > 0, wherey > 0 is chosen so that all eigenvaluesf T satisfy Im@) > —y. Thus

the contour is the horizontal line on the lower half planet £ @ 0 be a small number and

Ao, - -+, AN eigenvalues oT satisfying Im@;) < —¢, j = 0,---,N. The residue theorem
provides
1
e‘/—_th — fe\/—_lxt+8t(x_ ‘/—16— T)—ldx
2n V-1 Jr
1 N f V-1at 1
+ eV A -T)"da,

wherey; is a suficiently small closed curve enclosing. Let M; be the smallest integer
such that{; — T)iII; = 0. This is less or equal to the algebraic multiplicityf Then,

eV-1Tt is calculated as

1 f
VEITE V=Ixt+et -1
e = e X— V=1 = T)"dx
2r V-1 JRr ( )
N Mj-1 K
e (- V=)

DI Z C -y,

j= =

The second term above diverged as « because Re(—_l/l,-) > &. On the other hand, if
there are no eigenvalues on the lower half plane, we obtain

VoIt 1 f V=Ixt+st \/_ -1
e = e (X—= V=1e - T)dx,
2 V-1 Jr

for any smalle > 0. In such a case, the asymptotic behavioe b ™ is quite nontrivial.
One of the purposes in this paper is to give a further decoitipsf the first term above

under certain analyticity conditions to determine the dyits ofeV-1t,
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3 Spectral theory on a Gelfand triplet

In the previous section, we give the review of the spectedith of the operatof = H+K
on‘H. In this section, the notion of spectra, eigenfunctionsoheents and projections are
extended to a space of generalized functions by means ofedigilbert space. It will
be shown that they have similar properties to thosgnThey are used to estimate the

asymptotic behavior of the semigroaprth and to find embedded eigenvalues.

3.1 Rigged Hilbert spaces

Let X be a locally convex Hausddrtopological vector space ov& and X’ its dual
space.X’ is a set of continuous anti-linear functionalsX¥nForu € X" and¢ € X, u(¢)
is denoted by(u | ¢). For anya,b € C, ¢, € X andu, £ € X, the equalities

(ulag + by = alul gy + bu| ), (3.1)
(au + bé|¢) = alu| @) + b(&| ), (3.2)

hold. In this paper, an element &f is called a generalized function![7, 8]. Several
topologies can be defined on the dual spdceTwo of the most usual topologies are the
weak dual topology (weak * topology) and the strong dual togy (strong * topology).
A sequencéy;} c X' is said to be weakly convergentgos X' if (u;|¢) — (u|¢) for each
¢ € X; asequencéu;} c X' is said to be strongly convergentjice X" if (uj|¢) — (u|¢)
uniformly on any bounded subset Xf

Let H be a Hilbert space with the inner product {) such thatX is a dense subspace
of H. Since a Hilbert space is isomorphic to its dual space, waiol# c X’ through
H~H'.
Definition 3.1. If a locally convex Hausddi topological vector spack is a dense sub-
space of a Hilbert spacH and a topology oK is stronger than that of{, the triplet

XcHcX (3.3)

is called therigged Hilbert space or theGelfand triplet. Thecanonical inclusioni : X —
X" is defined as follows; foy € X, we denote(y) by (|, which is defined to be

i(W)(@) = Wld) = (. 9), (3.4)

for any¢ € X. The inclusion fronH into X’ is also defined as above. It is easy to show
that the canonical inclusion is injective if and onlyXfis a dense subspace®f, and the
canonical inclusion is continuous (for both of the weak dopblogy and the strong dual
topology) if and only if a topology oK is stronger than that off (see Tréves [25]).

A topological vector spack¥ is called Montel if it is barreled and every bounded set
of X is relatively compact. A Montel space has a convenient ptggkat on a bounded
setA of a dual space of a Montel space, the weak dual topology wEeavith the strong
dual topology. In particular, a weakly convergent seriea aual of a Montel space also
converges with respect to the strong dual topology (seessrR5]). Furthermore, a linear
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Fig. 1: A domain on whicte[y, ¢](w) is holomorphic.

A 4

map from a topological vector space to a Montel space is a aotgperator if and only
if itis a bounded operator. It is known that the theory of adilbert spaces works best
when the spac¥ is a Montel or a nuclear space [8]. See Grothendieck [9] anddteu
[13] for suficient conditions for a topological vector space to be a Mospace or a
nuclear space.

3.2 Generalized eigenvalues and eigenfunctions

Let H be a Hilbert space ove&Z andH a selfadjoint operator densely defined&nwith

the spectral measu(&(B)}g.4; that is,H is expressed ad = wadE(w). LetK be some
linear operator densely defined #h Our purpose is to investigate spectral properties of
the operatolm := H + K. LetQ c C be a simply connected open domain in the upper
half plane such that the intersection of the real axis analibgure ofQ is a connected
interval i. Let| = i\dl be an open interval (see Hi.1). For a given= H + K, we
suppose that there exists a locally convex Haugderctor spaceX(Q2) overC satisfying
following conditions.

(X1) X(Q) is a dense subspaceHf.

(X2) A topology onX(Q) is stronger than that of.

(X3) X(Q) is a quasi-complete barreled space.

(X4) For any¢ € X(Q), the spectral measur&(B)¢, ¢) is absolutely continuous on the
interval |. Its density function, denoted by[¢, #](w), has an analytic continuation to
QuUl.

(X5) For each € | U Q, the bilinear formg[ -, -](1) : X(Q2) x X(Q2) — C is separately
continuous.

Because of (X1) and (X2), the rigged Hilbert spat(®) c H c X(Q)’ is well defined,
whereX(Q)’ is a space of continuowsiti-linear functionals and the canonical inclusion
is defined by Eq.(314). Sometimes we den@té by v for simplicity by identifyingi X(Q2)
with X(Q). The assumption (X3) is used to define Pettis integrals aytb expansions
of X(Q)’-valued holomorphic functions in Sec.3.5. For example, tdbspaces, Fréchet
spaces, Banach spaces and Hilbert spaces are barreledpSaaiix A for the definitions

of the Pettis integral an¥(Q)’-valued holomorphic functions. Due to the assumption
(X4) with the aid of the polarization identity, we can shovatlE(B)#, ¢) is absolutely
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continuous on for any ¢, y € X(Q2). Let E[¢, ¥](w) be the density function;

d(E(w)¢,¥) = E[¢, ¥](w)dw, wel. (3.5)

Then, E[¢, ¥](w) is holomorphic inw € | U Q. We will use the above notation for
anyw € R for simplicity, although the absolute continuity is assuhoaly onl. Since
E[¢, y](w) is absolutely continuous dnH is assumed not to have eigenvalues ofX5)
is used to prove the continuity of a certain operator (Prap.3

Let A be a linear operator densely defined X¢€2). Then, the dual operatdX is
defined as follows: the domaiD(A’) is the set of elementg € X(Q) such that the
mappingg +— {(u|A¢) from D(A) into C is continuous. Thend’ : D(A") — X(Q)' is
defined by

(Aul¢)y =(ulAp), ¢ eD(A), ueDA). (3.6)

If Ais continuous orX(Q2), thenA’ is continuous orX(Q2)" for both of the weak dual
topology and the strong dual topology. The (Hilbert) adjd\n of A is defined through
(Ag, ¥) = (¢, A*Y¥) as usual wher is densely defined of.

Lemma 3.2.Let A be a linear operator densely definedfn Suppose that there exists a
dense subspacéof X(Q2) such thatA*Y c X(Q) so that the dualX*)’ is defined. Then,
(A7) is an extension o andi o A = (A") o i |p(y. In particular,D((A*)") > iD(A).

Proof. By the definition of the canonical inclusionwe have

i(AU)(9) = (Ay, ¢) = (W, A'p) = WA G) = (A) ¥ | ¢), (3.7)
for anyy € D(A) andg € Y. ]

In what follows, we denoteX')’ by A*. Thus Eql(3.7) meari A = A* o |pa). Note
thatA* = A’ whenA is selfadjoint. For the operatoks andK, we suppose that

(X6) there exists a dense subspacef X(Q2) such thaHY c X(Q).
(X7) K is H-bounded and&*Y c X(Q).
(X8) K*A(Q)iX(Q2) c iX(Q) foranyd € {Im(2) < 0j Ul U Q.

The operatorA(2) : iX(Q) — X(Q) will be defined later. Recall that whef is H-
bounded (relatively bounded with respectty D(T) = D(H) andK (1 —H)~! is bounded
onH for 1 ¢ R. In some sense, (X8) is a “dual version” of this condition dnese
A(2) proves to be an extension of ¢ H)™1. In particular, we will show thak*A(1)i =
i(K(1 = H)™) when Im@) < 0. Our purpose is to investigate the operafoe H + K
with these conditions. Due to (X6) and (X7), the dual operatoof T* = H + K* is well
defined. It follows thaD(T*) = D(H*) n D(K*) and

D(T*) >iD(T) = iD(H) > iY.

In particular, the domain oF* is dense inX(Q2)’.

Recall that the eigenfunction df associated with an eigenvalueis given byv =
(A1 - H)Y(Kv). Whena € R, v ¢ H in general becausd may have spectrum on the real
axis. However, we will show that = v, has an analytic continuation from the lower half



plane toQ with respect tol as a generalized function. To see it, we need the next lemma.

Lemma 3.3. Suppose that a functiag(w) is integrable orR and holomorphic o2 U |.
Then, the function

iq((u)dcu (Im(2) < 0),
R/l )
Q) =1 "R (39)

f —— q(w)dw + 27 V-1q(1) (1 € Q),
R/l - W

is holomorphic ona|Im(1) < 0JU QU I.

