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Yang-Mills connections of cohomogeneity one

on SO(n)-bundles over Euclidean spheres

Andreas Gastel

1 Introduction

For many geometric variational problems or p.d.e., there is a construction of spheri-
cal solutions via joins of spheres. Very roughly, these constructions use the fact that
Sm+n+1 is the join of Sm and Sn, which means a set made up from curves, each
one of which connects one point in Sm with one in Sn. These curves allow a com-
mon parametrization over [0, π2 ], say, and depending on this parameter t, one can try
to construct all kinds of geometric objects on Sm+n+1 from homogeneous objects of
the same type on Sm and Sn. Homogeneity of the latter helps reducing the par-
tial differential equations, which usually describe such objects, to ordinary differential
equations. The symmetries described here often, but not always, correspond to some
SO(m + 1) × SO(n + 1)-invariance or -equivariance of the objects being constructed.
This family of constructions has lead to examples of

• harmonic maps between spheres [Sm], [Di], [PR] (and also some variants like
p-harmonic maps [Fa] and biharmonic maps [GZ]);

• constant mean curvature hypersurfaces in R
n+1 [Hs1];

• non-equatorial minimal embeddings of Sn in Sn+1 [Hs2], [Hs3];

• Einstein metrics on spheres [Bo].

A common feature of these constructions is that they all reduce the original p.d.e.
to a (system of) o.d.e. with singular boundary values. They tend to work best in
dimensions which are slightly above the “critical dimension” of the respective equation.
An excellent source presenting the first three of the examples in a unified way is the
book [ER2].

The aim of this paper is to establish a similar construction for Yang-Mills connec-
tions; more precisely for Yang-Mills SO(n)-connections over some Sm, m ≥ 5. The join
construction for such connections will exhibit features similar to the ones listed above.
Note that, due to the supercritical dimension m ≥ 5 and to the fact that we cannot
work in a “Hermitian Yang-Mills” setting, there is currently no way to prove existence
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of such connections by variational methods. This is of course closely related to the lack
of good gauges for connections in these dimensions. We make up for this by choosing
a suitable equivariant ansatz which already is in a “good” gauge.

The methods we use are close to the methods for harmonic maps invented by Smith,
and the conditions for solvability are very reminiscent of the “damping conditions”
known from harmonic map theory. The most notable difference is that in our case the
equivariant ansatz does not reduce the problem to a single o.d.e., but to a system of
two o.d.e. This fact adds a little bit of the flavor of Böhm’s construction of Einstein
metrics to our considerations.

What we are going to construct are Yang-Mills connections of cohomogeneity one.
It should be noted that such connections over manifolds of dimension four have been
studied extensively by Urakawa [Ur], who also provides a very general reduction setting
for o.d.e. in Yang-Mills theory. The typical degree three nonlinearities for the o.d.e.s
found there and here probably appeared first in Parker’s construction of non-minimizing
Yang-Mills fields [Par]. Recently, Park and Urakawa [PU] have also studied completely
homogeneous Yang-Mills connections, which in a special case we will also have to do in
this paper.

The paper is organized as follows. In Section 2, we give a rather general short
introduction to equivariant Yang-Mills connections. Section 3 is devoted to a rather
more special case of homogeneous pull-back bundles of TSn under mappings Sm → Sn.
We will need the so-called “Yang-Mills eigenmaps” obtained from these consideration
as the homogeneous “building blocks” for our join construction.

In Section 4, we observe that there is only a very restricted class of joins of vector
bundles which are again smooth vector bundles. This justifies our reduction ansatz in
Section 5, which otherwise would look a bit special at first glimpse. In this section, the
reduction of the Yang-Mills equation to a system of two o.d.e. (equipped with singular
boundary data) is performed.

The solvability of the singular o.d.e. boundary value problem thus obtained is dis-
cussed in some detail in Section 6. We get sufficient conditions for that, which (com-
paring to the harmonic map case where this is known) we expect to be also necessary.
Finally, in Section 7, we apply the existence theorem to find nontrivial examples of
smooth cohomogeneity one Yang-Mills connections over spheres. Among the examples
we construct are

• one Yang-Mills connection on each of the countably many principal SO(6)-bundles
over S6,

• countably many Yang Mills connections on TSn for n ∈ {5, . . . , 9}.

(Coincidentally, Böhm’s join construction for Einstein metrics [Bo] produces nonhomo-
geneous Einstein metrics on Sn for exactly the same range of dimensions.)

Acknowledgment: This paper was finished while the author was visiting SFB
Transregio 71 at Freiburg. He would like to thank for hospitality and support.
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2 Equivariant connections

Let M be a compact Riemannian manifold, π : E → M be a G-vectorbundle of rank
n for some compact Lie group G ⊆ O(n); the latter means that we view E equipped
with a bundle metric.

We assume that another compact Lie group K is acting on both E and M by
isometries; we denote the action of k ∈ K on M simply by k : M → M , while on E
we denote it by λk : E → E. We assume that the K-actions are compatible with the
projection, which means

π(λkv) = kπ(v)

for all k ∈ K, v ∈ E. By Ω0(E) we denote the set of smooth sections of E, and by
Ωℓ(E), ℓ ∈ N∪{0,∞}, the sections of E⊗∧ℓT ∗M , i.e. the corresponding section-valued
ℓ-forms.

The K-actions introduced above induce a natural K-action on Ω0(E), with τk :
Ω0(E) → Ω0(E) given for k ∈ K by

(τkY )(x) := λkY (k−1x).

A connection D : Ω0(E) → Ω1(E) is called K-equivariant if

Dk∗u(τkY ) = τk(DuY )

holds for all k ∈ K, u ∈ Ω0(TM), and Y ∈ Ω0(E). Here k∗ means the derivative of
k :M →M .

Let us fix a K-equivariant reference connection ∇ of E. Then every G-connection
of E is of the form D = ∇ + A for some A ∈ Ω1(adP ), where P is the principal fiber
bundle associated with E. We want to describe what equivariance of D (and ∇) means
for A. For k, u, Y as above, we have

∇uY (x) +Au(x)Y (x) = DuY (x)

= τ−1
k (Dk∗u(τkY ))(x)

= τ−1
k (∇k∗u(τkY ))(x) + τ−1

k (Ak∗uτkY )(x)

= ∇uY (x) + τ−1
k (Ak∗uτkY )(x)

= ∇uY (x) + λ−1
k (Ak∗uτkY )(kx)

= ∇uY (x) + λ−1
k Ak∗u(kx)λkY (x),

from which we read off that

Au(x) = λ−1
k Ak∗u(kx)λk

for all x ∈M , u ∈ Ex, and k ∈ K. Similarly, we find the correct transformation of the
curvature F = FA of D:

Fuv(x)Y (x) = (DuDv −DvDu)Y (x)
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= τ−1
k (Dk∗uDk∗v −Dk∗vDk∗u)(τkY )(x)

= τ−1
k (Fk∗u,k∗vτkY )(x)

= λ−1
k Fk∗u,k∗v(kx)λkY (x),

and hence
Fuv(x) = λ−1

k Fk∗u,k∗v(kx)λk

for all x ∈M , u, v ∈ Ex, k ∈ K.
A connection DA = ∇+A is called a Yang-Mills connection, if it is a critical point

of the Yang-Mills functional

YM(A) =
1

2

∫

M
|FA|

2 dx.

A connection is Yang-Mills if and only if

D∗
AFA = 0,

which for smooth A is equivalent to the weak formulation
∫

M
〈FA,DAϕ〉 dx = 0 for all ϕ ∈ Ω1(adP ).

A first important observation about equivariant Yang-Mills maps is an instance of
Palais’ so-called principle of symmetric criticality, cf. [Pal] for the general philosophy.

