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Abstract

Consider the construction of an object composed of m parts by distributing n
units to those parts. For example, say we are assigning n balls to m boxes. Each
assignment results in a certain count vector, specifying the number of balls allocated
to each box. If only assignments satisfying a set of constraints that are linear in these
counts are allowable, andm is fixed while n increases, most assignments that satisfy the
constraints result in frequency vectors (normalized counts) whose entropy approaches
that of the maximum entropy vector satisfying the constraints. This phenomenon of
“entropy concentration” is known in various forms, and is one of the justifications of
the maximum entropy method, one of the most powerful tools for solving problems
with incomplete information. The appeal of entropy concentration comes from the
simplicity of the argument: it is based purely on counting.

Existing proofs of the concentration phenomenon are based on limits or asymptotics.
Here we present non-asymptotic, explicit lower bounds on n for a number of variants
of the concentration result to hold to any prescribed accuracies, taking into account
the fact that allocations of discrete units can satisfy constraints only approximately.
The results are illustrated with examples on die tossing, vehicle or network traffic, and
the probability distribution of the length of a G/G/1 queue.

1 Introduction

Consider a process which is repeated n times and each repetition has m possible outcomes.
For concreteness we may think of assigning n balls to m labelled boxes, where each box can
hold any number of balls. The first ball can go into any box, the second ball can go into
any box, ..., and the nth ball can go into any box. Each assignment or allocation is thus a
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sequence of n box labels and results in some number ν1 of balls in box 1, ν2 in box 2, etc.,
where the νi are > 0 and sum to n. There are mn possible assignments in all, and many
of them can lead to the same count vector ν = (ν1, . . . , νm). We refer to these assignments
as the realizations of the count vector.

The arrangement of n balls into m boxes can represent the construction of any object
consisting of m distinguishable parts out of n identical units. So if the balls represent
pixels of an image, the attributes of color and (suitably discretized) intensity are ascribed
to the boxes to which the pixels are assigned. Then the count vector is thought of as a 2-
dimensional matrix with rows labelled by intensity and columns by color. Other examples
are people categorized by age, height, and weight, vehicles classified by weight, size, and fuel
economy, packets in a communications network with attributes of origin, destination, size,
and timestamp, etc. The object can even be a (discrete) probability distribution. When the
process simply represents the classification of n units by m discrete or discretized attibutes,
it is known as a (multi-dimensional) contingency table.

Now consider imposing constraints C on the allowable assignments, expressed as a set of
linear relations on the elements of the frequency vector f = (ν1/n, . . . , νm/n) corresponding
to the counts ν. E.g. 5f1 − 17.4f2 > 0.131, f12 6 f15, etc. As n grows, the frequency
vectors of more and more of the assignments that satisfy the constrtaints will have entropy
closer and closer to that of a particular m-vector ϕ∗, the vector of maximum entropy H∗

subject to the constraints C. (We denote this vector by ϕ∗, as opposed to f∗, to emphasize
that its entries are, in general, not rational.) This result is known, more or less, in many
forms: the original is E.T. Jaynes’s “entropy concentration theorem” [Jay82], [Jay83],
in the information theory literature it is the “conditional limit theorem” [CT91], and in
computer science there is “strong entropy concentration” [Gr1], [Gr8]1. All these results
involve limits or asymptotics in one way or another, i.e. in the statement

EC:
given an ε > 0 and an η > 0, there is a N(ε, η) such that for all n >

N(ε, η), the fraction of assignments that satisfy C and have a frequency
vector with entropy within η of H∗ is at least 1− ε,

one or more of the quantities ε, η, or N is not given explicitly. For example, it is well-
known that the fraction of assignments that don’t satisfy C is O(e−ηnH

∗
). Note that

EC is simply a problem of counting ; there is no uncertainty, no randomness, and there
are no probabilities anywhere. (However, the results can be applied to the derivation of
probability distributions.) Our purpose in this paper is to derive explicit expressions for
N(ε, η) assuming that the maximum entropy vector ϕ∗ ∈ R

m and its entropy H∗ are
known2. Given a concrete problem with incomplete information, these expressions allow

1When we say “more or less” and “in many forms” we mean that similar statements are made about
similar or the same things, but it is not our purpose here to enter into a detailed comparison.

2“Explicit” means that there is not a single O, not even a Θ, and much less an Ω to be found in the
whole paper.
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us to assess the “reliability” of the MaxEnt solution to it as we illustrate in §4. We also
establish a number of new results, as detailed at the end of this section.

