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Abstract

Injective metric spaces, or absolute 1-Lipschitz retracts, share a number of
properties with CAT(0) spaces. Isbell showed that every metric space X has an
injective hull E(X). We prove that if X is the vertex set of a connected locally
finite graph with a uniform stability property of intervals, then E(X) is a locally
finite polyhedral complex with finitely many isometry types of n-cells, isometric
to polytopes in ln

∞
, for each n. This applies to a class of finitely generated

groups Γ, including word hyperbolic and abelian groups, among others. Then Γ
acts properly on E(Γ) by cellular isometries, and the first barycentric subdivision
of E(Γ) is a model for the classifying space EΓ for proper actions. If Γ is word
hyperbolic, E(Γ) is finite dimensional and the action is cocompact; the injective
hull thus provides an alternative to the Rips complex, with some extra features.

1 Introduction

A metric space X is called injective if for every metric space B and every 1-Lipschitz
map f : A → X defined on a set A ⊂ B there exists a 1-Lipschitz extension f : B →
X of f . The terminology is in accordance with the notion of an injective object
in category theory. Basic examples of injective metric spaces are the real line, all
complete R-trees, and l∞(I) for an arbitrary index set I. Every injective metric space
X is complete, geodesic, and contractible; in fact there is a map γ : X×X×[0, 1] → X

such that γxy := γ(x, y, ·) is a constant speed geodesic from x to y and

d(γxy(t), γx′y′(t)) ≤ (1− t)d(x, x′) + td(y, y′), (1.1)

for all x, y, x′, y′ ∈ X and t ∈ [0, 1]. In the 1960es, Isbell [23] showed that every metric
spaceX possesses an injective hull (e,E(X)); that is, E(X) is an injective metric space,
e : X → E(X) is an isometric embedding, and every isometric embedding of X into
some injective metric space Z factors through e. Furthermore, for any other injective
hull (i, Y ) of X there is a unique isometry I : E(X) → Y with the property that
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2 U. Lang

I ◦ e = i. If X is compact then so is E(X), and if X is finite then the injective hull
is a finite polyhedral complex of dimension at most 1

2 |X| whose n-cells are isometric
to polytopes in ln∞ = l∞({1, . . . , n}). If X is a normed real vector space, then E(X)
agrees with the injective hull in the linear category, in particular E(X) has a Banach
space structure. For references and a detailed review of injective metric spaces and
hulls we refer to Sections 2 and 3.

Isbell’s construction was rediscovered twenty years later by Dress [12] (and even
another time by Chrobak and Larmore [9]). Due to this independent work and a
characterization of injective metric spaces from [3], metric injective hulls are also called
tight spans (Dress) or hyperconvex hulls in the literature, sometimes with a different
connotation; furthermore ‘hull’ is often substituted by ‘envelope’. Tight spans are
widely known in discrete mathematics and have notably been used in phylogenetic
analysis; see [16, 15] for some surveys. The purpose of the present article is to explore
Isbell’s construction further in the context of metric geometry and geometric group
theory.

To state the main results, we introduce some general notation used throughout
the paper. Let X be a metric space with metric d. We generally assume X to be
non-empty. For x, y ∈ X,

I(x, y) := {v ∈ X : d(x, v) + d(v, y) = d(x, y)}

denotes the interval between x and y (compare [30]), and for x, v ∈ X,

C(x, v) := {y ∈ X : v ∈ I(x, y)} (1.2)

is the cone determined by the directed pair (x, v). Given a reference point z ∈ X,
dz : X → R denotes the distance function to z, thus dz(x) = d(x, z). The metric
space X is called discretely geodesic if the metric is integer valued and for every pair
of points x, y ∈ X there exists an isometric embedding γ : {0, 1, . . . , d(x, y)} → X

such that γ(0) = x and γ(d(x, y)) = y. We say that a discretely geodesic metric
space X has β-stable intervals, for some constant β ≥ 0, if for every triple of points
x, y, y′ ∈ X with d(y, y′) = 1 we have

dH(I(x, y), I(x, y
′)) ≤ β, (1.3)

where dH denotes the Hausdorff distance in X. To verify this inequality it suffices,
by symmetry, to show that for every v ∈ I(x, y) there exists a v′ ∈ I(x, y′) with
d(v, v′) ≤ β; this means that some (but not necessarily every) discrete geodesic from x

to y′ passes close to v. We have the following result.

1.1 Theorem. Let X be a discretely geodesic metric space such that all bounded
subsets are finite. If X has β-stable intervals, then the injective hull E(X) is proper
(that is, bounded closed subsets are compact) and has the structure of a locally finite
polyhedral complex with only finitely many isometry types of n-cells, isometric to
injective polytopes in ln∞, for every n ≥ 1.
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In this article, polytopes are understood to be convex and compact. A detailed
discussion of the polyhedral structure of E(X), under some weaker (but technical)
assumption, is given in Section 4. Then, in Section 5, we employ the uniform stability
of intervals to verify this assumption and to show that the structure is in fact locally
finite. Inequality (1.3) is used through the following two consequences. First, for
every fixed vertex v ∈ X there are only finitely many distinct cones C(x, v) as x

ranges over X; the argument goes back to Cannon [7]. Second, for all x, y, z ∈ X

there exists v ∈ I(x, y) such that dz(v) ≤ β(dz(x) + dz(y) − d(x, y)) (this implies in
turn that X has 2β-stable intervals). We derive upper bounds on the local dimension
and complexity of E(X) in terms of the distance to a point e(z) in the image of the
embedding e: X → E(X), the cardinality of balls centered at z, and the constant β.
In particular, if there is a uniform bound on the number of points at distance one from
any point in X, then every subcomplex of E(X) contained in a tubular neighborhood
of e(X) is finite dimensional. Note that this applies to finitely generated groups,
discussed below.

A metric space X is called δ-hyperbolic, for some constant δ ≥ 0, if

d(w, x) + d(y, z) ≤ max{d(w, y) + d(x, z), d(x, y) + d(w, z)} + δ (1.4)

for all w, x, y, z ∈ X. It is easily seen that every discretely geodesic δ-hyperbolic
metric space has (δ + 1)-stable intervals. The following general embedding theorem
holds (see [21, Proposition 6.4.D], [5, Theorem 4.1] for some results of similar type).

1.2 Theorem. Let X be a δ-hyperbolic metric space. Then E(X) is δ-hyperbolic as
well. If, in addition, X is geodesic or discretely geodesic, then E(X) is within distance
δ or δ + 1

2 , respectively, of the image of the embedding e: X → E(X).

The first part of this result is mentioned in [16, Section 4.4], and the argument
is given in [12, (4.1)] for the case δ = 0. The second part (with a primarily different
proof and a worse bound) served as the starting point for the present investigation
and for the thesis [29], where also a weaker version of Theorem 1.3 below was shown.

Now let Γ be a group with a finite generating system S, equipped with the word
metric dS with respect to the alphabet S ∪ S−1. The isometric action of Γ by left
multiplication on ΓS = (Γ, dS) extends canonically to an isometric action on the
injective hull E(ΓS). If ΓS has β-stable intervals (see Remark 5.9 for some sufficient
conditions), Theorem 1.1 yields that E(ΓS) is a locally finite polyhedral complex with
finitely many isometry types of n-cells for every n.

1.3 Theorem. Let ΓS = (Γ, dS) be a finitely generated group. If ΓS has β-stable
intervals, then Γ acts properly by cellular isometries on the complex E(ΓS). If ΓS is
δ-hyperbolic, then E(ΓS) is finite dimensional and the action is cocompact in addition.

Injective (or hyperconvex) metric spaces have some remarkable fixed point prop-
erties. For instance, every 1-Lipschitz map L : X → X of a bounded injective metric
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space X has an non-empty fixed point set which is itself injective and thus con-
tractible; compare [19, Theorem 6.1] and the references there. Contrary to what one
might expect, the boundedness condition cannot be relaxed to the assumption that
the semigroup generated by the 1-Lipschitz map L has bounded orbits. Indeed Prus
gave an example of an isometric embedding L of the Banach space l∞ into itself such
that L has bounded orbits but no fixed point; see [19, Remark 6.3]. However, the map
L is not surjective and thus the example still leaves room for the following theorem.
In the process of finishing this paper I became aware of the reference [14], where the
result is shown for isometric actions of compact groups.

1.4 Theorem. Let X be an injective metric space. If Λ is a subgroup of the isometry
group of X with bounded orbits, then the fixed point set of Λ is itself injective, in
particular it is non-empty and contractible.

This should be compared with the analogous result for CAT(0) spaces (see [6,
Corollary II.2.8]). As a consequence of Theorem 1.4 one obtains the following sup-
plement of Theorem 1.3.

1.5 Theorem. Let ΓS = (Γ, dS) be a finitely generated group with β-stable inter-
vals. Then the first barycentric subdivision of the complex E(ΓS) is a model for the
classifying space EΓ for proper actions.

The proofs of the above theorems are given in Section 6. If ΓS is δ-hyperbolic, the
barycentric subdivision of E(ΓS) has only finitely many distinct Γ-orbits of cells and
thus constitutes a (so-called) finite model for EΓ. A corresponding result is known
for the Rips complex PR(ΓS), provided the maximal simplex diameter R is chosen
sufficiently large (see [28]). It should be noted, however, that the entire structure of
E(ΓS) is canonically determined by the choice of S and that E(ΓS) comes with some
features of nonpositive curvature such as (1.1). Furthermore, by this inequality and a
result from [37], every injective metric space satisfies isoperimetric filling inequalities
of Euclidean type for integral cycles in any dimension. In view of these properties it
is natural to ask whether E(ΓS) can be equipped with an honest equivariant CAT(0)
metric. The answer to this question is positive, for instance, if E(ΓS) has dimension
two. This and further results on the structure of injective hulls of finitely generated
groups will be discussed in a subsequent article.

Acknowledgements. I thank Mario Bonk, Arvin Moezzi, Pierre Pansu, and
Viktor Schroeder for inspiring discussions and valuable comments. Parts of this pa-
per were written during visits to the Institut Henri Poincaré in Paris, the Max Planck
Institute for Mathematics in Bonn, and the University of Seville. I gratefully acknowl-
edge support from these institutions and from the Swiss National Science Foundation.
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2 Injective metric spaces

In this section we discuss some basic examples, properties, and characterizations of
injective metric spaces.

The set of all 1-Lipschitz maps from a metric space B into another metric space
X will be denoted by Lip1(B,X). Recall that X is injective if for every metric space
B, every A ⊂ B, and every f ∈ Lip1(A,X) there exists f ∈ Lip1(B,X) such that
f |A = f . (Note that for A = ∅ 6= B this says that X 6= ∅.)

The most basic examples of injective metric spaces are the real line R and all
non-empty closed subintervals, with the usual metric. For instance, if f ∈ Lip1(A,R),
where A 6= ∅ is a subset of a metric space B, then

f(b) := sup
a∈A

(f(a)− d(a, b)) (2.1)

defines the least possible extension f ∈ Lip1(B,R) of f .

It follows easily from the definition that every injective metric space X is complete
and geodesic. Indeed, if X̄ denotes the completion, then the identity map on X

extends to a 1-Lipschitz retraction π : X̄ → X which turns out to be an isometry as
X is dense in X̄. Furthermore, given x, y ∈ X, the map that sends 0 ∈ R to x and
l := d(x, y) to y extends to a 1-Lipschitz map γ : [0, l] → X which, due to the triangle
inequality, is in fact an isometric embedding.