Proof. Puttingd = x + V-1ywith x,y € R yields

f T 0(w)dw = o w)2 yzq(w)dw V-1 f mq(w)olw

Due to the formula of the Poisson kernel, the equalities

lim fR (XTB;ZJFyzq(w)dw = g9, lim f mq(w)dw — _nq(x),

y—+0

hold whenq is continuous ak € | (Ahlfors [1]). Thus we obtain
1
lim f —— g(w)dw = lim ( f iq(w)dw + Zﬂ\/—lq(/l)) = 7V(X) + 7 V=1q(x),
A-—w y=+0\ Jpd —w

y—)—O R

where

\V/ = - - -
09:=lim~ [ o (o
is the Hilbert transform of}. It is known thatV(x) is Lipschitz continuous oh if g(x)
is (see Titchmarsh [24]). Therefore, two holomorphic fimrs in EqI(3.8) coincide with
one another oh and they are continuous dn This proves tha@Q(1) is holomorphic on
{11Im(1) <0tUQUI. ]

Putu, = (1 - H)™Yy for ¢ € H. In general,u, is not included inH whena € |
because of the continuous spectruntHofThusu, does not have an analytic continuation
from the lower half plane t@ with respect tol as an/{-valued function. To define
an analytic continuation ofi;, we regard it as a generalized functionX(Q)’ by the
canonical inclusion. Then, the actioni¢fl — H) 1y) is given by

i((4=H)"¥)(¢) = (1 - H) ¢'¢)—f—E[¢ ¢J(w)dw, Im(1) <O.

Because of the assumption (X4), this quantity has an agagtitinuation t€@2 U | as

fRﬁE[w, gl(w)dw + 2r V=1E[y, ¢])(1), 1€ Q.
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Motivated by this observation, define the operakft) : iX(QQ) — X(Q)’ to be

f;ﬁE[ﬂl’, Pl(w)dw + 27 V=1E[y, #](1) (1 € Q),
(A1) =y im fR ﬁﬂgﬁ, ¢)(w)dw (A=xel), (3.9)
f %EW” ¢l(w)dw (Im() < 0),
R w

for anyy € iX(Q), ¢ € X(Q). Indeed, we can prove by using (X5) thafl)y is a
continuous functional. Due to Lemma 3{@&(1)y | ¢) is holomorphic onflm(1) < 0} U
QU . When ImQ) < 0, we havg A()y | ¢) = ((1 — H) 1y, ¢). In this sense, the operator
A(Q) is called the analytic continuation of the resolvent H) ! as a generalized function.
By using it, we extend the notion of eigenvalues and eigectians.

Recall that the equation for eigenfunctionsTofs given by (d — (1 — H)"1K)v = 0.
Since the analytic continuation oft ¢ H)™ in X(Q)’ is A(1), we make the following
definition.

Definition 3.4. Let R(A(1)) be the range ofA(1). If the equation
(id— AQK)u =0 (3.10)

has a nonzero solutiqgnin R(A(12)) for somed € QU | U {1]|Im(2) < 0}, A is called a
generalized eigenvalue of T andy is called ageneralized eigenfunction associated with.
A generalized eigenvalue @hnis called aresonance pole (the word “resonance” originates
from quantum mechanics [119]).

Note that the assumption (X8) is used to defi{@)K*u for u € R(A(1)) because the
domain ofA(1) isiX(Q). Applied byK*, Eq.[3.10) is rewritten as

(id — K*A())K*p = 0. (3.11)

If K*u = 0, Eq.[3.10) shows = 0. Hence, is a generalized eigenvalue if and only if
id — K*A(1) is not injective on X(Q).

Theorem 3.5.Let A be a generalized eigenvalue bfandu a generalized eigenfunction
associated witil. Then the equality

T u=Au (3.12)
holds.

Proof. At first, let us showD(1 — H*) > R(A(1)). By the operational calculus, we have
E[v, (1 — H)¢l(w) = (1 — w)E[¥, ¢](w). Whena € Q, this gives

A1 A~ H)) = [ L. (T Helw)do + 2 VTEL. (T~ H)

fR E[y. #)(w)dw + 22 V-1(1  w)lo_iELv 61(0)
W),
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for anyy € iX(QQ) and¢ € Y. It is obvious thaty | ¢) is continuous inp with respect
to the topology ofX(Q2). This proves thaD(1 — H*) > R(A(1)) and @ — HX)A(1) =
id 1 iX(Q) — iX(Q). Whenyu is a generalized eigenfunctiop,e D(1 — H*) because
u = A(AD)K*u. Then, Eq(3.10) provides

(A -H)({d-AWK)u=Q-H" -K)u=A-T)u=0.
The proofs for the caseke | and Im@) < O are done in the same way. ]

This theorem means thats indeed an eigenvalue of the dual operdtor In general,
the set of generalized eigenvalues is a proper subset oétlod sigenvalues of *. Since
the dual spac&(Q)’ is “too large”, typically every point of2 is an eigenvalue of *.

In this sense, generalized eigenvalues are wider conceptdlgenvalues of, while
narrower concept than eigenvaluegdf(see Prop.3.17 for more details). In the literature,
resonance poles are defined as poles of an analytic contnuzta matrix element of
the resolvent[[19]. Our definition is based on a straighttbdvextension of the usual
eigen-equation and it is suitable for systematic studigssdnance poles.

3.3 Properties of the operatorA(1)

Before defining a multiplicity of a generalized eigenvaliiés convenient to investigate
properties of the operatdy(1). Forn = 1,2, - -- let us define the linear operataf? (1) :
iIX(Q) — X(Q) to be

(_1)n—l dn—l
(n—1)!dz1lz=

f ! E[¥, ¢](w)dw + 27 V-1
R

=ar El. 412, (1< 0,

A" ={ i f L
ATyl ¢) =4 lim s Voly—or

1
fR(/l — o) E[y, ¢](w)dw, (IM(1) < 0).

Ely. ¢l(w)dw, (1=xe€l),

(3.13)
It is easy to show by integration by parts tH&" (1)y | ¢) is an analytic continuation
of (1 = H)™y, ¢) from the lower half plane t@. A®Y(1) is also denoted by(1) as
before. The next proposition will be often used to calcutategeneralized resolvent and
projections.

Proposition 3.6.For any integerg > n > 0. the operatoAV (1) satisfies
(i) (A = H)"AD (1) = AG-"(2), whereA®(1) := id.

(i) AD(A)(A = H) fixeyroaiya-rem = AT (Dlix@ynomai aya—nem-
In particular,A(2)(1 — H)u = p when @ — H)u € iX(Q).

L Lo .

(ii)) 5 ¢AWY 1) = (1) AT Dyl ¢), j=0,1,--.

(iv) For eachy € X(Q), A(Q)y is expanded as

Ay = i(/lo =)' ATD (o), (3.14)
j=0
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where the right hand side converges with respect to thegttaal topology.

Proof. (i) Let us show g — H¥)AD (1) = AU=Y(1). We have to prove thad(1 — H*) o
R(AW(Q)). For this purpose, put,(y) = (ADy | (2 - H)y) ¥ € iX(Q) andy € Y. Itis
suficient to show that the mapping— u,(y) fromY into C is continuous with respect to
the topology onX(Q2). Suppose that Im{) > 0. By the operational calculus, we obtain

1 1
my) = f - 7l (1= HYl(@)do + 2r V-1 = 1)11)!;12], 1], Bl (T- Y@
1 1
- (ﬂ )JE[w Yl(w)dw + 27 V-1 - 1)11),;; 1\ (1 - 2E[y,yl(2)
2 2
- (- H) )+ 20 VLS 1)12)!dzj,272:AE[w,y](z). (315

SinceE[y, y](2) is continuous iry € X(Q) (the assumption (X5)) anB[v, y](2) is holo-
morphic inz, for anye > 0, there exists a neighborhoati of zero in X(2) such that
|(dI=2/dZ2)E[y, y](2)| < e atz= Afory € U; N'Y. Let U, be a neighborhood of zero in
H such thatlyll« < € fory € U,. Since the topology oX(Q) is stronger than that o,
U, N X(Q) is a neighborhood of zero (). If ye Uy nU, N'Y, we obtain

(-1)2
2)|

) < 1A = H)Y ylle + 2ﬂv_

Note that @ — H)*/ is bounded when ¢ R and 1- j < 0 becauseH is selfadjoint.
This proves thaf, is continuous, so that, = (1 - H)AD)y € X(Q). The proof
of the continuity for the case Imj < 0 is done in the same way. Whane I, there
exists a sequendd,; [ in the lower half plane such thaf(y) = limj_. u(y). Since
X(Q) is barreled, Banach Steinhaus theorem is applicableriolade that the limite, of
continuous linear mappings is also continuous. This prags- H*) > R(AD(2)) and
(A-H¥)AD(Q) is well defined for anyl € {Im(1) < 0jul UQ. Then, the above calculation
immediately shows thati(— HX)AD (1) = AU=9(1). By the induction, we obtain (i).

(i1) is also proved by the operational calculus as above,(ainds easily obtained by
induction.

For (iv), since(A()y | ¢) is holomorphic, it is expanded in a Taylor series as

> 1 d
A1 = 3 gn], AV IS - o)
=0

> (o= DIATD (o) | 9), (3.16)
=0

for each¢,y € X(Q). This means that the function&(1)y is weakly holomorphic
in . Then, A(2)y turns out to be strongly holomorphic and expanded as Edl)( &t
Thm.A.3(iii) in Appendix, in which basic facts 0K(Q2)’-valued holomorphic functions
are given. ]
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Unfortunately, the operatofA(1) : iX(Q) — X(Q)' is not continuous ifiX(Q) is
equipped with the relative topology frodk(Q2)’. Even if (4| — 0 iniX(Q) c X(Q),
the valueE[y, ¢](1) does not tend to zero in general because the topology(Q) is
weaker than that oX(Q2) . However,A(1) proves to be continuousiK(Q) is equipped
with the topology induced fronX(€2) by the canonical inclusion.

Proposition 3.7. A(2) o i : X(QQ) — X(Q) is continuous ifX(Q)" is equipped with the
weak dual topology.

