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Abstract: This paper presents an approach to calibrating a holistic water resources–economic model, which involves essential water
resources and economic components in a consistent model. The model is formulated as an optimization model, with the objective of
maximizing economic welfares/profits from water uses. When we apply the model to a baseline scenario against real-world conditions, the
economic outputs are often expected to match the observations at the base level, since a wide divergence between model outcomes and
actual results is not appropriate for analyzing policy options starting from the baseline. Following the concept of “positive mathematical
programming,” the holistic water resources–economic model is calibrated to a baseline level using programming constraints and “posi-
tive” inferences from baseline observations. The calibration task is complicated by the fact that a large number of interdependent
parameters should be calibrated simultaneously. A numerical approach based on hybrid genetic algorithms is used to implement the
calibration procedure.
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Introduction

The interdisciplinary nature of water resources problems requires
the integration of technical, economic, environmental, social, and
legal aspects into a coherent analytical framework. Holistic water
resources–economic models �HWEM� �Noel and Howitt 1982;
Booker and Young 1994; Cai et al. 2003; Draper et al. 2003;
Jenkins et al. 2004� conduct information transfer between hydro-
logic, agronomic, and economic components endogenously; they
presents a simple approach for building truly integrated water
resources and economic models. HWEMs are formulated as con-
sistent optimization models, with the objective of maximizing the
economic benefits of various water uses. The constraints and re-
lationships involved in these models include: �1� water supply
constraints such as hydrologic balance, capacity of water supply
facilities, and water quality; �2� production functions such as crop
yield functions and profit functions of urban water uses; and �3�
policy regulations or economic incentives on water demands �Cai
et al. 2001c�.

An HWEM can be applied to policy analysis—that is, exam-
ining the economic and environmental consequences of a given
economic incentive—or searching an optimal policy under certain
environmental conditions. However, when the HWEM is solved
for the optimal solution driven by the objective with certain given

policy or operational options, there is often a significant differ-
ence between the model outputs and the observed data. The
difference can be found not only with physical and engineering
variables such as reservoir storages or flow releases, but also with
the economic outputs such as water allocation or irrigated crop
yield and area. For example, an HWEM that considers irrigation
water supply and profit �Rosegrant et al. 2000; Cai et al. 2003�
could result in very different crop acreage from the actual crop
acreage under the baseline inputs such as rainfall, crop evapo-
transpiration, and irrigation system characteristics. The model de-
termines the crop acreage according to the crop profitability, and
assumes that other factors such as food demand, soil suitability,
and a farmer’s experiences on traditional crop patterns can be
reflected by variable bounds. A common problem is the so-called
“corner solution”—the area of high-valued crops approaches the
upper bound while the area of low-valued crops approaches the
lower bound. Ideally, if the model has perfect information about
the determinants for crop acreage, the problem of “corner solu-
tion” may not happen. Unfortunately, it would be very difficult, if
not impossible, for this type of model to have an exact simulation
of the real-world situation.

In practice, there is usually insufficient data to specify a con-
straint set that will reproduce the output of a complex model, and
the challenge is how to use that incomplete data/information to
develop an optimization model that is useful for policy analysis.
For an HWEM without a complete set of constraints, we would
like to know how we can modify the model so that it will reveal
the baseline observations. Theoretically there does not seem to be
any reason that one could not completely constrain the model.
However, the point is that a model that is fully constrained would
not be useful for analysis.

Another challenge for calibrating an HWEM is the need to
calibrate water resources, engineering, and economic parameters
simultaneously in a consistent framework. Model calibration has
been widely studied in water resources economics �Howitt 1995;
Rohm and Dabbert 2003� and hydrology fields �Duan et al. 2003�,
respectively; however, only a few calibration studies have at-
tempted to jointly calibrate hydrologic and economic components
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�e.g., Draper et al. 2003�. The difficulty lies not only in the large
number of parameters involved in different components, but also
in the interdependence among the parameters to be calibrated. In
this paper, an integrated framework is developed to calibrate
water resources, engineering, and economic outputs simulta-
neously; the calibration procedure is implemented by using a
hybrid genetic algorithm �GA� �Cai et al. 2001a�.

In the remainder of this paper, we will introduce the model,
describe the calibration of the model including what outputs to
match with the observations and what parameters to adjust, and
implement the calibration procedure. In addition, we will explain
the outputs of the calibration procedure in terms of their physical
and economical meaning.

Model

The prototype model was developed for the Maipo River basin,
located in a key agricultural region in the metropolitan area
of central Chile. The basin is characterized by a very dynamic
agricultural sector—serving an irrigated area of about
127,000 ha—and a rapidly growing industrial and urban sector,
particularly in the capital city of Santiago with a population of
more than 5 million people. More than 90 percent of the irrigated
area in the basin depends on water withdrawals from surface
flows. Irrigation is of particular importance for perennial crops,
like fruit trees and grapes. Agriculture accounts for the majority
of total withdrawals.