Proposition 1 (symmetric criticality) A smooth K-equivariant connection DA on
E is already Yang-Mills if it is only critical with respect to equivariant variations, i.e.
if the first variation ∫

M
〈FA,DAϕ〉 dx = 0

vanishes for those ϕ ∈ Ω1(adP ) satisfying

ϕu(x) = λ−1
k ϕk∗u(kx)λk

for all x ∈M , u ∈ Ex, k ∈ K.

Proof. We abbreviate the right-hand side of the last equation by (k∗ϕ)(x), and simi-
larly for F . Let ϕ ∈ Ω1(adP ) be any form, not necessarily equivariant. Denoting the
Haar measure of K by HK , and using the fact that all K-actions are isometric and
commute with D, we calculate

∫

M
〈FA,DAϕ〉 dx =

∫

M

∫

K
〈(k−1)∗FA,DAϕ〉 dHK dx

=

∫

M

∫

K
〈FA, k

∗(DAϕ)〉 dHK dx

=

∫

M

〈
FA,DA

∫

K
k∗ϕdHK

〉
dx

= 0,
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where the first “=” holds because FA is K-equivariant, and the last one because so is∫
K k∗ϕdHK . This proves that DA is Yang-Mills. ✷

3 Homogeneous connections over Sm

We start with some notation. For a, b ∈ R
n, we denote by a⊗ b : Rn → R

n the linear
mapping given by

(a⊗ b)(v) := 〈a, v〉b,

represented by the matrix
(a⊗ b)ij = ajbi.

If M is a skew-symmetric n× n-matrix, we have

(a⊗ b)ijMjk = ajMjkbi = −Mkjajbi

and hence
(a⊗ b)M = −(Ma)⊗ b.

Similarly,
Mij(a⊗ b)jk =Mijakbj,

which means
M(a⊗ b) = a⊗ (Mb).

We want to consider equivariant bundles over Sm on the pull-back bundle E =
h∗TSn of some smooth map h : Sm → Sn. We describe the bundle globally by identi-
fying the fiber over x ∈ Sm with Th(x)S

n, i.e. we identify its total space with

E = {(x, y) ∈ Sm ×R
n+1 : 〈h(x), y〉 = 0}.

The total space of the corresponding principal fiber bundle P can be identified with

{(x,M) ∈ Sm × SO(n+ 1) :Mh(x) = h(x)},

where the fiber over x is the isotropy subgroup of h(x) in O(n+1) acting on R
n+1 ⊃ Sn

in the standard way. Every connection on P (or equivalently on h∗TSn) is of the form

D = ∇+A,

where here A is a section in the adjoint vector bundle adP with total space

{(x,A) ∈ Sm × so(n+ 1) : Ah(x) = 0},

and ∇ is the pull-back of the Levi-Civita connection on Sn. The latter means

∇uY = ∂uY − 〈h, ∂uY 〉h = ∂uY + 〈∂uh, Y 〉h
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for all sections u of TSm and Y of h∗TSn.
Now we assume some homogeneous structure of h∗TSn in the following way: We

assume that K = SO(m + 1) is acting on both Sm and all TxS
m ⊂ R

m+1 in the
standard way (and we do not distinguish between k and k∗ here). On Sn we assume an
operation of SO(m+1) by some representation λ : SO(m+1) → SO(n+1) (and hence
on vectors in E by the same matrices). Both operations of SO(m + 1) are isometric.
Moreover, we assume that h is K-equivariant, which in our case means

h(kx) = λkh(x)

for all k ∈ SO(m+ 1), x ∈ Sm.
Because of

∂ku(Y (k−1x)) = (∂uY )(k−1x),

∂ku(τkY )(x) = λk(∂uY )(k−1x),

∇ku(τkY )(x) = λk(∇uY )(k−1x)

= τk∇uY,

∇ is SO(m+1)-equivariant, which means that ∇ can be used as reference connection as
in the last section. We want to investigate for which A the connection D = DA = ∇+A
is Yang-Mills. We fix x ∈ Sm, v ∈ TxS

m, and consider a path in SO(m+ 1) given by

k(t) := id + x⊗ {(cos t− 1)x+ (sin t)v}+ v ⊗ {(cos t− 1)v − (sin t)x}.

We observe

k(0) = id,

k′(0) = x⊗ v − v ⊗ x,

λ′k(0) = h(x) ⊗ ∂vh(x)− ∂vh(x)⊗ h(x).

Differentiating the equivariance relation for A, we find

0 =
d

dt |t=0

(
λ−1
k(t)Ak(t)u(k(t)x)λk(t)

)

= [Au(x), λ
′
k(0)] +Ak′(0)u(x) +A′

u(x)k
′(0)x

= [Au(x), h(x) ⊗ ∂vh(x)− ∂vh(x)⊗ h(x)] +A〈x,u〉v−〈v,u〉x(x) + ∂vAu(x)

= h(x)⊗ (Au(x)∂vh(x))− (Au(x)∂vh(x)) ⊗ h(x) + ∂vAu(x),

which means that all derivatives of A can be expressed by terms of order zero:

∂vAu = (Au∂vh)⊗ h− h⊗ (Au∂vh).

This implies
(∂vAu)Y = 〈Au∂vh, Y 〉h
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for sections Y ∈ Ω0(h∗TSn). We use this to calculate further (with the first “=” being
the definition of ∇ extended to forms)

(∇vAu)Y = ∇v(AuY )−Au∇vY

= ∂v(AuY ) + 〈∂vh,AuY 〉h−Au∂vY −Au(〈∂vh, Y 〉h)

= (∂vAu)Y + 〈∂vh,AuY 〉h

= 〈Au∂vh, Y 〉h+ 〈∂vh,AuY 〉h

= 0

because Au ∈ so(n + 1) is skew-symmetric. Therefore Au is covariant constant with
respect to ∇,

∇A = 0.

Knowing the curvature of ∇,

(F0)uv = ∂vh⊗ ∂uh− ∂uh⊗ ∂vh,

we infer that

(FA)uv = (F0)uv +∇uAv −∇vAu + [Au, Av ]

= ∂vh⊗ ∂uh− ∂uh⊗ ∂vh+ [Au, Av].

Using the fact that |FA|
2 is constant due to the transitivity of the SO(m + 1)-action

on Sm, we conclude that (without integration)

c YM(A) =
1

2

m∑

u,v=1

∣∣∣∂vh(e)⊗ ∂uh(e)− ∂uh(e) ⊗ ∂vh(e) + [Au(e), Av(e)]
∣∣∣
2

for some dimension-dependent constant c > 0, where we abbreviate e = em+1 and
∂u = ∂eu . The first variation of this functional is (where from now on we omit the
argument (e))

c δYM(A,Φ) =

m∑

u,v=1

〈
∂vh⊗ ∂uh− ∂uh⊗ ∂vh+ [Au, Av ] , [Φu, Av] + [Au,Φv]

〉
,

from which we read off its “Euler-Lagrange” equation, which in this case is just some
system of algebraic equations:

m∑

u,v=1

n∑

i,j=1

[(
∂vh

j∂uh
i − ∂uh

j∂vh
i +

n∑

k=1

(Aik
u A

kj
v −Aik

v A
kj
u )

)

·
n∑

k=1

(
Φik
u A

kj
v −Aik

v Φkj
u +Aik

u Φkj
v − Φik

v A
kj
u

)]
= 0
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for every choice of real numbers Φij
u for u ∈ {1, . . . ,m} and i, j ∈ {1, . . . , n} satisfying

Φij
u = −Φji

u , where we have assumed w.l.o.g. that h(em+1) = en+1. Choosing Φpq
z =

−Φqp
z = 1 for fixed p < q and z, and Φij

u = 0 in all other cases, we can write this a s a
system of 1

2mn(n − 1) cubic equations for the same number of variables Aij
u (cf. [PU]

for another formulation of these cubic equations). Therefore, in principle, we know
“all” Yang-Mills connections with the symmetries considered. But we will not have to
go into any further detail, because all we want to know for the purpose of this paper
is that A ≡ 0 is always a solution, which we easily read off from the equation above.
To be more precise, we have proven that ∇ = D0 is critical for YM with respect to
equivariant variations (and maybe a few more). But by the “symmetric criticality”
Proposition 1, this means that ∇ is actually Yang-Mills. Hence we have proven:

In the special homogeneous setting considered here, the pull-back ∇ of the
Levi-Civita connection of TSn via h is a Yang-Mills connection.