Another basic property is that for every triple of points x, y, z in an injective
metric space X there is a (not necessarily unique) median point v ∈ X, that is, a
point in I(x, y)∩ I(y, z)∩ I(z, x). This is shown by extending the isometric inclusion
{x, y, z} → X to a 1-Lipschitz map from Q := ({x, y, z, u}, d̄) to X, where the metric
d̄ is determined by the requirement that it agrees with d on {x, y, z} and that the
additional point u is a median point of x, y, z in Q (thus d̄(u, z) = (x | y)z, etc.,
see (5.4)). As above, this 1-Lipschitz extension is in fact an isometric embedding, and
the image of u is the desired median point v ∈ Y . One may choose geodesic segments
[v, x], [v, y], [v, z] to produce a geodesic tripod spanned by x, y, z (thus [v, x] ∪ [v, y]
is a geodesic segment from x to y, etc.). Checking the existence of median points is
a simple and useful first test for injectivity. Furthermore, it follows that if X is an
injective metric space with the property that every pair of points x, y is connected by
a unique geodesic segment [x, y], then every geodesic triangle in X is a tripod and so
X is an R-tree. The converse is a well-known fact:

2.1 Proposition. Every complete R-tree X is injective.

Most proofs in the literature proceed via pointwise extensions and transfinite
induction (compare Proposition 2.3 below). The following direct argument, extracted
from a more general construction in [26], adapts (2.1) to trees.
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Proof. Fix a base point z ∈ X. Let f ∈ Lip1(A,X), where ∅ 6= A ⊂ B. For every
pair (a, b) ∈ A×B, define

̺(a, b) := max{0, dz(f(a))− d(a, b)}

and let x(a, b) be the point on the segment [z, f(a)] at distance ̺(a, b) from z. For
two such pairs (a, b), (a′, b′), consider the tripod spanned by z, f(a), f(a′). Depending
on the positions of x(a, b) and x(a′, b′) on the tripod, d(x(a, b), x(a′, b′)) equals either
|̺(a, b)− ̺(a′, b′)| or d(f(a), f(a′))− d(a, b)− d(a′, b′). Since d(f(a), f(a′)) ≤ d(a, a′),
it follows that

d(x(a, b), x(a′, b′)) ≤ max{|̺(a, b) − ̺(a′, b′)|, d(b, b′)}. (2.2)

To define the extension at b ∈ B, choose a sequence (ai) in A such that

lim
i→∞

̺(ai, b) = ¯̺(b) := sup
a∈A

̺(a, b).

The corresponding sequence (x(ai, b)) in X is Cauchy by (2.2), and f(b) is defined
as its limit, which is independent of the choice of (ai). Note that ¯̺: B → R is the
least nonnegative 1-Lipschitz extension of dz ◦ f . Now it follows from (2.2) that
f ∈ Lip1(B,X). To check that f extends f , let b ∈ A, and let (ai) be a sequence in
A such that ̺(ai, b) → ¯̺(b). We have ̺(b, b) = dz(f(b)) = ¯̺(b) and x(b, b) = f(b), so
d(x(ai, b), f(b)) ≤ |̺(ai, b) − ¯̺(b)| by (2.2). Since x(ai, b) → f(b), this gives f(b) =
f(b).

The l∞ product of a non-empty family {(Xi, di, zi)}i∈I of pointed metric spaces is
defined as the set of all x = (xi)i∈I with xi ∈ Xi and supi∈I di(xi, zi) < ∞, endowed
with the metric (x, x′) 7→ supi∈I di(xi, x

′
i). Here I 6= ∅ is an arbitrary index set;

if I is finite or the diameters of the Xi are uniformly bounded, base points may be
disregarded. It is easy to see that if each (Xi, di) is injective, then so is the l∞ product.
In case (Xi, zi) = (R, 0) for all i ∈ I, the corresponding l∞ product is the Banach
space l∞(I), which is thus an injective metric space. Similarly, L∞(Y, µ) is injective
for every measure space (Y, µ).

Next we recall some well-known characterizations of injective metric spaces. A
metric space X is called an absolute 1-Lipschitz retract if, whenever i : X → Y is an
isometric embedding into another metric space Y , there exists a 1-Lipschitz retraction
of Y onto i(X). If X is injective and i : X → Y is an isometric embedding, then i(X)
is injective and thus the identity map on i(X) extends to a 1-Lipschitz retraction
π : Y → i(X). On the other hand, every metric space X embeds isometrically into
l∞(X) via the Kuratowski map kz : x 7→ dx − dz, for any base point z ∈ X. Hence,
if kz(X) is a 1-Lipschitz retract in l∞(X), then X is injective since l∞(X) is. This
shows:
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2.2 Proposition. A metric space X is injective if and only if it is an absolute 1-
Lipschitz retract.

At this point, we note that every injective metric space X is contractible. If
π : l∞(X) → X ′ := kz(X) is a 1-Lipschitz retraction onto the image of the Kuratowski
embedding, then h(x′, t) := π(tx′) defines a homotopy h : X ′ × [0, 1] → X ′ from the
constant map with value 0 = kz(z) to the identity map. A map γ as in (1.1) can
be obtained in a similar way. An additional equivariance property will be shown in
Theorem 3.8. Compare also [23, Theorem 1.1].

Another characterization of injective metric spaces relies on pointwise extensions
of 1-Lipschitz maps. A metric space X is said to be hyperconvex if every family
((xi, ri))i∈I in X ×R with the property that ri + rj ≥ d(xi, xj) for all pairs of indices
i, j ∈ I satisfies X ∩

⋂
i∈I B(xi, ri) 6= ∅. (For I = ∅ this gives X 6= ∅, in accordance

with the fact that injective metric spaces are non-empty.) This terminology was
introduced by Aronszajn and Panitchpakdi in [3], who also observed Proposition 2.2
and the next result.

2.3 Proposition. A metric space X is injective if and only if it is hyperconvex.

For the proof, one notes first that if f ∈ Lip1(A,X), ∅ 6= A ⊂ B, and b ∈ B \ A,
then d(a, b) + d(a′, b) ≥ d(a, a′) ≥ d(f(a), f(a′)) for all a, a′ ∈ A. Hence, if X is
hyperconvex, then

⋂
a∈AB(f(a), d(a, b)) is non-empty, and one obtains an extension

fb ∈ Lip1(A ∪ {b},X) of f by declaring fb(b) to be any point in this intersection.
By iterating this process transfinitely, in general, one infers that X is injective. Con-
versely, if X is injective, a similar argument as for the existence of median points
shows that X is hyperconvex. A useful direct consequence of this characterization is
that the intersection of a family of closed balls in an injective metric space is injec-
tive, whenever the intersection is non-empty. Some key results on hyperconvex metric
spaces were shown by Baillon [4]. Proposition 2.3 will be used in Section 6 for the
proof of Theorem 1.4.

A concept very close to hyperconvexity is the binary intersection property, ob-
tained by replacing the inequality ri + rj ≥ d(xi, xj) in the above definition by the
condition B(xi, ri)∩B(xj, rj) 6= ∅. The two concepts agree for geodesic metric spaces.
Nachbin [31, Theorem 1] showed that a normed real vector space X has the binary in-
tersection property if and only if X is linearly injective, that is, for every real normed
space B, every linear subspace A ⊂ B, and every bounded linear operator f : A → X

there exists a linear extension f : B → X with norm ‖f‖ = ‖f‖. (The Hahn–Banach
Theorem thus asserts that R is linearly injective.) Hence, a real normed space X is
injective as a metric space if and only if X is injective in the linear category, and no
ambiguity arises. By [31, Theorem 3], an n-dimensional normed space X is injective
if and only if X is linearly isometric to ln∞ or, in other words, balls in X are parallelo-
topes. The final classification result, usually attributed to Nachbin–Goodner–Kelley,
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asserts that a real normed space is injective if and only if it is isometrically isomorphic
to the Banach space C(K) of continuous real valued functions on some extremally dis-
connected compact Hausdorff space K, endowed with the supremum norm. See [25].

It is clear that linear subspaces of injective normed spaces need not be injective. A
familiar example is the planeH = {x1+x2+x3 = 0} in l3∞, whose norm ball is hexago-
nal. One may also check directly that the triple of points (1, 1,−2), (1,−2, 1), (−2, 1, 1)
has no median point in H. We conclude this section by showing that certain subsets
of ln∞ (or l∞(I)) defined by linear inequalities involving at most two variables are
injective. We shall use this to prove that the polyhedral cells of E(X) are themselves
injective (compare Theorem 1.1).

2.4 Proposition. Let I 6= ∅ be any index set. Suppose that Q is a non-empty
subset of l∞(I) given by an arbitrary system of inequalities of the form σxi ≤ C or
σxi + τxj ≤ C with |σ|, |τ | = 1 and C ∈ R. Then Q is injective.

We use a similar explicit construction as for R-trees. Some further results on injec-
tive polyhedral sets in ln∞ can be found in [29, Section 1.8.2]. A good characterization
of such sets seems to be missing.

Proof. Assume that 0 ∈ Q, so that all constants on the right sides of the inequalities
describing Q are nonnegative. For i ∈ I, denote by Ri the reflection of l∞(I) that
interchanges xi with −xi. Let B be a metric space and ∅ 6= A ⊂ B. We show that
there exists an extension operator φ : Lip1(A, l∞(I)) → Lip1(B, l∞(I)) such that

φ(Ri ◦ f) = Ri ◦ φ(f) (2.3)

for every i, and such that the components of φ(f) satisfy

φ(f)i + φ(f)j ≤ C (2.4)

whenever fi + fj ≤ C for some pair of possibly equal indices i, j and some constant
C ≥ 0. This clearly gives the result.

First, for a real valued function f ∈ Lip1(A,R), we combine the smallest and
largest 1-Lipschitz extensions and define f : B → R by

f(b) := sup
{
0, sup

a∈A
(f(a)− d(a, b))

}
+ inf

{
0, inf

a′∈A
(f(a′) + d(a′, b))

}
.

Note that at most one of the two summands is nonzero since f(a)− d(a, b) ≤ f(a′) +
d(a, a′) − d(a, b) ≤ f(a′) + d(a′, b). It is not difficult to check that f is a 1-Lipschitz
extension of f and that R ◦ f = R ◦ f for the reflection R : x 7→ −x of R. (The proof
of Proposition 2.1 yields precisely this extension f in the case (X, z) = (R, 0).)

Now, for f ∈ Lip1(A, l∞(I)), define φ(f) such that φ(f)i = fi for every i. Clearly
φ(f) ∈ Lip1(B, l∞(I)), and (2.3) holds. As for (2.4), suppose that fi+fj ≤ C for some
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indices i, j and some constant C ≥ 0. Let b ∈ B, and assume that φ(f)i(b) ≥ φ(f)j(b).
If φ(f)j(b) > 0, then

φ(f)i(b) + φ(f)j(b) = sup
a,a′∈A

(fi(a) + fj(a
′)− d(a, b) − d(a′, b))

≤ sup
a,a′∈A

(fi(a) + fj(a
′)− d(a, a′))

≤ sup
a∈A

(fi(a) + fj(a)) ≤ C.

If φ(f)i(b) > 0 ≥ φ(f)j(b), then

φ(f)i(b) + φ(f)j(b) ≤ sup
a∈A

(fi(a)− d(a, b)) + inf
a′∈A

(fj(a
′) + d(a′, b))

≤ sup
a∈A

(fi(a) + fj(a)) ≤ C.

Finally, if φ(f)i(b) ≤ 0, then φ(f)i(b) + φ(f)j(b) ≤ 0 ≤ C.

3 Injective hulls

We now review Isbell’s [23] construction X 7→ E(X). Our proof of the injectivity of
E(X) differs from Isbell’s in that it does not appeal to Zorn’s Lemma or the like. We
employ an observation by Dress [12] which also gives further information.

LetX be a metric space. Denote by R
X the vector space of all real valued functions

on X, and define

∆(X) := {f ∈ R
X : f(x) + f(y) ≥ d(x, y) for all x, y ∈ X}

(compare [31, p. 35]). By the triangle inequality, the distance function dz belongs to
∆(X) for each z ∈ X, and clearly all elements of ∆(X) are nonnegative. Isbell called
a function f ∈ R

X extremal if it is a minimal element of the partially ordered set
(∆(X),≤), where g ≤ f means g(x) ≤ f(x) for all x ∈ X as usual. Thus

E(X) := {f ∈ ∆(X) : if g ∈ ∆(X) and g ≤ f , then g = f}

is the set of extremal functions on X. In case X is compact, f ∈ ∆(X) is extremal
if and only if for every x ∈ X there exists y ∈ X such that f(x) + f(y) = d(x, y). In
general, f ∈ R

X is extremal if and only if

f(x) = sup
y∈X

(d(x, y) − f(y)) (3.1)

for all x ∈ X. Each dz is extremal. Applying (3.1) twice one obtains

f(x)− d(x, x′) = sup
y∈X

(d(x, y)− d(x, x′)− f(y)) ≤ f(x′)
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for all x, x′ ∈ X, so every f ∈ E(X) is 1-Lipschitz. Now consider the set

∆1(X) := ∆(X) ∩ Lip1(X,R),

equipped with the metric

(f, g) 7→ ‖f − g‖∞ = sup
x∈X

|f(x)− g(x)|.

