A UNIFIED GENERATING FUNCTION OF THE q-GENOCCHI POLYNOMIALS WITH THEIR INTERPOLATION FUNCTIONS

SERKAN ARACI, MEHMET AÇIKGÖZ, HASSAN JOLANY, AND JONG JIN SEO

Abstract

The purpose of this paper is to construct of the unification $q-$ extension Genocchi polynomials. We give some interesting relations of this type of polynomials. Finally, we derive the q-extensions of Hurwitz-zeta type functions from the Mellin transformation of this generating function which interpolates the unification of q-extension of Genocchi polynomials.

1. Introduction, Definitions and Notations

Recently, many mathematician have studied to unification Bernoulli, Genocchi, Euler and Bernstein polynomials (see [20,21]). Ozden [20] introduced p-adic distribution of the unification of the Bernoulli, Euler and Genocchi polynomials and derived some properties of this type of unification polynomials.

In [20], Ozden constructed the following generating function:

$$
\begin{equation*}
\sum_{n=0}^{\infty} y_{n, \beta}(x ; k, a, b) \frac{t^{n}}{n!}=\frac{2^{1-k} t^{k} e^{x t}}{\beta^{b} e^{t}-a^{b}},\left|t+b \ln \left(\frac{\beta}{a}\right)\right|<2 \pi \tag{1.1}
\end{equation*}
$$

where $k \in \mathbb{N}=\{1,2,3, \ldots\}, a, b \in \mathbb{R}$ and $\beta \in \mathbb{C}$. The polynomials $y_{n, \beta}(x ; k, a, b)$ are the unification of the Bernoulli, Euler and Genocchi polynomials.

Ozden showed, $\beta=b=1, k=0$ and $a=-1$ into (1.1), we have

$$
y_{n, 1}(x ; 0,-1,1)=E_{n}(x),
$$

where $E_{n}(x)$ denotes classical Euler polynomials, which are defined by the following generating function:

$$
\begin{equation*}
\frac{2 e^{x t}}{e^{t}+1}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!},|t|<\pi, \tag{1.2}
\end{equation*}
$$

In [5,20], classical Genocchi polynomials defined as follows:

$$
\begin{equation*}
\frac{2 t e^{x t}}{e^{t}+1}=\sum_{n=0}^{\infty} G_{n}(x) \frac{t^{n}}{n!}, \quad|t|<\pi, \tag{1.3}
\end{equation*}
$$

From (1.2) and (1.3), we easily see,

$$
\begin{equation*}
G_{n}(x)=n E_{n-1}(x), \tag{1.4}
\end{equation*}
$$

Date: April 18, 2011.
1991 Mathematics Subject Classification. 05A10, 11B65, 28B99, 11B68, 11B73.
Key words and phrases. Genocchi numbers and polynomials, q-Genocchi numbers and polynomials.

For a fixed real number $|q|<1$, we use the notation of q-number as

$$
[x]_{q}=\frac{1-q^{x}}{1-q}, \quad(\text { see }[1-4,6-24])
$$

Thus, we note that $\lim _{q \rightarrow 1}[x]_{q}=x$.
In $[1,7,8,10], q$-extension of Genocchi polynomials are defined as follows:

$$
G_{n+1, q}(x)=(n+1)[2]_{q} \sum_{l=0}^{\infty}(-1)^{l} q^{l}[x+l]_{q}^{n}
$$

In [2], (h, q)-extension of Genocchi polynomials are defined as follows:

$$
G_{n+1, q}^{(h)}(x)=(n+1)[2]_{q} \sum_{l=0}^{\infty}(-1)^{l} q^{(h-1) l}[x+l]_{q}^{n}
$$

In this paper, we shall construct unification of q-extension of the Genocchi polynomials, however we shall give some interesting relationships. Moreover, we shall derive the q-extension of Hurwitz-zeta type functions from the Mellin transformation of this generating function which interpolates.