The model is developed in the context of the river basin, rep-
resented as a node-link network, including multiple source nodes
�reservoirs, aquifers, river reaches, etc.�, multiple demand sites
along the river, and consumptive use locations for agricultural,
municipal and industrial, and instream water uses �Fig. 1�. Agri-
cultural demand sites are delineated according to the irrigation
districts. At each agricultural demand site, water is allocated to a
series of crops according to their water requirements and eco-
nomic profitability. Fig. 2 illustrates the scaling-down water allo-
cation processes �from the basin level to the farm level� and the
scaling-up economic and environmental consequences �from the
farm level to the basin level�. Fig. 3 depicts, at various spatial
scales, the hydrologic and agronomic processes which are simu-
lated in the model.

Economic benefits from water uses are evaluated for different
demand management instruments, including markets in tradable
water rights, based on production and benefit functions with re-
spect to water for the agricultural and urban-industrial sectors.
The model is formulated as an optimization model in order to
maximize water use profit with embedded basin-wide simulation
of flow and salinity balance, reservoir operation, irrigation sched-
uling, and crop growth. The model is a short-term static model in
terms of economic processes; however, the hydrologic component
simulates storage operations and water balance over 12 time in-
tervals �months� within a one-year period. A detailed formulation
of an HWEM is presented in Cai et al. �2006�; the application of
the model for water trade analysis is provided by Rosegrant et al.
�2000�. Several of the key relationships involved in the model
will be discussed in detail later in this paper.

Normative versus Positive Models

In order to further illustrate why the HWEM should be calibrated
to a base level, we introduce the concept of “normative models”

and “positive models,” and discuss the conditions for the appro-
priate use of the two types of models in water resources.

The mathematical programming exercise that searches for the
optimal solution driven by the objective with certain given policy
or operational options, but ignoring the difference between the
model outputs and the observed, is referred to as normative
programming �Howitt 1995�. Since mathematical programming
models can rarely capture all real-world constraints explicitly, a
normative programming model usually shows a wide divergence
between model outcomes and actual results in the base period.
Therefore, results from those models are considered indicative.
Normative models are often used to analyze alternative scenarios;
the difference between the scenario outputs shows the relative
impact of policies under different scenarios. Bounds are often
placed on variables to avoid outcomes that diverge too much from
realistic values; however, tight bounds can be inappropriate for
policy analysis.

In the study of agricultural production, Howitt �1995� sug-
gested calibrating a mathematical programming model for agri-
cultural production analysis against real-world conditions �a base
year or average over several years�. He called the modeling exer-
cise “positive mathematical programming �PMP�.” The basic
hypothesis of PMP is that “observed behavioral reactions provide
a basis for model calibration in a formal manner that is consistent
with microeconomic theory” �Howitt 1995�. Observations at the
base-level are used to construct “positive inferences,” which are
combined with explicit programming constraints. The core of the
approach is to adjust the marginal values of activities �i.e., crop
planting� so as to make the marginal values of all activities equal
at the base-level �Rohm and Dabbert 2003�. The approach was
originally developed as a remedy for some of the problems asso-
ciated with linear programming �LP� by extending a linear objec-

Fig. 1. Node–link network of the Maipo River basin in Chile
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tive function to a quadratic function. The coefficients of the non-
linear items in the objective function can be automatically
calculated using the dual solution of an LP model.

Do all optimization models need to be calibrated to a baseline?
In other words, should all optimization models be positive? This
is not true for many optimization models used in science and
engineering fields, since the outputs of those models are not nec-
essarily observable. Normative programming has been success-
fully applied to many types of water resources planning and man-
agement models such as groundwater management models
�Wagner 1995� and reservoir operation models �Yeh 1985; Wurbs
1993; and Labadie 2004�. These models have some common
properties, including: �1� the objective function completely repre-
sents a certain driving force for a specific purpose of problem
solving; �2� the models are usually well-constrained: although
there are not enough constraint equations to solve the problem
uniquely, all solutions located in the solution space are not only
feasible in terms of the constraints, but also reasonable regarding
the studying problem; and �3� usually “observed values” do not
exist before the model solution. A typical example of this type of
model in water resources is the problem of determining minimum
required reservoir capacity in order to satisfy a water supply ob-
jective under given hydrologic inflows. The problem is formu-
lated as

Minimize K

s.t.

St+1 = St + It − Et − REt − R ∀ t = 1,2 . .

Et = E�St,St+1� ∀ t = 1,2 . .

St � K ∀ t = 1,2 . . �1�

where K=reservoir storage; S=storage; I=inflow; E=net evapo-
ration from the reservoir surface, which is a function reservoir
storage; RE=reservoir release; and R=firm yield �i.e., maximum
water supply which can be guaranteed over all time periods�,
which is given as a parameter. Here the reservoir capacity is a
decision variable constrained by water balance in all time periods
and its “observed value” is not available.