Before proceeding, we give a very simple illustration. Consider assigning 5 balls to 3
boxes labelled A,B,C without any constraints at all (other than the fact that all balls
must be assigned, i.e. the frequencies must add up to 1). There are 35 = 243 possible
assignments, e.g. A,A,B,A,C, meaning that the first two balls go into box A, the third
into box B, the fourth into A again, and the fifth into box C. Table 1.1 lists the possible
box occupancies or count vectors, and the number of realizations of each count vector,
denoted by #, i.e. the number of assignments that result in this vector. These numbers
are given by multinomial coefficients, e.g. #(3, 0, 2) =

( 5
3,0,2

)

= 10. Finally the table gives
the entropy H(f) = −∑

i fi ln fi of the frequency vector f = ν/5 corresponding to each
count vector ν. Both Table 1.1 and its graphical counterpart, Fig. 1.1, show the beginnings
of the concentration phenomenon even in this very small case.

count vector ν #ν H(f)
5,0,0 1 0
4,0,1 5 0.500
3,0,2 10 0.673
2,0,3 10 0.673
1,0,4 5 0.500
0,0,5 1 0
4,1,0 5 0.500

count vector ν #ν H(f)
3,1,1 20 0.950
2,1,2 30 1.055
1,1,3 20 0.950
0,1,4 5 0.500
3,2,0 10 0.673
2,2,1 30 1.055
1,2,2 30 1.055

count vector ν #ν H(f)
0,2,3 10 0.673
2,3,0 10 0.673
1,3,1 20 0.950
0,3,2 10 0.673
1,4,0 5 0.500
0,4,1 5 0.500
0,5,0 1 0

Table 1.1: m = 3, n = 5. The 35 = 243 realizations/assigments exhibit rudimentary
entropy concentration: 150 of them have frequency vectors with entropy within 23% of
H∗ = ln 3 = 1.099.

The main point of this small example is to re-emphasize that statement EC has to do
simply with counting, and nothing to do with any probability considerations. Nevertheless,
the reader might still think that we are simply avoiding the introduction of a uniform p.d.
on the set of all mn possible assignments, and that without the assumption that all these
assignments or outcomes are equally likely, the concentration statement EC really has little
“practical” significance3. In fact, quite the opposite is true: the phenomenon of entropy
concentration justifies the assumption of uniformity in the absence of any other knowledge,
i.e. Laplace’s famous “principle of indifference” or “principle of insufficient reason”! Indeed,
in the absence of any constraints other than that the frequencies must sum to 1, entropy
concentration shows that the uniform frequeny distribution is simply the one that can be
realized in the greatest number of ways, or most likely to be realized ([Jay82], §IV), and
is therefore to be preferred; we see indications of this even in our small example. This is a
reversal in our usual way of thinking.

In the following development we will take the dimension m of the problem to be given

3Even the author has— occasionally—fallen prey to this ingrained viewpoint.
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243 assignments 21 frequency vectors 5 entropy values

Figure 1.1: Graphical representation of the data of Table 1.1: assignments →
count/frequency vectors → entropies. The 6 frequency vectors with the two highest en-
tropies have more than half of all the realizations, and the most likely vectors to be realized
are the ones closest to the uniform (1/3, 1/3, 1/3).

and fixed, and concern ourselves solely with n. For a given n, we denote the set of all
n-frequency vectors by Fn, i.e. Fn = {(f1, . . . , fm)|fi = νi/n, ν1 + · · · + νm = n}. We
represent the constraints C on the frequency vector f or count vector ν by

Af 6 b ⇔ Aν 6 bn, f ∈ Fn, ν ∈ N, (1.1)

where the m-column matrix A and vector b are real constants, independent of n. (At
this level of generality we think of equalities as represented by pairs of inequalities; more
detail is introduced in §2.) Such inequality constraints are quite expressive: as just one
example we mention [Tho79], where inequalities are used to represent the limited informa-
tion/uncertainty concerning oil spill scenarios. Treating the frequencies as reals instead of
rationals, we assume that the constraints (1.1) are satisfiable. Then they define a (non-
empty) polytope in R

m, and maximizing the entropy

H(x) = −
∑

16i6m

xi lnxi subject to A′x 6 b′, (1.2)

where A′, b′ are A, b augmented with
∑

i xi = 1 and xi > 0, is a strictly concave maximiza-
tion problem (see e.g. [ADSZ88]) which has a unique solution ϕ∗ ∈ R

m with maximum
entropy H∗. The elements of ϕ∗ are non-negative reals, with values independent of n.

When dealing with the discrete balls-and-boxes problem, some care is required in con-
nection with equalities in the constraints (1.1), whether these equalities are explicit or
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implied by inequalities. For example, suppose one constraint is f1 + f2 = 1/139. This
constraint is not satisfiable unless n is a multiple of 139, rendering the statement EC above
impossible. When n is large however, in many cases it is perfectly acceptable if the equali-
ties are simply satisfied to a good approximation; in fact, the same goes for the inequalities.
For this reason we will assume that the constraints (1.1) need to be satisfied only approx-
imately , to within a tolerance δ > 0. Besides being necessary for a rigorous development,
this tolerance may also be regarded as reflecting some uncertainty in the exact values of A
and b.

In addition to introducing a tolerance in the constraints, we will also develop a more
intuitive variant of the concentration result EC , around the MaxEnt vector ϕ∗ instead of
the MaxEnt value H∗. So we will be establishing a modified and more general version of
statement EC:

EC ′:
given positive tolerances δ, ε, and η or ϑ, as described in Table 1.2, there is
a N(δ, ε, η) or N(δ, ε, ϑ) such that for all n > N , the fraction of assignments
that satisfy C to accuracy δ and have a frequency vector with entropy within
η of H∗ or no farther than ϑ in norm from ϕ∗, is at least 1− ε.