This should have been well-known, and probably follows from the results in [PU] or
even from Itoh’s earlier paper [It], and we have given the proof mainly to introduce our
setting and notation (which differ significantly from theirs).

Remark. It seems not to be true that the pull-back of the Levi-Civita connection of Sn

via a homogeneous mapping h : Sm → Sn is always Yang-Mills. For example, the Hopf
map h : S3 → S2 is U(2)-equivariant with U(2) acting transitively on S3. However, the
∇ that we obtain from h is not Yang-Mills, as a direct calculation shows. The same
probably applies for the Hopf maps S7 → S4 and S15 → S8. The only point in the
above proof that does not carry over is the choice of the path k(t) in the symmetry
group K. For the Hopf examples, this group is no longer SO(m+1), and this is where
the argument fails.

Examples. Nevertheless, there are enough examples of representations of SO(m+ 1)
to make the above considerations interesting for us:

(o) If m = n and SO(m + 1) acts also on the target sphere in the standard way,
then h : Sm → Sm is the identity and ∇ is the Levi-Civita connection of TSm.

(i) If m = n = 1, we consider eiϑ ∈ SO(2) acting on the target circle as eiℓϑ for
some ℓ ∈ N. The connection ∇ is the flat one, but h : S1 → S1 here is the mapping
z 7→ zℓ.

(ii) Let ℓ ∈ N and identify R
n+1 with the space of ℓ-homogeneous harmonic

polynomials on Rm+1, which implies n = (2ℓ+m−1)(ℓ+m−2)!
ℓ!(m−1)! − 1. This identification

is made via an orthonormal basis {bi}1≤i≤n+1 of this space (with respect to the
scalar product 〈f, g〉 =

∫
Sm fg). A representation λ : SO(m + 1) → SO(n + 1) is

given by λkf(x) := f(k−1x), and the corresponding hm,ℓ : Sm → Sn is given by
hm,ℓ(x) = (b1(x), . . . , bn+1(x)). This map has been considered by doCarmo and Wal-
lach [dCW]; it is a harmonic mapping as well as (after rescaling the domain sphere
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suitably) a minimal immersion.

The geometries described in these examples have some more properties that will be
important if we want to take them as “building blocks” for the join construction we
will perform in this paper. We summarize what we need in the following definition.
The term “Yang-Mills eigenmap” here is motivated to some extent by property (iii),
but more by the fact that joining harmonic maps is based on a similar concept called
“harmonic eigenmap”. We write dLC for Levi-Civita connections.

Definition (Yang-Mills eigenmap) We call a map h : Sm → Sn a Yang-Mills
eigenmap, if there exist numbers λ > 0, µ ≥ 0, such that

(i) h∗dLC is a Yang-Mills connection,

(ii) |dh|2 ≡ λ,

(iii)
∑

v

F (h∗dLC)uv∂vh = µ∂uh ∀u ∈ {1, . . . ,m}.

Here, by
∑

v and
∑

V , we mean summation over orthonormal bases of TxS
m or

Th(x)S
n, respectively.

An immediate consequence of (iii) is that |F (h∗dLC)|
2 is constant. Since

F (h∗dLC)uvY = 〈∂vh, Y 〉∂uh− 〈∂uh, Y 〉∂vh,

we have

|F (h∗dLC)|
2 =

∑

u,v

∑

U,V

(
〈∂vh, Y 〉〈∂uh,Z〉 − 〈∂uh, Y 〉〈∂vh,Z〉

)2

= 2
∑

u,v

(
|∂uh|

2|∂vh|
2 − 〈∂uh, ∂vh〉

2
)

= 2
∑

u,v

〈F (h∗dLC)uv∂vh, ∂uh〉

≡ 2λµ. (1)

Examples of Yang-Mills eigenmaps arise from the examples of homogeneous Yang-
Mills connections above. We have

(o) the identities idm : Sm → Sm, with λ = m, µ = m− 1;
(i) the mappings dℓ : S

1 → S1, dℓ(z) = zℓ with λ = ℓ2, µ = 0;

(ii) the standard immersions hm,ℓ : S
m → S

(2ℓ+m−1)(ℓ+m−2)!
ℓ!(m−1)!

−1
described above, with

λ = ℓ(ℓ+m− 1) and µ = m−1
m ℓ(ℓ+m− 1).

Strictly speaking, (o) and (i) are special cases of (ii); we list them separately because
of their distinctive geometric features.
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All these examples happen to be harmonic eigenmaps, too. Detailed accounts of
harmonic eigenmaps and related concepts can be found in the books [Ba] and [ER1]. As
we do not have any more examples than the ones listed here, we do not know whether
every Yang-Mills eigenmap is automatically also a harmonic eigenmap. Nor do we know
whether we should prepare for Yang-Mills eigenmaps which do not come from group
representations (they do exist in the case of harmonic eigenmaps).

Remark 1 In all of our examples of Yang-Mills eigenmaps, we observe µ = m−1
m λ.

We have not assumed that in the definition of eigenmaps, because we will not need it in
our discussion of reduction of Yang-Mills to an o.d.e., nor is it needed for the sufficient
conditions for solving that o.d.e. The only point where it might prove important is the
question whether the conditions obtained are also necessary, cf. Remark 3 below.

4 Topological motivation of our ansatz

Now we have to justify the special kind of ansatz we are going to make below. To this
end, we write Sm1+m2+1 as the join Sm1 ∗ Sm2 , that is the warped product

Sm1+m2+1 ∼= [0, π/2] ×cos2 S
m1 ×sin2 S

m2

which closes smoothly across the endpoints of [0, π/2]. Assume we are given an SO(n1)-
vectorbundle E1 → Sm1 and an SO(n2)-vectorbundle E2 → Sm2 . We want to construct
a join E1∗E2 of E1 and E2 as an SO(n1+n2+1)-vectorbundle over Sm1∗Sm2 by roughly
“connecting every point in a fiber of E1 with every point in a fiber of E2”. To make
this precise, we parametrize Sm1+m2+1 by three patches:

ϕ1 : (0, π/2) × Sm1 × Sm2 → Sm1+m2+1,

ϕ1(t, x1, x2) := (x1 cos t, x2 sin t);

ϕ2 : B
m1+1 × Sm2 → Sm1+m2+1,

ϕ2(y1, x2) := exp(0,x2)(y1, 0) = ( y1
|y1|

sin |y1|, x2 cos |y1|);

ϕ3 : S
m1 ×Bm2+1 → Sm1+m2+1,

ϕ3(x1, y2) := exp(x1,0)(0, y2) = (x1 cos |y2|,
y2
|y2|

sin |y2|).

On the image of ϕ1 (which is all of Sm1+m2+1 except for two “singular spheres”), the
join of E1 and E2 is easily described: It is simply the ϕ−1

1 -pullback of the product
bundles T ×E1 ×E2, where T is the trivial R-bundle over (0, π/2). The question now
is, under which condition this bundle closes smoothly across the singular spheres to
give a smooth SO(n1+n2+1)-vectorbundle over Sm1+m2+1.