Another type of reservoir optimization model is programed to
search for optimal reservoir operation rules �dynamic reservoir
storages and releases� based on reservoir inflows and given water
requirements �either for offstream water supply or instream water

Fig. 2. Scaling-down water allocation processes �from the basin level to the farm level� and scaling-up economic and environmental
consequences in the HWEM

Fig. 3. Hydrologic and agronomic processes included in the HWEM
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requirements, or both�. The objective of this type of model can be
defined to maximize water supply reliability �ReVelle 1999�. One
example of the formulation of such models is expressed as �Cai
and McKinney 1997�

Maximize MRI or Maximize �TRI + � · MRI�

.s . t . St+1 = St + It − Et − REt − WSt ∀ t = 1,2 . .

Et = E�St,St+1� ∀ t = 1,2 . .

St � K ∀ t = 1,2 . .

RIt = WSt/WDt ∀ t = 1,2, . .

MRI � RIt ∀ t = 1,2, . .

TRI = �
t

WSt��
t

WDt �2�

where WS=water supply; WD=water demand; RI=ratio of water
supply over demand; MRI is defined as the minimum RI over all
time periods; and TRI=ratio of total supply over demand in all
time periods. The objective is to maximize MRI or a combination
of TRI and MRI, with a weight � for MRI representing the prior-
ity on the vulnerability of water supply.

Checking this formulation against the three conditions for a
well-defined optimization problem discussed above, there are four
concerns. First, the model objective may not exactly represent the
real management objectives of reservoir operation. The operation
rules may be driven by other objectives rather than maximizing
the supply-demand ratios. For example, maximizing hydropower
generation can also be an objective. This can be usually dealt with
by using multiobjective optimization programming. Second, the
objective function includes an uncertain item—water demand—
which is usually treated as a fixed parameter in the model, but
actually changes dynamically with economic incentives and wel-
fares. Even if water demand is treated as a variable, it is very
inappropriate to fix the demand by a full set of constraints.
Finally, observed values of reservoir storages and releases under a
base level of inflow and water demand do exist.

We often find that the modeled “optimal” reservoir operations
are very different from the actual. On one hand, this is expected
since reservoir management in the real world does not follow the
“wise” operations indicated by the model �this is exactly why we
need the help of such a model�; on the other hand, reservoir
managers in the real world may find it difficult to use the “optimal
solution” from the model. There can be many reasons for this.
From the physical water supply side, a common problem is that
the uncertainty of inflows is not fully captured in the model for-
mulation. However, the discussion on the model formulation
above may imply that several, more important causes exist.

From a practical perspective, reservoir managers may expect a
model that: �1� reveals the actual operations under a baseline
scenario that includes the real world physical processes and so-
cioeconomic conditions that exist during the baseline period; and
�2� provides an optimal solution if some physical processes and/or
socioeconomic conditions are different from the baseline. The
analysis from such as model will allow reservoir managers to
know what operations or policies could make a difference from
the current status and what changes will fit to their priority.

The HWEM that we study here is actually an extension of a
traditional water supply system model. It extends the spatial do-

main to a river basin including multiple reservoirs, river reaches,
and water use sites, and maximizes the economic profit of water
uses in the whole basin. As argued above, it is difficult for an
HWEM to reveal actual decisions and consequences due to the
incomplete depiction of the real-world physical status and
decision-making processes, which involve many implicit and
qualitative factors. Calibration of the HWEM to a base level is
then required in order to make it more applicable for policy analy-
sis. In the following, we discuss how to make the HWEM a
“positive” model following the concept of PMP.

Calibration of the HWEM

The HWEM is an extended economic model with not only an
agricultural production component and nonagricultural profit
functions, but also physically based water resources and agroen-
vironmental components as “constraints.” The PMP approach
conceptually applies to the HWEM; that is, although there is no
complete data to specify a constraint set to reproduce the output at
the base level, the economic component of the model can be
calibrated to the base level using the observations at the base level
as references, without adding new constraints to the model.

However, the quadratic programming and the parameter calcu-
lation procedure under the original PMP may not work effectively
for the HWEM. Instead of the linear model that originally dealt
with by the PMP approach, the HWEM is a complex nonlinear
model with nonconvex nonlinearity in the constraint sets �Cai
et al. 2001b�. Moreover, the HWEM has hydrologic, engineering,
agronomic, and economic relationships in a consistent model. The
parameters in various components have to be calibrated in an
integrated framework due to the interdependence among the
parameters. In this study, we develop a new form of formulation
to include “positive inferences” based on the baseline observa-
tions. We also propose a new approach for the implementation of
the integrated calibration procedure. The original PMP, which is
applied at the farm level for optimizing crop production, is then
extended to optimize water allocation and water supply system
operations at the basin �or region� level, as well as crop produc-
tion at the irrigation district level.

To build a “positive” HWEM, the model calibration needs to
match a large number of computed values with observed or re-
corded values under given climate regime and agricultural inputs.
The items include the following: �1� flow through river reaches
and reservoirs; �2� water withdrawals for both agricultural de-
mand sites and municipal and industrial sites; �3� crop harvested
area and yield; and �4� farmer incomes and profit from industrial
and municipal water uses. Therefore, the calibration includes
matching a large number of model outputs with the observations
and parameters we need to adjust. Because these items are inter-
dependent, they should be handled simultaneously as discussed in
the following.

