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EXTENSION OF THE ν-METRIC FOR STABILIZABLE

PLANTS OVER H∞

AMOL SASANE

Abstract. An abstract ν-metric was introduced in [1], with a view
towards extending the classical ν-metric of Vinnicombe from the case of
rational transfer functions to more general nonrational transfer function
classes of infinite-dimensional linear control systems. Here we give an
important concrete special instance of the abstract ν-metric, namely the
case when the ring of stable transfer functions is the Hardy algebra H

∞,
by verifying that all the assumptions demanded in the abstract set-up
are satisfied. This settles the open question implicit in [2].

1. Introduction

We recall the general stabilization problem in control theory. Suppose that
R is a commutative integral domain with identity (thought of as the class of
stable transfer functions) and let F(R) denote the field of fractions of R. The
stabilization problem is: Given P ∈ (F(R))p×m (an unstable plant transfer
function), find C ∈ (F(R))m×p (a stabilizing controller transfer function),
such that

H(P,C) :=

[
P
I

]
(I − CP )−1

[
−C I

]
∈ R(p+m)×(p+m) (is stable).

In the robust stabilization problem, one goes a step further. One knows
that the plant is just an approximation of reality, and so one would really
like the controller C to not only stabilize the nominal plant P0, but also
all sufficiently close plants P to P0. The question of what one means by
“closeness” of plants thus arises naturally. So one needs a function d defined
on pairs of stabilizable plants such that

(1) d is a metric on the set of all stabilizable plants,
(2) d is amenable to computation, and
(3) stabilizability is a robust property of the plant with respect to this

metric (that is, whenever a plant P0 is stabilized by a controller C,
then there is a small enough neighbourhood of the plant P0 consisting
of plants which are stabilized by the same controller C).

Such a desirable metric, was introduced by Glenn Vinnicombe in [13] and is
called the ν-metric. In that paper, essentially R was taken to be the rational
functions without poles in the closed unit disk or, more generally, the disk
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algebra, and the most important results were that the ν-metric is indeed a
metric on the set of stabilizable plants, and moreover, one has the inequality
that if P0, P ∈ S(R, p,m), then

µP,C ≥ µP0,C − dν(P0, P ),

where µP,C denotes the stability margin of the pair (P,C), defined by

µP,C := ‖H(P,C)‖−1
∞ .

This implies in particular that stabilizability is a robust property of the
plant P .

The problem of what happens when R is some other ring of stable transfer
functions of infinite-dimensional systems was left open in [13]. This problem
of extending the ν-metric from the rational case to transfer function classes
of infinite-dimensional systems was addressed in [1]. There the starting
point in the approach was abstract. It was assumed that R is any commu-
tative integral domain with identity which is a subset of a Banach algebra
S satisfying certain assumptions, labeled (A1)-(A4), which are recalled in
Section 2. Then an “abstract” ν-metric was defined in this setup, and it
was shown in [1] that it does define a metric on the class of all stabilizable
plants. It was also shown there that stabilizability is a robust property of
the plant.

In [13], it was suggested that the ν-metric in the case when R = H∞

might be defined as follows. (Here H∞ denotes the algebra of bounded and
holomorphic functions in the unit disk {z ∈ C : |z| < 1}.) Let P1, P2 be
unstable plants with the normalized left/right coprime factorizations

P1 = N1D
−1
1 = D̃−1

1 Ñ1,

P2 = N2D
−1
2 = D̃−1

2 Ñ2,

where N1,D1, N2,D2, Ñ1, D̃1, Ñ2, D̃2 are matrices with H∞ entries. Then

dν(P1, P2) =

{
‖G̃2G1‖∞ if TG∗

1
G2

is Fredholm with Fredholm index 0,
1 otherwise.

(1.1)
Here ·∗ has the usual meaning, namely: G∗

1(ζ) is the transpose of the matrix
whose entries are complex conjugates of the entries of the matrix G1(ζ),

for ζ ∈ T, and Gk, G̃k arise from Pk (k = 1, 2) according to the notational
conventions given in Subsection 2.5 below. Also in the above, for a matrix
M ∈ (L∞)p×m, TM denotes the Toeplitz operator from (H2)m to (H2)p,
given by

TMϕ = P(H2)p(Mϕ) (ϕ ∈ (H2)m)

where Mϕ is considered as an element of (L2)p and P(H2)p denotes the

canonical orthogonal projection from (L2)p onto (H2)p.
In [2], we showed that the above does work for the case when R is the

smaller class QA of quasianalytic functions in the unit disk. We proved this
by showing that this case is just a special instance of the abstract ν-metric
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introduced in [1]. A perusal of the extensive literature on Fredholm theory
of Toeplitz operators from the 1970s lead to this choice of R = QA and
S = QC (the class of quasicontinuous functions) as conceivably the most
general subalgebras of H∞ and L∞ which fit the setup of [1].

In this article, we use a different idea to tackle the problem of defining a
new metric in the case when R = H∞. We first notice that when R is the
disk algebra A(D), then there is no problem in defining the ν-metric; see
[1, §5.1]. We then handle the H∞ case by using the observation that the
restrictions of a function f ∈ H∞ to the smaller disks with radii r < 1 give
rise to elements in the disk algebra by dilating these restrictions to bigger
disks of radius 1. In other words, fr defined via

fr(z) = f(rz) (z ∈ D).

are all elements of A(D). We then use these restrictions in a suitable manner
to define the ν-metric.

The paper is organized as follows:

(1) In Section 2, we recall the general setup with the assumptions and
the abstract metric dν from [1].