This is a topological condition on the bundles E1 and E2, and it can be formalized
as follows. Denote by T now the trivial R-bundle over (0, 1]. Then the product bundle
T ×Ei → (0, 1] × Smi must be the pull-back of an SO(mi+1)-bundle Ẽi → Bmi+1 via
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the map (t, xi) 7→ txi. Since every bundle over Bmi+1 is trivial, it is no restriction to
assume Ẽi = Bmi+1 × R

ni+1. Moreover, for every yi ∈ R
mi+1, the fiber R

ni+1 over
yi contains a well-defined direction which corresponds to the positive T -direction in
the product bundle. This defines a mapping hi : S

mi → Sni for which E = h∗i TS
ni .

Therefore the only bundles Ei → Smi (i ∈ {1, 2}) for which a smooth join can be
defined are the pull-back bundles h∗i TS

ni for a pair of maps hi : S
mi → Sni .

Given such a pair, we still have to find out, for which connections on h∗i TS
ni a

suitable ansatz will reduce the Yang-Mills equation to an o.d.e. system. Of course, we
must think of such connections as being Yang-Mills and “totally homogeneous” in a
suitable sense. It turns out that suitable “building blocks” for our construction will be
the pull-backs of the Levi-Civita-connections of TSni under the Yang-Mills eigenmaps
defined and discussed above.

5 Reduction

We consider the sphere Sm1+m2+1 represented (somewhat sloppy concerning the interval
endpoints) as the doubly warped product

(M,γ) := [0, π/2] ×cos2 S
m1 ×sin2 S

m2 .

The Riemannian manifold (M,γ) is isometric to the sphere with the standard Euclidean
metric.

As indicated above, we consider an SO(n1 + n2 + 1)-bundle over M which is given
as follows: Let h1 : Sm1 → Sn1 and h2 : Sm2 → Sn2 be Yang-Mills eigenmaps. The
bundle Φ∗TN → M under consideration is the pull-back of the tangent bundle of the
warped product

[0, π/2] ×cos2 S
n1 ×sin2 S

n2 =: (N, g) ∼= Sn1+n2+1

via the map
Φ := (id, h1, h2) :M → N,

where the parameters (λ, µ) from above are now denoted by (λi, µi) for hi. As discussed
in the previous section, this bundle can be viewed as a bundle on all of Sn1+n2+1, closing
smoothly across the endpoints of [0, π/2].

The hi-pullback of the Levi-Civita connection of Sni will be denoted by ∇i and its
curvature by F i. In particular, F 1 and F 2 are given by

F 1
uvU = g(∂vh1, U)∂uh1 − g(∂uh1, U)∂vh1,

F 2
wzW = g(∂zh2,W )∂wh2 − g(∂wh2,W )∂zh2.

In what follows, we denote the variable in [0, π/2] by t, and the vector field ∂
∂t by

x if viewed as a vector field in TM , and by X when viewed as a vector field in Φ∗TN .
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By u, v we mean vector fields in TM tangential to Sm1 and by w, z tangential to Sm2 .
Similarly, U, V denote vector fields in Φ∗TN tangential to Sn1 and W,Z vector fields
tangential to Sn2 .

The pull-back ∇ of the Levi-Civita connection of N ∼= Sn1+n2+1 by Φ is character-
ized by

∇xX = 0,

∇uV = cos(t)−1∇1
uV + tan(t)g(∂uh1, V )X,

∇wZ = sin(t)−1∇2
wZ − cot(t)g(∂wh2, Z)X,

∇uX = − tan(t)∂uh1,

∇wX = cot(t)∂wh2,

∇xV = − tan(t)V,

∇xZ = cot(t)Z,

∇uZ = 0,

∇wV = 0.

The ansatz we make for our connection D on Φ∗TN differs only slightly from that, in
an “equivariant” way:

DxX = 0,

DuV =
1

cos(t)
(∇1

uV + α(t)g(∂uh1, V )X),

DwZ =
1

sin(t)
(∇2

wZ − β(t)g(∂wh2, Z)X),

DuX = −
α(t)

cos(t)
∂uh1,

DwX =
β(t)

sin(t)
∂wh2,

DxV = − tan(t)V,

DxZ = cot(t)Z,

DuZ = 0,

DwV = 0.

This connection is still metric with respect to g. The basic idea for finding α and β
for which D is Yang-Mills will be minimizing the Yang-Mills functional over SO(m1 +
1)× SO(m2 + 1)-equivariant connections (which D is).

Now we are ready to calculate the curvature of D, which we denote by F . Since we
know that F is a tensor, i.e. a differential operator of order 0, we can assume we are
calculating everything in a point where ∇1

uU = 0 etc. and ∇1
u∂vh1 = ∇1

v∂uh1 etc.:

FuvU = (DuDv −DvDu)U
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= Du(
1
cos∇

1
vU + α

cosg(∂vh1, U)X) −Dv(
1
cos∇

1
uU + α

cosg(∂uh1, U)X)

= 1
cos2

(∇1
u∇

1
vU −∇1

v∇
1
uU)

+ α
cos(g(∇

1
u∂vh1 −∇1

v∂uh1, U) + g(∂vh1,∇
1
uU)− g(∂uh1,∇

1
vU))X

+ α2

cos2
(g(∂uh1, ∂vh1)g(X,U) − g(∂vh1, ∂uh1)g(X,U))X

+ α2

cos2 (g(∂uh1, U)g(∂vh1,X)− g(∂vh1, U)g(∂uh1,X))X

+ α2

cos2
(−g(∂vh1, U)∂uh1 + g(∂uh1, U)∂vh1)

= 1
cos2

F 1
uvU + α2

cos2
(g(∂uh1, U)∂vh1 − g(∂vh1, U)∂uh1)

= α2−1
cos2

(g(∂uh1, U)∂vh1 − g(∂vh1, U)∂uh1),

FuvW = 0,

FuvX = −Du(
α
cos∂vh1) +Dv(

α
cos∂uh1)

= −∇1
u(

α
cos2

∂vh1) +∇1
v(

α
cos2

∂uh1)−
α2

cos2
(g(∂uh1, ∂vh1)− g(∂vh1, ∂uh1))X

= 0,

FwzW = β2−1
sin2

(g(∂wh1,W )∂zh1 − g(∂zh1,W )∂wh1),

FwzU = 0,

FwzX = 0,

FxuU = Dx(
1
cos∇

1
uU + α

cosg(∂uh1, U)X) −Du(− tanU)

= α′+α tan
cos g(∂uh1, U)X − 2α tan

cos g(∂uh1, U)X + α tan
cos g(∂uh1, U)X

= α′

cosg(∂uh1, U)X

FxuW = Dx(DuW )−Du(cotW )

= 0,

FxuX = DxDuX

= −Dx(
α
cos∂uh1)

= −(α
′+α tan
cos − α tan

cos )∂uh1

= − α′

cos∂uh1,

FxwU = 0,

FxwW = − β′

sing(∂wh2,W )X,

FxwX = − β′

sin∂wh2,

FuwU = −DwDuU

= −Dw(
1
cos∇

1
uU + α

cosg(∂uh1, U)X)

= − α
cosg(∂uh1, U)DwX

= − αβ
cos sing(∂uh1, U)∂wh2,

FuwW = αβ
cos sing(∂wh2,W )∂uh1,
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FuwX = Du(cot ∂wh2)−Dw(tan ∂uh1)

= 0.

Summing over γ-orthonormal bases u, v, w, z and g-orthonormal bases U,W , we infer

|F |2 = 4λ1
α′2

cos2
+ 4λ2

β′2

sin2
+ 2λ1µ1

(α2 − 1)2

cos4
+ 2λ2µ2

(β2 − 1)2

sin4
+ 4λ1λ2

α2β2

cos2 sin2
.