To see that the supremum is finite, note that a function f ∈ R
X belongs to ∆1(X) if

and only if |f(x)− d(x, y)| ≤ f(y) for all x, y ∈ X or, equivalently,

‖f − dy‖∞ = f(y) (3.2)

for all y ∈ X. Hence, ‖f − g‖∞ ≤ inf(f + g). The set E(X) is contained in ∆1(X)
and is equipped with the induced metric. The map

e: X → E(X), e(y) = dy,

is a canonical isometric embedding of X into E(X), as ‖dy − dz‖∞ = d(y, z). Equa-
tion (3.2) will be used frequently. It shows that a function f ∈ ∆1(X) corresponds,
after identification of X with e(X), to the restriction of a distance function to a point
in ∆1(X), namely f itself.

To prove that (e,E(X)) is an injective hull of X we shall make use of the following
basic fact.

3.1 Proposition. For every metric space X there exists a map p : ∆(X) → E(X)
such that

(1) p(f) ≤ f for all f ∈ ∆(X), hence p(f) = f for all f ∈ E(X);

(2) ‖p(f)− p(g)‖∞ ≤ ‖f − g‖∞ for all f, g ∈ ∆(X).

In (2) the right side is possibly infinite, but it is finite if f, g ∈ ∆1(X), thus the
restriction of p to ∆1(X) is a 1-Lipschitz retraction onto E(X). The existence of such
a map p could be shown by means of Zorn’s Lemma, however Dress [12, Section (1.9)]
(compare [9, Lemma 5.3]) also found the following construction, which is canonical
in the sense that no choices need to be made.

Proof. For every f ∈ ∆(X), define f∗ ∈ R
X such that

f∗(x) = sup
z∈X

(d(x, z) − f(z))

for all x ∈ X. Clearly f∗ ≤ f , and equality holds if and only if f ∈ E(X), cf. (3.1).
For every pair of points x, y ∈ X, the definition of f∗ gives f∗(x)+f(y) ≥ d(x, y) and
f(x) + f∗(y) ≥ d(x, y). It follows that the function

q(f) :=
1

2
(f + f∗)
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belongs to ∆(X), and q(f) ≤ f . For all f, g ∈ ∆(X) and x ∈ X,

g∗(x) = sup
z∈X

(d(x, z) − f(z) + f(z)− g(z)) ≤ f∗(x) + ‖f − g‖∞,

hence ‖f∗ − g∗‖∞ ≤ ‖f − g‖∞ and thus

‖q(f)− q(g)‖∞ ≤
1

2
‖f − g‖∞ +

1

2
‖f∗ − g∗‖∞ ≤ ‖f − g‖∞.

Iterating the map q, one obtains for every f ∈ ∆(X) a sequence of functions q(f) ≥
q2(f) ≥ q3(f) ≥ . . . in ∆(X), then p(f) is defined as the pointwise limit. Clearly
p(f) ∈ ∆(X), and (1) and (2) hold. For all n ≥ 1, p(f) ≤ qn(f) and hence p(f)∗ ≥
qn(f)∗, so

0 ≤ p(f)− p(f)∗ ≤ qn(f)− qn(f)∗ = 2(qn(f)− qn+1(f)).

As n → ∞, the last term converges pointwise to 0, thus p(f)∗ = p(f) and therefore
p(f) ∈ E(X).

Now, since E(X) is a 1-Lipschitz retract of ∆1(X), to prove the injectivity of
E(X) it remains to show that ∆1(X) is injective. A simple component-wise extension
procedure applies, like for l∞(I).

3.2 Proposition. For every metric space X the metric spaces ∆1(X) and E(X) are
injective.

Proof. As just mentioned, in view of Proposition 3.1 it suffices to prove the result for
∆1(X). We could embed ∆1(X) into l∞(X) via f 7→ f −h for some fixed h ∈ ∆1(X)
and then refer to Proposition 2.4, but the following argument is slightly more direct.
Let B be a metric space, ∅ 6= A ⊂ B, and let F : A → ∆1(X) be a 1-Lipschitz map,
F : a 7→ fa. For b ∈ B, put

f̄b(x) := inf
a∈A

(fa(x) + d(a, b))

for all x ∈ X. Clearly f̄b is a nonnegative 1-Lipschitz function on X, as the infimum
of a family of such. For a, a′ ∈ A and y ∈ X, we have fa(y)− fa′(y) ≤ ‖fa − fa′‖∞ =
‖F (a) − F (a′)‖∞ ≤ d(a, a′) and so

f̄b(x) + f̄b(y) ≥ inf
a,a′∈A

(fa(x) + fa′(y) + d(a, a′))

≥ inf
a∈A

(fa(x) + fa(y))

≥ d(x, y).
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This shows that f̄b ∈ ∆1(X). For b, b′ ∈ B and x ∈ X,

f̄b(x)− d(b, b′) = inf
a∈A

(fa(x) + d(a, b) − d(b, b′)) ≤ f̄b′(x),

hence ‖f̄b − f̄b′‖∞ ≤ d(b, b′). If b ∈ A, then f̄b(x) ≤ fb(x) and fb(x) ≤ fa(x) + ‖fa −
fb‖∞ ≤ fa(x) + d(a, b) for all x ∈ X and a ∈ A, so that f̄b = fb. Thus F : b 7→ f̄b is a
1-Lipschitz extension of F .

If X is finite, so that the supremum norm gives a metric on ∆(X), the same
argument also shows that ∆(X) is injective.

We now state Isbell’s result about E(X). For brevity, isometric embeddings will
just be called embeddings. An embedding i of X into some metric space Y is called
essential if for every metric space Z and every 1-Lipschitz map h : Y → Z with the
property that h ◦ i : X → Z is an embedding, h is an embedding as well. If i : X → Y

is essential and Y is injective, then (i, Y ) is an injective hull of X; see [1, Section 9].
In the terminology of [12], an essential extension (i, Y ) of X is called a tight extension
(and ∆(X) and E(X) are denoted PX and TX , respectively).

3.3 Theorem. For every metric space X, the following hold:

(1) If L : E(X) → E(X) is a 1-Lipschitz map that fixes e(X) pointwise, then L is
the identity on E(X);

(2) (e,E(X)) is an injective hull of X;

(3) if (i, Y ) is another injective hull of X, then there exists a unique isometry
I : E(X) → Y with the property that I ◦ e = i.

Proof. For (1) we use (3.2). The map L takes f ∈ E(X) to some g ∈ E(X) such that

g(x) = ‖g − dx‖∞ = ‖L(f)− L(dx)‖∞ ≤ ‖f − dx‖∞ = f(x)

for all x ∈ X, so g = f by the minimality of f .

By Proposition 3.2, E(X) is injective, so for (2) it remains to show that e is
essential. Suppose h : E(X) → Z is 1-Lipschitz and h ◦ e: X → Z is an embedding.
Since E(X) is injective, e : X → E(X) extends to a 1-Lipschitz map e : Z → E(X),
thus e ◦ h ◦ e = e. The map L := e ◦ h is 1-Lipschitz and fixes e(X) pointwise, so
L is the identity on E(X) by (1). As both h and e are 1-Lipschitz, h is in fact an
embedding.

As for (3), if (i, Y ) is another injective hull of X, then i extends to a 1-Lipschitz
map I : E(X) → Y , so I ◦ e = i. Likewise, there is a 1-Lipschitz map e: Y → E(X)
with e ◦ i = e. Since i is essential, e is an embedding; furthermore, e ◦ I ◦ e = e, thus
e ◦ I = idE(X) by (1). Hence e is an isometry onto E(X), and I is its inverse.
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Injective hulls can be characterized in a number of different ways. We just state
the following proposition, which is independent of the construction described above,
except that the proof relies on the existence of some injective hull of X. For the
details we refer again to the general discussion in [1, Section 9].

3.4 Proposition. Let X and Y be metric spaces, and let i : X → Y be an embedding.
Then the following are equivalent:

(1) (i, Y ) is an injective hull of X, that is, i is essential and Y is injective;

(2) (i, Y ) is a maximal essential extension of X, that is, i is essential and Y has
no proper essential extension;

(3) (i, Y ) is a minimal injective extension of X, that is, Y is injective and no proper
subspace of Y containing i(X) is injective;

(4) (i, Y ) is a smallest injective extension of X, that is, Y is injective and whenever
j : X → Z is an embedding into some injective metric space Z, there is an
embedding h : Y → Z such that h ◦ i = j.

In fact, (3) is the definition of injective hulls adopted by Isbell in [23], and (2)
corresponds to the notion of tight span introduced by Dress [12]. In the introduction
we used property (4), a concrete instance of which is given in the next result (compare
[12, Section (1.11)]).

3.5 Proposition. Let X be a subspace of the metric space X ′. Then:

(1) There exists an isometric embedding h : E(X) → E(X ′) such that h(f)|X = f

for every f ∈ E(X).

(2) For every pair of functions g ∈ E(X) and f ′ ∈ E(X ′) there exists g′ ∈ E(X ′)
such that g′|X = g and ‖g′ − f ′‖∞ = ‖g − f ′|X‖∞.

Proof. For f ∈ E(X), let first f : X ′ → R be the 1-Lipschitz extension defined by

f(y) := inf
x∈X

(f(x) + d(x, y)).

Clearly f ∈ ∆(X ′). Now put h(f) := p(f) ∈ E(X ′), where p is as in Proposition 3.1.
We have h(f)|X = p(f)|X ≤ f |X = f ; since h(f)|X ∈ ∆(X), this gives h(f)|X = f by
the minimality of f . For f, g ∈ E(X) and y ∈ X ′,

f(y)− ‖f − g‖∞ = inf
x∈X

(f(x)− ‖f − g‖∞ + d(x, y)) ≤ g(y),

hence ‖h(f)− h(g)‖∞ = ‖p(f)− p(g)‖∞ ≤ ‖f − g‖∞ = ‖f − g‖∞. This yields (1).
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As for (2), suppose that ν := ‖g − f ′|X‖∞ < ∞. Define g̃ : X ′ → R such that
g̃|X = g and g̃(y) = f ′(y) + ν for all y ∈ X ′ \X. Since g̃(x) = g(x) ≥ f ′(x) − ν for
x ∈ X, it follows that g̃ ∈ ∆(X ′). Now let g′ ∈ E(X ′) be any extremal function with
g′ ≤ g̃. Similarly as above, g′|X ≤ g̃|X = g and thus g′|X = g by the minimality of g.
Furthermore, g′ ≤ f ′ + ν and hence

g′(y) ≥ sup
y′∈X′

(d(y, y′)− f ′(y′)− ν) = f ′(y)− ν

for all y ∈ X ′ by (3.1). This gives the result.

A number of properties of E(X) are more or less obvious from the construction.
If X is bounded, then 0 ≤ f ≤ diam(X) := supx,y∈X d(x, y) for all f ∈ E(X) by (3.1),
thus

diam(E(X)) ≤ diam(X).

If X is compact, then so is E(X), as a consequence of the Arzelà-Ascoli Theorem. If
X is finite, E(X) is a polyhedral subcomplex of the boundary of the polyhedral set
∆(X) ⊂ R

X . The faces of ∆(X) that belong to E(X) are exactly those whose affine
hull H ⊂ R

X is determined by a system of equations of the form f(xi) + f(xj) =
d(xi, xj) involving each point xi ∈ X at least once. (Note that these are precisely the
bounded faces of ∆(X); compare [13, Lemma 1].) It follows that E(X) has dimension
at most 1

2 |X|. The possible combinatorial types of the injective hulls of metric spaces
up to cardinality 5 are depicted in [12, Section (1.16)], and a classification for 6-point
metrics is given in [36].

3.6 Remark. As mentioned in Section 2, a normed real vector space is injective
as a metric space if and only if it is linearly injective, and the only n-dimensional
example is ln∞, up to isometric isomorphism. Cohen [11] showed that every real or
complex normed space has an essentially unique injective hull in the respective linear
category. Isbell [24] and Rao [35] then proved that for a real normed space X the
linearly injective hull is isometric to E(X); an explicit description of the Banach space
structure on E(X) can be found in [10].

We conclude this section with some results involving isometries ofX. The isometry
group of X will be denoted by Isom(X).

3.7 Proposition. Let X be a metric space. Then:

(1) For every L ∈ Isom(X) there is a unique isometry L̄ : E(X) → E(X) with the
property that L̄ ◦ e = e ◦ L. One has L̄(f) = f ◦ L−1 for all f ∈ E(X), and
(L, f) 7→ L̄(f) is an action of Isom(X) on E(X).