2. Novel Generating Functions of q-Extension of Genocchi POLYNOMIALS

Definition 1. Let $a, b \in \mathbb{R}, \beta \in \mathbb{C}$ and $k \in \mathbb{N}=\{1,2,3, \ldots\}$, Then the unification of q-extension of Genocchi polynomials defined as follows:

$$
\begin{equation*}
F_{\beta, q}(t, x \mid k, a, b)=\sum_{n=0}^{\infty} S_{n, \beta, q}(x \mid k, a, b) \frac{t^{n}}{n!} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{\beta, q}(t, x \mid k, a, b)=-[2]_{q}^{1-k} t^{k} \sum_{m=0}^{\infty} \beta^{b m} a^{-b m-b} e^{[m+x]_{q} t} \tag{2.2}
\end{equation*}
$$

where into (2.1) substituting $x=0, S_{n, \beta, q}(0 \mid k, a, b)=S_{n, \beta, q}(k, a, b)$ are called unification of q-extension of Genocchi numbers.

As well as, from (2.1) and (2.2) Ozden's constructed the following generating function, namely, we obtain (1.1),

$$
\lim _{q \rightarrow 1} F_{\beta, q}(t, x \mid k, a, b)=\frac{2^{1-k} t^{k} e^{x t}}{\beta^{b} e^{t}-a^{b}}
$$

By (2.2), we see readily,

$$
\begin{aligned}
\sum_{n=0}^{\infty} S_{n, \beta, q}(x \mid k, a, b) \frac{t^{n}}{n!} & =-[2]_{q}^{1-k} t^{k} \sum_{m=0}^{\infty} \beta^{b m} a^{-b m-b} e^{[m+x]_{q} t} \\
& =\frac{e^{[x]_{q} t}}{q^{k x}}\left(-[2]_{q}^{1-k}\left(q^{x} t\right)^{k} \sum_{m=0}^{\infty} \beta^{b m} a^{-b m-b} e^{\left(q^{x} t\right)[m]_{q}}\right) \\
& =q^{-k x}\left(\sum_{n=0}^{\infty}[x]_{q}^{n} \frac{t^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} q^{n x} S_{n, \beta, q}(k, a, b) \frac{t^{n}}{n!}\right)
\end{aligned}
$$

From (2.3) by using Cauchy product we get

$$
\sum_{n=0}^{\infty} S_{n, \beta, q}(x \mid k, a, b) \frac{t^{n}}{n!}=q^{-k x} \sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\binom{n}{l} q^{l x} S_{l, \beta, q}(k, a, b)[x]_{q}^{n-l}\right) \frac{t^{n}}{n!}
$$

By comparing coefficients of $\frac{t^{n}}{n!}$ in the both sides of the above equation, we arrive at the following theorem:

Theorem 1. For $a, b \in \mathbb{R}, \beta \in \mathbb{C}$ which k is positive integer. We obtain

$$
S_{n, \beta, q}(x \mid k, a, b)=\sum_{l=0}^{n}\binom{n}{l} q^{l x} S_{l, \beta, q}(k, a, b)[x]_{q}^{n-l}
$$

As well as, we obtain corollary 1 :
Corollary 1. For $a, b \in \mathbb{R}, \beta \in \mathbb{C}$ which k is positive integer. We obtain,

$$
\begin{equation*}
S_{n, \beta, q}(x \mid k, a, b)=\left(S_{\beta, q}(k, a, b)+[x]_{q}\right)^{n} \tag{2.4}
\end{equation*}
$$

with usual the convention about replacing $\left(S_{\beta, q}(x \mid k, a, b)\right)^{n}$ by $S_{n, \beta, q}(x \mid k, a, b)$.
By applying the definition of generating function of $S_{n, \beta, q}(x \mid k, a, b)$, we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} S_{n, \beta, q}(x \mid k, a, b) \frac{t^{n}}{n!} & =-[2]_{q}^{1-k} t^{k} \sum_{m=0}^{\infty} \beta^{b m} a^{-b m-b}\left(\sum_{n=0}^{\infty}[m+x]_{q}^{n} \frac{t^{n}}{n!}\right) \\
& =\sum_{n=0}^{\infty}\left(-[2]_{q}^{1-k} \sum_{m=0}^{\infty} \beta^{b m} a^{-b m-b}[m+x]_{q}^{n}\right) \frac{t^{n+k}}{n!}
\end{aligned}
$$