(2) In Section 3, we specialize R to a concrete ring of stable transfer
functions, namely R = H∞, and show that our abstract assumptions
hold in this particular case. Moreover in the Subsection 3.2, we
will show that when our extended ν-metric is restricted to rational
plants, we obtain the classical ν-metric, hence showing that we have
obtained a genuine extension.

2. Recap of the abstract ν-metric

We recall the setup from [1]:

(A1) R is commutative integral domain with identity.
(A2) S is a unital commutative complex semisimple Banach algebra with

an involution ·∗, such that R ⊂ S. We use inv S to denote the
invertible elements of S.

(A3) There exists a map ι : inv S → G, where (G,+) is an Abelian group
with identity denoted by ◦, and ι satisfies
(I1) ι(ab) = ι(a) + ι(b) (a, b ∈ inv S).
(I2) ι(a∗) = −ι(a) (a ∈ inv S).
(I3) ι is locally constant, that is, ι is continuous when G is equipped

with the discrete topology.
(A4) x ∈ R∩(inv S) is invertible as an element of R if and only if ι(x) = ◦.

We recall the following standard definitions from the factorization approach
to control theory.

2.1. The notation F(R): F(R) denotes the field of fractions of R.
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2.2. The notation F ∗: If F ∈ Rp×m, then F ∗ ∈ Sm×p is the matrix with
the entry in the ith row and jth column given by F ∗

ji, for all 1 ≤ i ≤ p, and
all 1 ≤ j ≤ m.

2.3. Right coprime/normalized coprime factorization: For a matrix
P ∈ (F(R))p×m, a factorization P = ND−1, where N,D are matrices with
entries from R, is called a right coprime factorization of P if there exist
matrices X,Y with entries from R such that XN + Y D = Im. If moreover
N∗N +D∗D = Im, then the right coprime factorization is referred to as a
normalized right coprime factorization of P .

2.4. Left coprime/normalized coprime factorization: For a matrix

P ∈ (F(R))p×m, a factorization P = D̃−1Ñ , where Ñ , D̃ are matrices with
entries from R, is called a left coprime factorization of P if there exist

matrices X̃, Ỹ with entries from R such that ÑX̃ + D̃Ỹ = Ip. If moreover

ÑÑ∗ + D̃D̃∗ = Ip, then the left coprime factorization is referred to as a
normalized left coprime factorization of P .

2.5. The notation G, G̃,K, K̃: Given P ∈ (F(R))p×m with normalized

right and left factorizations P = ND−1 and P = D̃−1Ñ , respectively, we
introduce the following matrices with entries from R:

G =

[
N
D

]
and G̃ =

[
−D̃ Ñ

]
.

Similarly, given a C ∈ (F(R))m×p with normalized right and left factoriza-

tions C = NCD
−1
C and C = D̃−1

C ÑC , respectively, we introduce the following
matrices with entries from R:

K =

[
DC

NC

]
and K̃ =

[
−ÑC D̃C

]
.

2.6. The notation S(R, p,m): S(R, p,m) denotes the set of all elements
P ∈ (F(R))p×m that possess a normalized right coprime factorization and a
normalized left coprime factorization.

We now recall the definition of the metric dν on S(R, p,m). But first we
specify the norm we use for matrices with entries from S.

Definition 2.1 (‖ · ‖S,∞). Let M denote the maximal ideal space of the
Banach algebra S. For a matrix M ∈ Sp×m, we set

‖M‖S,∞ = max
ϕ∈M

M(ϕ) . (2.1)

Here M denotes the entry-wise Gelfand transform of M , and · denotes
the induced operator norm from C

m to C
p. For the sake of concreteness, we

fix the standard Euclidean norms on the vector spaces Cm to C
p.
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The maximum in (2.1) exists since M is a compact space when it is
equipped with Gelfand topology, that is, the weak-∗ topology induced from
L(S;C). Since we have assumed S to be semisimple, the Gelfand transform

·̂ : S → Ŝ (⊂ C(M,C))

is an injective map. If M ∈ S1×1 = S, then we note that there are two
norms available for M : the one as we have defined above, namely ‖M‖S,∞,
and the norm ‖ · ‖S of M as an element of the Banach algebra S. But
throughout this article, we will use the norm given by (2.1).

Definition 2.2 (Abstract ν-metric dν). For P1, P2 ∈ S(R, p,m), with the
normalized left/right coprime factorizations

P1 = N1D
−1
1 = D̃−1

1 Ñ1,

P2 = N2D
−1
2 = D̃−1

2 Ñ2,

we define

dν(P1, P2) :=

{
‖G̃2G1‖S,∞ if det(G∗

1G2) ∈ inv S and ι(det(G∗
1G2)) = ◦,

1 otherwise,
(2.2)

where the notation is as in Subsections 2.1-2.6.

The following was proved in [1]:

Theorem 2.3. dν given by (2.2) is a metric on S(R, p,m).

Definition 2.4. Given P ∈ (F(R))p×m and C ∈ (F(R))m×p, the stability
margin of the pair (P,C) is defined by

µP,C =

{
‖H(P,C)‖−1

S,∞ if P is stabilized by C,

0 otherwise.

The number µP,C can be interpreted as a measure of the performance of
the closed loop system comprising P and C: larger values of µP,C correspond
to better performance, with µP,C > 0 if and only if C stabilizes P .

The following was proved in [1]:

Theorem 2.5. If P0, P ∈ S(R, p,m) and C ∈ S(R,m, p), then

µP,C ≥ µP0,C − dν(P0, P ).