A simpler way of saying this is that as the size n of the problem increases, there is a
count vector ν∗

1. whose corresponding frequency vector f∗ is arbitrarily close to ϕ∗, and satisfies the
constraints to any prescribed accuracy, and

2. out of all the assignments that satisfy the constraints to this accuracy, the fraction that
realize a vector as close as desired to f∗, either in entropy or in norm, is arbitrarily near
1.

This way of expressing the concentration result smacks of asymptotics, but we keep the
more precise statement EC ′ in mind.

δ: relative tolerance in satisfying the constraints
ε: concentration tolerance, on number of realizations
η: relative tolerance in deviation from the MaxEnt value H∗

ϑ: absolute tolerance in deviation from the MaxEnt vector ϕ∗

Table 1.2: Tolerances for the entropy concentration results.

In addition to EC ′, we will prove a more forceful variant which refers solely to the
realizations of the vector f∗ itself, as opposed to those of a whole set of vectors close to it:

EC ′′:
given positive tolerances δ, ε, and η or ϑ, as described in Table 1.2, there is a
N(δ, ε, η) or N(δ, ε, ϑ) such that for all n > N , the vector f∗ ∈ Fn has more
than 1/ε times the realizations of the whole set of vectors that satisfy C to
accuracy δ but have entropy not within η of H∗ or are farther than ϑ in norm
from ϕ∗.
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Summary In §2 we go into more detail on the various tolerances, in particular δ, which
relates the exact solution4 of the continuous maximum entropy problem to the approximate
solution of the discrete counting problem. The main idea is that for a given n we obtain an
optimal count vector ν∗ by rounding and adjusting the vector nϕ∗. We then show for each
of the desired properties how large n must be for ν∗ and the frequency vector f∗ = ν∗/n
to have this property. These results are put together in §3, where we establish statement
EC ′. In §3.1 we prove EC ′ with a tolerance η on the deviation from the maximum entropy
value, and in §3.2 we discuss how our bound compares with the well-known asymptotic
result of E. T. Jaynes. We derive the result EC ′′ on the vector f∗ itself in §3.2.2. In §3.3
we establish EC ′ and EC ′′ with the more intuitive tolerance ϑ on the norm of deviation
from the maximum entropy vector. We use this norm version in §3.4 to point out that our
concentration results also apply to the derivation of discrete probability distributions by the
method of maximum entropy. Thus the exact, non-asymptotic concentration phenomenon
is a very powerful justification for the most common use of MaxEnt. The other major
justification is various axiomatic formulations, but the simple statements of the concentra-
tion results and the purely combinatorial character of their derivation have a force of their
own5. In §3.4 we also give a further elaboration that provides a quantitative justification
of the principle of indifference or insufficient reason.

The expressions for N(δ, ε, η) or N(δ, ε, ϑ) use the solution ϕ∗ to the maximum entropy
problem, the value H∗ of the maximum entropy, and norms of the matrix A and vector
b defining the constraints. A main point of the paper is the computations made possible
by the bounds. Therefore in §4 we give three examples with detailed numerical results on
the lower bound N , one using the classic die-tossing experiment, one involving a vehicle
or network traffic problem, and one having to do with a simple queue. We also discuss
the relationship to Sanov’s bound (from information theory), and the exact computation
of the number of count vectors satisfying the constraints.

The proofs of all of our results are given in the Appendix, so as not to disrupt the flow
of the exposition.

2 Basic results: tolerances

We define the rounding of a positive real number x to an integer [x] in the usual way, so
that it satisfies |x− [x]| 6 1/2. Given an n ∈ N, from the MaxEnt vector ϕ∗ we derive a
count vector ν∗ and a frequency vector f∗ by a process of rounding and adjusting :

4Sometimes this solution may be analytical, and if it is numerical we assume it is sufficiently accurate
to be called “exact”.

5The maximum entropy method itself is not the subject of this paper. There is an extensive body of
work on it: for example the works [Ros83], [Jay03] of E. T. Jaynes, the books [Tri69], [KK92], the series of
MaxEnt conference proceedings [ME98] and [ME99], etc.
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Definition 2.1 Given ϕ∗ and n > m, let ν̃ = [nϕ∗] and set d =
∑

i ν̃i − n. If d = 0, let
ν∗ = ν̃. Otherwise, if d < 0, add 1 to |d| elements of ν̃ that were rounded down, and if
d > 0, subtract 1 from |d| elements that were rounded up. Let the resulting vector be ν∗,
and define f∗ = ν∗/n, f∗ ∈ Fn.