So we derive the Theorem 2 which we state hear:
Theorem 2. For $a, b \in \mathbb{R}, \beta \in \mathbb{C}$ which k is positive integer. We obtain,

$$
\begin{equation*}
S_{n, \beta, q}(x \mid k, a, b)=-\frac{n![2]_{q}^{1-k}}{(n-k)!} \sum_{m=0}^{\infty} \beta^{b m} a^{-b m-b}[m+x]_{q}^{n-k} \tag{2.5}
\end{equation*}
$$

With regard to (2.5), we see after some calculations

$$
\begin{aligned}
S_{n, \beta, q}(x \mid k, a, b) & =-\frac{n![2]_{q}^{1-k}}{a^{b}(n-k)!}\left(\frac{1}{1-q}\right)^{n-k} \sum_{l=0}^{n-k}\binom{n-k}{l}(-1)^{l} q^{l x} \sum_{m=0}^{\infty}\left(\frac{\beta^{b}}{a^{b}}\right)^{m} q^{l m} \\
& =\frac{n![2]_{q}^{1-k}}{a^{b}(n-k)!}\left(\frac{1}{1-q}\right)^{n-k} \sum_{l=0}^{n-k}\binom{n-k}{l}(-1)^{l} q^{l x} \frac{1}{\beta^{b} q^{l}-a^{b}} \\
(2.6) & =\frac{k![2]_{q}^{1-k}}{a^{b}}\left(\frac{1}{1-q}\right)^{n-k} \sum_{l=0}^{n-k}\binom{n}{k}\binom{n-k}{l}(-1)^{l} q^{l x} \frac{1}{\beta^{b} q^{l}-a^{b}}
\end{aligned}
$$

From (2.6) and well known identity $\left[\binom{n}{k}\binom{n-k}{l}=\binom{n}{k+l}\binom{k+l}{k}\right]$, we obtain the following theorem:

Theorem 3. For $a, b \in \mathbb{R}, \beta \in \mathbb{C}$ which k is positive integer. We obtain
$S_{n, \beta, q}(x \mid k, a, b)=\frac{k![2]_{q}^{1-k}}{a^{b}}\left(\frac{1}{1-q}\right)^{n-k} \sum_{l=k}^{n}\binom{n}{l}\binom{l}{k}(-1)^{l-k} q^{(l-k) x} \frac{1}{\beta^{b} q^{l-k}-a^{b}}$

We put $x \rightarrow 1-x, \beta \rightarrow \beta^{-1}, q \rightarrow q^{-1}$ and $a \rightarrow a^{-1}$ into (2.7), namely,

$$
\begin{aligned}
& S_{n, \beta^{-1}, q^{-1}}\left(1-x \mid k, a^{-1}, b\right) \\
= & \frac{k![2]_{q^{-1}}^{1-k}}{a^{-b}}\left(\frac{1}{1-q^{-1}}\right)^{n-k} \sum_{l=k}^{n}\binom{n}{l}\binom{l}{k}(-1)^{l-k} q^{-(l-k)(1-x)} \frac{1}{\beta^{-b} q^{-(l-k)}-a^{-b}} \\
= & (-1)^{n-k} q^{k-1} q^{n-k} k![2]_{q}^{1-k} a^{b}\left(\frac{1}{1-q}\right)^{n-k} \sum_{l=k}^{n}\binom{n}{l}\binom{l}{k}(-1)^{l-k} q^{k-l} q^{(l-k) x} \frac{\beta^{b} q^{l-k} a^{b}}{a^{b}-\beta^{b} q^{l-k}} \\
= & (-1)^{n-k-1} q^{n-1} a^{3 b} \beta^{b}\left(\frac{k![2]_{q}^{1-k}}{a^{b}}\left(\frac{1}{1-q}\right)^{n-k} \sum_{l=k}^{n}\binom{n}{l}\binom{l}{k}(-1)^{l-k} q^{x(l-k)} \frac{1}{\beta^{b} q^{l-k}-a^{b}}\right) \\
= & (-1)^{n-k-1} q^{n-1} a^{3 b} \beta^{b} S_{n, \beta, q}(x \mid k, a, b)
\end{aligned}
$$