Crop Yield, Area, and Profit

The crop yield function has been developed based on econometric
analysis of an agricultural production survey carried out in the
Maipo River basin during the months of August to October of
1999 by the Catholic University of Chile. Crop yield has been
estimated as a function of several agricultural inputs, including
irrigation investment, application of fertilizer, pesticides, machin-
ery, labor, and water. In order to establish a relationship between
agricultural inputs and crop yield, a quadratic production function
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is chosen due to its properties of decreasing marginal returns to
additional inputs and substitutability of inputs �Howitt and
Msangi 2002�. Due to the limited data availability on those in-
puts, the current model calibration exercise treats all inputs except
for water as “invariable.” It focuses on the effect of water on crop
yield, which is usually subject to major uncertainties. Therefore,
crop yield is represented as a quadratic function of water appli-
cation

yd,c = �0d,c + �1d,c · wd,c + �2d,c · wd,c
2 �3�

where d=demand site; c=crop; y=crop yield; w=seasonal water
application; and �i, i=0,1 ,2 are coefficients, with �0�0, and
�2�0.

Net crop profit �np� is calculated as

npd,c = ad,c · �PCc · yd,c − �
i�I

ICd,c
i · INPTd,c

i � �4�

where i=index for inputs including water, irrigation investment,
fertilizer, pesticides, labor, machinery, and seed; a=crop area;
PC=crop price; IC=input cost; and INPT=input per unit of area.
If all items on the right-hand side of Eq. �4� are equal to the
“observed values” under the base level, net crop profit will be
equal to the actual value. In this study, we ignore the uncertainty
effects of crop prices and input costs and assume that net crop
profit depends on crop acreage and yield. Therefore, once crop
area and yield are calibrated, crop profit will be calibrated too.

As described above, crop yield �Eq. �3�� is a quadratic function
of water, which is in the form that was used in the PMP approach
by Howitt �1995�; the coefficients in Eq. �3� are determined by
regression based on a field survey �Cai et al. 2005�. Our comput-
ing experiments showed that the HWEM including the yield func-
tion did not automatically result in crop yields and areas that
matched the observed values. This, of course, may be due to the
error associated with the yield function. However, we would
argue that the difference between the modeled and the observed
yield might be mainly caused by water allocation among crops
and among demand sites, which are characterized by agroenvi-
ronmental simulations and institutional constraints involved in the
HWEM. In the river basin context, water supply to spatially dis-
tributed demand sites is characterized by natural flows, water sup-
ply facilities, and institutional rules. If these factors were spatially
homogenous, water availability would be homogenous. Then ac-
cording to the microeconomic theory, all crops at all demand sites
would reach an equal marginal value at the base level �Rohm and
Dabbert 2003�. Obviously spatial homogeneity normally does not
exist in the real world; the HWEM attempts to simulate the het-
erogeneity of water availability by including essential hydrologic,
infrastructural, and institutional relationships. Due to the spatial
heterogeneity of environmental and institutional factors, the opti-
mal solution of the HWEM may not result in an equal marginal
value of water use. For example, at one demand site, a crop has a
relatively higher yield than the same crop at other demand sites,
but the constraint of water rights for that demand site may prevent
the realization of the potential crop yield, which results in a
higher marginal value of the crop at that demand site than at
others. Cai et al. �2005� provided the marginal gross value of
crops and marginal values of water use for crops in the Maipo
River basin from a normative HWEM.

Therefore, additional references are needed to make the
HWEM positive in terms of crop yield. Following the original
PMP approach, we may adjust the coefficient of the nonlinear
item �2 in Eq. �3� for all crops in all demand sites simultaneously.
However, we chose an alternative form that was expected to more

directly relate to water allocation among crops. By Eq. �3�, with
other fixed inputs, calibrating crop yield will be realized by ad-
justing water application. In other words, given wd,c=wd,c

0 , then
yd,c=yd,c

0 . By substituting yd,c=yd,c
0 into Eq. �3�, wd,c

0 can be
solved. By including wd,c

0 in the crop profit function, the equation
of net crop profit is modified as

npd,c = ad,c · �PCc · yd,c − �
i�I

ICd,c
i · INPTd,c

i − �1d,c · �wd,c − wd,c
0 ��

�5�

where �1 represents a penalty cost for water that differs from the
base-level values. If wd,c�wd,c

0 , �1 is the cost for increasing water
use for a crop by one unit; otherwise it is the cost for reducing
water use by one unit.

Following the same idea for calibrating crop yield, a nonlinear
item of crop area is added to the crop profit function, and the final
profit function is formulated as

npd,c = ad,c · �PCc · yd,c − �
i�I

ICd,c
i · INPTd,c

i − �1d,c · �wd,c − wd,c
0 ��

− �2d,c · �ad,c − ad,c
0 � �6�

where if ad,c�ad,c
0 , �2 represents a penalty cost for increasing the

crop area by one unit for a specific crop; otherwise it represents a
penalty cost for reducing the area by one unit. Howitt �1995�
showed that the ability to adjust some nonlinear parameters in the
objective function could improve model calibration. He proved a
corollary that stated, “the number of calibration terms in the ob-
jective function must be equal to or greater than the number of
independent variables to be calibrated.” In Eq. �6�, the number of
calibration terms �1 and �2 are equal to the number of crop yield
and area variables �yd,c and ad,c�.