Unlike ϕ∗, both of the vectors ν∗ and f∗ depend on n, but we will not indicate this
explicitly to avoid burdensome notation. The adjustment of ν̃ in Definition 2.1 ensures
that the result ν∗ indeed sums to n, so f∗ is a proper frequency vector. (This adjustment
is always possible because if d 6= 0, there must be at least |d| elements of nϕ∗ that were
rounded to their floors if d < 0, or to their ceilings if d > 0. And |d| 6 ⌊m/2⌋ by the
definition of rounding.)

The fundamental observation is that when n is large enough, f∗ is arbitrarily close to
ϕ∗:

Proposition 2.1 Given any γ > 0, the frequency vector f∗ is s.t.

n >
1

γ
⇒ ‖f∗ − ϕ∗‖∞ 6 γ, n >

3µ∗

4γ
⇒ ‖f∗ − ϕ∗‖1 6 γ,

where µ∗ is the number of non-zero elements of f∗ (and ϕ∗).

Recall that the ℓ1 norm is the sum of the absolute values, whereas the ℓ∞ norm is the
maximum of the absolute values ([HJ90], §5.5).

The MaxEnt vector ϕ∗ satisfies the constraints (1.1) exactly. Now we show how f∗

satisfies them approximately, and how ν∗ satisfies the scaled constraints approximately.

2.1 Constraints on frequency vectors

All constraints on the frequency vectors can be expressed by inequalities as in (1.1). An
equality, e.g. 5f1 + 3f2 − f3 = 0.34, can be formulated as two inequalities, 5f1 + 3f2 −
f3 6 0.34 and −(5f1 + 3f2 − f3) 6 −0.34. In practice however, we may, for example,
consider equalities to be more important than inequalities, and may want to assign different
tolerances to them. Further, if we want to use tolerances that are relative to the magnitudes
of the elements of b, the presence of zeros requires special treatment. For these reasons
we will separate the constraints (1.1) into four categories: equalities with non-zeros on the
r.h.s., inequalities with non-zeros on the r.h.s., equalities with zeros, and inequalities with
zeros.

We represent the first category using a matrix A= and vector b= as A=x = b=, where
all elements of b= are non-zero. We want f∗ to satisfy the equality constraints with a
maximum error which is no more than a constant δ= > 0 times the smallest element of b=

in absolute value. So we require

A=f∗ = b= + β with ‖β‖∞ 6 δ=|b=|min. (2.1)

7



Similarly, formulating the inequalities with non-zeros as A6x 6 b6, we require

A6f∗ 6 b6 + β with ‖β‖∞ 6 δ6|b6|min. (2.2)

(The βs in (2.1) and (2.2) are different, but we don’t want to complicate the notation.)
Coming to the constraints with 0s on the r.h.s., e.g. f2 = f3, f4 > f1 + f5, etc., we require

A=0f∗ = ζ with ‖ζ‖∞ 6 δ=0 (2.3)

and
A60f∗ 6 ζ with ‖ζ‖∞ 6 δ60 (2.4)

for some positive δ=0 and δ60.
ϕ∗ satisfies all of the constraints exactly. So any f ∈ Fn close enough to ϕ∗ should

satisfy (2.1) to (2.4) for any positive tolerances. Indeed, using the abbreviation δ =
(δ=, δ6, δ=0, δ60),

Proposition 2.2 Given any δ > 0, set

ϑ∞ = min

(

δ=|b=|min

9A=9∞
,
δ6|b6|min

9A69∞
,

δ=0

9A=09∞
,

δ60

9A609∞

)

,

or ∞ if there are no constraints. Then any f ∈ Fn such that ‖f − ϕ∗‖∞ 6 ϑ∞ satisfies
(2.1), (2.2), (2.3), and (2.4).

Recall that the infinity norm 9 ·9∞ of a matrix is the maximum of the ℓ1 norms of the
rows. By Proposition 2.1, f∗ satisfies Proposition 2.2 if n > 1/ϑ∞.

2.2 Entropy

Turning now to entropy, we point out that if a frequency vector f is close enough to ϕ∗,
its entropy can be as close to H∗ as desired:

Proposition 2.3 For any γ > 0, if f is s.t. ‖f − ϕ∗‖∞ 6 γ, then H∗−H (f) 6 mγ ln 1/γ.

It follows that

Proposition 2.4 Given an entropy tolerance η > 0 and η 6 m/ (21H∗), if f is s.t.

‖f − ϕ∗‖∞ 6
2

3

ηH∗

ln (m/(ηH∗))
,

then (1− η)H∗ 6 H(f) 6 H∗.

(The condition η 6 m/ (21H∗) is not much of a restriction, and is explained in the
proof.) In view of Proposition 2.1, f∗ will satisfy Proposition 2.4 when n is large enough.
Proposition 2.4 is used to establish Lemma 3.2 in §3.1.
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3 Concentration

We establish the concentration result EC ′ stated in the Introduction: in §3.1 we prove
the first version, expressed in terms of deviation from the maximum entropy value H∗,
and in §3.3 we prove the second version, phrased in terms of deviation from the MaxEnt

vector ϕ∗. We also establish the statement EC ′′ in its two versions. To avoid cumbersome
notation in what follows, we denote the tolerances on the constraints collectively by δ =
(δ=, δ6, δ=0, δ60).