The above result says that stabilizability is a robust property of the plant,
since if C stabilizes P0 with a stability margin µP,C > m, and P is another
plant which is close to P0 in the sense that dν(P,P0) ≤ m, then C is also
guaranteed to stabilize P .

3. The ν-metric when R = H∞

Let H∞ be the Hardy algebra, consisting of all bounded and holomorphic
functions defined on the open unit disk D := {z ∈ C : |z| < 1}.
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We will now introduce a Banach algebra, ℓ∞((ρ, 1);C(T)), which will serve
as the Banach algebra S in our abstract set up. We use the notation C(T)
for the Banach algebra of complex-valued continuous functions defined on
the unit circle T := {z ∈ C : |z| = 1}, with all operations defined pointwise,
and with the supremum norm:

‖f‖∞ = sup
z∈T

|f(z)| for f ∈ C(T).

Let ρ ∈ (0, 1). We define

ℓ∞((ρ, 1);C(T)) :=

{
F : (r, 1) → C(T) : sup

r∈(ρ,1)
‖F (r)‖∞ < +∞

}
.

(The idea behind the notation is that it is analogous to ℓ∞(N;C(T)) of
bounded sequences (fn)n∈N of functions fn ∈ C(T), n ∈ N. We just have
a uniformly bounded collection of functions fr for r ∈ (0, 1).) One can
check easily that ℓ∞((ρ, 1);C(T)) is a complex vector space with pointwise
addition and scalar multiplication, and that it is a commutative complex
algebra with multiplication defined pointwise.

Proposition 3.1. Let ρ ∈ (0, 1). With the norm defined by

‖F‖∞ := sup
r∈(ρ,1)

‖F (r)‖∞ for F ∈ ℓ∞((ρ, 1);C(T)),

ℓ∞((ρ, 1);C(T)) is a unital semisimple complex Banach algebra with the in-
volution ·∗ defined by

((F ∗)(r))(ζ) = (F (r))(ζ) (ζ ∈ T, F ∈ ℓ∞((ρ, 1);C(T))).

Proof. The verification of the claims is straightforward. We just give the
proof of the semisimplicity. Recall that a commutative complex Banach
algebra is called semisimple if its radical ideal, namely the intersection of all
the maximal ideals of the Banach algebra is 0. We also know that kernels
of complex homomorphisms are maximal ideals. For r ∈ (ρ, 1) and ζ ∈ T,
the map ϕr,ζ : ℓ∞((ρ, 1);C(T)) → C, given by ϕr,ζ(F ) = (F (r))(ζ) for
F ∈ ℓ∞((ρ, 1);C(T)), is a complex homomorphism. We have

⋂

r∈(ρ,1), ζ∈T

kerϕr,ζ = {0}.

Since the radical ideal is contained in the intersection of the kernels of the
complex homomorphisms ϕr,ζ , r ∈ (ρ, 1), ζ ∈ T, it must be zero. �

Proposition 3.2. Let ρ ∈ (0, 1). For f ∈ H∞, define the functions fr,
r ∈ (ρ, 1), in A(D) by

fr(z) = f(rz) (z ∈ D).

Define the map I : H∞ → ℓ∞((ρ, 1);C(T)) by

(I(f))(r) = fr (r ∈ (ρ, 1), f ∈ H∞).

Then I is an injective map.
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Proof. The map I is a linear transformation. Suppose that I(f) = 0 for
some f ∈ H∞. This means that the restriction of f to the circles rT is
identically 0 for all r ∈ (ρ, 1). But then it follows that each coefficient an in
the Taylor expansion of f ,

f(z) =
∞∑

n=0

anz
n (z ∈ D),

must be zero, since anr
n is the nth Fourier coefficient of 0 = fr ∈ C(T).

Hence f = 0. �

Henceforth we will identify H∞ as a subset of ℓ∞((ρ, 1);C(T)) via this
map I.

We will now define an index on invertible elements of S = ℓ∞((ρ, 1);C(T)).
If F ∈ inv ℓ∞((ρ, 1);C(T)), then for each r ∈ (ρ, 1), F (r) ∈ inv C(T), and
so each F (r) has a well-defined winding number with respect to 0, which we

denote by w(F (r)) ∈ Z. We use the notation Z
(ρ,1) for the direct product

∏

r∈(ρ,1)

Z

of the Abelian groups Z with the usual integer addition. Elements of Z(ρ,1)

are functions ω : (ρ, 1) → Z, and addition is defined pointwise. We now
define the map W : inv ℓ∞((ρ, 1);C(T)) → Z

(ρ,1) by setting

(W (F ))(r) = w(F (r)) (r ∈ (ρ, 1), F ∈ inv ℓ∞((ρ, 1);C(T))).

Consider the subgroup c00 of Z(ρ,1) consisting of all ω : (ρ, 1) → Z for which
there exists a ρ′ such that ρ′ ≥ ρ and such that the restriction of ω to
(ρ′, 1) is identically zero. Let π : ZN → Z

N/c00 be the canonical projection

homomorphism that sends x ∈ Z
(ρ,1) to the coset [x] := x+ c0 ∈ Z

(ρ,1)/c00.

Let W : inv ℓ∞((ρ, 1);C(T)) → Z
(ρ,1)/c00 be defined by

W (F ) = π(W (F )) for F ∈ inv ℓ∞((ρ, 1);C(T)).

We will now prove a sequence of results aimed towards verifying the assump-
tions (A3) and (A4) in our abstract setup.