Therefore, up to a constant depending only on m1, m2, the Yang-Mills functional of D
equals

J(α, β) :=

∫ π/2

0

{ 2λ1
cos2

α′2 +
2λ2

sin2
β′2 +

2λ1λ2

cos2 sin2
α2β2

+
λ1µ1
cos4

(α2 − 1)2 +
λ2µ2

sin4
(β2 − 1)2

}
cosm1 sinm2 dt. (2)

The Euler-Lagrange equations of J are

α′′ + (m2 cot−(m1 − 2) tan)α′ −
µ1
cos2

(α3 − α)−
λ2

sin2
αβ2 = 0, (3)

β′′ + ((m2 − 2) cot−m1 tan)β
′ −

µ2

sin2
(β3 − β)−

λ1
cos2

α2β = 0. (4)

The reduction setting is made in such a way that stationary points of the reduced
functional J represent Yang-Mills fields:

Proposition 2 (reduction theorem) The connection D is a smooth Yang-Mills con-
nection on Φ∗TN if and only if the functions α, β : [0, π/2] → R are solutions of (3),
(4) with the boundary values

α(0) = 0, α(π/2) = 1, β(0) = 1, β(π/2) = 0. (5)

Proof. To calculate the Yang-Mills equations for our setting, we have to differentiate
F . In the following calculations, we make the same assumptions on the vector fields
as above. We also use the fact that F 1, F 2 are Yang-Mills connections, and assume
summation if an “index” is repeated.

(DuFuv)U = Du(FuvU)− FuvDuU

= α2−1
cos2

Du(g(∂uh1, U)∂vh1 − g(∂vh1, U)∂uh1)

− 1
cosFuv∇

1
uU − α

cosg(∂uh1, U)FuvX

= (∇1∗F 1)vU + α3−α
cos3

(g(∂uh1, U)g(∂uh1, ∂vh1)

− g(∂vh1, U)g(∂uh1, ∂uh1))X,

= α3−α
cos3

(g(∂uh1, U)g(∂uh1, ∂vh1)− g(∂vh1, U)g(∂uh1, ∂uh1))X,
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(DuFuv)W = 0,

(DuFuv)X = Du(FuvX) + Fuv(
α
cos∂uh1)

= α3−α
cos3

(g(∂uh1, ∂uh1)∂vh1 − g(∂uh1, ∂vh1)∂uh1),

(DwFwv)U = Dw(
αβ

cos sing(∂vh1, U)∂wh2)

= − αβ2

cos sin2
g(∂vh1, U)g(∂wh2, ∂wh2)X,

(DwFwv)W = −Dw(
αβ

sin cosg(∂wh2,W )∂vh1)

= 0,

(DwFwv)X = −FwvDwX

= − β
sinFwv∂wh2

= αβ2

cos sin2
g(∂wh2, ∂wh2)∂vh1,

(DxFxv)U = Dx(
α′

cosg(∂vh1, U)X) − Fxv(− tanU)

= (α
′′+α′ tan

cos − 2α′ tan
cos + α′ tan

cos )g(∂vh1, U)X

= α′′

cosg(∂vh1, U)X,

(DxFxv)W = 0,

(DxFxv)X = −Dx(
α′

cos∂vh1)

= (−α′′+α′ tan
cos + α′ tan

cos )∂vh1

= − α′′

cos∂vh1;

DuFux = 0;

and similar terms for Sn2-components.
The next thing we have to check is what D∗ looks like in our coordinates. There are

induced metrics from g for 1-forms and 2-forms, which we again denote by g. By the
definition of D∗ and partial integration, we find for every 2-form G and every 1-form ϕ

−

∫ 2π

0

∫

Sm1

∫

Sm2

g(D∗G,ϕ) cosm1 sinm2 dvol2 dvol1 dt

= −

∫ 2π

0

∫

Sm1

∫

Sm2

g(G,Dϕ) cosm1 sinm2 dvol2 dvol1 dt

=

∫ 2π

0

∫

Sm1

∫

Sm2

g(D ·G,ϕ) cosm1 sinm2 dvol2 dvol1 dt

+

∫ 2π

0

∫

Sm1

∫

Sm2

g(G(x, · ), ϕ)(m2 cos
m1+1 sinm2−1−m1 cos

m1−1 sinm2+1) dvol2 dvol1 dt

+

∫ 2π

0

∫

Sm1

∫

Sm2

(∂tg)(G(x, · ), ϕ) cos
m1 sinm2 dvol2 dvol1 dt.

Knowing that
∂tg = 2diag(−(tan t)idm1 , (cot t)idm2 , 0) g,
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we can read off from the previous equation how D∗ operates. This is combined with
the calculation above and (ii), (iii) to give

−(D∗F )vU = (D · F )vU + (m2 cot−(m1 − 2) tan)FxvU

=
{
−

µ1
cos3

(α3 − α)−
λ2

cos sin2
αβ2 +

α′′

cos

+
α′

cos
(m2 cot−(m1 − 2) tan)

}
g(∂vh1, U)X,

−(D∗F )vX = (D · F )vX + (m2 cot−(m1 − 2) tan)FxvX

=
{ µ1
cos3

(α3 − α) +
λ2

cos sin2
αβ2 −

α′′

cos

−
α′

cos
(m2 cot−(m1 − 2) tan)

}
∂vh1,

and the corresponding equations for the Sn2 components. (Some components always
vanish.) This proves that D is Yang-Mills away from t ∈ {0, π/2} if and only if (3) and
(4) are satisfied.

Now we turn to the boundary conditions. Because α = sin and β = cos correspond
to the pullback of the Levi-Civita connection of TSn1+n2+1, the boundary conditions
(5) make sure that the connection is continuous even across the singular orbits {t = 0}
and {t = π/2}. For D to be of class C1, α and β also have to satisfy

α′(0) = 1, α′(π/2) = 0, β′(0) = 0, β′(π/2) = −1. (6)

But this is easily seen to hold for any solution of the boundary value problem made of
(3), (4), (5). Once this is checked, the parity of the differential equations (3) and (4)
implies that for any solution with the boundary values (5) and (6) the function α is odd
with respect to t = 0 and even with respect to t = π/2, while for β the opposite holds.
But those are exactly the conditions to ensure that D is smooth across the singular
orbits. This proves the reduction theorem. ✷

From the harmonic map analogon of our problem, we know that the substitution

α(t) = A(log(tan t)), β(t) = B(log(tan t))

is useful. With s = log(tan t) we calculate

α′(t) = (es + e−s)A′(s),

α′′(t) = (es + e−s)2A′′(s) + (e2s − e−2s)A′(s)

etc., which transforms (3)–(5) to give

A′′ −
(m1 − 3)es − (m2 − 1)e−s

es + e−s
A′ −

µ1e
s

es + e−s
(A3 −A)−

λ2e
−s

es + e−s
AB2 = 0, (7)

B′′ −
(m1 − 1)es − (m2 − 3)e−s

es + e−s
B′ −

µ2e
−s

es + e−s
(B3 −B)−

λ1e
s

es + e−s
A2B = 0. (8)
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with the boundary conditions

A(−∞) = 0, A(∞) = 1, B(−∞) = 1, B(∞) = 0. (9)

6 Existence of solutions

6.1 The case µ1, µ2 > 0

The first case we consider is the case where none of the eigenconnections which are
joined is flat. This is the case µ1, µ2 > 0 which is only possible if m1,m2 ≥ 2. Then we
find a minimizer of J by the direct method of the calculus of variations.

Lemma 1 (existence of minimizers) Assume m1,m2 ≥ 2 and µ1, µ2 > 0. Then
there is a solution (a, b) of (3), (4) on (0, π/2) which minimizes J among all (α, β) ∈
C1((0, π/2))2. It satisfies 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1.