So, we obtain symmetric properties of $S_{n, \beta, q}(x \mid k, a, b)$ as follows:
Theorem 4. For $a, b \in \mathbb{R}, \beta \in \mathbb{C}$ which k is positive integer. We obtain

$$
S_{n, \beta^{-1}, q^{-1}}\left(1-x \mid k, a^{-1}, b\right)=(-1)^{n-k-1} q^{n-1} a^{3 b} \beta^{b} S_{n, \beta, q}(x \mid k, a, b) .
$$

By (2.2), we see

$$
\begin{align*}
& \frac{\beta}{a} F_{\beta, q}(t, 1 \mid k, a, b)-F_{\beta, q}(t, 0 \mid k, a, b) \\
= & \sum_{n=0}^{\infty}\left(\left(\frac{\beta}{a}\right) S_{n, \beta, q}(1 \mid k, a, b)-S_{n, \beta, q}(k, a, b)\right) \frac{t^{n}}{n!}=-\frac{[2]_{q}^{1-k}}{a^{b}} t^{k} \tag{2.8}
\end{align*}
$$

From (2.8), we obtain the following theorem:
Theorem 5. For $a, b \in \mathbb{R}, \beta \in \mathbb{C}$ which k is positive integer. We obtain

$$
S_{n, \beta, q}(k, a, b)-\left(\frac{\beta}{a}\right) S_{n, \beta, q}(1 \mid k, a, b)=\left\{\begin{array}{c}
0, \quad n \neq k \tag{2.9}\\
\frac{[2]]^{1-k}}{a^{b}} k!, n=k
\end{array}\right.
$$

From (2.4) and (2.9), we obtain corollary as follows:
Corollary 2. For $a, b \in \mathbb{R}, \beta \in \mathbb{C}$, which is k positive integer. We get

$$
S_{n, \beta, q}(k, a, b)-\frac{\beta}{a q^{k}}\left(q S_{\beta, q}(k, a, b)+1\right)^{n}=\left\{\begin{array}{c}
0, n \neq k \\
\frac{\left[21 q_{q}^{1-k}\right.}{a^{b}} k!, n=k
\end{array}\right.
$$

with the usual convention about replacing $\left(S_{\beta, q}(k, a, b)\right)^{n}$ by $S_{n, \beta, q}(k, a, b)$.

From (9), now, we shall obtain distribution relation for unification q-extension of Genocchi polynomials, after some calculations, namely,

$$
\begin{aligned}
S_{n, \beta, q}(x \mid k, a, b) & =-\frac{n![2]_{q}^{1-k}}{a^{b}(n-k)!} \sum_{m=0}^{\infty}\left(\frac{\beta}{a}\right)^{b m}[m+x]_{q}^{n-k} \\
& =-\frac{n![2]_{q}^{1-k}}{a^{b}(n-k)!} \sum_{m=0}^{\infty} \sum_{l=0}^{d-1}\left(\frac{\beta}{a}\right)^{b(l+m d)}[l+m d+x]_{q}^{n-k} \\
& =[d]_{q}^{n-k} \sum_{l=0}^{d-1}\left(\frac{\beta}{a}\right)^{b l}\left(-\frac{n![2]_{q}^{1-k}}{a^{b}(n-k)!} \sum_{m=0}^{\infty}\left(\frac{\beta^{d}}{a^{d}}\right)^{b m}\left[m+\frac{x+l}{d}\right]_{q^{d}}^{n-k}\right) \\
& =\frac{[2]_{q}^{1-k}}{[2]_{q^{d}}^{1-k}}[d]_{q}^{n-k} \sum_{l=0}^{d-1}\left(\frac{\beta}{a}\right)^{b l} S_{n, \beta^{d}, q^{d}}\left(\left.\frac{x+l}{d} \right\rvert\, k, a^{d}, b\right)
\end{aligned}
$$