(2) The linear isomorphism f 7→ f ◦L−1 of RX maps ∆(X) onto itself, and the map
p : ∆(X) → E(X) constructed in the proof of Proposition 3.1 has the additional
property that L̄(p(f)) = p(f ◦ L−1) for all L ∈ Isom(X) and f ∈ ∆(X).
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Proof. For every L ∈ Isom(X), e◦L is essential and so (e◦L,E(X)) is an injective hull
of X. Hence, by part (3) of Theorem 3.3, there is a unique isometry L̄ : E(X) → E(X)
such that L̄ ◦ e = e ◦ L. If f ∈ E(X) and x ∈ X, then

(L̄(f))(x) = ‖L̄(f)− dx‖∞ = ‖f − L̄−1(dx)‖∞ = ‖f − dL−1(x)‖∞

= f(L−1(x)).

Obviously (L, f) 7→ L̄(f) = f ◦ L−1 is an action of Isom(X) on E(X).
It is straightforward to check that the linear isomorphism f 7→ f ◦ L−1 of RX

maps ∆(X) onto ∆(X) and that it commutes with the operators defined in the proof
of Proposition 3.1, thus f∗ ◦ L−1 = (f ◦ L−1)∗, q(f) ◦ L−1 = q(f ◦ L−1), and

L̄(p(f)) = p(f) ◦ L−1 = p(f ◦ L−1)

(compare [14, pp. 83–84]).

As an application of the above result we show that the weak convexity property
of injective metric spaces stated in (1.1) holds in an equivariant form. By a geodesic
bicombing γ on a metric space X we mean a map γ : X ×X × [0, 1] → X such that,
for every pair (x, y) ∈ X ×X, γxy := γ(x, y, ·) is a geodesic from x to y with constant
speed, that is, γxy(0) = x, γxy(1) = y, and d(γxy(s), γxy(t)) = (t − s)d(x, y) for
0 ≤ s ≤ t ≤ 1.

3.8 Theorem. Every injective metric space X admits a geodesic bicombing γ such
that, for all x, y, x′, y′ ∈ X and t ∈ [0, 1],

(1) d(γxy(t), γx′y′(t)) ≤ (1− t)d(x, x′) + td(y, y′);

(2) γxy(t) = γyx(1− t);

(3) L ◦ γxy = γL(x)L(y) for every isometry L of X.

Proof. Since X is injective, the canonical map e: x 7→ dx is an isometry of X onto
E(X). Let p : ∆(X) → E(X) be the map from the proof of Proposition 3.1. For all
x, y ∈ X and t ∈ [0, 1], we have (1− t)dx + tdy ∈ ∆1(X), and we set

γxy(t) := (e−1 ◦ p)((1− t)dx + tdy).

Since p|∆1(X) is 1-Lipschitz, it follows that

d(γxy(t), γx′y′(t)) ≤ ‖((1− t)dx + tdy)− ((1− t)dx′ + tdy′)‖∞

≤ (1− t)‖dx − dx′‖∞ + t‖dy − dy′‖∞

= (1− t)d(x, x′) + td(y, y′)
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for x, y, x′, y′ ∈ X and t ∈ [0, 1]. Similarly,

d(γxy(s), γxy(t)) ≤ ‖((1− s)dx + sdy)− ((1 − t)dx + tdy)‖∞

= (t− s)‖dx − dy‖∞

= (t− s)d(x, y)

for x, y ∈ X and 0 ≤ s ≤ t ≤ 1, and it is easy to see that equality must hold since
γxy(0) = x and γxy(1) = y. Thus γ is a geodesic bicombing on X that satisfies (1)
and (2).

Now let L ∈ Isom(X), and recall that L̄(p(f)) = p(f ◦ L−1) for all f ∈ ∆(X), by
Proposition 3.7. Since dv ◦ L

−1 = dL(v) for all v ∈ X, we have

L̄(p((1− t)dx + tdy)) = p((1− t)dL(x) + tdL(y))

for x, y ∈ X and t ∈ [0, 1]. As e−1 ◦ L̄ = L ◦ e−1, this gives (3).

4 Polyhedral structure

The main purpose of this section is to show that under suitable discreteness and
finite dimensionality assumptions on the metric space X and its injective hull E(X),
respectively, the latter has the structure of a polyhedral complex, like for finite X.
Some results of this type are contained in [12, Section 6]. For simplicity, we shall
focus on integer valued metrics.

At first, let X be an arbitrary metric space. For f ∈ R
X , we denote by A(f) the

set of all unordered pairs {x, y} of points in X with the property that

f(x) + f(y) = d(x, y).

We consider the undirected graph (X,A(f)) with vertex set X, edge set A(f), and
with loops {x, x} ∈ A(f) marking the zeros of f . If f ∈ ∆(X) and X is finite (or
compact), then f is extremal if and only if (X,A(f)) has no isolated vertices, that is,⋃

A(f) = X. For an infinite X, this need no longer be true. We therefore introduce
the subset

E′(X) :=
{
f ∈ ∆(X) :

⋃
A(f) = X

}

of E(X), whose structure can be analyzed more directly, but which is not injective
unless it coincides with E(X). (In [12], E′(X) is denoted T 0

X .) Proposition 4.4 below
will show that E′(X) is dense in E(X) in case the metric of X is integer valued.

A set A of unordered pairs of points in X is called an admissible edge set if there
exists a function f ∈ E′(X) with A(f) = A, and A (X) denotes the set of all such
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admissible sets. Let A ∈ A (X). Note that the graph (X,A) has no isolated vertices
but need not be connected. We associate with A the affine subspace

H(A) :=
{
g ∈ R

X : A ⊂ A(g)
}

=
{
g ∈ R

X : g(x) + g(y) = d(x, y) for all {x, y} ∈ A
}

of RX , and we define the rank of A as the dimension of H(A),

rk(A) := dim(H(A)) ∈ {0, 1, 2, . . . } ∪ {∞}.

An A-path in X of length l ≥ 0 is an (l+1)-tuple (v0, . . . , vl) ∈ X l+1 with {vi−1, vi} ∈
A for i = 1, . . . , l. An A-cycle is an A-path (v0, . . . , vl) with vl = v0. Note that (x, x)
is an A-cycle of length 1 if {x, x} ∈ A. The A-component [x] of a point x ∈ X is the
set

[x] := {y ∈ X : there exists an A-path from x to y}.

Whenever g, h ∈ H(A) and {v, v′} ∈ A, we have g(v) + g(v′) = d(v, v′) = h(v) +h(v′)
and so g(v′)− h(v′) = −(g(v) − h(v)). It follows that

g(y) − h(y) = (−1)l(g(x)− h(x)) (4.1)

whenever there is an A-path of length l from x to y. As a consequence, if there exists
an A-cycle of odd length in [x], then g|[x] = h|[x] for all g, h ∈ H(A). We call [x] an
odd A-component in this case. In the opposite case, if [x] contains no A-cycle of odd
length, [x] is called an even A-component. Then the set {g|[x] : g ∈ H(A)} forms a
one-parameter family. In fact, every even A-component admits a unique partition

[x] = [x]1 ∪ [x]−1 (4.2)

such that x ∈ [x]1 and every edge {v, v′} ∈ A with {v, v′} ⊂ [x] connects [x]1 and
[x]−1; that is, the subgraph of (X,A) induced by [x] is bipartite. Then, by (4.1),
g(y) − h(y) = σ(g(x) − h(x)) whenever g, h ∈ H(A), σ ∈ {1,−1}, and y ∈ [x]σ. It is
now clear that rk(A) is exactly the number of even A-components of X. If rk(A) = 0,
H(A) consists of a single function. This occurs in particular if A = A(dx) for some
x ∈ X; then {x, y} ∈ A for every y ∈ X, so X is A-connected, and (x, x) is an A-cycle
of length 1.

4.1 Lemma. Suppose that X is a metric space, A ∈ A (X), and 1 ≤ n := rk(A) < ∞.
Then the difference of any two elements of H(A) is uniformly bounded on X, so the
supremum norm gives a metric on H(A), and there exists an affine isometry from
H(A) onto ln∞. In particular H(A) is injective.
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Proof. Choose reference points x1, . . . , xn ∈ X such that [x1], . . . , [xn] are precisely
the n even A-components of X. Let I : H(A) → ln∞ be the affine map defined by

I(g) := (g(x1), . . . , g(xn)).

It follows from (4.1) that ‖g− h‖∞ = max1≤k≤n |g(xk)− h(xk)| = ‖I(g)− I(h)‖∞ for
all g, h ∈ H(A).

For every A ∈ A (X) we consider the set

P (A) := E′(X) ∩H(A) = {g ∈ E′(X) : A ⊂ A(g)}.

First we note that

P (A) = E(X) ∩H(A) = ∆(X) ∩H(A). (4.3)

To see this, let f ∈ E′(X) be such that A(f) = A, and let g ∈ ∆(X) ∩ H(A).
Every x ∈ X is part of an edge {x, y} ∈ A(f) = A; then {x, y} ∈ A(g) because
g ∈ H(A). Since g ∈ ∆(X), this shows that g ∈ E′(X). In view of the inclusions
E′(X) ⊂ E(X) ⊂ ∆(X) we get (4.3). As ∆(X) is convex, so is P (A). For every
f ∈ E′(X) we have f ∈ P (A(f)), thus

P := {P (A)}A∈A (X)

is a family of convex subsets of RX whose union equals E′(X). Note that P (A′) ⊂
P (A) if and only if A ⊂ A′. The next result lists some basic properties of A (X) and
P.

4.2 Proposition. Let X be a metric space. Then:

(1) If f0, f1 ∈ E′(X) and λ ∈ (0, 1), then f := (1 − λ)f0 + λf1 ∈ ∆(X) and
A(f) = A(f0) ∩A(f1), so f ∈ E′(X) if and only if

⋃
(A(f0) ∩A(f1)) = X.

(2) For A0, A1 ∈ A (X), the following are equivalent:

(i) P (A0) ∪ P (A1) ⊂ P (A) for some A ∈ A (X);

(ii)
⋃
(A0 ∩A1) = X;

(iii) A0 ∩A1 ∈ A (X).

If conditions (i)–(iii) hold, then P (A0) ∪ P (A1) ⊂ P (A0 ∩A1) ⊂ P (A).

Proof. Let f be given as in (1). Since f0, f1 ∈ ∆(X) and λ ∈ (0, 1), we have

f(x) + f(y) = (1− λ)(f0(x) + f0(y)) + λ(f1(x) + f1(y))

≥ (1− λ)d(x, y) + λd(x, y) = d(x, y)
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for every pair of points x, y ∈ X, and equality holds if and only if {x, y} ∈ A(f0) ∩
A(f1).

Regarding (2), choose f0, f1 ∈ E′(X) such that A(fi) = Ai, and put f := 1
2(f0+f1).

If P (A0)∪P (A1) ⊂ P (A) for some A ∈ A (X), then f ∈ P (A) by convexity and hence
f ∈ E′(X), so

⋃
(A0 ∩ A1) = X by (1). If (ii) holds, then, again by (1), f ∈ E′(X)

and so A0 ∩A1 = A(f) ∈ A (X). Finally, assuming (iii), we obtain P (A0)∪ P (A1) ⊂
P (A0 ∩ A1) and thus (i), and for every A ∈ A (X) with P (A0) ∪ P (A1) ⊂ P (A) we
have A ⊂ A0 ∩A1 and hence P (A0 ∩A1) ⊂ P (A).

We now pass to integer valued metrics. Then the sets P (A) with rk(A) = n < ∞
turn out to be n-dimensional polytopes:

4.3 Theorem. Suppose that X is a metric space with integer valued metric. Let
A ∈ A (X), and assume that 1 ≤ n := rk(A) < ∞. Then:

(1) The set P (A) ⊂ H(A) ⊂ R
X is an injective n-dimensional polytope.

(2) The interior of P (A) relative to H(A) is the set {g ∈ E′(X) : A(g) = A}.

(3) The faces of P (A) are precisely the sets P (A′) with A′ ∈ A (X) and A ⊂ A′.

The proof will also give information on the possible isometry types of P (A).