Proof. Supposel € Q and fix¢ € X(Q2). Because of the assumption (X5), for any O,
there exists a neighborho&di of zero inX(Q2) such thatE[y, #](1)| < & for ¢ € U;. Let
U, be a neighborhood of zero i/ such that|y|l« < € for ¢ € U,. Since the topology

on X(Q) is stronger than that ofi{, U, N X(Q) is a neighborhood of zero iK(Q). If
lﬂ el = U]_ N Uz,

KADY | )l

IA

1A = H) g - lle - llge + 27 [E[w, ¢1( )]
(11 = H) iy - 1l + 27) .

This proves tha#\(1) o i is continuous in the weak dual topology. The proof for theecas
Im(2) < 0 is done in a similar manner. Where |, there exists a sequentg}?, in the
lower half plane such tha&(1) o i = limj_., A(1;) o i. SinceX(Q) is barreledj, Banach-
Steinhaus theorem is applicable to conclude that the W@l) o i of continuous linear
mappings is also continuous. ]

Now we are in a position to define an algebraic multiplicitd argeneralized eigenspace
of generalized eigenvalues. Usually, an eigenspace iseikfia a set of solutions of the
equation g — T)"v = 0. For example, when = 2, we rewrite it as

(A-H-K)A-H-K)v=(-H)?@id-(-H)2K-H)) o (id-(1-H)K)v=0.
Dividing by (1 — H)? yields
(id— (1= H)?K( = H)) o (id— (1 - H)*K)v=0.
Since the analytic continuation of ¢ H)™ in X(Q)’ is A (1), we consider the equation
(id = A@DK* (A = H¥)) o (id = AQ)K*) i = 0.

Motivated by this observation, we define the operd6t(1) : D(B™(1)) c X(Q) —
X(Q)' to be
BM(1) = id — AM()K* (1 — H)" 2, (3.17)

Then, the above equation is rewritten2i8(1)BM(1)u = 0. The domain oB™ (1) is the
domain of AMW(1)K* (1 — H*)"1. The following equality is easily proved.

(A = H)*BD(Q) = BIWQ)(A - H)b@owy, | >k (3.18)

Definition 3.8. Let A be a generalized eigenvalue of the operdtorThe generalized
eigenspace ot is defined by

V, =|_JKerB™(1) o B™ (1) o -+ 0 BH(). (3.19)
m>1
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We call dimV, the algebraic multiplicity of the generalized eigenvalue
Theorem 3.9.For anyu € V,, there exists an integdd such that{ — T*)Mu = 0.

Proof. Suppose thaB™(1)o- - -0BM(1)u = 0. Puté = BMY(2)o---0BO()u. Eq.[3.IB)
shows

o
Il

(A= HYMBM ()¢
BO)(A - H)M ¢ = (id — AQ)K*)(A - H)M ¢,

SinceD(1 — HX) > R(A(1)), it turns out that { — HX)M-1¢ € D(4 — H*). Then, we obtain

0 = (1-H)>d- AWK - H)M ¢
= (A-H*-K)A-H)" e = (A -TH - H)" e
By induction, we obtain{ - T*)Mu = 0. n

In general, the spacé, is a proper subspace of the usual eigenspagg Ker (1 —
T)™ of T*. Typically Um-1 Ker (4 — T*)™ becomes of infinite dimensional because the
dual spaceX(QY)’ is “too large”, howevery, is a finite dimensional space in many cases.
In linear algebra, a solution oft T)"v = 0 forn > 2 is called a generalized eigenvector.
In this paper, the word “generalized” is used for elementthefdual space. To avoid
confusion, ifu € V, satisfiesB™M (1) o - -- o BA()u = 0 andB™ () o - -- 0 BO)u # 0,
we callu the generalized eigenfunction of multipliciby.

3.4 Generalized resolvents

In this subsection, we define a generalized resolvent. Asshal theory, it will be used
to construct projections and semigroups. Rgt= (1 — T)! be the resolvent of as an
operator orH. A simple calculation shows

R = (1 - H) ™ (id - K@ - H) ™) o (3.20)

Since the analytic continuation ol GAH)‘1 in the dual space i8(1), we make the fol-
lowing definition. In what follows, pu© = QU | U {1]Im(2) < 0}.
Definition 3.10. If the inverse {d — K*A(1))™! exists, define the generalized resolvent
R,y iX(Q) — X(Q) to be

Ry = A() o (id = K*A)) ™ = (id = AQKX) Lo A1), 1€ (3.22)
The second equality follows fromd — A(1)K*)A(1) = A(Q)(id — K*A(1)). Recall that
id — K*A(Q) is injective oni X(Q) if and only ifid — A(1)K* is injective onR(A(1)).

SinceA(2) is not continuousR,; is not a continuous operator in general. However, it
is natural to ask whethe®, o i : X(Q) — X()’ is continuous or not becaugél) o i is
continuous.

Definition 3.11. The generalized resolvent $&T) is defined to be the set of points Q
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satisfying following: there is a neighborhobdd c Q of A such that for anyl’ e V,, Ry ol

is a densely defined continuous operator frg(tR) into X(Q2)’, whereX(Q)" is equipped
with the weak dual topology, and the §&; o i(y)}vcv, is bounded inX(Q)" for each
Y € X(Q). The setr(T) := Q\o(T) is called thegeneralized spectrum of T. The gen-

eralized point spectrum o-,(T) is the set of pointg € 6(T) at whichid — K*A(2) is not
injective (this is the set of generalized eigenvalues). géeralized residual spectrum

0+(T) is the set of pointg € ¢(T) such that the domain &®, o i is not dense IrX(Q).

Thegeneralized continuous spectrum is defined to berd(T) = o(T)\(6,(T) U 0+(T)).

By the definition,o{T) is an open set. The existence of the neighborhdpth the
above definition is introduced by WaelbroeCk|[26] (see alseta[15]) for the spectral
theory on locally convex spaces.dfT) were simply defined to be the set of points such
thatR, o i is a densely defined continuous operatdil;)’is not an open set in general.
If X(Q) is a Banach space and the operatéK*A()i is continuous orX(Q2) for each
1 € Q, we can show that € 5(T) if and only ifid — i*K*A(1)i has a continuous inverse
on X(Q2) (Prop.3.18).

Theorem 3.12.

(i) For eachy € X(Q2), Ryiy is anX(Q)'-valued holomorphic function in € o(T).

(ii) Suppose Im{) < 0 anda € o(T) N o(T), wherep(T) is the resolvent set of in
H-sense. ThenR | ¢) = (1 — T) Ly, ¢) for anyy, ¢ € X(Q).

This theorem means théR i | ¢) is an analytic continuation of {(- T) 1y, ¢) from
the lower half plane to(T) through the interval. We always suppose that the domain of
R, o i is continuously extended to the whot¢Q2) whena ¢ 6(T). The significant point
to be emphasized is that to prove tisong holomorphy ofR, o i(¥), it is suficient to
assume thak, o i : X(Q) — X(Q)" is continuous in theveak dual topology ornX(Q)’.

Proof of Thm.3.12. Sinceo(T) is open, whem € o(T), R, exists for seficiently small
he C. Puty, =i7(id - K*A(1))ti(y) for ¢ € X(Q). Itis easy to verify the equality

Runi (@) = Rai (@) = (A + ) = AQ))i(W) + Rusni 0 i K(A + h) — AQ)i().

Let us show that*K*A(1)i(y) € X(Q) is holomorphic int. For anyy, ¢ € X(Q), we
obtain

(@ IITK*AQ)Y) = (¢, i K*AQ)iY) = (iI7K*A)iy, ¢)
= (K*AQ)iy|¢) = (A(D)iy | K*¢).

From the definition ofA(2), it follows that(¢ |i"*K*A(1)iy) is holomorphic inl. Since
X(Q) is dense inX(Q)’, (u|i~tK*A(1)iy) is holomorphic ina for any u € X(Q) by
Montel's theorem. This means thiatK*A(1)iy is weakly holomorphic. SincX(Q) is
a quasi-complete locally convex space, any weakly holomorfpinction is holomorphic
with respect to the original topology (see Rudinl[21]). Thisves thai-*K*A(1)iy is
holomorphic ina (note that the weak holomorphy ihimplies the strong holomorphy in
A because functionals X(Q2)" areanti-linear).

Next, the definition op(T) implies that the family{R, o i},cv, of continuous operators
is bounded in the pointwise convergence topology. Due toaBlawSteinhaus theorem
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(Thm.33.1 of [25]), the family is equicontinuous. This aheé tholomorphy ofA(1) and
i~TK*A(2)i(y) prove thatR .i(i) converges tR,i(y) ash — 0 with respect to the weak
dual topology. In particular, we obtain

im R =Ry QB it) + R LIHKCADW). (322

h—0
which proves thaiR,i(y) is holomorphic ind with respect to the weak dual topology
on X(Q)'. SinceX(Q) is barreled, the weak dual holomorphy implies the strongl du
holomorphy (Thm.A.3 (iii)).
Let us prove (ii). Suppose Im] < 0. Note thatR, o i is written asR, o i = A1) o
(id — i"tK*A(2)i)"t. We can show the equality

(id — i *K*AW)) T = (id - K(1 — H) ™) f € X(Q). (3.23)
Indeed, for anyf, ¢ € X(Q), we obtain

(i = K*AN) T 1y) (fly) = (AQIfIK )

(ify) = (io(d-H)IKY)

(f.¢) = (KA = H)™f,9) = ((id - K2 - H) ™) f, ).
Thus,R, satisfies fow = (id — i7*K*A(2)i) f that

Rip = Ao (id—i"K*AW)) e
= (A= H) o (id= KU - H) Y g =i(1-T) .