Therefore, we obtain the following theorem:
Theorem 6. (distribution formula for $\left.S_{n, \beta, q}(x \mid k, a, b)\right)$ For $a, b \in \mathbb{R}, \beta \in \mathbb{C}$ which k is positive integer. We obtain,

$$
S_{n, \beta, q}(x \mid k, a, b)=\frac{[2]_{q}^{1-k}}{[2]_{q^{d}}^{1-k}}[d]_{q}^{n-k} \sum_{l=0}^{d-1}\left(\frac{\beta}{a}\right)^{b l} S_{n, \beta^{d}, q^{d}}\left(\left.\frac{x+l}{d} \right\rvert\, k, a^{d}, b\right)
$$

3. Interpolation function of the polynomials $S_{n, \beta, q}(x \mid k, a, b)$

In this section, we give interpolation function of the generating functions of $S_{n, \beta, q}(x \mid k, a, b)$ however, this function is meromorphic function. This function interpolates $S_{n, \beta, q}(x \mid k, a, b)$ at negative integers.

For $s \in \mathbb{C}$, by applying the Mellin transformation to (2.2), we obtain

$$
\begin{aligned}
\Im_{\beta, q}(s ; x, a, b) & =\frac{(-1)^{k+1}}{\Gamma(s)} \oint t^{s-k-1} F_{\beta, q}(-t, x \mid k, a, b) d t \\
& =[2]_{q}^{1-k} \sum_{m=0}^{\infty} \beta^{b m} a^{-b m-b} \frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} e^{-t[m+x]_{q} t}
\end{aligned}
$$

So, we have

$$
\Im_{\beta, q}(s ; x, a, b)=[2]_{q}^{1-k} \sum_{m=0}^{\infty} \frac{\beta^{b m} a^{-b m-b}}{[m+x]_{q}^{s}}
$$

We define q-extension Hurwitz-zeta type function as follows theorem:
Theorem 7. For $a, b \in \mathbb{R}, \beta, s \in \mathbb{C}$ which k is positive integer. We obtain,

$$
\begin{equation*}
\Im_{\beta, q}(s ; x, a, b)=[2]_{q}^{1-k} \sum_{m=0}^{\infty} \frac{\beta^{b m} a^{-b m-b}}{[m+x]_{q}^{s}} \tag{3.1}
\end{equation*}
$$

for all $s \in \mathbb{C}$. We note that $\Im_{\beta, q}(s ; x, a, b)$ is analytic function in the whole complex s-plane.

Theorem 8. For $a, b \in \mathbb{R}, \beta \in \mathbb{C}$ which k is positive integer. We obtain,

$$
\Im_{\beta, q}(-n ; x, a, b)=-\frac{(n-k)!}{n!} S_{n, \beta, q}(x \mid k, a, b)
$$

Proof. Let $a, b \in \mathbb{R}, \beta \in \mathbb{C}$ and $k \in \mathbb{N}$ with $k \in \mathbb{N}=\{1,2,3, \ldots\} . \Gamma(s)$, has simple poles at $z=-n=0,-1,-2,-3, \cdots$. The residue of $\Gamma(s)$ is

$$
\operatorname{Re} s(\Gamma(s),-n)=\frac{(-1)^{n}}{n!}
$$

We put $s \rightarrow-n$ into (3.1) and using the above relations, the desired result can be obtained.