Proposition 3.3. Let ρ ∈ (0, 1). If F,G ∈ inv ℓ∞((ρ, 1);C(T)), then

W (FG) =W (F ) +W (G).

Proof. For f, g ∈ inv C(T), we have w(fg) = w(f) +w(g), and so it follows
that for F,G ∈ inv ℓ∞((ρ, 1);C(T)), W (FG) = W (F ) + W (G). Finally,
applying the group homomorphism π, we obtain

W (FG) = π(W (FG)) = π(W (F ) +W (G)) = π(W (F )) + π(W (G))

= W (F ) +W (G).

This completes the proof. �
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Proposition 3.4. Let ρ ∈ (0, 1). If F ∈ inv ℓ∞((ρ, 1);C(T)), then

W (F ∗) = −W (F ).

Proof. For f, g ∈ inv C(T), w(f(·)) = −w(f). So if F ∈ inv ℓ∞((ρ, 1);C(T)),
W (F ∗) = −W (F ). Finally, applying the group homomorphism π, we ob-
tain W (F ∗) = π(−W (F )) = −π(W (F )) = −W (F ). This completes the
proof. �

The following technical result will be useful when verifying the Nyquist
criterion (A4).

Lemma 3.5. Let ϕ ∈ inv C(T) be such that there is a m > 0 such that
the curve ζ 7→ ϕ(ζ) (ζ ∈ T) lies in C \ (mD). If ψ ∈ C(T) such that
‖ϕ− ψ‖∞ < m/2, then ψ ∈ inv C(T) and w(ψ) = w(ϕ).

Proof. We use the fact that the winding numbers w(ϕ), w(ψ) with respect
to 0 of ϕ,ψ : T → C \ {0}, are the same if ϕ, ψ are homotopic; see for
example [3, §2.7.10, p.50]. Consider the map H : T× [0, 1] → C\{0} defined
by H(ζ, t) = ϕ(ζ) + t(ψ(ζ)− ϕ(ζ)), ζ ∈ T, t ∈ [0, 1]. Since

|ϕ(ζ)+t(ψ(ζ)−ϕ(ζ))| ≥ |ϕ(ζ)|−|t(ψ(ζ)−ϕ(ζ))| ≥ m−1·(m/2) = m/2 > 0,

H is well-defined. H is a homotopy from ϕ to ψ. In particular it follows
from the above that ψ = H(·, 1) ∈ inv C(T), and that the winding numbers
of ϕ and ψ are identical. �

Proposition 3.6. Let ρ ∈ (0, 1). W : inv ℓ∞((ρ, 1);C(T)) → Z
(ρ,1)/c00 is

locally constant, that is, it is continuous when Z
(ρ,1)/c00 is equipped with the

discrete topology.

Proof. Let F ∈ inv ℓ∞((ρ, 1);C(T)). As F is invertible, there exists an
element G ∈ ℓ∞((ρ, 1);C(T)) such that F (r)G(r) = 1 in C(T) for each
r ∈ (ρ, 1). We have 1 = ‖FG‖∞ ≤ ‖F‖∞‖G‖∞, and so ‖G‖∞ 6= 0. Thus

|(F (r))(ζ)| =
1

|(G(r))(ζ)|
≥

1

‖G(r)‖∞
≥

1

‖G‖∞
=: m > 0 (ζ ∈ T, r ∈ (ρ, 1)).

So the curves ζ 7→ (F (r))(ζ) : T → C \ {0}, r ∈ (ρ, 1), are contained in
C \ (mD). By the result in the previous lemma, it follows that the winding
numbers w(F (r)) = w(h) for any h ∈ C(T) such that ‖F (r)− h‖∞ < m/2.
HenceW (F ) =W (H) forH ∈ ℓ∞((ρ, 1);C(T)) satisfying ‖F−H‖∞ < m/2.
This yields that

W (F ) = π(W (F )) = π(W (H)) =W (H)

for H ∈ ℓ∞((ρ, 1);C(T)) satisfying ‖F − H‖∞ < m/2, giving the desired
local constancy of W . �

Finally we have the following analogue of the classical Nyquist criterion.

Proposition 3.7. Let ρ ∈ (0, 1). Suppose that f ∈ H∞ is such that I(f) ∈
inv ℓ∞((ρ, 1);C(T)). Then f is invertible as an element of H∞ if and only
if W (I(f)) = c00.
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Proof. (“If” part) Let g ∈ H∞ be the inverse of f . Then we have that
1 = ‖fg‖∞ ≤ ‖f‖∞‖g‖∞ and so ‖g‖∞ 6= 0. Hence

|f(z)| =
1

|g(z)|
≥

1

‖g‖∞
=: δ > 0 (z ∈ D).

For each r ∈ (ρ, 1), fr ∈ A(D) defined by fr(z) = f(rz) (z ∈ D), is invertible
in A(D), and moreover,

|f−1
r (z)| =

1

|fr(z)|
≤

1

δ
< +∞ (z ∈ T),

shows that I(f) is invertible as an element of ℓ∞((ρ, 1));C(T)). Further-
more, by the Nyquist criterion for the disk algebra, ϕ ∈ A(D)

⋂
inv C(T)

is invertible as an element of A(D) if and only if w(ϕ) = 0 [1, Lemma 5.2].
Thus w(fr) = 0 for each r ∈ (ρ, 1). Hence we have (W (I(f)))(r) = 0 for all
r ∈ (ρ, 1). Consequently W (I(f)) = c00. This completes the proof of the
“if” part.