Sinced € p(T), (id — i"tK*A()i)X(Q) is dense iNX(Q) andR,i : X(Q) — X(Q) is
continuous. Sinca € p(T),i(A-T)™: H — X(Q)' is continuous. Therefore, taking the
limit proves thatR,i¢ = i(1 — T) ¢ holds for anyp € X(Q). |

Remark. Even whemt is in the continuous spectrum & Thm.3.12 (ii) holds as long as
(A-T)texistsand o (1 - T)1: H — X(Q) is continuous. In general, the continuous
spectrum ofT is not included in the generalized spectrum because théagpof X(Q)’

is weaker than that of{.

Proposition 3.13.The generalized resolvent satisfies

(1) (A =T7) o Ry = idlixq)

(i) If u e X(Q) satisfies{ — T*)u € iX(Q), thenR, o (1 — T*)u = pu.
(i) T o Raliy = Ra o Tiy.

Proof. Prop.3.6 (i) givesd = (1 — H*)A(1) = (1 — T* + KX)A(1). This proves

(1= T¥) 0 AQ) = id — K*AQ)
= (1-T")o AW o @id- KAW) ™= (1-T*)oR, =id.

Next, when @ — T )u € iX(Q), A(1)(1 — T*)u is well defined and Prop.3.6 (ii) gives
A =T = A)(A - H* = K*)u = (id = A)K )u.

This provesy = (id — AQ)K*) LA — T)u = Ry(4 — T)u. Finally, note that { —
TI)Y =i(A-T)Y c iX(Q) because of the assumptions (X6), (X7). Thus part (iii) @ th
proposition immediately follows from (i), (ii). |
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3.5 Generalized projections

LetX c ¢(T) be a bounded subset of the generalized spectrum, whiclpgsated from
the rest of the spectrum by a simple closed cyneQ U | U {1]Im(2) < 0}. Define the
operatodls : iX(QQ) — X(Q)' to be

1 ,
Hz(ﬁ = 27.[—\/__1 ‘L‘R,l(ﬁ d/l, ¢ € |X(Q), (324)

where the integral is defined as the Pettis integral. SK{€Y) is assumed to be barreled by
(X3), X()" is quasi-complete and satisfies the convex envelope pyofss® Appendix
A). SinceR, ¢ is strongly holomorphic i (Thm.3.12), the Pettis integral &,¢ exists by
Thm.A.1. See Appendix A for the definition and the existemamtem of Pettis integrals.
SinceR,oi : X(Q) — X()" is continuous, Thm.A.1 (ii) proves thHk oi is a continuous
operator fromX(Q2) into X(Q2)" equipped with the weak dual topology. Note that the
equality

T>< fRA(ﬁ d/l = fTXR/lgb d/l, (325)
Y Y
holds. To see this, it is slicient to show that the s&(T*R,¢ | )}, is bounded for each
Y € X(Q) due to Thm.A.1 (iii). Prop.3.13 (i) yield$*R¢p = AR ¢ — ¢. SincedR, is
holomorphic and is compact{{T*R,¢ | )}, is bounded so that EQ.(3]25) holds.

AlthoughTIls o Iy is not defined, we callls the generalized Riesz projection for
because of the next proposition.

Proposition 3.14.11x(iX(2)) N (id — IIx)(iX(2)) = {0} and the direct sum satisfies
iX(Q) c x(iX(Q)) @ (id — T5) (i X(2)) c X(Q)". (3.26)
In particular, for anyy € X(Q), there exisju,, u, such that is uniquely decomposed as
i(¢) = (Pl = 1+ p2,  p1 € M (iIX(Q)), iz € (id - TIg) (I X(€)). (3.27)
Proof. We simply denoteg¢| as¢. It is suficient to show thafls(iX(2)) N (id —
IT3)(iIX(Q2)) = {0}. Suppose that there exigty € iX(Q) such thatllsp = ¢ — Isy.

Sincellz(¢ + ¥) = ¥ € iX(QQ), we can again apply the projection to the both sides as
Iy o (¢ + ) = IIsy. Lety’ be a closed curve which is slightly larger thanThen,

(2ﬂ \1/—_1)2 ffﬂ’ ( f Rl + w)da) d
1
“1

2
(A=) + (X =T ,
(Zﬂ\/_) LRI( » FIpY RA(¢+¢)d/1)d/l
1

? X =T ,
_(271\/—_1) fy,m(fy—ﬂ_m 7{,1(¢+¢/)d/l)d/l.

Iy o Mx(¢ + ¥)
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Eq.(3.25) shows

T ’
) ( — 73,1(¢+¢/)d/l)d/1

() [ [ valor
Prop.3.13 shows

( )ZfR”(f ) (&i_)zf(fﬂ A'(‘p“”)d)“)
Sy S

ﬁ f R.(6 + w)da = T5(6 + v).

My oIls(¢ +y) = (

A - /l

This proves thallz¢ = 0. ]
The above proof also shows that as londlag € iX(Q), [1x oIl is defined andlsollsp =
5.

Proposition 3.15.11s iy is T*-invariant: Iy o T*|;y = T o Ix|;y.

Proof. This follows from Prop.3.13 (iii) and EQ.(3.P5). |

Let 1o be an isolated generalized eigenvalue, which is separatadthe rest of the
generalized spectrum by a simple closed cuye QU | U {1|Im(1) < 0}. Let

1
2n V=1 Jy
be a projection forg andVy = (et KerBM(1p) o - - - o BH(10) a generalized eigenspace
of 1p. The main theorem in this paper is stated as follows:
Theorem 3.16.1f T1oiX(Q) is finite dimensional, theflyi X(Q) = V.

In the usual spectral theory, this theorem is easily proweasing the resolvent equation.
In our theory, the compositioR, o R, is not defined becaugg, is an operator fromX(Q)
into X(Q)’. As a result, the resolvent equation does not hold and thef pifiche above
theorem is rather technical.

I = R,dA, (3.28)

Proof. LetR, = X2 (o — A)'E; be a Laurent series ®,, which converges in the
strong dual topology (see Thm.A.3). Since

id=(1-T9)oR,=(o—-T - (lo-1)o i(ﬂo—ﬂ)"Ej,

j:—oo
we obtainE_,,_; = (1o — T*)E_,forn=1,2,---. Thus the equality
Eni=(0—-T)E (3.29)
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holds. Similarly,idliy = R o (1 — T¥)liy (Prop.3.13 (ii)) provide&_,_1liy = E_, o (1o —
T)liv. Thus we obtairR(E__1liy) € R(E_,) for anyn > 1. SinceY is dense inX(Q)
and the range dE_; = —IIj is finite dimensional, it turns out th&(E_,|y) = R(E_,) and
R(E_n_1) € R(E_p) for anyn > 1. This implies that the principle pa % (1o — 1)'E; of
the Laurent series is a finite dimensional operator. Helnggetexists an integed > 1
such that_y_; = 0. This means that is a pole ofR, :

R,l = Z (/l() - /l)JEJ (330)
j=—M
Next, from the equalityifl — A(1)K*) o R, = A(1), we have
id= > (o= DAY D)Ko ) (o= 'Ej = ) (1~ A% ().
k=0 j=—M k=0
Comparing the cd@cients of Qg — 1)~! on both sides, we obtain
M .
(id — A(lg)K¥)E_; — Z AD()K*E_; = 0. (3.31)
=2

Substituting EqL(3.29) anl_; = —I1, provides
M . .
BO(Ao)To — Z AD()K* (o — T, = 0. (3.32)
j=2
In particular, this implieR(ITy) ¢ D(B®(1o)). Hence, {o — TX)II, can be rewritten as
(Ao = T)o = (Ao — H) o (id = A(10)K*)o = (4o — H*)BY(20)Io.
Then, by using the definition &®@(1,), Eq.[3.32) is rearranged as
M . .
B?(16)BP(1o)To — > AV(1)K* (Ao — T*))"MTIo = O.
j=3
Repeating similar calculations, we obtain
BM(20) o - - - 0 BT, = 0. (3.33)
This provedIoiX(Q2) c V.
Let us showIi X(2) > Vy. From the equalityR, o (id — K*A(1)) = A(1), we have

Z (Lo — A)E; o |id — K* Z(/lo — D*AED ) | = Z(/lo — D*AKD. (3.34)
=M k=0 k=0
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Comparing the cd@cients of @y — A)¥ on both sides fok = 1,2, - - -, we obtain

Ex(id - K*A(10)¢ — >~ EjK*ATD(1o)p = A% (10)g, (3.35)
j=1

for any¢ € iX(Q), where the left hand side is a finite sum. Note tKaAD (10)iX(Q) c
iX(Q) forany j = 1,2,--- because&K*A(Q)iX(Q) c iX(Q) for any A (the assumption
(X8)).

Now suppose that € V, is a generalized eigenfunction satisfyiBg"(1y) o --- o
BD(Ag)u = 0. For thisu, we need the following lemma.

Lemma. Foranyk =0,1,--- ,M -1,
(i) (o — T)u = (Ao — H)*B®(2g) o - - - 0 BO(Ag)p.
(i) K*(2g — TX)Ku € iX(Q).

Proof. Due to Thm.3.9y is included in the domain oftg — T*)X. Thus the left hand side
of (i) indeed exists. Then, we have

(o= H)BO(Ag) = (1o — H¥)K(id — AV (10)K* (1o — H¥)<)
= (/10 —H* = KX)(/lo _ H><)k—l — (/10 _ TX)(/lo _ H><)k—l'

Repeating this procedure yields (i). To prove (ii), let ukgkate
0= K*(2o — H)*B™ (o) o - - - o B (o).
Eq.(3.I8) and the part (i) of this lemma give

0 = KX B(M_k)(/lo) 0--+0 B(k+1)(/10) o (Ao — H><)k o B(k)(/lo) 0---0 B(l)(/lo),u
K*B™ ™M (1) o -+ 0 BMD(1) o (1o — T*)*u.