References

[1] Araci, S., Erdal, D., and Kang, D-J., Some New Properties on the q-Genocchi numbers and Polynomials associated with q-Bernstein polynomials, Honam Mathematical J. 33 (2011) no.2, pp. 261-270.
[2] Araci, S., Seo, J.J., Erdal, D., Different Approach On The (h, q) Genocchi Numbers and Polynomials Associated with q-Bernstein Polynomials, (Submitted)
[3] Araci, S., Seo, J.J., Erdal, D., New Construction weighted (h, q)-Genocchi numbers and Polynomials Related to Zeta Type Functions, Discrete Dynamics in Nature and Society(in press).
[4] Araci, S., Erdal D., and Seo, J-J., A study on the fermionic p-adic q-integral representation on \mathbb{Z}_{p} Associated with weighted q-Bernstein and q-Genocchi polynomials, Abstract and Applied Analysis(in press).
[5] Jolany, H., and Sahrifi, H., Some Results for the Apostol-Genocchi polynomials of Higher Order, Accepted in Bulletin of the Malaysian Mathematical Sciences Society, arXiv:1104.1501v1 [math. NT].
[6] Ryoo. C-S., Kim, T., and Lee, B., q-Bernoulli numbers and polynomials revisited, Accepted in Advances in Difference Equations.
[7] Kim, T., On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007) 1458-1465.
[8] Kim, T., On the multiple q-Genocchi and Euler numbers, Russian J. Math. Phys. 15 (4) (2008) 481-486. arXiv:0801.0978 r 1 [math.NT]
[9] Kim, T., On the weighted q-Bernoulli numbers and polynomials, Advanced Studies in Contemporary Mathematics 21(2011), no.2, p. 207-215, http://arxiv.org/abs/1011.5305
[10] Kim, T., A Note on the q-Genocchi Numbers and Polynomials, Journal of Inequalities and Applications 2007 (2007) doi:10.1155/2007/71452. Article ID 71452, 8 pages.
[11] Kim, T., q-Volkenborn integration, Russ. J. Math. phys. 9(2002), 288-299.
[12] Kim, T., An invariant p-adic q-integrals on \mathbb{Z}_{p}, Applied Mathematics Letters, vol. 21, pp. 105-108,2008.
[13] Kim, T., q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys., 14 (2007), no. 1, 15-27.
[14] Kim, T., New approach to q-Euler polynomials of higher order, Russ. J. Math. Phys., 17 (2010), no. 2, 218-225.
[15] Kim, T., Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on \mathbb{Z}_{p}, Russ. J. Math. Phys., 16 (2009), no.4,484-491.
[16] Kim, T. and Rim, S.-H., On the twisted q-Euler numbers and polynomials associated with basic q-l-functions, Journal of Mathematical Analysis and Applications, vol. 336, no. 1, pp. 738-744, 2007.
[17] Kim, T., On p-adic q-l-functions and sums of powers, J. Math. Anal. Appl. (2006), doi:10.1016/j.jmaa.2006.07.071.
[18] Jang. L.-C., On a q-analogue of the p-adic generalized twisted L-functions and p-adic q integrals, Journal of the Korean Mathematical Society, vol. 44, no. 1, pp. 1-10, 2007.
[19] Ryoo. C. S., A note on the weighted q-Euler numbers and polynomials, Advan. Stud. Contemp. Math. 21(2011), 47-54.
[20] Ozden, H., Unification of generating function of the Bernoulli, Euler and Genocchi polynomials, Numerical Analysis and Applied mathematics (2010), Amer. Inst. Phys. Conf. Proc., vol. 1281, 2010, pp.1125-1128.
[21] Simsek, Y., Construction a new generating function of Bernstein type polynomials, Applied Mathematics and Computation, arXiv:1010.3711v1 [math.CA].
[22] Y. Simsek, Theorems on twisted L-function and twisted Bernoulli numbers, Advan. Stud. Contemp. Math., 11(2005), 205-218.
[23] Y. Simsek, Twisted (h, q)-Bernoulli numbers and polynomials related to twisted (h, q)-zeta function and L-function, J. Math. Anal. Appl., 324(2006), 790-804.
[24] Y. Simsek, On p-Adic Twisted q - L-Functions Related to Generalized Twisted Bernoulli Numbers, Russian J. Math. Phys., 13(3)(2006), 340-348.

University of Gaziantep, Faculty of Science and Arts, Department of Mathematics, 27310 Gaziantep, TURKEY

E-mail address: mtsrkn@hotmail.com
University of Gaziantep, Faculty of Science and Arts, Department of Mathematics, 27310 Gaziantep, TURKEY

E-mail address: acikgoz@gantep.edu.tr
School of Mathematics, Statistics and Computer Science, University of Tehran, Iran
E-mail address: hassan.jolany@khayam.ut.ac.ir
Department of Applied Mathematics, Pukyong National University, Busan, 608-737,Korea
E-mail address: seo2011@pknu.ac.kr