Water Withdrawals to Irrigation Demand Sites

If actual water withdrawals for irrigation demand sites are avail-
able, the computed water withdrawals can be calibrated to actual
values. Water withdrawal for an irrigation demand site �wwd

t for
irrigation purpose� is equal to the sum of the water applications
over all crops plus conveyance and distribution losses. If we de-
fine a conveyance and distribution loss factor as l, then we have

wwd
t · �1 − ld

t � = �
c

wcpd,c
t ∀ d,t �7a�

wwd
t = �

c

wcpd,c
t /�1 − ld

t � ∀ d,t �7b�

where wcp=crop water application by crop growth stage. The
sum of wcp over crop growth stages t equals the seasonal water
application �w in Eq. �3��. The loss coefficient varies over irriga-
tion demand sites d since different demand sites have different
irrigation systems and then different water use efficiencies. The
loss coefficient also varies with periods t, because in general
water loss is higher when the amount of water diversion is higher
and water diversions vary over time periods.

Given seasonal water availability, crop water application by
stage is determined by crop water requirements in crop growth
stages �Cai et al. 2003�. By Eq. �7�, once crop water application
and water loss factor l are determined, wwd

t can be determined.
Water withdrawals for industrial and domestic demand sites

can be calibrated to the observed values by adjusting economic
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parameters such as price elasticity of demand �Cai et al. 2005�.
For simplicity, these items were calibrated separately before the
integrated program presented in this paper.

Flow through River Reaches and Reservoir
Storage–Release Relationship

For a given river reach, the water flow balance at time period t
can be represented as

ofn
t = ifn

t − �
d��n,d�

wwd
t + �

d��d,n�
rfd

t − ifln
t �8�

where of =outflow from a river reach; if =inflow to a river reach;
ww=water withdrawal, as discussed above; rf =return flow from
demand sites; and ifl=instream flow loss which is normally esti-
mated as a fraction of inflow. With n as the index of river reaches,
�n ,d� and �d ,n� represent a set of flow connections between a
river reach and one or more demand sites; that is, �n ,d� specifies
the demand sites that withdraw water from the river reach, and
�d ,n� specifies the demand sites from which part of the water
withdrawal returns back to the river reach. Flow through a river
reach can be observed as either the inflow or the outflow; the
outflow from one river reach will be the inflow to the next down-
stream river reach. Given inflow if, water withdrawals ww deter-
mined by other relationships �Eq. �7��, and estimated instream
flow loss, outflow of can be determined if return flow is specified.
In this study, return flow rf from an irrigation demand site to a
river reach n is calculated as

rf�d,n�
t = �

�d,n�
��

c

dpd,c
t · �d · �1 − �d� + ds�d,n�

t 	 ∀ d,t �9�

where rf =sum of surface drainage, part of the field percolation
�dp� from all fields, plus subsurface drainage from a groundwater
source associated with an irrigation demand site d; �=drainage
efficiency, defined as the ratio of drainage to field percolation; �
specifies the evaporation and seepage loss during the path of sur-
face drainage returning to the river system; and ds=discharge
from groundwater to the surface system. These parameters vary
with demand site due to different conditions of the drainage sys-
tems in different demand sites. A linear relationship is assumed
between the discharge ds and the water table head h of an aquifer
�Smedema and Rycroft 1990�

ds�d,n�
t = ��d · GAd� · hd

t �10�

where GA=average area of the groundwater tank �approximately
the sum of the irrigated area in a demand site�. The aquifer is
assumed to be a single “tank” associated with a specific irrigation
demand site. Tank inflow includes natural recharge, surface water
leakage, and deep percolation from irrigation fields; tank outflow
includes pumping, groundwater extraction to root zones, and dis-
charge to surface water systems ds. The calibration of return
flows is conducted through the determination of appropriate val-
ues for the drainage efficiency �, the evaporation and seepage loss
of surface drainage �, and the discharge coefficient �. It should be
noted that deep percolation �dp in Eq. �9�� and groundwater head
�h in Eq. �10�� depend on water application in the crop field and
also relate to decisions on water allocation and crop acreage.