Proof. We fix reference points x1, . . . , xn ∈ X representing the n even A-components.
For each k we consider the partition [xk] = [xk]1 ∪ [xk]−1 as in (4.2). We also fix an
element f ∈ E′(X) with A(f) = A. For y ∈ [xk]σ, σ ∈ {1,−1}, we have

f(y) ∈ Z+ σf(xk). (4.4)

By contrast, if y ∈ X0 := X \
⋃n

k=1[xk], then there is an A-path from y to itself of
odd length, so f(y) ∈ Z− f(y) and thus

f(y) ∈
1

2
Z. (4.5)

Now let If : H(A) → ln∞ be the affine isometry defined by

If (g) := (g(x1)− f(x1), . . . , g(xn)− f(xn));

compare the proof of Lemma 4.1. To show that If (P (A)) is a polytope, we introduce
constants as follows. First, for 1 ≤ k ≤ n and σ ∈ {1,−1}, put

Ckσ := sup

{
d(x, y)− f(x)− f(y)

2
: x, y ∈ [xk]σ

}
.
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For x, y ∈ [xk]σ we have {x, y} 6∈ A = A(f), hence 0 > d(x, y) − f(x) − f(y) ∈
Z− 2σf(xk) by (4.4). Thus the supremum is attained, and Ckσ < 0. Next, if X0 6= ∅,
then for 1 ≤ k ≤ n and σ ∈ {1,−1}, define

Ckσ0 := sup
{
d(x, y)− f(x)− f(y) : (x, y) ∈ [xk]σ ×X0

}
.

For every such pair (x, y), we have 0 > d(x, y) − f(x) − f(y) ∈ 1
2Z − σf(xk), hence

Ckσ0 < 0. Set C̄kσ := Ckσ if X0 = ∅ and

C̄kσ := max
{
Ckσ, Ckσ0

}

if X0 6= ∅. Finally, if n ≥ 2, then for 1 ≤ k < l ≤ n and σ, τ ∈ {1,−1}, define

Ckσlτ := sup
{
d(x, y) − f(x)− f(y) : (x, y) ∈ [xk]σ × [xl]τ

}
.

For every such pair (x, y), we have 0 > d(x, y) − f(x)− f(y) ∈ Z − σf(xk) − τf(xl)
and so Ckσlτ < 0. Now let Q denote the set of all t = (t1, . . . , tn) ∈ ln∞ satisfying the
system of 2n+ 4

(
n
2

)
= 2n2 relations

σtk ≥ C̄kσ (1 ≤ k ≤ n, σ ∈ {1,−1}), (4.6)

σtk + τtl ≥ Ckσlτ (1 ≤ k < l ≤ n, σ, τ ∈ {1,−1}). (4.7)

By the first 2n inequalities Q is bounded. Since all constants on the right side are
strictly negative, Q is a polytope containing If (f) = 0 in its interior, so Q has
dimension n. It follows readily from Proposition 2.4 that Q is itself injective.

We claim that If (P (A)) = Q. Let g ∈ H(A) and t := If (g). In view of (4.3), we
need to check that t ∈ Q if and only if g(x) + g(y) ≥ d(x, y) for all pairs {x, y} 6∈ A.
First, consider pairs of points x, y ∈ [xk], for some k. If σ ∈ {1,−1} and x, y ∈ [xk]σ,
then

2σtk = 2σ(g(xk)− f(xk)) = g(x)− f(x) + g(y)− f(y)

by (4.1). Hence, we have σtk ≥ Ckσ if and only if the inequality g(x)+ g(y) ≥ d(x, y)
holds for all such pairs (x, y) in [xk]σ. If x ∈ [xk]1 and y ∈ [xk]−1, then g(x) + g(y) =
f(x) + f(y) > d(x, y) by (4.1) and since {x, y} 6∈ A by assumption. Next, in case
X0 6= ∅, consider pairs (x, y) ∈ [xk]σ ×X0, for some k and σ. Then g(y) = f(y) and
so

σtk = σ(g(xk)− f(xk)) = g(x) − f(x) + g(y)− f(y),

hence σtk ≥ Ckσ0 if and only if g(x) + g(y) ≥ d(x, y) for all such (x, y). If x, y ∈ X0

and {x, y} 6∈ A, then g(x) + g(y) = f(x) + f(y) > d(x, y). Finally, in case n ≥ 2,
consider pairs (x, y) ∈ [xk]σ × [xl]τ for some k < l and σ, τ . Then

σtk + τtl = σ(g(xk)− f(xk)) + τ(g(xl)− f(xl)) = g(x) − f(x) + g(y)− f(y),
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therefore σtk+ τtl ≥ Ckσlτ if and only if g(x)+ g(y) ≥ d(x, y) for all such (x, y). This
yields If (P (A)) = Q and completes the proof of (1).

Since f was an arbitrary element of E′(X) with A(f) = A and If (f) is an inner
point of Q, it follows that the set {g ∈ E′(X) : A(g) = A} is contained in the relative
interior of P (A). Furthermore, if g ∈ P (A) is such that the inclusion A ⊂ A(g) is
strict, then g(x) + g(y) = d(x, y) for some pair {x, y} 6∈ A and we see from the above
argument that equality holds in at least one of the 2n2 inequalities (4.6), (4.7); thus
If (g) is a boundary point of Q. This shows (2).

Now suppose that F is face of P (A) of dimension n− 1. Choose a point g in the
relative interior of F . Since g ∈ H(A), we have H(A(g)) ⊂ H(A). For t := If (g),
exactly one of the 2n2 inequalities (4.6), (4.7) is an equality and the others are strict.
Reviewing the above argument again we see that then the inclusion A ⊂ A(g) is strict
and exactly one of the following two cases occurs:

(i) there exist k and σ such that every edge in A(g)\A relates two (possibly equal)
points of [xk]σ or connects [xk]σ with X0;

(ii) there exist k < l and σ, τ such that every edge in A(g) \ A connects [xk]σ with
[xl]τ .

In either case, X has n − 1 even A(g)-components, thus H(A(g)) is an (n − 1)-
dimensional affine subspace of H(A). For all h ∈ H(A(g)), A ⊂ A(g) ⊂ A(h) and
the first inclusion is strict, so H(A(g)) contains no inner points of P (A) by (2). As
g ∈ H(A(g)) is in the relative interior of F , we have F = P (A) ∩H(A(g)) and hence
F = P (A(g)). Now it follows easily by downward induction on k that every face F

of P (A) of dimension k ∈ {0, . . . , n} satisfies F = P (AF ) for some AF ∈ A (X) with
A ⊂ AF and rk(A) = k. Conversely, let A′ ∈ A (X) with A ⊂ A′ be given. Then
P (A′) ⊂ P (A), so the relative interior of P (A′) meets the relative interior of some face
F = P (AF ) of P (A). Applying (2) to both P (A′) and P (AF ) we obtain A′ = AF ,
thus P (A′) = P (AF ) = F . This concludes the proof of (3).

Next we show that E′(X) is dense in E(X), provided the metric of X is integer
valued. A different criterion is given in [12, (5.17)].

4.4 Proposition. Let X be a metric space with integer valued metric. Then for every
f ∈ E(X) and every integer m ≥ 1 there exists a function f ′ ∈ E′(X) with values in
1
m
Z such that ‖f − f ′‖∞ ≤ 1

2m .

Proof. Let f ∈ E(X), m ≥ 1, and put ε := 1
2m . Denote by F the set of all functions

g ∈ ∆(X) with values in 2εZ and with ‖f − g‖∞ ≤ ε. To see that F is non-
empty, let g0 ∈ R

X be the largest function less than or equal to f + ε with values
in 2εZ. Then g0 > f − ε, in particular ‖f − g0‖∞ ≤ ε. For x, y ∈ X, we have
g0(x) + g0(y) > f(x) + f(y)− 2ε ≥ d(x, y)− 2ε, and since both the first and the last
term are in 2εZ, this gives g0(x) + g0(y) ≥ d(x, y). So g0 ∈ F .
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Now let g ∈ F be arbitrary, and suppose that x ∈ X \
⋃

A(g). Then, for every
y ∈ X, we have the strict inequality g(x) > d(x, y) − g(y) in 2εZ, so that

g(x) ≥ sup
y∈X

(d(x, y)− g(y) + 2ε) ≥ sup
y∈X

(d(x, y) − f(y) + ε) = f(x) + ε

by (3.1). Hence g(x) = f(x) + ε. Let the function g′ be defined by

g′(x) := g(x)− 2ε = f(x)− ε

and g′(y) := g(y) for all y ∈ X \ {x}. Note that g(x) ≥ ε, thus in fact g(x) ≥ 2ε
and g′(x) ≥ 0. Since g′(x) + g′(y) = g(x) + g(y) − 2ε ≥ d(x, y) for all y ∈ X \ {x},
it follows that g′ ∈ F . This shows that every minimal element f ′ of F satisfies⋃

A(f ′) = X, that is, f ′ ∈ E′(X). The existence of some minimal element is obvious
if X is countable and a consequence of Zorn’s Lemma in the general case.

We now state the concluding result of this section. A metric space X with integer
valued metric will be called discretely path-connected if for every pair of points x, y ∈ X

there exists a discrete path γ : {0, 1, . . . , l} → X from x to y, that is, γ(0) = x, γ(l) = y,
and d(γ(k − 1), γ(k)) = 1 for k = 1, . . . , l.

4.5 Theorem. Let X be a metric space with integer valued metric. Suppose that for
every f ∈ E(X) there exist ε,N > 0 such that rk(A(g)) ≤ N for all g ∈ E′(X) with
‖f − g‖∞ < ε. Then:

(1) E′(X) = E(X).

(2) P = {P (A)}A∈A (X) is a polyhedral structure on E(X) with locally finite dimen-
sion, where P (A′) is a face of P (A) if and only if A ⊂ A′.

(3) For every n ≥ 1 and D > 0, P has only finitely many isometry types of n-cells
with diameter at most D. If, in addition, X is discretely path-connected, then
for every n there are only finitely many isometry types of n-cells.

Proof. For (1), let f ∈ E(X). By Proposition 4.4 there exists a sequence (fi) in
E′(X) that converges to f , and by the assumption of the theorem there is no loss of
generality in assuming that rk(A(fi)) = n for all i and for some n ≥ 0. It follows
that for every i there exists a set Ri ⊂ [0, 1) with |Ri| ≤ 2n + 2 such that fi takes
values in Z + Ri; see (4.4) and (4.5). Since fi → f , there also exists R ⊂ [0, 1) with
|R| ≤ 2n + 2 such that f(X) ⊂ Z + R. But then the supremum in (3.1) is attained
for every x ∈ X, and so f ∈ E′(X). (Compare [12, (5.19)].)

The union of the family P = {P (A)}A∈A (X) equals E′(X) = E(X). In view of
Theorem 4.3, for (2) it remains to show that if A1, A2 ∈ A (X) and C := P (A1) ∩
P (A2) 6= ∅, then C ∈ P. For i = 1, 2, let P (A′

i) be the minimal face of P (Ai) that
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contains C. By convexity, C has non-empty interior relative to its affine hull in R
X ,

hence the relative interiors of P (A′
1) and P (A′

1) have a common point. It follows that
A′

1 = A′
2 and thus P (A′

1) = P (A′
2) = C.

As for (3), we first observe that if f ∈ E′(X) is a vertex of P, then rk(A(f)) = 0
and so f(X) ⊂ 1

2Z by (4.5). In particular, all edges of P have length in 1
2Z. Now

we show that if X is discretely path-connected, then all edges have length at most 2.
Suppose that A ∈ A (X), rk(A) = 1, and x1 is a point in the only even A-component
of X. Then clearly there exists a pair (x, y) with d(x, y) = 1 such that x ∈ [x1]1 and
either y ∈ [x1]−1 or y ∈ X \ [x1]. Let g, h ∈ P (A). By (4.1),

‖g − h‖∞ = |g(x) − h(x)|.

In case y ∈ [x1]−1, we have furthermore g(x) − h(x) = −(g(y) − h(y)); since g, h are
1-Lipschitz and d(x, y) = 1, it follows that

2|g(x) − h(x)| = |g(x) − h(x)− (g(y)− h(y))|

≤ |g(x) − g(y)|+ |h(y) − h(x)| ≤ 2.

In case y ∈ X \ [x1], we have g(y) = h(y) and so

|g(x) − h(x)| ≤ |g(x) − g(y)| + |h(y) − h(x)| ≤ 2.

In either case, ‖g − h‖∞ ≤ 2. Hence the edge P (A) has length at most 2. Finally,
for n ≥ 2, we see from (4.6), (4.7) that there are only finitely many isometry types of
n-cells with diameter at most D > 0 and edge lengths in 1

2Z, and only finitely many
isometry types of n-cells with edge lengths in {1

2 , 1,
3
2 , 2}.