For example, whek = M — 1, this is reduced to
0 = K*(id = A(1g)K*) o (1o — T)M 1y

This provesK*(1g — T)M-1y = KXA(1)K* (1o — T)M-1u € iX(Q). This is true for any
k=0,1,---, M — 1; it follows from the definition oB0(1y)’s thatK*(1g — T*)*u is ex-
pressed as a linear combination of elements of the #61AY (10)¢;, &; € iIX(Q). Since
KXAD(10)iX(Q) C iX(Q), we obtaink* (1 — TX)ku € iX(Q). M

SinceK* (1o — TX)u € iX(Q), we can substitutey = K*(1o — T*)¥u into Eq.[3.35).
The resultant equation is rearranged as

k
ExK™(id — A(d)K*) (Ao — T)u — | id + Z E_jK* (2o — H) AR D(20)K* (10 — T)u
=

- Z E_ KA K> (1o — T u.
j=k+1
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Further, Qo — TX)X = (1g — H)*B®(1p) o - - - o BY(1g) provides
ExK* (1o — H)*B*D(2g) o - - - 0 BY(Ao)u

K
—|id + Z E_jK* (2o — H)*T [ A% D(A)K* (20 = H)*BY(20) 0 - - - 0 BP(Ao)u
=

_ Z E_ i KXATD0)KX (A0 — T u. (3.36)
j=k+1

On the other hand, comparing the ibgents of @y — 1)° of Eq.(3.34) provides

Eolid — K*A(o)# - 3, E K ATD(20)p = A1o)g,
j=1

for any¢ € iX(Q). Substitutings = K*u € iX(Q2) provides
(id + EoK*)BD (o) = pu + Y E_jK*ATD(1o)K*p. (3.37)
=1
By adding Eq[(3.37) to Eq§.(3.136) far=1,--- , M — 1, we obtain
(id + EoK*)B®( o)
M-1 k .
=D [id+ ) Bk (o = T ARD(0K (2 HBY (o) o -+ 0 B (o)
=1

k=1

M-1
+ D BEKX (o — H)*B (o) o - - 0 BY(Ao)u
k=1

-1
= u+ Z E_jK*ATHD K> (1 — T u. (3.38)
k=0 j=1

The left hand side above is rewritten as
(id + EoK* + E1K* (1o — HX)) BP(10)BY(Ao)u

M-1 k .
- Z [id + Z E_ KX (1o — HX)
k=2 =1

M-1
+ ) B (o — H)*BE (o) o -+ 0 BY(do)p.
k=2

A(k+1)(/10)KX(/10 _ HX)kB(k)(/lo) 0..-0 B(l)(/lo),u

Repeating similar calculations, we can verify that EQ83i8 rewritten as

M-1

(id + Z EjK*(Ao - HX)J’] BM(10) o - - - o BO(20)u

=0
M-1 o '

- u- Z E_jKXAUDNK* (20 — T . (3.39)

k=0 j=1
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SinceBM(1g) o - - - o BO(A)u = 0, we obtain

M-1 oo
U= Z Z E_jKXATD K> (10 — T) .
k=0 j=1

SinceR(E_j) c R(E-1) = R(Ilp), this provedIiX(Q2) > V,. Thus the proof ofIpi X(€2) =
Vo is completed. [

3.6 Properties of the generalized spectrum

We show a few criteria to estimate the generalized spectRanall thaio',(T) c op(T*)
because of Thm.3.5. The relation betwedi )ando(T) is given as follows.

Proposition 3.17. Let C_ = {Im(2) < 0} be an open lower half plane. Let,(T) and

o (T) be the point spectrum and the spectrum in the usual sersgatévely. Then, the
following relations hold.

(i) o(T)NC_ co(T)nC_. In particularo,(T) N C_ Cc op(T) N C_

(i) Let ¥ c C_ be a bounded subset of(T) which is separated from the rest of the
spectrum by a simple closed curye Then, there exists a point of(T) insidey. In
particular, ifA1 € C_ is an isolated point of(T), thena € o(T).

Proof. Note that whenm € C_, the generalized resolvent satisfi@go i =i o (1 - T)?
due to Thm.3.12.

(i) Suppose thaft € o(T) N C_, wherep(T) is the resolvent set of in the usual
sense. Sincé{ is a Hilbert space, there is a neighborhagdc o(T) N C_ of A such that
(A’ = T)™tis continuous orH for anyA’ € V, and the sef(1’ — T) Y} v, is bounded in
H for eachy € X(Q). Sincei : H — X(Q)’ is continuous and since the topologyX(2)

is stronger than that off, R, oi =i o (1’ — T) ! is a continuous operator froX(Q2) into
X(Q) for any A" € V,, and the setRy o iy} ey, is bounded inX(Q2)'. This proves that
1eo(T)nC..

Next, suppose that € C_ is a generalized eigenvalue satisfying- K*A(2))i(y) = 0
fory € X(Q). Sinced—H is invertible o/ whena € C_, puttingg = (1-H) 1y provides

(id — K*A))i(1 - H)¢ = (i(1 - H) — KX)¢ = i(1 = T)¢ = 0,

and thust € o(T).

(i) Let ¥ be the Riesz projection fat c o(T) N C_, which is defined a®® =
(2nV-1)* fy(/l — T) 'dA. Sincey encloses a point of(T), PH # 0. SinceX(Q) is
dense inH, PX(Q) # 0. This factandR, oi =i o (A — T)™! prove that the range of the
generalized Riesz projection defined by Eq.(B.24) is nai.zElence, the closed curge
encloses a point af(T). ]

A few remarks are in order. If the spectrum Bfon the lower half plane consists
of discrete eigenvalues, (i) and (ii) show tkay(T) N C_ = o(T) N C_ = ¢(T) N C_.
However, it is possible that a generalized eigenvalukismot an eigenvalue in the usual
sense. See [4] for such an example. In most cases, the coasispectrum on the lower
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half plane is not included in the generalized spectrum bee#ue topology oX(Q)’ is
weaker than that oi{, although the point spectrum and the residual spectrum eragin

to exist as the generalized spectrum. Note that the conisepectrum on the interval
also disappears; for the resolveat{ T)™* = (1 — H)}(id — K(1 — H)™%)"1 in the usual
sense, the factort(- H)! induces the continuous spectrum on the real axis bedduse
is selfadjoint. For the generalized resolvent, H)™! is replaced byA(1), which has
no singularities. This suggests that obstructions whecutating the Laplace inversion
formula by using the residue theorem may disappear.

Recall that a linear operatarfrom a topological vector spacg to another topologi-
cal vector spac; is said to be bounded if there exists a neighborhdad X; such that
LU c X; is a bounded set. Whdn= L(1) is parameterized by, it is said to be bounded
uniformly in A if such a neighborhood is independent oft. When the domairX; is a
Banach spacd,() is bounded uniformly it if and only if L(2) is continuous for each
(U is taken to be the unit sphere). Similadlyis called compact if there exists a neighbor-
hoodU c X; such thatLU c X; is relatively compact. Wheh = L(2) is parameterized
by 4, it is said to be compact uniformly inif such a neighborhoot is independent of
A. When the domaiiX; is a Banach spacé&1) is compact uniformly im if and only if
L(1) is compact for each. When the range; is a Montel space, a (uniformly) bounded
operator is (uniformly) compact because every boundeaseMontel space is relatively
compact. Puf2 := {Im(1) < 0} U | U Q as before. In many applicationis!K*A(A)i is
a bounded operator. In such a case, the following proposisiaiseful to estimate the
generalized spectrum.

Proposition 3.18. Suppose that for € Q, there exists a neighborhoddl, c Q of A
such thati tK*A(1)i : X(Q) — X(Q) is a bounded operator uniformly itf € U,. If
id — i~*K*A(2)i has a continuous inverse X{Q), thena ¢ &(T).

Proof. Note thatR, o i is rewritten asR, oi = A(1) oi o (id —i~tK*A(L)i) L. SinceA(1) oi
is continuous, it is sficient to prove that there exists a neighborhdeaf A such that the
set{(id - i*K*A)i) Y} vev, is bounded iX(Q) for eachy € X(€). For this purpose, it
is suficient to prove that the mapping — (id—i—tK*A(1')i) 1y is continuous in” € V,.
Sincei~tK*A(2)i is holomorphic (see the proof of Thm.3.12), there is an dpei(1, h)
on X(Q) such that

id—itK*A+h)i = id—i"K*A(L)i — hD(4, h)
= (id— hD(A, h)(id - i""K*AQ)I) ) o (id — i K*AD)).

Sincei~tK*A(2)i is a bounded operator uniformly ihe U,, D(4, h) is a bounded opera-
tor whenhis sufficiently small. Sinceifl—i—*K*A(2)i) ! is continuous by the assumption,
D(1, h)(id — i7tK*A(2)i)™! is a bounded operator. Then, Bruyn’s theorém [3] shows that
id — hD(4, h)(id — i~*K*A(2)i)* has a continuous inverse forfEaiently smallh and the
inverse is continuous ih (whenX(Q) is a Banach space, Bruyn’s theorem is reduced to
the existence of the Neumann series). This proves itiati(*K*A(1 + h)i)~1y exists and
continuous irh for eachy. |

As a corollary, ifX(Q) is a Banach space andtK*A(1)i is a continuous operator on
X(Q) for eachA, thena € §(T) if and only if id — i=*K*A(1)i has a continuous inverse
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on X(Q2). Because of this proposition, we can apply the spectrairthen locally convex
spaces (for example,l[2, 6,117, 18] 20, 22]) to the opeidteri—K*A(1)i to estimate the
generalized spectrum. In particular, like as Riesz-Scaatiteory in Banach spaces, we
can prove the next theorem.

Theorem 3.19.In addition to (X1) to (X8), suppose that'K*A(2)i : X(Q) — X(Q) is
a compact operator uniformly in € Q = {Im(1) < 0} Ul U Q. Then, the following
statements are true. A
(i) For any compact sdd c Q, the number of generalized eigenvalue®irs finite (thus
0,(T) consists of a countable number of generalized eigenvaneshey may accumu-
late only on the boundary @b or infinity).
(i) For eachdy € d,(T), the generalized eigenspa®g is of finite dimensional and
HQlX(Q) = V().
(iii) o¢(T) = 6+(T) = 0.