Proof. First we write D = ∇+ ω with a matrix-valued one-form ω which is given by

ω(u) =
α− sin

cos
(∂uh1 ⊗X −X ⊗ ∂uh1),

ω(w) =
cos−β

sin
(∂wh2 ⊗X −X ⊗ ∂wh2),

ω(x) = 0.

We find

|ω|2 =
2λ1
cos2

(α− sin)2 +
2λ2

sin2
(β − cos)2,

|∇ω|2 =
2λ21
cos4

α2(α− sin)2 +
2λ22
sin4

β2(β − cos)2 +
2λ1
cos2

(α′ − cos)2 +
2λ2

sin2
(β′ + sin)2.

It is easily read off from this that

∫

M
(|ω|4 + |∇ω|2) ≤ c(1 + J(α, β)) (10)

with a constant c depending on λ1, λ2, µ1, µ2. Now we consider a minimizing sequence
of connections D with ω ∈ W 1,2 ∩ L4 of the special form considered in this paper for
the Yang-Mills functional YM . Since YM is lower semi-continuous on W 1,2 ∩ L4, and
since we have just checked that the W 1,2 and L4 norms of ω stay bounded for such a
sequence, there is a connection minimizing YM of the form considered in W 1,2 ∩ L4,
which must be continuous in the orbits over (0, π/2). This connection is represented
by a minimizer (a, b) of J . Since minimizers of J satisfy its Euler-Lagrange equations,
(a, b) must be smooth on (0, π/2).
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The next step is to prove that there are minimizers with values in [0, 1]. To this
end, consider f : [0, π/2] → R and define

f̃(x) :=

{
|f(x)| if |f(x)| ≤ 1,

1
|f(x)| if |f(x)| > 1.

Then f̃ ′2 ≤ f ′2 and (f̃2 − 1)2 ≤ (f2 − 1)2. Hence, if (a, b) is minimizing, so is (ã, b̃),
which means we have found the minimizing solution stated in the lemma. ✷

Remark 2 Assume m1,m2 ≥ 2 and µ1, µ2 > 0. There are exactly three constant so-
lutions of (3), (4) with values in [0, 1], namely (α, β) ≡ (0, 0), ≡ (0, 1) or ≡ (1, 0).
The constant solution (0, 0) is never minimizing because of J(0, 0) > J(0, 1) and
J(0, 0) > J(1, 0).

Lemma 2 (nonconstant minimizers I) Assume m1,m2 ≥ 2 and µ1, µ2 > 0. No
nonconstant J-minimizing solution (α, β) of (3), (4) with values in [0, 1] assumes the
values α(t) ∈ {0, 1} or β(t) ∈ {0, 1} at any t ∈ (0, π/2).

Proof. Assume α(t) = 1, then we have α′(t) = 0, which by way of (3) implies α′′(t) =
λ2 sin

−2(t)β(t)2 ≥ 0. Since α has a maximum at t, this can be true only if α′′(t) = 0 and
β(t) = 0. The latter implies β′(t) = 0. By uniqueness of the solution of the boundary
value problem with α,α′, β, β′ prescribed at t, we would have (α, β) ≡ (1, 0).

By the same reasoning, β(t) = 1 implies (α, β) ≡ (0, 1).
Now assume α(t) = 0, then α′(t) = 0, and (3) implies α′′(t) = 0. Differentiate (3)

and find α(k)(t) = 0 for all k ∈ N. By the analyticity of α, we find α ≡ 0. Once we
have this, we find

J(α, β) =

∫ π/2

0

{ 2λ2

sin2
β′2 +

λ2µ2

sin4
(β2 − 1)2 +

λ1µ1
cos4

}
cosm1 sinm2 dt,

which is infinity in case m1 ≤ 3 (a contradiction) or easily seen to be minimized by
β ≡ 1.

By the same reasoning, β(t) = 0 gives a contradiction or (α, β) ≡ (1, 0). ✷

Lemma 3 (nonconstant minimizers II) Assume m1,m2 ≥ 2 and µ1, µ2 > 0. If
neither of the constant solutions (0, 1) and (1, 0) is minimizing, there is a solution of
the boundary value problem (3)–(5).

Proof. Since (0, 0) is never minimizing, the assumption implies that there has to be a
nonconstant minimizer (α, β) of J with values in [0, 1].

In case m1 ∈ {2, 3} we see that J(α, β) < ∞ only if α(π/2) = 1. But then (4)
implies that β(π/2) = 0 (using the fact that β′ cannot explode like 1

t−π/2 if J is finite).
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Similarly, m2 ∈ {2, 3} implies β(0) = 1 and α(0) = 0.
No we consider m2 ≥ 4. Observe that the only boundary values for β(0) that the

equations (3), (4) allow are −1, 0 or 1. We have already ruled out −1. If β(0) was
0, the corresponding solution B of (7), (8) would asymptotically (as s → −∞) satisfy
the linearized version of (7), B′′ + (m2 − 3)B′ + µ2B = 0. But a fundamental system
for this linearized equation consists of exp((−m2−3

2 ± 1
2

√
(m2 − 3)2 − 4µ2)s) neither of

which is bounded at −∞. Hence B(−∞) = 0 is not possible. This proves β(0) = 1,
and α(0) = 0 follows as in the case m2 ≤ 3.

The same way we see that α(π/2) = 1 and β(π/2) = 0 also in the case m1 ≥ 4. ✷

The lemma shows that it helps to know if the constant solutions are minimizing.
Now they are clearly not minimizing if they are unstable (in the sense of negative
directions for the second variation) or have infinite J-energy.

Lemma 4 (unstable constant solution) Assume m1,m2 ≥ 2, µ1, µ2 > 0. The con-
stant solution (α, β) ≡ (0, 1) is unstable or has infinite J-energy iff

m1 ∈ {2, 3}

or (m1 − 3)2 < 4µ1

or
√

(m2 − 1)2 + 4λ2 +
√

(m1 − 3)2 − 4µ1 < m1 +m2 − 4.

Proof. The case m1 ∈ {2, 3} is trivial. For m1 ≥ 4, we calculate

d2

ds2 |s=0
J(sϕ, 1 + sψ) =

∫ π/2

0

{ 4λ1
cos2

ϕ′2 +
4λ2

sin2
ψ′2 +

4λ1λ2

cos2 sin2
ϕ2

−
4λ1µ1
cos4

ϕ2 +
8λ2µ2

sin4
ψ2

}
cosm1 sinm2 dt.

This means that (0, 1) is unstable iff the quadratic form

H(ϕ) :=

∫ π/2

0

{
ϕ′2 +

( λ2

sin2
−

µ1
cos2

)
ϕ2

}
cosm1−2 sinm2 dt

becomes negative for some (bounded) function ϕ. This has been discussed by Ding in
[Di] for the same function H that arises with different constants in the construction of
harmonic maps as joins of harmonic eigenmaps. A detailed discussion can be found in
[ER2, IX (4.4)–(4.16)]. It shows that H(ϕ) attains negative values if and only if one of
the three assumptions of the lemma is fulfilled. ✷

Combining the four Lemmas from this section and the analogon of Lemma (4) for
the constant solution (1, 0), we get our main theorem:

19



Theorem 1 Assume m1,m2 ≥ 2 and µ1, µ2 > 0. There is a Yang-Mills connection of
Φ∗TN corresponding to a solution (α, β) of the boundary value problem (3)–(5) if the
following conditions hold:

(D1) m1 ∈ {2, 3}

or (m1 − 3)2 < 4µ1

or
√

(m2 − 1)2 + 4λ2 +
√

(m1 − 3)2 − 4µ1 < m1 +m2 − 4

and

(D2) m2 ∈ {2, 3}

or (m2 − 3)2 < 4µ2

or
√

(m1 − 1)2 + 4λ1 +
√

(m2 − 3)2 − 4µ2 < m1 +m2 − 4.