(“Only if” part) Let G ∈ ℓ∞((ρ, 1);C(T)) is the inverse of F := I(f). If
r ∈ (ρ, 1), then fr := f(r·) ∈ A(D) and fr ∈ inv C(T). Since W (F ) = c00,
it follows that W (F ) is 0 on an interval (ρ′, 1) for some ρ′ ≥ ρ. Hence for
all r > ρ′, w(fr) = 0. Thus again by the Nyquist criterion for the disk
algebra recalled above, it follows that fr is invertible in A(D) for r > ρ′. In
other words, f(rz) 6= 0 for all r > ρ′ and all z ∈ D. It follows from here
that f(z) 6= 0 for all z ∈ D, that is, f has a pointwise inverse g : D → C.
Moreover, g is holomorphic in D. For r > ρ′, f(rζ)gr(ζ) = f(rζ)g(rζ) = 1
(ζ ∈ T), and so it follows that g(rζ) = gr(ζ) (ζ ∈ T). Hence by the maximum
modulus principle,

sup
z∈D

|g(z)| = sup
r>ρ′

sup
z∈rD

|g(z)| = sup
r>ρ′

‖gr‖∞ ≤ ‖G‖∞ < +∞,

showing that g ∈ H∞. Consequently, f ∈ inv H∞. This completes the
proof of the “only if” part. �

Theorem 3.8. Let ρ ∈ (0, 1). Set

R := H∞,

S := ℓ∞((ρ, 1);C(T)),

G := Z
(ρ,1)/c00,

ι := W.

Then (A1)-(A4) are satisfied.

Proof. SinceH∞ is a commutative integral domain with identity, (A1) holds.
(A2) follows from the results in Propositions 3.1 and 3.2. Indeed, the

set ℓ∞((ρ, 1);C(T)) is a unital, commutative, complex, semisimple Banach
algebra with the involution ·∗ defined earlier in Proposition 3.1. Moreover,
the map I : H∞ → ℓ∞((ρ, 1);C(T)) is injective.
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The map W : inv ℓ∞((ρ, 1);C(T)) → Z
(ρ,1)/c00 satisfies (I1), (I2), (I3) by

Propositions 3.3, 3.4, 3.6. Thus (A3) holds.
Finally (A4) has been verified in Proposition 3.7. �

The definition of the abstract ν-metric given in Definition 2.2, now takes
the following concrete form. For P1, P2 ∈ S(H∞, p,m), with the normalized
left/right coprime factorizations

P1 = N1D
−1
1 = D̃−1

1 Ñ1,

P2 = N2D
−1
2 = D̃−1

2 Ñ2,

we define

dν(P1, P2) =





‖G̃2G1‖ℓ∞((ρ,1);C(T)),∞ if det(G∗
1G2) ∈ inv ℓ∞((ρ, 1);C(T))

and W (det(G∗
1G2)) = c00,

1 otherwise,
(3.1)

where the notation is as in Subsections 2.1-2.6.
We will now show that in fact the ‖·‖ℓ∞((ρ,1));C(T)),∞ above can be replaced

by the usual ‖ · ‖∞ norm for elements from H∞.

Lemma 3.9. Let ρ ∈ (0, 1). Let A ∈ (H∞)p×m. Then

‖A‖ℓ∞((ρ,1);C(T)),∞ = ‖A‖∞ := sup
z∈D

A(z) .

Proof. We first note that ℓ∞((ρ, 1);C(T)) is a C∗-algebra. Indeed, we have
that for F ∈ ℓ∞((ρ, 1);C(T)),

‖F ∗F‖∞ = sup
r∈(ρ,1)

‖|(F (r))(·)|2 ‖∞ = sup
r∈(ρ,1)

‖F (r)‖2∞ = ‖F‖2∞.

Thus for all F ∈ ℓ∞((ρ, 1);C(T)), we have

‖F‖∞ = sup
r∈(ρ,1)

sup
ζ∈T

|(F (r))(ζ)|

= max
ϕ∈M(ℓ∞((ρ,1);C(T)))

|F̂ (ϕ)| = ‖F‖ℓ∞((ρ,1);C(T)),∞.

In the sequel, we use the notation σmax(X) (for X ∈ C
p×m) to mean the

largest singular value of X, that is, the square root of the largest eigenvalue
of X∗X or XX∗. The map σmax(·) : C

p×m → [0,∞) is continuous.

Now let F ∈ (ℓ∞((ρ, 1);C(T))))p×m. Then σmax(F̂ (·)) is continuous func-
tion on the maximal ideal space M(ℓ∞((ρ, 1);C(T))), and so (by [10, Theo-
rem 11.18, p.289]) there exists an element µ1 ∈ ℓ

∞((ρ, 1);C(T)) such that

µ̂1(ϕ) = σmax(F̂ (ϕ)) for all ϕ ∈ M(ℓ∞((ρ, 1);C(T))).

Also, the map ζ 7→ σmax((F (r))(ζ)) is continuous. Moreover, we have that

sup
r∈(ρ,1)

sup
ζ∈T

σmax((F (r))(ζ)) = sup
r∈(ρ,1)

sup
ζ∈T

(F (r))(ζ) <∞.
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Consequently, there exists a function µ2 ∈ ℓ∞((ρ, 1);C(T)) such that

(µ2(r))(ζ) = σmax((F (r))(ζ)) for all ζ ∈ T, r ∈ (ρ, 1).