The upper bound for the length of edges of P just derived is sharp:

4.6 Example. Let X = {x1, x2, y1, y2, y3} be the discretely geodesic metric space
with d(x1, x2) = 2, d(xi, yj) = 1 for all i and j, and d(yj , yk) = 2 for j < k. The
convex hull

P ′ := conv{dx1
, dx2

} = {(1− λ)dx1
+ λdx2

: λ ∈ [0, 1]}

of the distance functions to x1 and x2 is an edge of P of length 2. The injective
hull E(X) consists of the three triangles Pj := conv{dx1

, dx2
, dyj} for j = 1, 2, 3 (the

maximal cells of the partially ordered set P), glued along P ′. For instance, A1 :=
{{x1, x2}, {y1, y2}, {y1, y3}} and A′ := A1 ∪ {{y2, y3}} are the respective admissible
edge sets with P (A1) = P1 and P (A′) = P ′.

The next example describes a discretely geodesic metric space whose injective hull
contains 2-cells of minimal diameter 1

2 , isometric to conv{(12 , 0), (0,
1
2 ), (0, 0)} in l2∞.
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4.7 Example. Let X = {x1, x2, x3, y1, y2, y3}, and suppose that all nonzero distances
are 1 except that d(xi, xj) = 2 for i 6= j. The injective hull E(X) has the following
maximal cells: 3 edges conv{dxi

, fi} of length 1
2 for i = 1, 2, 3, where fi(xi) = fi(yk) =

1
2 for all k and fi(xj) =

3
2 for j 6= i, and 9 triangles of the type conv{fi, dyk , g}, where

g(xi) = 1 and g(yk) =
1
2 for i, k = 1, 2, 3. There are two odd A(g)-components, and

the link of the central vertex g is a (complete bipartite) K3,3 graph.

5 Cones

We now discuss geometric conditions that allow to verify the assumption on the rank
in Theorem 4.5. Cones, as defined in (1.2), will be instrumental. We start with a
basic fact.

5.1 Lemma. Suppose that X is a metric space, f ∈ ∆1(X), and {x, y} ∈ A(f).
Then {x, z} ∈ A(f) and f(z) = f(y) + d(y, z) for all z ∈ C(x, y).

Proof. For f ∈ ∆(X) and z ∈ C(x, y), we have

f(x) + f(z) ≥ d(x, z) = d(x, y) + d(y, z).

Furthermore, if f ∈ Lip1(X,R) and {x, y} ∈ A(f), then

f(x) + f(z) ≤ f(x) + f(y) + d(y, z) = d(x, y) + d(y, z).

This gives the result.

The next lemma, in particular criterion (4), will play a key role in the proof of
Theorem 1.1. (For (2), compare [20, Thm. 3.12].)

5.2 Lemma. Let X be a metric space, and suppose that f ∈ ∆(X), x, y, x̄, ȳ ∈ X,
and {x, y}, {x̄, ȳ} ∈ A(f). Then each of the following conditions implies that also
{x, ȳ}, {x̄, y} ∈ A(f):

(1) d(x, y) + d(x̄, ȳ) ≤ d(x, ȳ) + d(x̄, y);

(2) C(x, y) ∩ C(x̄, ȳ) 6= ∅;

(3) I(x, ȳ) ∩ I(x̄, y) 6= ∅;

(4) there exists v ∈ I(x, y) ∩ I(x̄, ȳ) such that C(x, v) = C(x̄, v).

Proof. Because {x, y}, {x̄, ȳ} ∈ A(f), (1) gives

f(x) + f(y) + f(x̄) + f(ȳ) = d(x, y) + d(x̄, ȳ) ≤ d(x, ȳ) + d(x̄, y).
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It follows that each of the inequalities f(x)+ f(ȳ) ≥ d(x, ȳ) and f(x̄)+ f(y) ≥ d(x̄, y)
must in fact be an equality, that is, {x, ȳ}, {x̄, y} ∈ A(f). Now assume that (2) holds,
and let z ∈ C(x, y) ∩ C(x̄, ȳ). Then

d(x, y) + d(y, z) = d(x, z) ≤ d(x, ȳ) + d(ȳ, z)

and, likewise, d(x̄, ȳ) + d(ȳ, z) ≤ d(x̄, y) + d(y, z). Adding these two inequalities one
obtains (1). If v ∈ I(x, ȳ) ∩ I(x̄, y), then

d(x, y) + d(x̄, ȳ) ≤ d(x, v) + d(v, y) + d(x̄, v) + d(v, ȳ) = d(x, ȳ) + d(x̄, y),

so (3) implies (1) as well. Finally, if (4) holds, then ȳ ∈ C(x̄, v) = C(x, v) and
y ∈ C(x, v) = C(x̄, v), thus v ∈ I(x, ȳ) ∩ I(x̄, y).

As a first simple application of these lemmas we note the following result.

5.3 Proposition. Suppose that X is a metric space containing at most k pairwise
disjoint cones, that is, |I| ≤ k for every disjoint family (C(xi, yi))i∈I of cones in X.
Then rk(A) ≤ 1

2k for all A ∈ A (X).

Proof. Let A ∈ A (X), and suppose that the two edges {x, y}, {x̄, ȳ} ∈ A belong to
different even A-components of X. It follows from either Lemma 5.1 or Lemma 5.2
that the four cones C(x, y), C(y, x), C(x̄, ȳ), C(ȳ, x̄) are pairwise disjoint. For in-
stance, if there was a point z in C(x, y) ∩ C(x̄, ȳ), then {x, z}, {x̄, z} ∈ A by the
first and {x, ȳ}, {x̄, y} ∈ A by the second lemma, so x and x̄ would be connected by
A-paths of length 2. This clearly gives the result.

An example will be given below. First we record another useful fact related to
cones.

5.4 Proposition. Let Y be a metric space, and let X be a non-empty subset. If
for every pair of points x, y ∈ Y there exists a point z ∈ C(x, y) ∩ X, then E(Y ) is
isometric to E(X) via the restriction map f 7→ f |X .

Proof. Let f ∈ E(Y ), and let x ∈ Y . For every ε > 0 there exist y ∈ Y and z ∈ X such
that f(x)+f(y) ≤ d(x, y)+ε and d(x, y)+d(y, z) = d(x, z); since f(z) ≤ f(y)+d(y, z),
this gives f(x) + f(z) ≤ d(x, z) + ε. Hence

f(x) = sup
z∈X

(d(x, z) − f(z)). (5.1)

For x ∈ X, this shows that f |X ∈ E(X). Furthermore, for another function g ∈
E(Y ), combining (5.1) with the inequality d(x, z) ≤ g(x) + g(z) we conclude that
f(x) − g(x) ≤ supz∈X(g(z) − f(z)) for every x ∈ Y . So ‖f − g‖∞ = ‖f |X − g|X‖∞,
and by the second part of Proposition 3.5, the restriction operator f 7→ f |X maps
E(Y ) onto E(X).
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We now illustrate Proposition 5.3, which turns out to be optimal in some instances.

5.5 Example. Consider the discretely geodesic metric space X = Z
n with the l1

distance (the standard word metric of the group Z
n). It is not difficult to see that

X contains at most 2n pairwise disjoint cones. By Theorem 4.5 and Proposition 5.3,
E(X) is a polyhedral complex of dimension at most 2n−1. For the subspace Wn :=
{0, 1}n ⊂ X of diameter n, the constant function g on Wn with value 1

2n satisfies
g ∈ E(Wn) and rk(A(g)) = 2n−1 (each pair of antipodal points is an A(g)-component
of Wn); thus dim(E(Wn)) = dim(E(X)) = 2n−1. Furthermore, it follows easily from
Proposition 5.4 that E(X) is isometric to E(ln1 ). So E(X) is also a Banach space,
isometric to l2

n−1

∞ (see Remark 3.6). Unless n = 1, 2, the dimension of E(X) is strictly
larger than n and hence the canonical action of Zn on E(X) is not cocompact. This
can be remedied by taking the l∞ distance on Z

n instead (which is again a word
metric); then clearly the injective hull is isometric to ln∞.

Given a metric space X and a point v ∈ X, we denote by C (v) the set of all cones
C(x, v) for x ∈ X. The following result shows that if C (v) happens to be finite, then
one obtains some control on the complexity of E′(X) near dv . Note that here X is
not assumed to be discrete.

5.6 Proposition. Suppose that X is a metric space and v ∈ X is a point with
|C (v)| < ∞. Consider the set Av := A(dv) ∈ A (X). Then:

(1) Every admissible set A ∈ A (X) with A ⊂ Av satisfies rk(A) ≤ 1
2 |C (v)|.

(2) There are at most 2|C (v)|−1 − 1 sets A ∈ A (X) with A ⊂ Av and rk(A) = 1.

Note that {x, y} ∈ Av = A(dv) if and only if dv(x) + dv(y) = d(x, y), that is,
v ∈ I(x, y).

Proof. Let A ⊂ Av be admissible. There exists a partition

X = X0 ∪
⋃

j∈J

(Xj,1 ∪Xj,−1), (5.2)

where X0 is the union of all odd A-components of X, {Xj}j∈J is the family of all even
A-components, and the partition Xj = Xj,1 ∪Xj,−1 is such that no edge in A relates
points in the same subset. Let x, x̄ ∈ X. There exist y, ȳ such that {x, y}, {x̄, ȳ} ∈
A ⊂ Av and thus v ∈ I(x, y) ∩ I(x̄, ȳ). In case C(x, v) = C(x̄, v) it follows from
Lemma 5.2 that {x, ȳ}, {x̄, y} ∈ A, in particular x and x̄ are connected by an A-
path of length 2. Hence, if x and x̄ lie in different sets of the above partition, then
C(x, v) 6= C(x̄, v). Thus the number of even A-components is in fact finite and less
than or equal to 1

2 |C (v)|.
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For the proof of (2), let A ′
v denote the set of all A ∈ A (X) with A ⊂ Av and

rk(A) = 1. We show that there is an injective map S from A ′
v into the set of all

non-empty subsets of C (v) that do not contain C(v, v) = X. For each A ∈ A ′
v there

is a unique partition X = X0 ∪X1 ∪X−1 such that every g ∈ E′(X) with A(g) = A

satisfies

g(x) = dv(x) + σ‖g − dv‖∞ (5.3)

for σ ∈ {0, 1,−1} and x ∈ Xσ. Note that every such g is strictly positive since
rk(A) > 0, therefore v ∈ X1 and thus C(x, v) 6= X = C(v, v) for all x ∈ X−1. The
desired map S is defined by

S(A) := {C(x, v) : x ∈ X−1}.

To show that S is injective, suppose that S(A) = S(A′) for some A,A′ ∈ A ′
v , and let

X0 ∪X1 ∪X−1 and X ′
0 ∪X ′

1 ∪X ′
−1 be the respective partitions of X. Now note, first,

that

X−1 = {x ∈ X : C(x, v) ∈ S(A)}.

This holds since C(x̄, v) 6= C(x, v) for x̄ ∈ X0 ∪ X1 and x ∈ X−1, by the same
argument as in the proof of (1). Similarly, X ′

−1 = {x ∈ X : C(x, v) ∈ S(A′)} and so
X−1 = X ′

−1. Second,

X1 = {y ∈ X : there exists x ∈ X−1 with {x, y} ∈ Av}.

The inclusion ⊂ is clear since A ⊂ Av. For the other, if x ∈ X−1 and {x, y} ∈ Av, then
every g ∈ E′(X) with A(g) = A satisfies g(y) ≥ d(x, y)−g(x) = dv(x)+dv(y)−g(x) =
dv(y) + ‖g − dv‖∞, so y ∈ X1. Together with the corresponding characterization of
X ′

1 and the fact that X−1 = X ′
−1, this shows that X1 = X ′

1 and X0 = X ′
0 as well.

Finally, using (5.3) again, we conclude that A = A′.

The bound in the first part of Proposition 5.6 is sharp:

5.7 Example. The cyclic group of order 2n, with the usual word metric of diameter
n, satisfies |C (v)| = 2n for every element v. The constant function f with value
1
2n has rk(A(f)) = n, and A(f) ⊂ A(dv) for all v. In fact, the injective hull is a
combinatorial n-cube, as is shown in [20, Section 9].

We now turn to discretely geodesic metric spaces X with β-stable intervals, as
defined in (1.3). The following observation goes back to Cannon [7, Section 7]. For
x, v ∈ X, define Fxv : B(v, β) → Z by Fxv(u) := dx(u)− dx(v).

5.8 Lemma. Let X be a discretely geodesic metric space with β-stable intervals, and
let x, x′, v ∈ X. If Fxv ≤ Fx′v, then C(x, v) ⊂ C(x′, v). Hence, Fxv = Fx′v implies
that C(x, v) = C(x′, v).
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In particular, if for a fixed vertex v the closed ball B(v, β) is finite, then there are
only finitely many distinct such functions Fxv as x ranges over X and so |C (v)| < ∞.