3.1 Maximum entropy value

Let C(δ) be the set of m-vectors that satisfy the constaints (2.1) to (2.4) to accuracy δ:

C(δ) = {x ∈ R
m | x satisfies ( 2.1) to (2.4) with δ = (δ=, δ6, δ=0, δ60)}. (3.1)

Now given an η > 0, consider the following two sets of frequency vectors6. An(δ, η) is the
set of vectors in Fn that lie in C(δ) and have entropy at least (1− η)H∗:

An(δ, η) = {f ∈ Fn ∩ C(δ),H(f) > (1− η)H∗}. (3.2)

Bn(δ, η) is the complementary set of frequency vectors, i.e. those in C(δ) but with entropy
less than (1− η)H∗:

Bn(δ, η) = {f ∈ Fn ∩ C(δ),H(f) < (1− η)H∗}. (3.3)

Clearly, Fn = An(δ, η) ∪Bn(δ, η) irrespective of the values of δ and η.
The number of realizations #f of a frequency vector f is related to its entropy H(f).

A simple result is Lemmas II.1 and II.2 of [Csi99]

∀f ∈ Fn,
1

(

n+m−1
m−1

)enH(f)
6 #f 6 enH(f), (3.4)

but a much more precise result is

Proposition 3.1 Given f ∈ Fn, let f1, . . . , fµ, µ > 1, be its non-zero elements (#f does
not change when f is permuted). Define

S(f, n) =
1

(2πn)
µ−1
2

1
√

f1 · · · fµ
.

Then #f is bounded as follows:

e−
1

12n

∑µ
i=1 1/fienH(f)

6
#f

S(f, n)
6 e

1
12n enH(f).

6Our notation is similar to that of [CT91], §12.6. The set An is not to be confused with the matrix A

of (1.1).
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(The bounds hold even when µ = 1 and #f = 1.)
Using the bounds of Proposition 3.1, we will now show that given any ε > 0, there is a

number N = N(ε) s.t. if n > N , then all but a fraction ε of the realizations/assignments
that satisfy the constraints have frequencies in the set An(δ, η):

#An(δ, η)

#An(δ, η) + #Bn(δ, η)
=

#An(δ, η)

#(Fn ∩ C(δ) ) > 1− ε. (3.5)

The proof consists of deriving a lower bound on #An and an upper bound on #Bn, taking
their ratio, and deriving a lower bound on n so as to ensure that the ratio is at least 1+1/ε.
It is similar in spirit to the proof of the “conditional limit theorem”, Theorem 12.6.2 of
[CT91].

First, the upper bound on #Bn. Recall from the beginning of §3 that we are using the
abbreviated notation δ = (δ=, δ6, δ=0, δ60).

Lemma 3.1 Given any δ, η > 0,

#Bn(δ, η) < 4.004
√
2π 0.6m n

m−1
2 en(1−η)H

∗

, (3.6)

where the numerical constants assume that n > 100.

This bound is independent of δ.
For our lower bound on #An we need an auxiliary lower bound, on the number of

frequency vectors that lie in an m-dimensional cube centered at ϕ∗ and of side 2ϑ:

Proposition 3.2 Let µ∗ > 1 be the number of non-zero elements of ϕ∗, ϕ∗
max be its largest

element, and ϕ∗
min its smallest non-zero element. Let ϑ be a positive number s.t. ϑ 6 ϕ∗

max

and ϑ 6 (µ∗ − 1)ϕ∗
min. Then the set {f ∈ Fn | ‖f − ϕ∗‖∞ 6 ϑ} contains at least

⌊

nϑ

(

1

m− 1
+

1

µ∗ − 1

)⌋µ∗−1 ⌊ nϑ

m− 1

⌋m−µ∗

= Λ(n, ϑ, µ∗)

elements. If µ∗ = 1, the first factor in this expression and the second condition on ϑ are
absent.

The two extreme cases, when all the elements of ϕ∗ are non-zero, and when only one is
non-zero, yield, respectively, ⌊2nϑ/(m− 1)⌋m−1 and ⌊nϑ/(m− 1)⌋m−1. Fig. 3.1 illustrates
the difference in the case m = 2.

Now let α ∈ (0, 1) be a parameter, and define the number

ϑ0 = min

(

ϑ∞,
2

3

αηH∗

ln (m/(αηH∗))
, ϕ∗

min

)

(3.7)

where ϑ∞ has been specified in Proposition 2.2 and ϕ∗
min in Proposition 3.2. ϑ0 depends on

δ, η and α, which is specified in Theorem 3.1 below. Our lower bound on #An, the number
of realizations of An, is based on a lower bound on the size of An, obtained by using the
tolerance ϑ0 in Proposition 3.2:

10
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Figure 3.1: Illustration of Proposition 3.2 in two dimensions when µ∗ = 2 and when µ∗ = 1.