If X(Q2) is a Banach space, the above theorem follows from well kriRi®az-Schauder

theory. Even ifX(Q) is not a Banach space, we can prove the same result (see)below
Thm.3.19 is useful to find embedded eigenvalues:of

Corollary 3.20. Suppose that is selfadjoint. Under the assumptions in Thm.3.19, the
number of eigenvalues df = H + K (in H-sense) in any compact sbtc | is finite.
Their algebraic multiplicities dim Ketl(— T) are finite.

Proof. Let 1p € | be an eigenvalue dF. It is known that the projectiof®, to the corre-
sponding eigenspace is given by
Pop = lim V-le-(lo+ V=16 -T) %9, $eH, (3.40)

where the limit is taken with respect to the topologyeih When Im@) < 0, we have
Rii(p) = i(A—T) ¢ for ¢ € X(Q). This shows

i 0 Pog = lim V-1l R, 1, °i(@). ¢ €X(Q).

g——

Let Ry = 252 (Ao — A)'E; be the Laurent expansion &, which converges arount.
This provides

0Py = lim V=1e Z (- V=1&)E; oii.

g
J:—OO

Since the right hand side converges with respect to the agganX(2)’, we obtain
iOPOZ—E_]_Oi:HQOi, E_2:E_3:"':O, (341)

wherellg is the generalized Riesz projection fiy. SinceAg is an eigenvaluePyH + 0.
SinceX(Q) is a dense subspace®f, PoX(Q2) # 0. Hence, we obtaiflyi X(2) # 0, which
implies thatl, is a generalized eigenvalue,(T) c 0,(T). Sinces,(T) is countable, sois
op(T). SincelliX(Q2) is a finite dimensional space, sgfgX(€2). Then,PoH = PoX(Q)
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proves to be finite dimensional beca@3 is the closure oo X(Q). ]

Our results are also useful to calculate eigenvectors fdreeltled eigenvalues. In the
usual Hilbert space theory, if an eigenvalues embedded in the continuous spectrum of
T, we can not apply the Riesz projection fobecause there are no closed curve€in
which separata from the rest of the spectrum. In our theary(T) = 6(T) = 0. Hence,
the generalized eigenvalues are indeed isolated and tise Riejectiorl]y is applied to
yield TTpi X(Q2) = V. Then, the eigenspace fi-sense is obtained & N D(T).

Proof of Thm.3.19. The theorem follows from Riesz-Schauder theory on localiyvex
spaces developed in Ringro$el[20]. Here, we give a simplewesf the argument in
[20]. We denoteX(Q) = X andi~*K*A(1)i = C(1) for simplicity. A pairing for X', X) is
denoted by - | - )«x.

SinceC(1) : X — X is compact uniformly i1, there exists a neighborhodd of
zero in X, which is independent ot, such thatC(1)V c X is relatively compact. Put
p(x) = inf{|1]; x € AV}. Then,p is a continuous semi-norm oXandV = {x| p(x) < 1}.
Define a closed subspabéin X to be

M = {xe X|p(x) = 0} c V. (3.42)

Let us consider the quotient spa¥¢gM, whose elements are denoted By, [The semi-
norm p induces a norn® on X/M by P([X]) = p(x). If X/M is equipped with the norm
topology induced by, we denote the space &8s The completion of3, which is a Banach
space, is denoted [#§,. The dual spac of B, is a Banach space with the norm

Iulls, := sup Kul[XDsgl, (3.43)
P([x)) <1

where(- | - )g, is a pairing for B, Bo). Define a subspace c X' to be

S={ueX| SU\/DI(# | X)x| < o). (3.44)

The linear mapping "~ S — B; (u — ) defined throughi | [X])s, = (1| X)x Is bijective.
Define the operatd®(1) : 8 — B to beQ(A)[X] = [C(1)X]. Then, the equality

@1 QXD s, = (I C(A)X)x (3.45)

holds foru € Sandx € X. Let Qp(1) : By — Bo be a continuous extension Qf(1).
Then,Qp(1) is a compact operator on a Banach space, and thus the ugsal8thauder
theory is applied. By using EQ.(345), it is proved that C is an eigenvalue oE(1) if
and only if it is an eigenvalue do(1). In this manner, we can prove that

Theorem 3.21 [20].The number of eigenvalues of the operd@gn) : X — X is at most
countable, which can accumulate only at the origin. Theregaces .., Ker (z—C(2))™
of nonzero eigenvaluesare finite dimensional. i # 0 is not an eigenvalueg— C(1) has
a continuous inverse aX. Seel[20] for the complete proof.

Now we are in a position to prove Thm.3.19. Suppose fhet not a generalized
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eigenvalue. Then, 1 is not an eigenvalueCgf) = i—*K*A(1)i. The above theorem con-
cludes thatd — C(1) has a continuous inverse %{<2). SinceC(1) is compact uniformly
in A, Prop.3.18 implied ¢ o(T). This proves the part (iii) of Thm.3.19.

Let us show the part (i) of the theorem. LeE z(1) be an eigenvalue dE(1). We
suppose that(1p) = 1 so thatl, is a generalized eigenvalue. As was proved in the proof
of Thm.3.12,(u|C(2)X)x is holomorphic in1. EQq.[3.45) shows th&fi| Q()[X])s, IS
holomorphic for any:"e B; and [x] € 8. SinceB, is a Banach space afdlis dense in
Bo, Qo(1) is a holomorphic family of operators. Recall that the eiggnez() of C(1) is
also an eigenvalue @y () satisfyingz(1p) = 1. Then, the analytic perturbation theory of
operators (see Chapter VII of Kato [12]) shows that therstex natural numbegy such
thatz(1) is holomorphic as a function oft¢- 10)"/P. Let us show that(1) is not a constant
function. If z(1) = 1, every point inQ is a generalized eigenvalue. Due to Prop.3.17, the
open lower half plane is included in the point spectruni oHence, there exists = f,
in H such thatf = K(1 — H)"1f for any1 € C_. However, sinc& is H-bounded, there
exist nonnegative numbeasandb such that

IK( = H)7Hl < ali(2 = H) ™+ blIH(A = H) 7l = ali(2 = H) ™l + blla(a - H)™ ~ il

which tends to zero d8| — oo outside the real axis. Therefoid,| < |[K(A=H)|-||f]| —

0, which contradicts with the assumption. Sirgg) is not a constant, there exists a
neighborhoodJ c C of Ag such thatz(1) # 1 whend € U anda # Ao. This implies that
A € U\{4p} is not a generalized eigenvalue and the part (i) of Thm.Z®oved.

_ Finally, let us prove the part (ii) of Thm.3.19. Pﬁ(z) =(z-1)-id+ C(2 and
Q@) = (z—1)-id + Q(2). They satisfyit| Q)[X])s, = (1| C(2x)x and

(@] (2= Q@) XY, = (1 (A - C(2) ' ))x.

Since an eigenspace Qi(2) is finite dimensional, an elgenspacecofz) is also finite
dimensional. Thus the resolvent £ Q(2))! is meromorphic i € Q. SinceQ(2) is
holomorphic, § — Q(1))! is also meromorphic. The above equality shows tha{l —
C(1))1x)x is meromorphic for any: € S. SinceS is dense inX’, it turns out that
(1-C(1))1xis meromorphic with respect to the topologyXnTherefore, the generalized
resolvent

Ryoi=AW)oio(id—itK*AWI) ™ =AW)oio(1-EW)™? (3.46)

is meromorphic o). Now we have shown that the Laurent expansiomeis of the
form (3.30) for someM > 0. Then, we can prove EQ.(3133) by the same way as the proof
of Thm.3.16. To prove thdiiX(Q) is of finite dimensional, we need the next lemma.

Lemma 3.22.dim KerB™(1) < dim Ker (d — K*A(2)) for anyn > 1.
Proof. Suppose thaB™(1)u = 0 with u # 0. Then, we have

K1 -= H)"1BOWr = KX = H)"Y(id - APQ)K*( — H)"
(id = K*A(2)) o KX(1 = H)" 1y =

If KX(1 - H)"y = 0, B"(A)u = 0 yieldsu = AW(A)K*(2 — H)"1u = 0, which con-
tradicts with the assumptign# 0. Thus we obtaifK*(1 — H*)"1u € Ker (id — KXA(1))
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Fig. 2: Deformation of the contour.

and the mapping — K*(1 - H¥)"1x is one-to-one. ]

Due to Thm.3.21, Keiidl — KXA(X)) is of finite dimensional. Hence, K& (1) is
also finite dimensional for any > 1. This and EqL{3.33) prove thBiX(Q) is a finite
dimensional space. By Thm.3.1&gi X(Q2) = Vo, which completes the proof of Thm.3.19

(ii). N

3.7 Semigroups

In this subsection, we suppose that

(S1)The operatory—1T = V=1(H + K) generates &°-semigroupe¥~1" onH.

For example, this is true whel is bounded orH or T is selfadjoint. By the Laplace
inversion formulal(25), the semigroup is given as

@My, ¢) = ' jim f X_ﬂyeﬁ“((ﬂ ~T) ', ¢)d2, xyeR (3.47)
’ 21 V=1 J_x V=1y ’ ’ ’ .

where the contour is a horizontal line in the lower half pléeéow the spectrum of .
In Sec.2, we have shown that if there is an eigenvalug@ an the lower half plane,
eV-1mt diverges as$ — oo, while if there are no eigenvalues, to investigate the asgtitp
behavior ofeY-1T is difficult in general. Let us show that resonance poles induce an
exponential decay of the semigroup.