Proof. Suppose that Fxv ≤ Fx′v. We show by induction on l ≥ 0 that every y ∈
C(x, v) with d(v, y) = l is an element of C(x′, v). The case l = 0 is trivial, so let
y ∈ C(x, v) with d(v, y) = l ≥ 1. Choose a point y′ ∈ I(v, y) such that d(v, y) =
l − 1; note that y′ ∈ C(x, v). By the induction hypothesis, y′ ∈ C(x′, v) and thus
v ∈ I(x′, y′). Since d(y′, y) = 1 and X has β-stable intervals, there exists a point
u ∈ I(x′, y) ∩B(v, β). We have

dx′(u)− dx′(v) = Fx′v(u) ≥ Fxv(u) = dx(u)− dx(v).

Adding the term d(u, y) − d(v, y) on either side and using the identities dx′(u) +
d(u, y) = dx′(y) and dx(v) + d(v, y) = dx(y) we obtain

dx′(y)− dx′(v) − d(v, y) ≥ dx(u) + d(u, y) − dx(y) ≥ 0.

Thus dx′(y) = dx′(v) + d(v, y) and so y ∈ C(x′, v).

Lemma 5.8 shows that if a finitely generated group ΓS = (Γ, dS) with the word
metric has β-stable intervals, then |C (v)| is finite for every v ∈ ΓS , and this number
is of course independent of v. The cones C(x, 1) based at the identity element of Γ
will be called cone types. For groups with finitely many cone types the language of
all geodesic words is regular and the growth series is a rational function (see [7, 18]).

5.9 Remark. Neumann–Shapiro [32] introduced a similar criterion, the falsification
by fellow traveller (FFT) property, which is easily seen to imply uniform stability
of intervals. In particular it follows from Proposition 4.4 and Theorem 4.3 in their
paper that all finitely generated abelian groups have β-stable intervals and that finitely
generated virtually abelian groups as well as geometrically finite hyperbolic groups
have β-stable intervals for some word metrics. The FFT property has been verified
for further classes of groups, with respect to suitably chosen finite generating sets,
in [33, 34, 22].

We also remark that the uniform stability of intervals is not a necessary condition
for a finitely generated group ΓS to have finitely many cone types:

5.10 Example. The finitely presented group Γ = 〈a, t | t2 = 1, atat = tata〉 with
generating set S = {a, t} has finitely many cone types, but intervals are not uniformly
stable. This example is discussed in [17].

The next result states another consequence of the stability assumption. For a pair
of points x, y in a metric space X,

(x | y)z :=
1

2

(
dz(x) + dz(y)− d(x, y)

)
(5.4)
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denotes their Gromov product with respect to z ∈ X. Note that 0 ≤ (x | y)z ≤
min{dz(x), dz(y)} and (x | y)z + (x | z)y = d(y, z).

5.11 Lemma. Let X be a discretely geodesic metric space with β-stable intervals.
Whenever x, y, z ∈ X, there exists a point v ∈ I(x, y) with dz(v) ≤ β · 2(x | y)z .

Proof. We proceed by induction on the integer 2(x | y)z . If (x | y)z = 0, then z ∈
I(x, y) and so we can take v = z. Now suppose that (x | y)z > 0. Choose a discrete
geodesic γ : {0, 1, . . . , dz(y)} → X from z to y, and let k be the largest parameter value
such that z ∈ I(x, γ(k)). Note that k < dz(y) because (x | y)z > 0. Let y′ := γ(k+1).
Since X has β-stable intervals, there exists a point z′ ∈ I(x, y′) with dz(z

′) ≤ β. We
have

dz′(x) + dz′(y
′) = d(x, y′) ≤ dz(x) + dz(y

′)− 1

by the choice of k. Adding the term d(y′, y) − d(x, y) on either side we obtain
2(x | y)z′ ≤ 2(x | y)z − 1. Hence, by the induction hypothesis, there exists v ∈ I(x, y)
such that dz′(v) ≤ β · 2(x | y)z′ . So

dz(v) ≤ dz(z
′) + dz′(v) ≤ β

(
1 + 2(x | y)z′

)
≤ β · 2(x | y)z ,

as desired.

We conclude this section with a partial generalization of Proposition 5.6. The
above lemma will be used in combination with the following simple fact: if f ∈ ∆(X)
and {x, y} ∈ A(f), that is, f(x) + f(y) = d(x, y), then

(x | y)z ≤
1

2

(
(f(x) + f(z)) + (f(y) + f(z))− d(x, y)

)
= f(z) (5.5)

for every z ∈ X. For a subset B of a metric space X we denote by C (B) the set of
all pointed cones (v,C(x, v)) with v ∈ B and x ∈ X.

5.12 Proposition. Let X be a discretely geodesic metric space with β-stable intervals,
and assume that all bounded subsets of X are finite. Fix z ∈ X and α > 0, and let B
be the closed ball B(z, 2αβ). Then |C (B)| < ∞, and

(1) every f ∈ E′(X) with f(z) ≤ α satisfies rk(A(f)) ≤ 1
2 |C (B)|;

(2) for every f ∈ E′(X) with f(z) ≤ α and rk(A(f)) = 0 there are no more than
2|C (B)| sets A ∈ A (X) such that A ⊂ A(f) and rk(A) = 1.

Proof. By the assumptions on X and Lemma 5.8, C (B) is finite. Now let f ∈ E′(X),
and suppose that f(z) ≤ α. For every ordered pair (x, y) with {x, y} ∈ A(f), we
choose a point vxy ∈ I(x, y) ∩B by means of Lemma 5.11 and (5.5), then we put

Ĉ(x, y) :=
(
vxy, C(x, vxy)

)
∈ C (B).
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Consider the partition of X induced by A(f), as in (5.2). Let x, x̄ ∈ X, and choose
y, ȳ such that {x, y}, {x̄, ȳ} ∈ A(f). If Ĉ(x, y) = Ĉ(x̄, ȳ), Lemma 5.2 shows that x

and x̄ are connected by an A(f)-path of length 2. Hence, if x and x̄ lie in different
sets of the partition, then Ĉ(x, y) 6= Ĉ(x̄, ȳ). It follows that rk(A(f)) ≤ 1

2 |C (B)|.

Now suppose in addition that rk(A(f)) = 0, and define Ĉ(x, y) ∈ C (B) as above,
for every pair (x, y) with {x, y} ∈ A(f). Let A ′

f denote the set of all A ∈ A (X) such
that A ⊂ A(f) and rk(A) = 1. We show that there is an injective map S from A ′

f

into the set of all (non-empty) subsets of C (B). For every A ∈ A ′
f there is a unique

partition X = X0 ∪X1 ∪X−1 such that every g ∈ E′(X) with A(g) = A satisfies

g(x) = f(x) + σ‖g − f‖∞

for σ ∈ {0, 1,−1} and x ∈ Xσ . Define

S(A) :=
{
Ĉ(x, y) : (x, y) ∈ X−1 ×X1, {x, y} ∈ A

}
;

since A ⊂ A(f), Ĉ(x, y) is defined for all (x, y) with {x, y} ∈ A. We claim that

X−1 =
{
x ∈ X : Ĉ(x, y) ∈ S(A) for all y ∈ X with {x, y} ∈ A(f)

}
.

Let x ∈ X−1. If y ∈ X is such that {x, y} ∈ A(f), then every g ∈ E′(X) with
A(g) = A satisfies g(y) ≥ d(x, y) − g(x) = f(x) + f(y) − g(x) = f(y) + ‖g − f‖∞,
so y ∈ X1 and {x, y} ∈ A(g) = A; thus Ĉ(x, y) ∈ S(A). Conversely, suppose that
x̄ ∈ X, and Ĉ(x̄, ȳ) ∈ S(A) for all ȳ ∈ X with {x̄, ȳ} ∈ A(f). Among all such points
ȳ, fix one with {x̄, ȳ} ∈ A. Since Ĉ(x̄, ȳ) ∈ S(A), there is a pair (x, y) ∈ X−1 ×X1

such that {x, y} ∈ A and Ĉ(x, y) = Ĉ(x̄, ȳ). By Lemma 5.2, x and x̄ are connected
by an A-path of length 2, thus x̄ ∈ X−1. Hence, X−1 is characterized in terms of
S(A) as claimed. Now one can proceed as in the proof of Proposition 5.6, with f in
place of dv, to show that S is injective. This gives (2).

6 Proofs of the main results

We now prove the theorems stated in the introduction and discuss some examples.

Proof of Theorem 1.1. Let X be a discretely geodesic metric space with β-stable in-
tervals, and suppose that all bounded subsets of X are finite. Given f ∈ E(X), there
exists a point z ∈ X where f attains its minimum. Fix any ε > 0. By the first
part of Proposition 5.12 there exists a number N such that rk(A(g)) ≤ N for all
g ∈ E′(X) with g(z) ≤ f(z)+ε, in particular for all g ∈ E′(X) with ‖f −g‖ < ε. Now
Theorem 4.5 shows that E′(X) = E(X) and that P = {P (A)}A∈A (X) is a polyhedral
structure on E(X) with locally finite dimension and with only finitely many isometry
types of n-cells for every n. By Theorem 4.3 every n-cell P (A) is isometric to an in-
jective polytope in ln∞. To show that P is in fact locally finite, let f ∈ E(X) = E′(X)



Injective hulls of discrete metric spaces and groups 31

be a vertex of P; that is, rk(A(f)) = 0. Let again z be a point where f attains
the minimum, and put α := f(z). By the second part of Proposition 5.12 there is a
number M such that there are at most M admissible sets A ⊂ A(f) with rk(A) = 1;
in other words, there are at most M edges in P issuing from the vertex f . Thus P

is locally finite, and E(X) is locally compact. Consequently, as a complete geodesic
metric space, E(X) is proper.

The following simple example shows that, with the assumptions of Theorem 1.1,
the injective hull may be infinite dimensional.

6.1 Example. For every integer n ≥ 1, Wn := {0, 1}n with the l1 distance (the
vertex set of the n-cube graph) has 1-stable intervals, and the injective hull E(Wn)
has dimension 2n−1 (compare Example 5.5; see also [20, Section 5] for more precise
information in the case n = 3). Now let X be the space obtained from the disjoint
union

⋃∞
n=1Wn by identifying (1, 1, . . . , 1) ∈ Wn with (0, 0, . . . , 0) ∈ Wn+1 for n =

1, 2, . . . , equipped with the obvious discretely geodesic metric, so that X contains an
isometric copy of each Wn. Clearly X has 1-stable intervals, bounded subsets of X
are finite, and E(X) is infinite dimensional.

We pass to δ-hyperbolic metric spaces, as defined in (1.4).

Proof of Theorem 1.2. To show that E(X) is δ-hyperbolic, let e, f, g, h ∈ E(X), and
let ε > 0. There exist w, x ∈ X such that either ‖e − f‖∞ ≤ e(x) − f(x) + ε and
e(x) ≤ d(w, x)−e(w)+ε, or ‖e−f‖∞ ≤ f(w)−e(w)+ε and f(w) ≤ d(w, x)−f(x)+ε.
Thus

‖e− f‖∞ ≤ d(w, x) − e(w) − f(x) + 2ε.

Likewise, ‖g − h‖∞ ≤ d(y, z) − g(y) − h(z) + 2ε for some y, z ∈ X. Put Σ :=
e(w) + f(x) + g(y) + h(z). Using the δ-hyperbolicity of X we obtain

‖e− f‖∞ + ‖g − h‖∞ ≤ d(w, x) + d(y, z) − Σ+ 4ε

≤ max{d(w, y) + d(x, z), d(x, y) + d(w, z)} −Σ+ δ + 4ε.

Now d(w, y) + d(x, z) − Σ ≤ e(y) + f(z) − g(y) − h(z) ≤ ‖e − g‖∞ + ‖f − h‖∞ and
d(x, y) + d(w, z) − Σ ≤ −e(w) − f(x) + g(x) + h(w) ≤ ‖f − g‖∞ + ‖e − h‖∞. Since
ε > 0 was arbitrary, this gives the desired inequality for e, f, g, h.