This µ2 satisfies the equation det(µ22I − A∗A) = 0, which yields, by tak-

ing Gelfand transforms, that det((µ̂2(ϕ))
2I − (Â(ϕ))∗Â(ϕ)) = 0 for all ϕ

belonging to M(ℓ∞((ρ, 1);C(T))). Hence there holds

|µ̂2(ϕ)| ≤ σmax(Â(ϕ)) = µ̂1(ϕ) for all ϕ ∈ M(ℓ∞((ρ, 1);C(T))). (3.2)

Also, since det((µ̂1(ϕ))
2I − (Â(ϕ))∗Â(ϕ)) = 0 for ϕ ∈ M(ℓ∞((ρ, 1);C(T))),

it follows that det(µ21I −A∗A) = 0, which gives the inequality

|(µ1(r))(ζ)| ≤ σmax((F (r))(ζ)) = (µ2(r))(ζ) for all ζ ∈ T, r ∈ (ρ, 1). (3.3)

It now follows from (3.2) and (3.3) that ‖µ1‖ℓ∞((ρ,1);C(T)) = ‖µ2‖ℓ∞((ρ,1);C(T)),
and so we have

sup
r∈(ρ,1)

sup
ζ∈T

σmax((F (r))(ζ)) = max
ϕ∈M(ℓ∞((ρ,1);C(T)))

σmax(F̂ (ϕ)).

Consequently, ‖F‖ℓ∞((ρ,1);C(T)),∞ = ‖F‖∞ := sup
r∈(ρ,1)

sup
ζ∈T

(F (r))(ζ) .

Now suppose that A ∈ (H∞)p×m. Then we have

‖A‖ℓ∞((ρ,1);C(T)),∞ = sup
r∈(ρ,1)

sup
ζ∈T

A(rζ) = sup
z∈D

A(z) = ‖A‖∞,

we we have used the vector valued version of the Maximum Modulus Princi-
ple (see for example [9, p.50]) to obtain the second equality. This completes
the proof. �

In light of the above result, the abstract ν-metric now takes the following
form. For P1, P2 ∈ S(H∞, p,m), with the normalized left/right coprime
factorizations

P1 = N1D
−1
1 = D̃−1

1 Ñ1,

P2 = N2D
−1
2 = D̃−1

2 Ñ2,

we define

dν(P1, P2) :=





‖G̃2G1‖∞ if det(G∗
1G2) ∈ inv ℓ∞((ρ, 1);C(T))

and W (det(G∗
1G2)) = c00,

1 otherwise,

(3.4)

where the notation is as in Subsections 2.1-2.6.

Remark 3.10. We also remark that the set S(H∞, p,m) coincides with the
set of stabilizable plants, using the following two facts:

(1) A plant is stabilizable over H∞ if and only if it possesses a coprime
factorization. (See [6] and [12].)

(2) A normalized coprime factorization over H∞ exists whenever a co-
prime factorization exists over H∞. (See for example [7, Theo-
rem 1.1].)
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Summarizing, our main result is the following, where the stability margin
of a pair (P,C) ∈ S(H∞, p,m)× S(H∞,m, p) is

µP,C =

{
‖H(P,C)‖−1

∞ if P is stabilized by C,
0 otherwise.

Corollary 3.11. dν given by (3.4) is a metric on the set of stabilizable plants
over H∞. Moreover, if P0, P belong to S(H∞, p,m) and C ∈ S(H∞,m, p),
then µP,C ≥ µP0,C − dν(P0, P ).

3.1. Irrelevance of ρ ∈ (0, 1) in the definition of the ν-metric for
S(H∞, p,m). Consider the condition

(C) : det(G∗
1G2) ∈ inv ℓ∞((ρ, 1);C(T)) and W (det(G∗

1G2)) = c00.

It is clear that only the tail end of the winding numbers are relevant, and
so the noninvertibility in ℓ∞((ρ, 1);C(T)) owing to the noninveribility of
det((G1|rT)

∗G2|rT) for small r:s in (ρ, 1) should not really matter. An
attempt at trying to remedy this could be to quotient the Banach alge-
bra S = ℓ∞((ρ, 1);C(T)) with the subspace c00, consisting of all functions
F : (ρ, 1) → C(T) for which there exists a ρ′ such that ρ′ ≥ ρ and such that
the restriction of F to (ρ′, 1) is 0 (∈ C(T)). But since c00 is not a closed
subspace of ℓ∞((ρ, 1);C(T)), the quotient vector space ℓ∞((ρ, 1);C(T))/c00
doesn’t have a natural Banach algebra norm. Instead we remedy this prob-
lem by taking the pointwise limit as ρ ր 1 of the ν-metrics corresponding
to the ρ:s in (0, 1).

For ρ ∈ (0, 1), let dρν denote the ν-metric given by (3.4). Define d∞ν on
plant pairs from S(H∞, p,m) as follows. For P1, P2 ∈ S(H∞, p,m),

d∞ν (P1, P2) := lim
ρ→1

dρν(P1, P2). (3.5)

We note that if the condition (C) is satisfied corresponding to ρ for some
ρ ∈ (0, 1), then it is also satisfies for all ρ′ satisfying ρ ≤ ρ′ < 1. This shows
that the numbers dρν(P1, P2), ρ ∈ (0, 1), are all equal for all ρ:s beyond
a certain ρc ∈ (0, 1). Thus d∞ν , given by (3.5), is well-defined. We will
now check that d∞ν is a metric on S(H∞, p,m) and that with this metric,
stabilizability a robust property of plants.

Theorem 3.12. d∞ν given by (3.5) is a metric on the set of stabilizable
plants over H∞. Moreover, if P0, P ∈ S(H∞, p,m) and C ∈ S(H∞,m, p),
then µP,C ≥ µP0,C − d∞ν (P0, P ).