Contrary to the water flow balance of a river reach, which
ignores the impact of storage, the impact of storage should be
accounted for reservoirs. Water balance in a reservoir is written as

sn
t = sn

t−1 + ifn
t − �

d��n,d�
wwd

t − en
t − rn

t �11�

where s=storage; e=net evaporation from the reservoir surface;
and r=release. Reservoir inflow if can be a given parameter or it
can be designated as the outflow from the upstream river reach
�of in Eq. �12��. The calibration of water withdrawal from a res-
ervoir has been discussed before. Evaporation can be estimated as
a portion of the reservoir storage �ReVelle 1999�. With these
specifications, only one requirement is left for the calibration of
reservoir operations—the relationship between storage and reser-
voir release to a downstream river reach. If this relationship is
characterized by physical facilities �e.g., the design of spillways�,
then the relationship should be included in the model formulation
as an explicit constraint. However, if the relationship is controlled
by a designed “operation curve,” then, for the base-level case, the
storage–release is constrained by the designed reservoir operation
curve. For an alternative scenario analysis on reservoir opera-
tions, we can search the storage–release relationship for an opti-
mal solution.

To summarize, the calibration of an HWEM involves the ad-
justment of a large number of parameters with uncertain values in
order to make model outputs match the observed values. These
items are dependent upon each other in a holistic model, and they
must be calibrated simultaneously. Fig. 4 shows a diagram of data
that needs to be calibrated and the parameters that are adjusted
during the calibration process. This figure also shows the relation-
ships between different items involved in the calibration
procedure.

Now the challenge is how to implement the integrated model
calibration framework described above. The original PMP auto-
matically calibrates the model in terms of output, input use,
objective function values, and dual values. Theoretically the
automatic approach will work for the calibration of the HWEM if
the basic concavity and convexity conditions apply. However, to
search a large number of interdependent economic and physical
items simultaneously, a numerical approach might be more real-
istic. A numerical approach does not need to predetermine an
explicit form of the items to calibrate, but searches appropriate
values of the items by running the HWEM model that embeds the
interdependence among the items in its formulation. In the fol-
lowing, we apply a numerical approach based on a genetic algo-
rithm to the calibration of the HWEM.

Implementing the Calibration Procedure—Genetic
Algorithm

The calibration procedure requires that we search for the appro-
priate values of the parameters shown in Fig. 5, with which the
hydrologic and economic outputs from the model at the baseline
level match the observations. A trial-and-error search method was
found to be very time consuming. The convergence of a trial-and-
error method is also in doubt. An advanced search approach based
on genetic algorithms was then developed and applied to the
implementation of the HWEM calibration.

GAs are a subclass of general artificial-evolution search meth-
ods based on natural selection and the mechanisms of population
genetics. They belong to a family of optimization techniques in
which the solution space is searched by generating candidate so-
lutions with the help of a pseudorandom number generator. These
algorithms rely on collective learning processes within a popula-
tion of individual candidate solutions, each of which represents a
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point in the space of potential solutions. The basics of GAs were
introduced by Goldberg �1989�. Since then there have been wide
applications of GAs in water resources. Particularly, GAs have
been used for calibrating models in water resources, including
rainfall-runoff models �Wang 1991; Cheng et al. 2002�, water
distribution network models �Meier and Barkdoll 2000; Kapelan
et al. 2003� and water quality models �Mulligan and Brown
1998�.

In this paper, we use a hybrid GA presented by Cai et al.
�2001c� to solve the calibration problem of an HWEM. The hy-
brid GA is an integration of a mathematical programming model
and a simple GA �Goldberg 1989�. As shown in Fig. 5, in each of
the iterations �generations�, the GA searches the values of the
parameters to calibrate by generating a set of alternatives �indi-
viduals� of the parameter values. The GA alternatives are sent to
the HWEM, which solves for the model outputs that need to
match the observed values, including crop yields and areas, water
withdrawals, and flows through river reaches and reservoirs. A
fitness program calculates the fitness for each of the alternative
sets of parameters generated by the GA based on the difference
between the modeled and observed values �items marked by
zero�, as

fit = ��
d,c

�ad,c − a0d,c

a0d,c
�2

+ �
d,c

� yd,c − y0d,c

y0d,c
�2

+ �
d,t
�wwd

t − ww0d
t

ww0d
t �2

+ �
n,t
�ofn

t − of0n
t

of0n
t �2�−1

�12�

Based on the probabilities calculated from the individual’s fit-
ness values, individuals are selected for “mating” to produce off-
spring for the next generation. This means that strings with a
higher value of fitness have a higher probability of participating
in reproduction and contributing one or more offspring to the next
generation. Therefore, the search is improved generation by
generation.

Some details on the GA implementation are given below. To-
tally there are 364 variables for the GA. Six bits are used to
encode one variable, and the total length of one chromosome
�gene organization for one individual� is 2,184 bits. Each genera-
tion has 100 individuals. By test, the best mutation probability
and crossover probability are 0.08 and 0.9, respectively. For each
generation, the best 10 solutions are kept for next generation, and
this elitism strategy is found to be effective in improving the GA
solution.