Lemma 3.2 Given any δ, η > 0, and some α ∈ (0, 1), we have

|An(δ, η)| > Λ (n, ϑ0, µ
∗)

and

#An(δ, η) > Λ (n, ϑ0, µ
∗)
√
2π

(

µ∗

2π

)µ∗/2

e−
µ∗

12 n−
µ∗−1

2 en(1−αη)H
∗

.

Typically µ∗ = m, and then n > (m− 1) / (2ϑ0) is necessary for An (δ, η) to not be
empty and for #An (δ, η) to be at least 1. Otherwise we need n > (m− 1) /ϑ0.

The main result following from Lemmas 3.1 and 3.2 depends on many parameters and
we have taken some care to reduce the slack in the bounds, so it reads more like the
specification of an algorithm rather than a theorem:

Theorem 3.1 Given any δ, ε, η > 0, let α ∈ (0, 1) be a parameter whose value is specified
below. With µ∗ the number of non-zero elements of ϕ∗, define the constants

C1 =
0.5(m + µ∗)− 1

(1− α)ηH∗
, C2 =

m ln 0.6 + (0.5 ln 2π + 1/12 − 0.5 ln µ∗)µ∗ + ln
(

1/ε+1
0.249

)

(1− α)ηH∗
,

and set

N(α) =

{

1.5C1 ln(C1 + C2) + C2, if C2 > 0 and C1 + C2 > 21,
1.5C1 lnC1 + C2, if C2 6 0.

Let α̂ ∈ (0, 1) be the solution of the equation

N(α) =
m− 1

J2, µ∗ = mKϑ0(α)
,

where the notation Jx,BK yields x if boolean condition B holds and 1 otherwise, and ϑ0 is
given by (3.7). Finally set

N = N(α̂) =
m− 1

J2, µ∗ = mK
max

(

3 ln (m/(α̂ηH∗))

2α̂ηH∗
,

1

ϑ∞
,

1

ϕ∗
min

)

,

11



where ϑ∞ is specified in Proposition 2.2 and ϕ∗
min in Proposition 3.2. Then for all n > N

we have
#{f ∈ Fn ∩ C(δ),H(f) > (1− η)H∗}

#{f ∈ Fn ∩ C(δ)} > 1− ε.

Given any tolerances δ, ε, η, the theorem shows how to calculate a number N(δ, ε, η)
s.t. if n > N(δ, ε, η), then all but the fraction ε of the assignments of the n objects to
the m boxes that satisfy the constraints to accuracy δ have entropy within 1 − η of the
maximum. An analogue of this result, but phrased in terms of a deviation ϑ from the
maximum entropy vector ϕ∗, is given in §3.3.

3.2 Discussion

There are a few things to note in connection with Theorem 3.1:

1. The first term in the expression forN depends on the adjusted deviation ∆H = α̂ηH∗

from the value of the maximum entropy, the second depends on the tolerances δ for
satisfying the constraints (§2.1), and the third depends on the smallest non-zero
element of the solution ϕ∗ to the maximum entropy problem. ε is hiding in the value
of α̂, see 5 below.

2. If the constraints (1.1) do not force any element of ϕ∗ to be 0, we will simply have
µ∗ = m.

3. Roughly speaking,N is at leastm/ϑ∞, at leastm/ϕ∗
min, and at least (m/∆H) ln(m/∆H)

as well.

4. By examining the expressions for C1 and C2 it is clear that the value of N(α) is
sensitive to η, but not very sensitive to ε. This carries over to N , and is illustrated
numerically in §4.

5. The l.h.s. of the equation determining the parameter α depends on ε and η, whereas
the r.h.s. depends only on δ. The optimal value α̂ depends weakly on ε, and is
essentially a function of η. This is illustrated in §4.2.

6. Finally, the assumptions n > 100 in Lemma 3.1 and C1 + C2 > 21 in Theorem 3.1
are very easily satisfied in applications.

3.2.1 Comparison with the results of Jaynes

We compare Theorem 3.1 with the original concentration theorem of E.T. Jaynes:

Theorem 3.2 ([Jay82], or [Jay83], Ch. 11) Suppose the constraints consist of ℓ linearly-
independent equalities, and set ∆H = H∗ − H. Then, as n → ∞, 2N∆H = χ2

m−ℓ−1(ε),
where χ2

k is the chi-squared distribution with k degrees of freedom.

12



This says that

ε ∼ 1

Γ(s+ 1)

∫ ∞

n∆H
e−xxsds, (3.8)

where s = (m − ℓ − 1)/2 − 1 and the r.h.s. represents the tail of the chi-squared density.
This tail is the normalized incomplete gamma function, with the asymptotic expansion

1
Γ(s+1)e

−n∆H(n∆H)s
(

1 + s
n∆H + · · ·

)

(see, e.g. [AS72], eq. 6.5.32) . Thus ignoring ℓ (but

see §3.2.3) , and retaining only the first term of the above series, it can be seen that (3.8)
requires n∆H > s ln(n∆H)− ln(εΓ(s+1)). This translates to n > C1 lnn+C2, where the
constants are

C1 =
s

∆H
, C2 =

1

∆H
(s ln∆H − ln(εΓ(s + 1))) , s =

m− 3

2
.