Suppose, in addition, that X is geodesic or discretely geodesic. Put ν := 0 in the
former and ν := 1

2 in the latter case. Let f ∈ E(X). For ε > 0, choose x, y ∈ X such
that f(x)+f(y) ≤ d(x, y)+ε. Since f(x)+f(y) ≥ d(x, y), there is a point v ∈ I(x, y)
such that d(v, x) ≤ f(x) + ν and d(v, y) ≤ f(y) + ν. Using the δ-hyperbolicity of the
quadruple {f, dv, dx, dy} ⊂ E(X), together with (3.2), we get

f(v) + d(x, y) ≤ max{f(x) + d(v, y), f(y) + d(v, x)} + δ

≤ f(x) + f(y) + δ + ν

≤ d(x, y) + ε+ δ + ν,
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thus f(v) ≤ ε+δ+ν. Hence, for every ε > 0 there exists v ∈ X such that ‖f−dv‖∞ =
f(v) ≤ ε+ δ + ν.

Next, let again Γ be a group with a finite generating set S, and let dS denote the
word metric on Γ with respect to the alphabet S ∪ S−1. We write ΓS for the metric
space (Γ, dS). By Proposition 3.7, the isometric action (x, y) 7→ Lx(y) := xy of Γ on
ΓS induces an isometric action (x, f) 7→ L̄x(f) = f ◦ L−1

x of Γ on the injective hull
E(ΓS).

Proof of Theorem 1.3. First we show that for every bounded set B ⊂ E(ΓS) there are
only finitely many x ∈ Γ such that L̄x(B)∩B 6= ∅. Let R > 0 be such that ‖f−d1‖∞ ≤
R for all f ∈ B, where 1 is the identity element of Γ. We have L̄x(d1) = dx. Hence, if
f ∈ L̄x(B) ∩ B, then also ‖f − dx‖∞ ≤ R and so dS(1, x) = ‖d1 − dx‖∞ ≤ 2R. This
gives the result.

If ΓS has β-stable intervals, we already know that E′(ΓS) = E(ΓS) and that
P = {P (A)}A∈A (ΓS) is a locally finite polyhedral structure on E(ΓS), which is thus
a proper metric space. By what we have just shown, the action of Γ on E(ΓS) is
proper. For x ∈ Γ and f, g ∈ E(ΓS), it follows from the left-invariance of dS that
A(f) = A(g) if and only if A(f ◦ L−1

x ) = A(g ◦ L−1
x ), which is in turn equivalent to

A(L̄x(f)) = A(L̄x(g)). So L̄x maps cells onto cells.

Now suppose that ΓS is δ-hyperbolic. It follows from Theorem 1.2 that for every
f ∈ E(ΓS) there is a point z ∈ ΓS with ‖f − dz‖ ≤ δ + 1

2 . Hence the closed ball in
E(ΓS) with center d1 and radius δ + 1

2 is a compact set whose Γ-orbit covers E(ΓS).
As in the second half of the proof of Theorem 1.2 we see that whenever f ∈ E(ΓS)
and {x, y} ∈ A(f), there exists a point vxy ∈ I(x, y) with f(vxy) ≤ δ+ 1

2 . If {x
′, y′} is

another element of A(f), then d(vxy, vx′y′) ≤ f(vxy)+f(vx′y′) ≤ 2δ+1. The argument
of the first part of Proposition 5.12 then shows that

rk(A(f)) ≤
1

2
·max{|B| : B ⊂ ΓS , diam(B) ≤ 2δ + 1} · |C (1)| (6.1)

for all f ∈ E(ΓS), where |C (1)| is the number of cone types of (Γ, S). So the dimension
of E(ΓS) is bounded by the right side of (6.1) too.

In order for the injective hull E(ΓS) to lie within finite distance of e(ΓS), ΓS need
not be word hyperbolic, as is shown by Z

2 (Example 5.5). A necessary condition is
given next.

6.2 Remark. Let ΓS = (Γ, dS) be a finitely generated group with the word metric,
and suppose that there is a constant D such that for every f ∈ E(ΓS) there is an
element z ∈ ΓS with ‖f − dz‖∞ = f(z) ≤ D. Note that Γ acts coboundedly on
E(ΓS). It follows from Theorem 3.8 that there is map σ : ΓS × ΓS × [0, 1] → ΓS with
the following properties: for every pair (x, y) ∈ ΓS × ΓS , the map σxy := σ(x, y, ·)
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satisfies σxy(0) = x, σxy(1) = y, and |dS(σxy(s), σxy(t)) − (t − s)dS(x, y)| ≤ 2D for
0 ≤ s ≤ t ≤ 1; furthermore,

dS(σxy(t), σx′y′(t)) ≤ (1 − t)d(x, x′) + td(y, y′) + 2D

and z · σxy(t) = σzx,zy(t) for x, y, x
′, y′ ∈ ΓS, t ∈ [0, 1], and z ∈ Γ. In particular, ΓS is

semihyperbolic in the sense of Alonso–Bridson [2]. On the other hand, Zn for n ≥ 3 is
an example of a semihyperbolic group that does not act coboundedly on its injective
hull.

For a finitely generated group ΓS with β-stable intervals that is not word hyper-
bolic, Theorem 1.3 leaves open the possibility of E(ΓS) being infinite dimensional.
An example of this type is missing at present. However, there are simple instances of
finitely presented groups (without uniformly stable intervals) whose injective hull fails
to be finite dimensional or locally compact. We also note that groups with β-stable
intervals are easily seen to be almost convex in the sense of Cannon [8] and hence
finitely presented.

6.3 Example. Let ΓS be the Baumslag–Solitar group 〈x, y | yx = x2y〉 with gener-
ating set S = {x, y}. Fix an integer n ≥ 1. The word wn := unxu

−1
n x−1, where

un := ynx2y−n, represents the identity. Let γ : {0, 1, . . . , l} → ΓS be the correspond-
ing discrete loop of length l := 4n + 6. This is similar to the loop depicted in [18,
Figure 7.8] (where un is chosen to be ynxy−n). By inspecting this picture, one sees
that for k = 0, . . . , n, the two points γ(k) = yk and γ(12 l + k) = unxyk = x2

n+1+1yk

are at distance 1
2 l from each other. It follows that the constant function f = 1

4 l on
Y :=

⋃n
k=0{γ(k), γ(

1
2 l + k)} is an element of E(Y ) with rk(A(f)) = n + 1. As n ≥ 1

was arbitrary, E(ΓS) must be infinite dimensional.

The following example shows that for a finitely presented group ΓS with infinitely
many cone types, E(ΓS) need not be locally finite near points in e(ΓS). This contrasts
with the second assertion of Proposition 5.6.

6.4 Example. Consider the group Γ = 〈a, b, t | ab = ba, t2 = 1, tab = abt〉 with
generating set S = {a, b, t}. For every integer m ≥ 1, put xm := a−mt and ym := bmt.
Note that dS(1, xm) = dS(1, ym) = m+ 1,

dS(xm, ym) = dS(1, ta
mbmt) = dS(1, t(ab)

mt) = 2m

for all m ≥ 1, and dS(xm, yn) = m + n + 2 if n 6= m. Hence, C(xm, 1) contains
{yn : n 6= m} but not ym, so ΓS has infinitely many cone types. Now let fm ∈ E(ΓS)
be a median point of the triple of distance functions d1, dxm , dym . Then ‖fm−d1‖∞ = 1
and ‖fm − dxm‖∞ = ‖fm − dym‖∞ = m, and it follows from the triangle inequality
that ‖fn − fm‖∞ = 2 whenever n 6= m. Hence, there is an isometrically embedded
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simplicial tree with infinite valence at the vertex d1, which therefore has no compact
neighborhood in E(ΓS). Nevertheless, I suspect E(ΓS) to be a polyhedral complex of
finite dimension (equal to 3).

We proceed to Theorem 1.4 and Theorem 1.5. Given a metric space X and a
group Λ of isometries of X, we write Λx := {L(x) : L ∈ Λ} for the orbit of x and
Λ\X for the set of orbits; furthermore Fix(Λ) := {x ∈ X : Λx = {x}} denotes the
fixed point set.

Proof of Theorem 1.4. First we show that if X is a metric space and Λ is a subgroup
of the isometry group of X with bounded orbits, there exists an extremal function
f ∈ E(X) that is constant on each orbit. For Λx,Λy ∈ Λ\X, define

D(Λx,Λy) := sup{d(x′, y′) : x′ ∈ Λx, y′ ∈ Λy}.

Note that this is finite since the orbits are bounded, and D has all the properties of a
metric except that D(Λx,Λx) = diam(Λx) > 0 if x 6∈ Fix(Λ). Denote by ∆(Λ\X,D)
the set of all functions G : Λ\X → R such that

G(Λx) +G(Λy) ≥ D(Λx,Λy)

for all Λx,Λy ∈ Λ\X. For z ∈ X, the function defined by Gz(Λx) := D(Λx,Λz)
belongs to ∆(Λ\X,D), due to the triangle inequality for D. By Zorn’s Lemma,
the partially ordered set (∆(Λ\X,D),≤) has a minimal element F . Consider the
respective function f : X → R, f(x) := F (Λx). For all x, y ∈ X,

f(x) + f(y) = F (Λx) + F (Λy) ≥ D(Λx,Λy) ≥ d(x, y),

so f ∈ ∆(X). Furthermore, by the minimality of F , for every x ∈ X and ε > 0 there is
a point y ∈ X such that F (Λx)+F (Λy) ≤ D(Λx,Λy)+ε and D(Λx,Λy) ≤ d(x, y)+ε,
hence f(x) + f(y) ≤ d(x, y) + 2ε. This shows that in fact f ∈ E(X).

Now suppose that X is injective. Then the only extremal functions on X are
distance functions, so by the above result there exists a point z ∈ X such that dz is
constant on each orbit of Λ. Thus Λz = {z} and so z ∈ Fix(Λ). We prove that Fix(Λ)
is hyperconvex (recall Proposition 2.3). Since Fix(Λ) 6= ∅, it suffices to show that if
((xi, ri))i∈I is a non-empty family inX×R such that xi ∈ Fix(Λ) and ri+rj ≥ d(xi, xj)
for all pairs of indices i, j ∈ I, then Y :=

⋂
i∈I B(xi, ri) has non-empty intersection

with Fix(Λ). Note that Y is bounded and hyperconvex, in particular Y 6= ∅. For all
i ∈ I, L ∈ Λ, and y ∈ Y , we have

d(xi, L(y)) = d(L(xi), L(y)) = d(xi, y) ≤ ri,

thus L(Y ) ⊂ Y . In other words, for every L ∈ Λ, the restriction L|Y is an isometric
embedding of Y into itself. In fact, since also L−1(Y ) ⊂ Y , L|Y is an isometry of Y .
Since Y is bounded and injective, the group {L|Y : L ∈ Λ} must have a fixed point,
as we already know, so Y ∩ Fix(Λ) 6= ∅.
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Recall that the barycenter b of a finite family (vi)
k
i=1 of points in a vector space

Z is defined as b := 1
k

∑k
i=1 vi or, equivalently, as the unique point b such that∑k

i=1(vi − b) = 0. If L : Z → Z is an affine map, the barycenter of (L(vi))
k
i=1

equals L(b). If, in addition, L(vi) = vσ(i) for some permutation σ of {1, . . . , k}, then
L(b) = b. Now let again ΓS = (Γ, dS) be a finitely generated group with β-stable
intervals. For every cell P (A) of P = {P (A)}A∈A (ΓS) we define the barycenter b(A)

as the barycenter in R
Γ of the vertex set of P (A); b(A) is a point in the interior

of P (A) relative to the affine hull H(A) of P (A). Every isometry L of P (A) is the
restriction of an affine transformation of H(A) that permutes the vertices of P (A),
so L(b(A)) = b(A). We denote by P1 the first barycentric subdivision of P, that is,
the collection of all simplices conv{b(A0), b(A1), . . . , b(Aj)} corresponding to strictly
ascending sequences P (A0) ⊂ P (A1) ⊂ . . . ⊂ P (Aj) of cells in P. We write E(ΓS)

1 for
the metric space E(ΓS) equipped with the simplicial structure P1. The group Γ still
acts by cellular — now simplicial — isometries on E(ΓS)

1 via x 7→ L̄x. Furthermore, if
L̄x maps a simplex in P1 to itself, then L̄x fixes the simplex pointwise. In particular,
E(ΓS)

1 is a Γ-CW-complex. We recall that a Γ-CW-complex W is a model for the
classifying space EΓ for proper Γ-actions if every cell stabilizer is finite, and for each
finite subgroup Λ of Γ, the fixed point subcomplex Fix(Λ) ⊂ W is contractible (see [27,
Sect. 1]).

Proof of Theorem 1.5. As discussed above, E(ΓS)
1 is a Γ-CW-complex. Since Γ acts

properly, all cell stabilizers are finite. For every finite subgroup Λ of Γ, Fix(Λ) is
contractible by Theorem 1.4.
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