A NOTE ON THE TRIPLE PRODUCT PROPERTY SUBGROUP CAPACITY OF FINITE GROUPS

IVO HEDTKE

ABSTRACT. In the context of group-theoretic fast matrix multiplication the TPP capacity is used to bound the exponent ω of matrix multiplication. We prove a new and sharper upper bound for the TPP subgroup capacity of a finite group.

1. INTRODUCTION

In the context of group-theoretic fast matrix multiplication (see [1] for an introduction) the TPP subgroup capacity is used to bound the exponent ω of matrix multiplication. New upper bounds for the TPP subgroup capacity can be used to identify groups that do not lead to a nontrivial upper bound for ω via subgroup TPP triples. Our new bound (2) also gives a hint why COHN and UMANS state that "nonabelian simple groups appear to be a fruitful source of groups" with a large TPP capacity: The TPP capacity of abelian groups is trivial and the normal core of simple groups is equal to 1. Some researchers believe that triples of subgroups will never lead to a new nontrivial upper bound for ω in the context of the (TPP). Maybe this new bound will help to prove or disprove this conjecture.

With $Q(X) := \{xy^{-1} : x, y \in X\}$ we denote the right quotient of X. A triple (S, T, U) of subsets $S, T, U \subseteq G$ of a group G fulfills the so-called Triple Product Property (TPP) if for $s \in Q(S), t \in Q(T)$ and $u \in Q(U)$, stu = 1 holds iff s = t = u = 1. In this case we call (S, T, U) a TPP triple of G. The TPP capacity $\beta(G) := \max\{|S| \cdot |T| \cdot |U| : (S, T, U) \text{ is a TPP triple of } G\}$ is the biggest size of a TPP triple of G. We can use

$$\beta(G)^{\omega/3} \le D_{\omega}(G) \tag{1}$$

to find new nontrivial upper bound for the exponent $\omega := \inf\{r \in \mathbb{R} : M(n) = \mathcal{O}(n^r)\}$ of matrix multiplication, where $D_{\omega}(G) := \sum d_i^{\omega}$ and $\{d_i\}$ are the character degrees of G. Here M(n) denotes the number of field operations in characteristic 0 required to multiply two $(n \times n)$ matrices. The *TPP subgroup capacity* β_{g} is defined like β , but we restrict S, T and U to be subgroups of G. Note that $\beta_{g} \leq \beta$ holds. Therefore, $\beta_{\rm g}$ can be used in the same way like β to bound ω , but the result is not as strong as with the TPP capacity β . On the other hand it is easier to deal with subgroups instead of subsets, especially in (brute-force) search algorithms (see [2] for details). Note that $\beta_{g}(G) \geq |G|$, because (G, 1, 1) is a TPP triple for every group G.

Fact 1. [1, Lem. 2.1] Without loss of generality we can assume that $|S| \ge |T| \ge |U|$.

Fact 2. [3] If (S, T, U) is a TPP triple with $|S| \ge |T| \ge |U|$, then $|S|(|T| + |U| - 1) \le |G|$.

Fact 3. [2, Thm. 3.5] If (S, T, U) is a TPP triple of subgroups of G and one of S, T or U is normal in G, then $|S| \cdot |T| \cdot |U| \le |G|$.

2. New Upper Bound for the TPP subgroup capacity

Theorem. Let G be a finite group. Let $\{S_i\}_{i=1}^k$ be the list of all subgroups of G, sorted by their order such that $|S_i| \leq |S_{i+1}|$. Let $N := \max\{i : |S_i| \leq |G|/(|S_3| + |S_2| - 1)\}$. We define

$$\Delta(S_i) := \max\left\{ |S_j| \cdot |S_k| : 1 < k < j < i, |S_i|(|S_j| + |S_k| - 1) \le |G| \right\},\$$

and

$$b(G) := \max_{4 \le i \le N} \min\left\{ \frac{|G| \cdot |S_i|}{|\operatorname{Core}_G(S_i)|} , |S_i| \cdot \Delta(S_i) \right\}.$$

$$\beta_{g}(G) \le \max\{b(G), |G|\} =: h(G).$$
(2)

Then

$$G) \le \max\{b(G), |G|\} =: h(G).$$
 (2)