Proof. We first show that d∞ν defines a metric on S(H∞, p,m).

(D1) For P1, P2 ∈ S(H∞, p,m), since dρν(P1, P2) ≥ 0 for each ρ ∈ (0, 1),

d∞ν (P1, P2) = lim
ρ→1

dρν(P1, P2) ≥ 0.

For P ∈ S(H∞, p,m), d∞ν (P,P ) = lim
ρ→1

dρν(P,P ) = lim
ρ→1

0 = 0.

Finally, if d∞ν (P1, P2) = 0 for P1, P2 ∈ S(H∞, p,m), then since we
have seen that the numbers dρν(P1, P2), ρ ∈ (0, 1), are all equal for
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all ρ:s close enough to 1, it must be the case that dρν(P1, P2) = 0 for
all ρ:s close enough to 1, and so P1 = P2.

(D2) If P1, P2 ∈ S(H∞, p,m), then we have

d∞ν (P1, P2) = lim
ρ→1

dρν(P1, P2) = lim
ρ→1

dρν(P2, P1) = d∞ν (P2, P1).

(D3) Finally, for all P1, P2, P3 ∈ S(H∞, p,m), passing the limit as ρ → 1
in the triangle inequalities

dρν(P1, P3) ≤ dρν(P1, P2) + dρν(P2, P3) (ρ ∈ (0, 1)),

yields the triangle inequality d∞ν (P1, P3) ≤ d∞ν (P1, P2)+ d
∞
ν (P2, P3).

Thus d∞ν defines a metric on S(H∞, p,m). Next we show that stabilizability
is a robust property of the plant. Let P0, P belong to S(H∞, p,m) and
C ∈ S(H∞,m, p). Then µP,C ≥ µP0,C − dρν(P0, P ) (ρ ∈ (0, 1)). Again
passing the limit as ρ → 1, we obtain µP,C ≥ µP0,C − d∞ν (P0, P ). This
completes the proof. �

3.2. d∞ν is an extension of the “classical” ν-metric. In [13], the ν-
metric for rational plants (and more generally elements of S(A(D), p,m))
was defined as follows. For P1, P2 ∈ S(A(D), p,m), with the normalized
left/right coprime factorizations

P1 = N1D
−1
1 = D̃−1

1 Ñ1,

P2 = N2D
−1
2 = D̃−1

2 Ñ2,

we define

dν,classical(P1, P2) :=





‖G̃2G1‖∞ if det(G∗
1G2) ∈ inv C(T)

and w(det(G∗
1G2)) = 0,

1 otherwise,
(3.6)

where the notation is as in Subsections 2.1-2.6.
In this subsection we will show that our ν-metric, defined by (3.5), coin-

cides exactly with the above metric defined by (3.6), when the data P1, P2

belong to S(A(D), p,m) (instead of the bigger set S(H∞, p,m)).

Theorem 3.13. Let P1, P2 ∈ S(A(D), p,m). Then

dν,classical(P1, P2) = d∞ν (P1, P2).

Proof. Let dν,classical(P1, P2) < 1. Then det(G∗
1G2) ∈ inv C(T). Since the

map z 7→ det((G1(z))
∗G2(z)) is continuous on D, it follows that the two

maps ζ 7→ det((G1(rζ))
∗G2(rζ)) and ζ 7→ det((G1(ζ))

∗G2(ζ)) (ζ ∈ T) are
close in the norm of C(T) for all r:s close enough to 1. Consequently their
winding numbers are equal. Hence it follows that when det(G∗

1G2) is consid-
ered as an element F of ℓ∞((0, 1);C(T)), we have that F (r) are invertible
in C(T) for all r:s close enough to 1, and their winding numbers are 0.
Thus the condition (C) is satisfied for all ρ:s close enough to 1. Hence

dρν(P1, P2) = ‖G̃2G1‖∞ = dν,classical(P1, P2) for all ρ:s close enough to 1.
Consequently, d∞ν (P1, P2) = dν,classical(P1, P2) (< 1).
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Now suppose that d∞ν (P1, P2) < 1. Then dρν(P1, P2) is a constant < 1 for
all ρ:s sufficiently close to 1. This implies that the condition (C) is satisfied
for all ρ:s close enough to 1. Hence the maps

ζ
ϕr

7→ det((G1(rζ))
∗G2(rζ)) (ζ ∈ T)

are all elements of inv C(T) for all r:s close enough to 1, and moreover,
their winding numbers are all equal to 0. Owing to the invertibility in
ℓ∞((ρ, 1);C(T)), it follows that these maps ϕr are uniformly bounded away
from 0 for all r:s close enough to 1. Also, these maps converge in C(T) to
the map

ζ
ϕ
7→ det((G1(ζ))

∗G2(ζ)) (ζ ∈ T).

Hence ϕ ∈ inv C(T). Since the winding number map w : inv C(T) → Z is
locally constant, we can also conclude that w(ϕ) = 0. Hence

dν,classical(P1, P2) = ‖G̃2G1‖∞ = d∞ν (P1, P2) (< 1).

This completes the proof. �

3.3. d∞ν is an extension of the ν-metric defined for R = QA in [2].
In [2], a ν-metric was defined when R = QA, and we recall the definition
below.

First of all, we use the notation QC for the C∗-subalgebra of L∞(T) of

quasicontinuous functions: QC := (H∞ + C(T))
⋂

(H∞ + C(T)). The Ba-
nach algebra QA of analytic quasicontinuous functions is QA := H∞

⋂
QC.