Comparing this with the N1 of Theorem 3.1, we see that there is qualitative agreement
between our exact bound and Jaynes’s asymptotic result, and the C1’s are similar. (In
fact, it follows from Lemma 3.2 and Proposition 3.2, that asymptotically our C1 is better.)

3.2.2 The MaxEnt vector itself

It may seem in some sense unsatisfactory that Theorem 3.1 says that an entire set of
vectors around the MaxEnt vector ϕ∗ is dominant. Indeed, using elements in the proof of
Theorem 3.1 it is possible to say something about just f∗ itself. The result can be stated
more simply than Theorem 3.1, holds for smaller n, and even shows that f∗ is closer than
η to ϕ∗ in entropy:

Lemma 3.3 Given any δ, ε, η > 0, let α̂ ∈ (0, 1) be the solution of N(α) = 1/ϑ0(α), with
N(α), ϑ0(α) as in Theorem 3.1. Then if

n > max

(

3 ln (m/(α̂ηH∗))

2α̂ηH∗
,

1

ϑ∞
,

1

ϕ∗
min

)

,

the frequency vector f∗ is such that

f∗ ∈ An(δ, α̂η) and
#f∗

#{f ∈ Fn ∩ C(δ),H(f) < (1− η)H∗} >
1

ε
.

This is the statement EC ′′ in the Introduction. In simple terms, it says that for n
about m times smaller than what Theorem 3.1 requires, the MaxEnt frequency vector
f∗, whose entropy differs from H∗ by less than α̂η, has all by itself 1/ε times as many
realizations as the entire set of vectors that satisfy the constraints but have entropies not
within η of H∗. See Fig. 3.2.

The closeness of the excluded vectors to f∗ is controlled by η and can be made as tight
as desired. Nevertheless, we cannot exclude everything around f∗: the simplest counter-
example is n even, m = 2, and no constraints; then

( n
n/2

)

/
( n
n/2±1

)

→ 1 as n increases.

13



H(f) < (1− η)H∗ H(f) ≥ (1− α̂η)H∗
Bn

f ∗

An

Fn ∩ C(δ)

Figure 3.2: The sets An(δ, η), Bn(δ, η), and An(δ, α̂η) for Lemma 3.3.

3.2.3 Improvements

In perusing the various results and their proofs with an eye toward improvements, we notice
that if the constraints (1.1) include (linearly-independent) equalities, say ℓ of them, this
would reduce the dimension m of of Fn by ℓ. Our results could then be re-worked using
a notation such as Fn,m−ℓ, which makes the dimension explicit. We will not pursue this
improvement further here. Another possibility is to improve the bound of Proposition 2.4
as noted in its proof. A shortcoming in the results on which Theorem 3.1 is based is that
the bound on #An is sensitive to δ but the bound on #Bn is not.

3.3 Maximum entropy vector

The development in §3.1 used a tolerance η in deviation from the maximum entropy value
H∗. Here we re-cast this development in terms of a more intuitive tolerance ϑ in deviation
from the maximum entropy vector ϕ∗. This formulation will be very useful when we deal
with probability distributions in §3.4. So, given a ϑ > 0, we re-define the sets An and Bn
of (3.2) and (3.3) as

A′
n(δ, ϑ) = {f ∈ Fn∩C(δ), ‖f−ϕ∗‖1 6 ϑ}, B′

n(δ, ϑ) = {f ∈ Fn∩C(δ), ‖f−ϕ∗‖1 > ϑ}. (3.9)

These sets form a partition of Fn∩C(δ) for any δ and any suitably small ϑ, as was the case
in §3.1.

To count the realizations of these sets we need a connection between differences in norm
and differences in entropy. If f is close to ϕ∗ in norm, its entropy is close to H∗, and if it
is far from ϕ∗, its entropy cannot be too close to H∗:

Proposition 3.3 Given 0 < ϑ 6 1/2, then

‖f − ϕ∗‖1 6 ϑ ⇒ H(f) > H∗ − ϑ ln(m/ϑ),

‖f − ϕ∗‖1 > ϑ ⇒ H(f) < H∗ − ϑ2/2.

Now with the definitions (3.9) we have analogues of the results of §3.1, beginning with
an analogue of Lemma 3.1:

14



Lemma 3.4 Given any δ, ϑ > 0,

#B′
n(δ, ϑ) < 4.004

√
2π 0.6m n

m−1
2 en(H

∗−ϑ2/2), (3.10)

where the numerical constants assume that n > 100.

Next is an analogue of (3.7): we define

ϑ′0 = min (ϑ∞, αϑ, ϕ
∗
min) , (3.11)

where α ∈ (0, 1) is a parameter on which we elaborate in Proposition 3.4 and Theorem 3.3
below. Finally, an analogue of Lemma 3.2, for the set A′

n:

Lemma 3.5 Given any δ, ϑ > 0, and some α ∈ (0, 1), we have

|A′
n(δ, ϑ)| > Λ

(

n, ϑ′0, µ
∗
)

with Λ (·) defined in Proposition 3.2, and

#A′
n(δ, ϑ) > Λ

(

n, ϑ′0, µ
∗
)
√
2π

(

µ∗

2π

)µ∗/2

e−
µ∗

12 n−
µ∗−1

2 en(H
∗−h(αϑ)),

where h(ϑ) = ϑ ln(m/ϑ).