We use the residue theorem to calculate[EqQ.(3.47)44.etQ be an isolated resonance
pole of finite multiplicity. Suppose that the contouis deformed to the contoyt, which
lies abovel,, without passing the generalized spectra (i) except fordy, see Fid.R. For
example, it is possible under the assumptions of Thm.3.XtaRthat ify, ¢ € X(Q),
(2 — T) Yy, ¢) defined on the lower half plane has an analytic continuat® | ¢)
defined oM U | U {A|Im(1) < O} (Thm.3.12). Thus we obtain

N I 1_f VLR d-—+ [ ering di, (3.48
€y, ¢) i )C (Ru| ) Pl (R ¢)da,  (3.48)

wherey, is a suficiently small simple closed curve enclosing LetR; = >3 (4o —
Q)] E; be a Laurent series &, as the proof of Thm.3.16. Due to Hq.(3.29) d&hd = I,
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we obtain

M-1
V-1t
). & M Rwldl= Zeﬂ"t( )<(ﬂo T Toy | ¢),
- Yo k=0

wherell, is the generalized projection to the generalized eigerspity. Since Im{p) >
0, this proves that the second term in the right hand side oBEp) decays to zero as
t — oo. Such an exponential decay (of a part of) the semigroup iedllny resonance
poles is known as Landau damping in plasma physics [5], araftés observed for
Schrodinger operators [19]. A similar calculation is pbeswithout defining the gen-
eralized resolvent and the generalized spectrum as lorgagiantity (Q — T) 1y, ¢) has
an analytic continuation for someand¢. Indeed, this has been done in the literature.
Let us reformulate it by using the dual space to find a decastiaig corresponding to
Ao. For this purpose, we suppose that

(S2)the semigrou;{)(e‘/‘_m)*}tzo is an equicontinuou§, semigroup orX().

Then, by the theorem in I1X-13 of Yosida[27], the dual semigréeV-271)* = ((eY-1T%)*)

is also an equicontinuouS, semigroup generated by—1T*. A convenient sfiicient
condition for (S2) is that:

(S2)' K*|x(q) Is bounded angeV1M 4 is an equicontinuou§, semigroup orX(Q).

Indeed, the perturbation theory of equicontinu@gssemigroups([23] shows that (S2)’
implies (S2). By using the dual semigroup, EQ.(3.47) is ittem as

1 -Vl
(V1T = —a lim f - eV IR ydA. (3.49)
_ % Vy
for anyy € iX(Q). Similarly, Eq.[3.4B) yields
M-=1
(e Ty = —2nx1/_1 f e IR yd1 - Y eV ﬁot(‘/_t) (10— Ty, (3.50)
—LJY k=0

when 1 is a generalized eigenvalue of finite multiplicity. For theat semigroup, the
following statements hold.

Proposition 3.23.Suppose (S1) and (S2).
(i) A solution of the initial value problem

%g = V-1T%¢,  &(0) = pu e D(TX), (3.51)

in X(Q) is uniquely given by:(t) = (eY1T)*u.

(il) Let 1o be a generalized eigenvalue gngh corresponding generalized eigenfunction.
Then, €Y1t = eV-1otyy,

(iii) Let I1o be a generalized projection fas. The spacélyiX(Q) is (e¥V1")*-invariant:
(eV-ITY"11, = Ho(e‘/__m)xhxm)-
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Proof. Since{(ev‘_m)x}tzo is an equicontinuou€, semigroup generated by—1T*, (i)
follows from the usual semigroup theofy [27]. Because of ThB) we haveV-1T*uq =
V—l/loluo. Then,

d

ae\/—_uot#() - V1 /loe\/—_l/lotﬂo _ *’_—1Tx(e‘/‘_“°tuo).

Thusé(t) = eV-144, is a solution of the equatioR{3151). By the uniqueness ofutisa,
we obtain (ii). Because of Prop.3.13 (iii), we have

%(e\/—_th)XR/l — \/—_lTX ((e\/—_th)XR/l) ,

d
aR/l(e\/—_th)xliY =R, (e\/—_th)x \/__1TX|iY _ \/__1-|->< (R/l(e\/—_th)x) liy.

Hence, both ofé"V-1T)*R, andR,(eY-1")* are solutions of the equation (3151). By the
uniqueness, we obtai®("I")*R iy = Ry(eY-1T)*|iy. Then, the definition of the pro-
jection I, proves €Y1 TIyiy = TTo(eV-2T)*|iy with the aid of Eq[(3.25). Sinc¥ is
dense inX(Q) and both operatorg{—1™)*I1y o i andIy(e¥ ") oi = [yoioe¥Y 1 are
continuous orX(Q2), the equality is true onX(Q2). ]

By Prop.3.14, any usual functioh € X(Q) is decomposed a&| = u; + up with
1 € i X(Q) andu, € (id — Ip)iX(Q2) in the dual space. Due to Prop.3.23 (iii) above,
this decomposition iseY-2T)*-invariant. Whenlo € Q, (eV-2T)*u; € IoiX(Q) decays
to zero exponentially as — oo. EQq.[(3.50) gives the decomposition explicitly. Such an
exponential decay can be well observed if we choose a functitnich is stficiently
close to the generalized eigenfunctjay) as an initial state. Sincé(Q) is dense inX(Q)’
and sinceee‘/‘_m)X is continuous, for any > 0 ande > 0, there exists a functiogg in
X(€) such that

K&V T o ) — (V) o [ 0] < e,
for0<t< T andy € X(Q). This implies that

(Vg0 ) ~ (€Y o lv) = € uo | v, (3.52)

for the interval O< t < T. Thus generalized eigenvalues describe the transienvioeha
of solutions.

An interesting situation occurs whén= R andQ includes a strig1|0 < Im(1) < a}
for somea > 0. Suppose that the generalized spectet(h) in the region{A|Im(2) < a}
consists of a finite number of generalized eigenvalues defimiultiplicities. Leta;, M;
andIlj(j = 0,---,N = N(a)) be generalized eigenvaluesfih|Im(1) < a}, their mul-
tiplicities and projections, respectively. In this cades tesidue theorem proves that the
semigroup is given by

V-1ITt 1 ; xVa V-1at
@) = =i [ eTRuloin
N M;-1
’ (= V=10
DI e ik . Ly -y mu6),
=0 k=0 ’

29



for ¢,y € X(QQ) as long as the integral in the first term converges (for tm¥emence, we
need an additional assumption for the growth rat&ff, ¢](w)). Since the first term in
the right hand side above decays with the oi@ ) ast — oo, (€¥-2y, ¢) decays to
zero exponentially if there are no generalized eigenvabumethe real axis and the lower
half plane.

A Pettis integrals and vector valued holomorphic func-
tions on the dual space

The purpose in this Appendix is to give the definition and tkistence theorem of Pettis
integrals. After that, a few results on vector-valued habophic functions are given. For
the existence of Pettis integrals, the following property

(CE) for any compact sdf, the closed convex hull df is compact,

which is sometimes called the convex envelope propertyssemially used. For the
convenience of the reader,fBaient conditions for the property are listed below. We also
give conditions forX to be barreled because it is assumed in (X3). Xdie a locally
convex Hausddf vector space, and’ its dual space.

e The closed convex hutio(K) of a compact seK in X is compact if and only if
co(K) is complete in the Mackey topology ofi(Krein's theorem, see Kothe 4],
§24.5).

e X has the convex envelope propertyiis quasi-complete.

e If Xis bornological, the strong du! is complete. In particular, the strong dual of
a metrizable space is complete.

e If X is barreled, the strong dud’ is quasi-complete. In particulak’ has the
convex envelope property.

e Montel spaces, Fréchet spaces, Banach spaces and Hilbeessare barreled.

e The product, quotient, direct sum, (strict) inductive lirgompletion of barreled
spaces are barreled.

See Tréves [25] for the proofs.

Let X be a topological vector space oveand §S, 1) a measure space. Leét S — X
be a measurabl¥-valued function. If there exists a uniqlig € X such that¢|ls) =
fs<§| fydu for any ¢ € X, | is called thePettisintegral of f. It is known that ifX is a
locally convex Hausddif vector space with the convex envelope propestis a compact
Hausdoft space with a finite Borel measyieand if f : S — X is continuous, then the
Pettis integral off exists (see Rudin[21]). In Sec.3.5, we have defined theratedthe
form fy&qﬁd/l, whereR,¢ is an element of the duad(Q2)’. Thus our purpose here is to
define a “dual version” of Pettis integrals.

In what follows, letX be a locally convex Hausdfvector space ovet, X" a strong
dual with the convex envelope property, and $ebe a compact Hausddrspace with
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a finite Borel measurg. For our purpose in Sec.3.5,is always a closed path on the
complex plane. Lef : S — X’ be a continuous function with respect to the strong dual
topology onX'.

Theorem A.1. (i) Under the assumptions above, there exists a uni@jies X’ such that
A 1% = [¢thods (A1)
S

foranyx € X. I(f) is denoted by(f) = Lfdp and called the Pettis integral 6f

(i) The mappingf — 1(f) is continuous in the following sense; for any neighborhood
U of zero inX’ equipped with the weak dual topology, there exists a neigidmlV of
zero inX’ such that iff (s) € V for anys e S, thenl(f) € U.

(i) Furthermore, suppose thXtis a barreled space. L&tbe a linear operator densely
defined onX andT’ its dual operator with the doma(T’) c X'. If f(S) c D(T’) and
the sef{(T’ f(9) | X)}«s IS bounded for eack € X, then,I(f) € D(T’) andT’I(f) = I(T'f)

holds; that is,
T’ffd,u:fT’fd,u (A.2)
S S
holds.

The proof of (i) is done in a similar manner to that of the existe of Pettis integrals
on X [21]. Note thatT is not assumed to be continuous for the part (iii). WHers
continuous, the sé{T’ f(9) | X)}«s is bounded becaus€ and f are continuous.

Proof. At first, note that the mapping|x) : X’ — C is continuous becaus¢ can be
canonically embedded into the dual of the strong dfal Thus(f(:)|x) : S —» C s
continuous and it is integrable on the compactSetith respect to the Borel measure.