The ranges of the 364 variables affect the GA performance in
terms of the time to convergence. It is a challenge to determine
appropriate ranges for so many variables given the interdepen-
dence that exists among them. The ranges of the physical items
�such as the water distribution/conveyance loss rate l, drainage
efficiency �, and the discharge coefficient �� were found in litera-
ture. The initial value of the marginal cost of water used the water

Fig. 4. Integrated framework for the calibration of the HWEM �for simplicity, * items were estimated before the integrated program presented
in this study�

Fig. 5. Hybrid GA—mathematical programming method for the
calibration of the HWEM
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price. The marginal cost of land used the marginal profit of land
use were derived from the dual solution of the model. For each
variable, the range of the variable was set as the �iv1 · lb, iv1 ·ub�,
i.e., the initial value iv1 multiplied by a selected lower lb and
upper bound ub �e.g., 0.5 and 2.0�. To test the robustness of the
initial values, the GA ran with the variable ranges �iv1 · lb, iv1 ·ub�
up to a certain generation, and the best solution from that genera-
tion was used to update the initial values �from iv1 to iv2�; a new
set of ranges was established as �iv2 · lb, iv2 ·ub�. This step was
repeated for a series of updates. Fig. 6 plots the results from three
runs. Although the results from the three runs are divergent in
early generations, they converge to a close fitness value after
approximately 300 generations. The GA program is then robust
with the chosen initial values. Fig. 7 shows the GA solution up to
1,000 generations. Between 300 and 1,000 generations, the solu-
tion is only slightly improved.

Discussion

The fitness value of the best solution found by the hybrid GA is
about 0.29, which means the sum of the square errors is 1 /0.29
=3.4, and the average square error over all items is 0.005
�3.4 divided by 720, the total number of the items to calibrate as
shown in Eq. �12��. Therefore, given this set of parameters for the
HWEM, the model outputs match the observed with reasonable
errors. Table 1 shows the penalty costs of water and land use, �1

and �2 for selected crops in eight irrigation demand sites, respec-
tively. Generally, lower-valued crops such as annual forage and
corn have lower penalty costs. Lower-penalty costs with lower-
valued crops will prevent the water and land application at the
base level being “taken to” higher-valued crops in order to main-
tain the area and yield of lower-valued crops at the base level.
While higher penalty costs with higher-valued crops prevent those
crops using more water and land than the base level.

Penalty costs of land use ��2� vary more significantly among
demand sites and crops. The value of �2 is largely dependent on
the size of the crop area under the base level; higher values of �2
are associated with larger crop areas. For example, at demand site
A7, the penalty costs of land use for grape and peach are even
lower than those for lower-valued crops such as wheat, corn, and
forage, while at other demand sites, the penalty costs of land use
for grape and peach are much higher than other crops. This is
because the areas of grape and peach at demand site A7 are very
small relative to the other crops, and it seems that there is a larger
potential for increasing the area of grape and peach at A7.

The land costs also seem to be affected by the degree of water
stress. For crop profitability under larger water stress, there will
be a larger driving force to reduce the land of lower-valued crops
and to increase the land of high-valued crops. The high land costs
then tend to prevent the increase of the higher-valued crop land;
while the low land costs allow the maintenance of the crop land
for lower-valued crops at the base level. This helps explain the
particularly high penalty costs of land use for grape and peach at
demand site A6, which suffers a larger water stress than other
demand sites.

Table 2 shows the water distribution/conveyance loss coeffi-

Table 1. Calibrated Penalty Costs of Land and Water Use by Crop in Eight Irrigation Demand Sites

Demand
sites/crops

Penalty cost of land use, �2
�US$/ha�

Penalty cost of water use, �1
�US$ /m3�

Wheat Corn Annfor Grape Peach Wheat Corn Annfor Grape Peach

A1 99 153 97 2,727 5,335 1.2E−03 5.7E−04 0.0E+00 1.7E−03 2.6E−03

A2 823 826 125 2,274 3,765 2.1E−04 1.8E−04 2.2E−07 1.6E−03 3.1E−03

A3 74 614 197 1,627 4,220 1.5E−04 1.3E−04 0.0E+00 3.0E−03 3.4E−03

A4 14 178 13 1,303 4,854 9.6E−05 3.4E−04 9.6E−10 1.8E−03 2.8E−03

A5 203 503 210 2,644 1,467 4.0E−05 3.0E−04 1.6E−05 2.4E−03 8.3E−03

A6 61 147 42 6,704 5,075 3.5E−04 1.0E−03 7.9E−06 1.3E−03 2.8E−03

A7 673 124 187 26 33 1.8E−04 4.1E−04 2.3E−05 2.1E−03 1.8E−03

A8 457 54 8 3,413 2,947 2.8E−04 2.4E−04 0.0E+00 4.9E−03 7.5E−04

Fig. 6. Three GA runs with different ranges for the GA variables,
showing the highest fitness from each generation �ranges were
established as described in the text�

Fig. 7. GA solutions improved with growing generations up to the
generation of 1,000
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cients by demand site �A1-A8� by month. During May–July �win-
ter in the study area�, there is no irrigation. During the summer
months �December, January, and February�, the coefficients are
higher than other months. This is as expected because of larger
flow diversions during these months, which usually correspond to
larger loss rates in irrigation systems. Also, upstream demand
sites �A1, A2, A4, and A8� have relatively higher loss rates than
downstream. This is due to the fact that the upper lands in the
study basin have larger water availability than the lower lands,
and the upstream demand sites have larger water withdrawals
relative to their actual requirements.