Remark 3 If m1 = m2, λ1 = λ2, and µ1 = µ2, the boundary value problem (3)–(5)
has always a solution. This can be seen by modifying the proof in such a way that one
only minimizes over (α, β) satisfying α(π2 − t) = β(t) for all t ∈ (0, π2 ). Therefore,
the conditions (D1) and (D2) can only be sharp if they are automatically satisfied in
the case m1 = m2, λ1 = λ2, µ1 = µ2. Unfortunately, this is not the case if µ1 is
small compared to λ1. Therefore, in the general setting considered here, the condition
of Theorem 1 is sufficient, but not necessary.

However, in our examples we always have µi =
mi−1
mi

λi; and maybe this is so for
all Yang-Mills eigenmaps. Under this additional assumption (which is the only case
relevant for our construction at the moment), (D1) and (D2) are always fulfilled if
m1 = m2, λ1 = λ2, and it is still possible that Theorem 1 is sharp. We tend to expect
this to hold, because of the close analogy to the harmonic map case, where very similar
conditions have been proven to be sharp [Di] [PR].

6.2 The case m2 = 1

An interesting case is m2 = 1, h2 : S
1 → S1 with h2(z) = zk for some k ∈ Z \ {0}. The

function h2 is a Yang-Mills eigenmap, but we have µ2 = 0, which means the techniques
of the previous section do not apply. However, in this particular case, we can modify the
proof of Theorem 1 to make it still work (which we cannot do if ∇2 is a flat connection
on a higher-dimensional sphere). The existence theorem here reads as follows (with
λ2 = k2)

Theorem 2 Assume m1 ≥ 2, µ1 > 0, m2 = 1, µ2 = 0, λ2 = k2 6= 0. There is
a Yang-Mills connection of Φ∗TN corresponding to a solution (α, β) of the boundary
value problem (3)–(5) if (D1) holds, which now reads

m1 ∈ {2, 3}

or (m1 − 3)2 < 4µ1

or 2 |k| +
√

(m1 − 3)2 − 4µ1 < m1 − 3.
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Proof. Few changes are to be made compared to the proof of Theorem 1. The
main problem is that J(α, β) does no longer contain a (β2 − 1)2-term. This means
that β(0) ∈ {−1, 0, 1} is no longer needed to make J finite. Now β(0) can take any
value in R (probably), and it will not be true that a minimizer of J will more or less
automatically satisfy β(0) = 1. But here we can impose the boundary value β(0) = 1
and minimize under this condition.

To prove this assertion, let (αn, βn)n∈N be a minimizing sequence for J under the
additional hypothesis β(0) = 1. Again we may assume that the images of αn and βn
are contained in [0, 1]. As above, we assume that the minimizing sequence belongs to
a form ω ∈W 1,2 ∩ L4. Finiteness of the norms implies that β′n(0) = −1 for all n ∈ N.

In the proof of Lemma (1), it is not immediately clear that (10) still holds, because
this time the (β− cos)4-term and the β2(β− cos)2-Term cannot be estimated easily by
the (β2−1)2-term which is no longer in J . But in the case m2 = 1, it can be estimated
by the β′2-term of J instead. This can be seen as follows. We assume that the image
of β is contained in [0, 1] and that β(0) = 1, β′(0) = 0. We combine

∫ 1

0
(β(t) − cos(t))2 cos(t)m1 sin(t)−3 dt ≤ c+ c

∫ 1

0
(β(t)− 1)2t−3 dt

≤ c+ c

∫ 1

0

( ∫ t

0
β′(τ) dτ

)2
t−3 dt

≤ c+ c

∫ 1

0

∫ t

0
β′(τ)2 dτ t−2 dt

≤ c+ c

∫ 1

0
β′(t)2

∫ 1

t
τ−2 dτ dt

= c+
c

2

∫ 1

0
β′(t)2(t−1 − 1) dt

≤ c+ c

∫ 1

0
β′(t)2 cos(t)m1 sin(t)−1 dt

with

∫ π/2

1
(β − cos)2 cosm1 sin−3 dt ≤ c

∫ π/2

1
(β2 + cos2) cosm1 sin−3 dt

≤ c+ c

∫ π/2

1
β2 cosm1 sin−3 dt

≤ c+ c

∫ π/2

1
β′2 cosm1 sin−1 dt

to find ∫ π/2

0
(β − cos)2 cosm1 sin−3 dt ≤ c+ c

∫ π/2

0
β′2 cosm1 sin−1 dt. (11)
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Here, we have used β ∈ [0, 1] several times, and the Sobolev inequality for the manifold
([0, π/2], cosm1 sin−3) in the second estimate. All integrals are finite because of β(0) = 1
and β′(0) = 0. Using again β ∈ [0, 1], we see that (11) implies

∫ π/2

0
{β2(β − cos)2 + (β − cos)4} cosm1 sin−3 dt ≤

∫ π/2

0
β′2 cosm1 sin−1 dt,

which is exactly what was missing in the proof that (10) still holds.
Once we have (10), we know that our minimizing sequence (αn, βn)n∈N stays

bounded in W 1,2 ∩ L4 and hence has a weakly convergent subsequence. Again we
use lower semi-continuity of YM to conclude convergence of (αn, βn) to a minimizer
(α, β) of J under the additional condition β(0) = 1. The only thing that remains
to be checked is that the latter condition is actually preserved in the limit. As-
sume it is not. Then there is ε > 0 and a subsequence of (βn), again denoted by
(βn), such that min[0,1/n] βn(x) ≤ 1 − ε. Since also βn(0) = 1, this would imply
∫ 1/n
0 β′2n dt ≥

1
n (nε)2 = nε2, which would mean J(αn, βn) → ∞, a contradiction.

We have now proved, that there exist a minimizer (α, β) of J under the additional
condition β(0) = 1. From here, we proceed as in the proof of Theorem 1 to prove
Theorem 2. ✷

6.3 The case m2 = 0: Suspensions

The case m2 = 0 makes sense, not only formally. Remembering that S0 = {−1, 1},
we see that the join of Sm1 and S0 is nothing else than the suspension Sm1+1 of Sm1 .
Consequently, we speak of Yang-Mills suspensions here rather than of joins. This
corresponds to a (simply) warped product M = [−π/2, π/2] ×cos2 S

m1 ∼= Sm1+1 where
we are looking for connections on some bundle Φ∗TN of the form

DxX = 0,

DuV =
1

cos(t)
(∇1

uV + α(t)g(∂uh1, V )X),

DuX = −
α(t)

cos(t)
∂uh1,

DxV = − tan(t)V.

All notation that is not declared has a similar meaning as before.
The reduced Yang-Mills functional is

J(α) :=

∫ π/2

−π/2

{ 2λ1
cos2

α′2 +
λ1µ1
cos4

(α2 − 1)2
}
cosm1 dx

and the system of Euler-Lagrange equations reduces to a single equation

α′′(t)− (m1 − 2) tan(t)α′(t)−
µ1

cos(t)2
(α(t)3 − α(t)) = 0, (12)
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with the natural boundary conditions

α(−π/2) = −1, α(π/2) = 1. (13)

A very similar boundary value problem has been solved for harmonic suspensions by
Eells and Ratto [ER1]. Since here we are very close to the harmonic map case, we can
omit details of the proof.