Let us show the uniqueness. If there are two elemérify, I,(f) € X' satisfying
Eq.(Ad), we havél ()| x) = (I2(f) | x) for anyx € X. By the definition ofX’, it follows
1.(f) = I2(F).

Let us show the existence. We can assume without loss of glégenat X is a vector
space oveR andu is a probability measure. L&t c X be a finite set and put

Vi(f) =V =X eX [{(X|X)= f(f | xydu, VX e L}. (A.3)
S

Since(- | x) is a continuous mappiny, is closed. Sincd is continuousf(S) is compact
in X’. Due to the convex envelope property, the closed convexcd(fl(S)) is compact.
HenceW_ := V. N o(f(S)) is also compact. By the definition, it is obvious thEt, N
W, = Wi,u,- Thus if we can prove that/. is not empty for any finite sdt, a family
{W_}Lerminite sey h@s the finite intersection property. Then, W, is not empty because
co(f(S)) is compact. This implies that there exi${$) € (. WL such thail(f)|x) =
Jf 1 du for anyx e X.

Let us prove that\ is not empty for any finite sdt = {Xq,--- , X,} € X. Define the
mappingL : X’ —» R"to be

LX) = (X X)X [ X)) -
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This is continuous and(f(S)) is compact irR". Let us show that the element

y::(f<f|xl)dy,---,f(flxn)d,u) (A.4)
s s

is included in the convex hulto(L(f(S))) of L(f(S)). If otherwise, there exist real
numberscy, - - - , ¢, such that for any#, - - - , z,) € co(L(f(S))), the inequality

n n
ZCiZa < ZC% y= (1Y)
i=1 i=1

holds (this is a consequence of Hahn-Banach theoreR™orn particular, sincel(f(S)) c

co(L(f(S))),
Zci<f I %) < Zciyi-

Integrating both sides (in the usual sense) yiélils ciy; < Y., cyi. This is a contra-
diction, and thereforg € co(L(f(S))). SinceL is linear, there existg € co(f(S)) such
thaty = £(v). This implies thatv € V| n co(f(S)), and thusW,_ is not empty. By the
unigueness;,), W, = {I(f)}. Part (ii) of the theorem immediately follows from Hq.(A.1)
and properties of the usual integral.

Next, let us show Ed.(Al2). WheX is a barreled spacé(f) is included inD(T’) so
thatT’I(f) is well defined. To prove this, it is flicient to show that the mapping

X (I(F)| Tx)y = f(f | Tx)du = f(T’flx}dy
s S

from D(T) c X into C is continuous. By the assumption, the $€t' f(S)|X)}«s iS
bounded for eactkx € X. Then, Banach-Steinhaus theorem implies that the family
{T’f(s)}ss Of continuous linear functionals are equicontinuous. Herior anye > 0,
there exists a neighborhodd of zero in X such that(T’'f(s)|x)|] < € foranys € S
andx € U. This proves that the above mapping is continuous, sol{tidte D(T’) and
TI(f) =T WL

For a finite set. c X, put

VI(T'f)={X e X KX |X) = f(T’f | Xydu, YXx € L},
S

T’VTL(f) = {T’X’ e X | X € D(T/), <X’ | X> = f(f | X>d/J, VX e TL}
S

Put W (f) = V() nTo(f(S)) as before. It is obvious tha®), W, (f) c N WrL(f).
Therefore,

{(T1(f)}

T ((YWL(f) € T/ () Wri(F) N D(T)

N

T () (Vru(f) nTo(f(S)) N D(T")

c ﬂ (T'V-L(f) N T'TB(F(S)) NR(T)).
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On the other hand, ¥ € T"V1(f), there exist¢’ € X’ such thaly’ = T'X and(X' | x) =
f5<f | Xydu for anyx € TL. Then, for anyx € L n D(T),

Y1 =(TX[x)=(X|Tx) = f(f | Txydu = f(T’f | X)du.
S S
This implies thay’ € Vi ~p) (T’ f), and thusT V7 (f) € Vipm (T’ f). Hence, we obtain

(T © [ WVeom(T H) ST H(S) = [ |Werom(T').

If (X'|X)= fs(f | X)du for dense subset of, then it holds for ank € X. Hence, we have
() = [ YWLTF) = () Weoom (T F) 2 (T'I(F)). (A.5)
L L

which provesT’I(f) = I(T’f). |

Now that we can define the Pettis integral on the dual spaceaweevelop the “dual
version” of the theory of holomorphic functions. LEtand X’ be as in Thm.A.1. Let
f : D —» X’ be anX’-valued function on an open setc C.

Definition A.2. (i) f is called weakly holomorphic if | x) is holomorphic orD in the
classical sense for anye X (more exactly, it should be called weak-dual-holomorphic)
(i) f is called strongly holomorphic if

lim 1 (f(z) — f(2)), (the strong dual limit) (A.6)
w27y — 2

exists inX’ for anyz € D (more exactly, it should be called strong-dual-holomocphi

Theorem A.3. Suppose that the strong duélsatisfies the convex envelope property and
f : D — X is weakly holomorphic.

() If fisstrongly continuous, Cauchy integral formula and Cauctegral theorem hold:

1 f(20)
2nx/—_1fy20—z

wherey c D is a closed curve enclosirme D.

(i) If f is strongly continuous and X’ is quasi-completef is strongly holomorphic and
is of C* class.

(i) If Xis barreled, the weak holomorphy implies the strong cotitynirhus (i) and (ii)
above hold;f is strongly holomorphic and is expanded in a Taylor series as

f(2 = dz, f f(20)d2 = O,

g Q)
f(2 = Z f nl(a) (z—a)", (strong dual convergence) (A.7)
n=0 '

neara € D. Similarly, a Laurent expansion and the residue theorerd tiof has an
isolated singularity.
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Proof. (i) Sincef is continuous with respect to the strong dual topology, gttiintegral

@) = f (Zo)

271\/_[

exists. By the definition of the integral,

1 <1“(20)|><>OI
21V-1Jy, -2

for anyx € X. Since(f(2)| x) is holomorphic in the usual sense, the right hand side above
is equal to{f(2) | x). Thus we obtain(z) = f(z), which gives the Cauchy formula. The
Cauchy theorem also follows from the classical one.

(ii) Let us prove thaf is strongly holomorphic a,. Suppose tha, = 0 andf(z) =0
for simplicity. By the same way as above, we can verify that

1@ 1% =

@ _ f @) g,
z 271\/_ 2(20 - 2)
1 f(20) z f(20)
dzy + dz.
2nV-1Jy 7 2n V=1 J,7(z0 - 2)
SinceX’ is quasi-complete, the above convergeg as0 to yield
f@__ 1 f(20)
O e A R
In a similar manner, we can verify that
f(20)
f0(z =5 f = dz A.8
@ @=5 | (A8)

exists foranyn=0,1,2,---

(i) If Xis barreled, weakly bounded sets{hare strongly bounded (see Thm.33.2 of
Tréves|[[25]). By usingit, let us prove that a weakly holoptac f is strongly continuous.
Suppose that(0) = 0 for simplicity. Since(f(2)|x) is holomorphic in the usual sense,
Cauchy formula provides

(F@10 _ f
z  n \/_
Suppose thay < § andy is a circle of radius & centered at the origin. Singé(-) | x) is

holomorphic, there exists a positive numiérsuch that(f(z) | x)| < M for anyz, € y.
Then,

1 (f(Zo)|X>

..... s = —.
75 2 0TS

This shows that the s@& := {f(2)/z]| |Z < 6} is weakly bounded irX’. SinceX is bar-
reled,B is strongly bounded. By the definition of bounded sets, fgr@mnvex balanced

‘(f(z)|x) 1 1 M M
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neighborhoodJ of zero inX’ equipped with the strong dual, there is a nuntbel0 such
thattB c U. This proves that

f(2)- £(0) = f(2) %u c %u

for |z— 0| < 8, which implies the continuity of with resect to the strong dual topology.
If X is barreledX’ is quasi-complete and has the convex envelope propertys fhigu
results in (i) and (ii) hold.
Finally, let us show thaf (z) is expanded in a Taylor series aroua@ D. Suppose
a = 0 for simplicity. Let us prove that

forms a Cauchy sequence with respect to the strong dualagpolt follows from [A.8)
that

1 (f@) %
271_\/__1 y z8+1

for anyx € X. Suppose thag is a circle of radius & centered at the origin. There exists
a constanM, > 0 such that(f(z)|x)| < My for anyz, € vy, which implies that the set
{f(20) |z € y} is weakly bounded. Becauseis barreled, it is strongly bounded. There-
fore, for any bounded s& c X, there is a positive numb&ig such thai( f (z) | x)| < Mg

for x e Bandz, € y. Then, we obtain

By using this, it is easy to verify thdtSy| X)), is a Cauchy sequence uniformly in
X € Bwhenl|Zz < §. SinceX’ is quasi-complete$,, converges am — oo in the strong
dual topology. By the Taylor expansion in the classical sen® obtain

1 n
ﬁ<f< )(0)[x) =

Mg s Ms
=27 2oy 0T oy

<f(z)|x>— (F(20) 102" = Z —(f0(0)[ 2"

Sie

Since limy,. Sy exists and - | x) : X’ — C is continuous, we have
<f(z)|x>_<§, L t00) | %)
a 4 n! ’
Nn=

for anyx € X. This proves Ed.(Al]7) foa = 0. The proof of a Laurent expansion, when
f has an isolated singularity, is done in the same way. Thenptbof of the residue
theorem immediately follows from the classical one. ]

Remark. In a well known theory of Pettis integrals on a spacf21], not a dualX’, we
need not assume thA4tis barreled because every locally convex spédas the property
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that any weakly bounded set is bounded with respect to tlggnatitopology. Since the
dual X’ does not have this property, we have to assume xhiat barreled so that any
weakly bounded set iX’ is strongly bounded.
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