IVO HEDTKE

Proof. According to Fact 1 we are only interested in triples of type (S_i, S_j, S_k) where $i \ge j \ge k$. We assume that $|S_k| > 1$, because a TPP triple (S_i, S_j, S_k) represents a $(|S_i| \times |S_j|) \times (|S_j| \times |S_k|)$ matrix multiplication and we only focus on true matrix-matrix products. Furthermore $i \ne j \ne k$ holds, because in every other case the triple (S_i, S_j, S_k) can not fulfill the TPP. Therefore it follows that $i \ge 4$. Now assume that (S_i, S_j, S_k) is a TPP triple in G. From Fact 2 we know that $|S_i|(|S_j| + |S_k| - 1) \le |G|$ must hold. In the case where S_j and S_k are the smallest nontrivial distinct subgroups of G, what means that j = 3 and k = 2, this gives us the upper bound

$$|S_i| \le \frac{|G|}{|S_3| + |S_2| - 1}$$

for S_i . It follows that we can restrict the search space for S_i to $\{S_i : i \leq N\}$. Combined we get $4 \leq i \leq N$. From NEUMANN (Fact 2) we know the upper bound

$$t(G) := \max\left\{ |S_i| \cdot |S_j| \cdot |S_k| : S_i, S_j, S_k < G, |S_i| \ge |S_j| \ge |S_k| > 1, |S_i|(|S_j| + |S_k| - 1) \le |G| \right\}$$

for β_g . Note that this equals to $\max_i |S_i| \cdot \Delta(S_i)$, the right-hand-side of b(G). Assume that (S_i, S_j, S_k) is a TPP triple of subgroups of G. For every subset $A \subseteq S_i$ of S_i , (A, S_j, S_k) is a TPP triple, too. If S_i contains a normal subgroup $N \triangleleft G$ of G, then (N, S_j, S_k) is a TPP triple of G which fulfills the Fact 3. It follows that $|S_j| \cdot |S_k| \leq |G|/|N|$. Obviously, this holds for the biggest normal subgroup in S_i , too:

$$|S_i| \cdot |S_j| \cdot |S_k| \le |S_i| \cdot \frac{|G|}{|\operatorname{Core}_G(S_i)|}.$$

Note that this is the left-hand-side of b(G). We omitted the case (G, 1, 1), so it could be possible that b(G) < |G|. We correct this via Eq. (2).

3. Applications

Our new bound h is a combination of NEUMANNS's bound t (which is the formerly best known bound) and the observation about normal subgroups from HEDTKE and MURTHY. Obviously $\beta_g \leq h \leq t$ holds. Note, that Eq. (1) leads to a nontrivial upper bound iff $\beta(G) > D_3(G)$. Therefore we conclude that a group G with $\beta_g(G) \leq D_3(G)$ will never realize a nontrivial ω via a TPP triple of subgroups. Tbl. 1 shows the effect of h and t at excluding such G's.

G	#G's	$ \{G:t\leq D_3\} $	$ \{G:h\leq D_3\} $	G	#G's	$ \{G:t\leq D_3\} $	$ \{G:h\leq D_3\} $
24	12	4	6	64	256	129	136
32	44	7	11	72	44	8	12
36	10	4	6	80	47	18	22
40	11	3	11	84	13	5	8
48	47	18	22	88	9	0	2
50	3	1	2	96	224	28	93
56	10	2	4	98	3	1	2
60	11	5	8	100	12	6	8

TABLE 1. Examples of the impact of the new bound for *nonabelian* groups.

References

- H. Cohn and C. Umans, A Group-theoretic Approach to Fast Matrix Multiplication, Proceedings of the 44th Annual Symposium on Foundations of Computer Science, 11-14 October 2003, Cambridge, MA, IEEE Computer Society (2003), 438–449.
- [2] I. Hedtke and S. Murthy, Search and test algorithms for Triple Product Property triples, arXiv eprint 1104.5097, 2011.
- [3] P. M. Neumann, A note on the triple product property for subsets of finite groups, to appear in Journal of Computation and Mathematics, London Mathematical Society, 2011.

INSTITUTE OF COMPUTER SCIENCE, UNIVERSITY OF HALLE-WITTENBERG, D-06099 HALLE, GERMANY *E-mail address*: hedtke@informatik.uni-halle.de