Theorem 3 Assume µ1 > 0.
(i) If m1 ≥ 4, there is a minimizing solution of the boundary value problem (12),

(13) if and only if µ1 > m1 − 3. If m1 ∈ {2, 3}, there is always such a solution.
(ii) If m1 ≥ 4 and µ1 > (m1 − 3)2/4, there are even countably many α :

[−π/2, π/2] → [−1, 1] solving (12), (13) and representing smooth Yang-Mills connec-
tions on Φ∗TN , none of which are gauge equivalent.

Proof. (i) Minimizing among all α with α(−t) = −α(t), we find a minimizing solution
of the boundary value problem (12), (13) if and only if the constant solution α ≡ 0 is
unstable or J(0) = ∞; that is (cf. [ER1, section 9]) if µ1 > m1 − 3 or m1 ∈ {2, 3}.

(ii) The proof is a very minor modification of the proof of the theorem in [BC],
where the same is proved for harmonic suspensions Sn → Sn (3 ≤ n ≤ 6) of the iden-
tity. ✷

7 Examples of Yang-Mills joins

Let us see what we can get out of the existence theorems.

Example 0. The Levi-Civita connection of Sm1+m2+1 is trivially Yang-Mills and is the
special case α(t) = sin t and β(t) = cos t (if β is needed) that Theorem 1, Theorem 2,
and Theorem 3 allow if h1 and h2 are identities.

Example 1. Nevertheless, Theorem 3 also produces nontrivial solutions when applied
to h = idm1 with 4 ≤ m1 ≤ 8. And it is easy to prove that solutions of the o.d.e. with
different functions α cannot be gauge equivalent to each other. This means that the
theorem implies: On every TSm for 5 ≤ m ≤ 9, there are countably many Yang-Mills
connections that are mutually not gauge equivalent.

Example 2. Now we try to join hm1,ℓ (m1 ≥ 2) with idm2 . It is easily checked that
the conditions of the existence theorems are satisfied if 0 ≤ m2 ≤ 8. We can for-
mulate that in the following way: Each of the pulled back Levi-Civta connections on

h∗m,ℓTS
(2ℓ+m−1)(ℓ+m−2)!

ℓ!(m−1)!
−1

can be suspended as Yang-Mills connections 9 times. This cor-
responds to Smith’s observation [Sm] that every harmonic eigenmap can be suspended
harmonically 6 times.
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Example 3. The same applies for the case m1 = 1, that is every dℓ : S1 → S1 can
be suspended as a Yang-Mills connection 9 times (even for ℓ ∈ Z, once we know this
for ℓ ∈ N). This is geometrically interesting for the following reason: We can interpret
the joined bundles as f∗ℓ TS

n for every ℓ ∈ Z and every n ∈ {2, . . . , 10}, with fℓ being
a map Sn → Sn of Brouwer degree ℓ. Depending on n, these may be many bundles,
maybe even all SO(n)-bundles over Sn.

To be more precise, the SO(n)-bundles over Sn are classified rather easily. Since
SO(n) can be covered by just two coordinate patches overlapping on an annular region
around the equator, they are classified by the homotopy class of the one transition
function that is used to patch the two trivial bundles together; clearly this homotopy
class can be seen as an element of πn−1(SO(n)). But which element of πn−1(SO(n))
corresponds to the bundles f∗ℓ TS

n mentioned above? Since πn−1(SO(n)) depends on
n in a seemingly unpredictable way, there may be no simple answer. We can, however,
make use of the fact that there is a homomorphism e : πn−1(SO(n)) → πn−1(S

n−1) ∼= Z,
and that the latter is simply parametrized by Brouwer degree, hence well-understood.
The homeomorphism e is induced by simply evaluating every matrix-valued A : Sn−1 →
SO(n) at some fixed vector x0 ∈ S

n to give a mapping Ax0 : S
n−1 → Sn−1.

Our first step now is to calculate which element of πn−1(S
n−1) here corresponds to

the tangent bundle TSn. To this end, we observe that TSn is parametrized by two
coordinate patches f± : Bn × R

n → TSn given by

f+(x, v) :=
(
x+

√
1− |x|2 en+1 , v −

v · x

|x|2
x+

v · x

|x|2

(√
1− |x|2

x

|x|
− |x|en+1

))
,

f−(x, v) :=
(
x̄−

√
1− |x|2 en+1 , v −

v · x̄

|x|2
x̄+

v · x̄

|x|2

(√
1− |x|2

x̄

|x|
+ |x|en+1

))
,

where x̄ = (−x1, x2, x3, . . . , xn). The images f+(S
n−1) and f−(S

n−1) overlap and both
parametrize the bundle restricted to the equator of Sn. On Sn−1, f+ and f− simplify
an read

f+(x, v) = (x, v − (v · x)x− (v · x)en+1),

f−(x, v) = (x̄, v − (v · x̄)x̄+ (v · x̄)en+1).

To get TSn, we must find one transition map, and we observe

f+(x, v) = f−(x̄, v − 2(v · x)x) =: f−(x̄,Φ(x̄)(v)),

where
Φ : Sn−1 → SO(n), Φ(x) := id− 2x̄⊗ x̄

defines the transition map we have been looking for. Now

Φ(x)(e1) = e1 + 2x1x̄,
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and it is easily calculated that this mapping Sn−1 → Sn−1 represents ±2 ∈ Z ∼=
πn−1(S

n−1) if n is even, and 0 if n is odd. Similarly, every f∗TSn−1 for continuous
f : Sn → Sn can be assigned an element in πn−1(S

n−1) this way, and this gives a
homomorphism πn(S

n) → πn−1(S
n−1). Therefore f∗ℓ TS

n represents a bundle classified
by an element of πn−1(SO(n)) that e maps to ±2ℓ ∈ πn−1(S

n−1) if n is even, and 0 if n
is odd. Hence we restrict to even n in our search for topologically nontrivial examples
of our Yang-Mills join construction.

Recall that for n ∈ {2, 4, 6, 8, 10}, we were able to find a Yang-Mills connection on
every f∗ℓ TS

n for every ℓ ∈ Z, and the bundles correspond to 2ℓ ∈ Z ∼= πn−1(S
n−1) under

e. The groups πn−1(SO(n)) and πn−1(S
n−1) are related by the long exact sequence of

the homogeneous space Sn−1 = SO(n)/SO(n− 1) which reads

. . .
e
→ πk+1(S

n−1) → πk(SO(n−1)) → πk(SO(n))
e
→ πk(S

n−1) → πk−1(SO(n−1)) → . . .

where e is as before. To illustrate how we can use this, let us first consider the case
n = 6. Here is a piece of the exact sequence:

π5(SO(5))
0
→ π5(SO(6))

·2
→֒ π5(S

5) ։ π4(SO(5)) → π4(SO(6)).
Z2 Z Z Z2 0

It shows that π5(SO(6)) maps injectively to π5(S
5), which means that every SO(6)-

bundle over S6 (represented by j ∈ π5(SO(6))) can be written as f∗j TS
6, and on those

we find Yang-Mills connections. Hence

we have constructed Yang-Mills connections on each of the countably many
(principal) SO(6)-bundles over S6.

Of course, we always mean S6 equipped with its standard metric.
The same works for SO(2)-bundles over S2, but the result is trivial because of the

sub-critical domain dimension.
Here are the details for the remaining dimensions. For n ∈ {4, 8}, we have

πn−1(SO(n)) ։ πn−1(S
n−1) → πn−2(SO(n − 1)),

Z
2

Z 0

hence we find Yang-Mills connections on infinitely many SO(4)-bundles over S4 or
SO(8)-bundles over S8, but not on all of them. For n = 10,

π9(SO(10))
(·2,0)
→ π9(S

9) → π8(SO(9)) ։ π8(SO(10)) → π8(S
9),

Z⊕ Z2 Z Z
2
2 Z2 0

which shows that we can construct Yang-Mills connections on “half of” the countably
many SO(10)-bundles over S10.
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