Table 3 shows the calibrated values of drainage efficiency �
and the drainage loss rate � �evaporation and seepage� by demand
site and Table 4 shows the discharge coefficient � by month. In
general, upstream demand sites �A1, A2, A4, and A8� have higher
values of drainage efficiency and lower values of discharge coef-
ficient. This implies that it is more likely that return flow from an
upstream irrigation district flows back to the river through surface
drainage, and less likely through subsurface flow than a down-
stream demand irrigation district. In addition, drainage loss rates
are higher in summer months due to high evaporation in those
moths.

The calibrated HWEM �positive model� and the uncalibrated
HWEM �normative model� are compared regarding the impact of
changing water prices on water withdrawals. Fig. 8 plots water
withdrawals versus water prices from the two models, respec-
tively. As can be seen, under the same water price, the normative
model results in a higher water withdrawal than the positive
model, although the difference declines when water prices in-
crease. Moreover, it seems that the normative model is more sen-
sitive to the change of water prices; while the positive model is
more robust with changing water prices, and it becomes static
when the water price is approximately larger than 0.025 $ /m3. A
plausible reason is that the uncalibrated model is more “flexible”

and has more space for searching a new solution corresponding to
the change of water prices.

Regarding the GA-based implementation approach, a couple
of points are worthy of further discussion. Although the GA
searches a unique set of parameters for the positive model, it
cannot be guaranteed that such a unique set of over 300 param-
eters exists. There might be multiple sets of parameters which
result in essentially the same fitness value. This problem, namely
“equifinality,” was addressed by Beven �2001� and has been stud-
ied for hydrologic model calibration and validation. Equifinality
may be caused by substitutional relations among parameters. In
this specific study, the sets of parameters that result in similar
fitness value converge to similar parameter values, which does not
show a problem of equifinality. However, equifinality between
economic and hydrologic parameters may exist with other cases;
and insights of such relations might be valuable to further under-
stand the interactions between human and natural systems.

In addition, to build a positive model, the selection of both
hydrologic and economic parameters is important, as demon-
strated earlier. First of all, these parameters are known only
within a certain range; a sufficient number of parameters need to
be adjusted within the plausible range to make the hydrologic and
economic outputs match the observed. On the other hand, the
number of the parameters should be controlled in order to avoid
the computational difficulty.

Conclusions

Positive mathematical programming is more appropriate for an
HWEM, which is formulated as a consistent optimization model
with embedded water balance and crop production simulation.
This paper presents a procedure to convert an existing normative

Table 2. Calibrated Water Distribution/Conveyance Loss Rate by Month in Eight Irrigation Demand Sites

January February March April May-July August September October November December

A1 0.52 0.45 0.35 0.31 n/a 0.02 0.18 0.22 0.24 0.33

A2 0.36 0.39 0.33 0.28 n/a 0.07 0.24 0.26 0.26 0.37

A3 0.35 0.26 0.33 0.20 n/a 0.06 0.19 0.22 0.35 0.37

A4 0.32 0.34 0.30 0.31 n/a 0.05 0.19 0.25 0.22 0.29

A5 0.48 0.38 0.34 0.25 n/a 0.06 0.11 0.25 0.28 0.31

A6 0.31 0.33 0.30 0.23 n/a 0.03 0.11 0.22 0.25 0.21

A7 0.44 0.40 0.28 0.18 n/a 0.08 0.19 0.18 0.25 0.35

A8 0.40 0.41 0.40 0.33 n/a 0.00 0.00 0.31 0.27 0.37

Note: n/a	not applicable.

Table 3. Calibrated Values of Drainage Efficiency and Discharge Coefficient by Demand Site

Demand sites A1 A2 A3 A4 A5 A6 A7 A8

Drainage efficiency, � 0.552 0.571 0.426 0.598 0.455 0.479 0.498 0.488

Discharge coefficient, � 0.003 0.003 0.004 0.004 0.003 0.005 0.004 0.003

Table 4. Calibrated Values of Drainage Loss Coefficient by Month

Month January February March April May June July August September October November December

Drainage loss, � 0.440 0.420 0.303 0.354 0.338 0.313 0.367 0.414 0.430 0.459 0.411 0.471
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model to a positive one through calibrating the major model out-
puts of the HWEM to the base level. We identify some economic
and hydrologic parameters that need to be adjusted to match crop
areas and yields, water withdrawals, and flows through river
reaches and reservoirs with the observed values. Due to the inter-
dependence among a large number of the parameters to calibrate,
an integrated framework based on a hybrid GA is applied to
implement the calibration. The algorithm is successful in finding
the values for the set of parameters, which make the model out-
puts match the observed with acceptable errors. The values are
explainable and understandable from the point of view of the
physical and economical implications. The difference between the
calibrated and the uncalibrated models �the positive model versus
the normative model� in responding to the change of water prices
has demonstrated the significance of the model calibration work.
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