For P1, P2 ∈ S(QA, p,m), with the normalized left/right coprime factoriza-
tions

P1 = N1D
−1
1 = D̃−1

1 Ñ1,

P2 = N2D
−1
2 = D̃−1

2 Ñ2,

we define

dν(P1, P2) :=





‖G̃2G1‖∞ if det(G∗
1G2) ∈ inv QC and

Fredholm index of Tdet(G∗

1
G2) = 0,

1 otherwise.

(3.7)

where the notation is as in Subsections 2.1-2.6.
In this subsection we will show that our ν-metric, defined by (3.5), coin-

cides exactly with the above metric defined by (3.7), when the data P1, P2

belong to S(QA, p,m) (instead of the bigger set S(H∞, p,m)).
If ϕ ∈ L1(T), then ϕ(r) (0 ≤ r < 1) is the map defined by

ϕ(r)(ζ) = (f ∗ Pr)(ζ) (ζ ∈ T).

Here Pr denotes the Poisson kernel, given by

Pr(θ) =
∑

k∈Z

r|k|eikθ θ ∈ [0, 2π).
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Then it is straightforward to see that (ϕ∗)(r) = (ϕ(r))
∗. A result of Sarason

[11, Lemma 6] says that for ϕ ∈ QC and ψ ∈ L∞(T),

lim
r→1

‖ϕ(r)ψ(r) − (ϕψ)(r)‖∞ = 0.

We will also use the result given below; see [4, Theorem 7.36], [9, Theo-
rem 4.5.10].

Proposition 3.14. If f ∈ H∞ + C(T), then Tf is Fredholm if and only if
there exist δ, ǫ > 0 such that

|f(r)(e
it)| ≥ ǫ for 1− δ < r < 1, t ∈ [0, 2π).

Moreover, then the Fredholm index of Tf (namely, dim(ker Tf )−dim(ker T ∗
f ))

is the negative of the winding number with respect to the origin of the curves
f(r) for 1− δ < r < 1.

Theorem 3.15. Let P1, P2 ∈ S(QA, p,m). Then dν,QA(P1, P2) = d∞ν (P1, P2).

Proof. Let dν,QA(P1, P2) < 1. Then ϕ := det(G∗
1G2) ∈ inv QC. But then

it is also invertible as an element of H∞ + C(T). From Douglas’s result
recalled above, we have that for all r sufficiently close to 1, ϕ(r) ∈ inv C(T),
they are uniformly bounded away from 0, and their winding numbers are all
equal to the Fredholm index of Tϕ.

Using Sarason’s result ([11, Lemma 6]) recalled above, and the local con-
stancy of winding numbers, we will now show that for all r:s close enough

to 1 the maps ζ
ϕr

7→ det((G1(rζ))
∗G2(rζ)) (ζ ∈ T) are invertible as elements

of C(T), and moreover their winding numbers are all 0. Indeed, we have

det((G1|rT)
∗G2|rT) =

∑

i

(g1i|rT)
∗(g2i|rT)

for suitable gi1, g2i ∈ QA and indices i. But by [9, §3.4], g1i|rT = g1i,(r) and
g2i|rT = g2i,(r). Also, by Sarason’s result, for all i:s

‖g∗1i,(r)g2i,(r) − (g∗1ig2i)(r)‖∞
r→1
−→ 0.

Hence ‖ϕr − ϕ(r)‖∞
r→1
−→ 0. Since for all r:s close enough to 1, the ϕ(r) are

uniformly bounded away from 0, it follows that also the ϕr are uniformly
bounded away from 0. In particular, they are all elements of inv C(T) for
r:s sufficiently near 1. Finally, by the local constancy of winding numbers, it
follows that also the winding numbers of ϕr are all 0 for all r:s close enough
to 1.

Hence when det(G∗
1G2) is considered as an element F of ℓ∞((0, 1);C(T)),

we have that F (r) are invertible in C(T) for all r:s close enough to 1, and
their winding numbers are 0. Thus the condition (C) is satisfied for all ρ:s

close enough to 1. Hence dρν(P1, P2) = ‖G̃2G1‖∞ = dν,QA(P1, P2) for all ρ:s
close enough to 1. Consequently, d∞ν (P1, P2) = dν,QA(P1, P2) (< 1).
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Now suppose that d∞ν (P1, P2) < 1. Then dρν(P1, P2) is a constant < 1 for
all ρ:s sufficiently close to 1. This implies that the condition (C) is satisfied
for all ρ:s close enough to 1. Hence the maps

ζ
ϕr

7→ det((G1(rζ))
∗G2(rζ)) (ζ ∈ T)

are all elements of inv C(T) for all r:s close enough to 1, and moreover,
their winding numbers are all equal to 0. Owing to the invertibility in
ℓ∞((ρ, 1);C(T)), it follows that these maps ϕr are uniformly bounded away
from 0 for all r:s close enough to 1. Set ϕ to be the map

ζ
ϕ
7→ det((G1(ζ))

∗G2(ζ)) (ζ ∈ T)

From the above observations, the maps ϕ(r) are uniformly bounded away
from 0 for all r:s sufficiently near 1 and moreover their winding numbers
are all 0. But then by Douglas’s result recalled above (or see [9, Corol-
lary 4.5.11]), the operator Tϕ is invertible. In particular, it is Fredholm with

Fredholm index 0. Hence dν,QA(P1, P2) = ‖G̃2G1‖∞ = d∞ν (P1, P2) (< 1).
This completes the proof. �
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