From these two lemmas, the ratio #A′
n/#B

′
n is bounded from below by an exponen-

tial in n of the form enψ(α,ϑ), divided by a polynomial in n. The coefficient of n in the
exponential, the analogue of the ∆H of §3.2, is critical:

Proposition 3.4 Consider the function

ψ(α, ϑ) =
1

2
ϑ2 − αϑ ln

m

αϑ
, α, ϑ ∈ (0, 1), m <

1

2
ϑ3e1/ϑ.

For fixed ϑ, ψ(α, ϑ) is positive for α 6 ϑ2/2 and increases as α decreases. The equation
ψ(α, ϑ) = 0 has a root α0 ∈ (ϑ2/2, 1).

(The condition on m does not impose a significant restriction in practice; even for ϑ as
large as 0.04, it requires m 6 2.3 · 106.)

With the above, we finally have the analogue of Theorem 3.1. Again, the statement
is much more like that of an algorithm for computing N and the main feature is that H∗

does not appear anywhere:
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Theorem 3.3 Given any δ, ε > 0 and 0 < ϑ < 1/2, assume that m < 1/2ϑ3e1/ϑ. Define
the constants

C1 =
0.5(m + µ∗)− 1

ψ(α, ϑ)
, C2 =

m ln 0.6 + (0.5 ln 2π + 1/12 − 0.5 ln µ∗)µ∗ + ln
(

1/ε+1
0.249

)

ψ(α, ϑ)
.

The numerators are the same as in Theorem 3.1, and the function ψ(α, ϑ) is defined in
Proposition 3.4. Set

N(α) =

{

1.5C1 ln(C1 + C2) + C2, if C2 > 0 and C1 + C2 > 21,
1.5C1 lnC1 + C2, if C2 6 0,

as in Theorem 3.1. Let α0 ∈ (ϑ2/2, 1) be the root of ψ(α, ϑ) = 0, and α̂ ∈ (0, α0) be the
solution of the equation

N(α) =
m− 1

J2, µ∗ = mKϑ′0(α)
,

where the notation J., .K was defined in Theorem 3.1 and ϑ′0 is given by (3.11). Finally set

N = N(α̂) =
m− 1

J2, µ∗ = mKmin
(

α̂ϑ, ϑ∞, ϕ∗
min

) ,

where ϑ∞ has been specified in Proposition 2.2 and ϕ∗
min in Proposition 3.2. Then for all

n > N we have
#{f ∈ Fn ∩ C(δ), ‖f − ϕ∗‖1 6 ϑ}

#{f ∈ Fn ∩ C(δ)} > 1− ε.

This is the desired result, using deviation in norm from the MaxEnt vector ϕ∗, instead
of difference in entropy from H∗. It says that the set of frequency vectors that are within
ϑ of ϕ∗ in ℓ1 norm has all but the fraction ε of the realizations that satisfy the constraints
to the prescribed accuracy δ.

Comments similar to those made on Theorem 3.1 apply here also, and in addition we
have a mild restriction on m. Further, recalling the traditional view of entropy concentra-
tion in Fig. 1.1, because the norm is a more intuitive measure of closeness, Theorem 3.3
in effect says that concentration occurs earlier, at the “vector”, instead of the “entropy”
stage.

We also have the analogue of Lemma 3.3 on the MaxEnt vector f∗ itself. Again,
its statement is simpler than that of Theorem 3.3, it holds for somewhat smaller n when
µ∗ < m, and in fact it establishes that f∗ is closer than ϑ to ϕ∗ in norm:

Lemma 3.6 Given any δ, ε > 0 and 0 < ϑ < 1/2, let m < 1/2ϑ3e1/ϑ. Let α̂ ∈ (0, 1) be
the solution of N(α) = 3µ∗/(4ϑ′0(α)), with N(α) and ϑ′0(α) as in Theorem 3.3. Then if

n >
3

4
µ∗max

(

1

α̂ϑ
,

1

ϑ∞
,

1

ϕ∗
min

)

,
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the frequency vector f∗ is s.t.

f∗ ∈ A′
n(δ, α̂ϑ) and

#f∗

#{f ∈ Fn ∩ C(δ), ‖f − ϕ∗‖1 > ϑ} >
1

ε
.

We can paraphrase this as (recall EC ′′ in the Introduction)

The MaxEnt frequency vector f∗, which is no farther than α̂ϑ in ℓ1 norm from
ϕ∗, has 1/ε times as many realizations as the entire set of vectors that satisfy
the constraints to the prescribed accuracies but differ from ϕ∗ by more than ϑ
in ℓ1 norm:

‖f − ϕ∗‖1 > ϑ
‖f − ϕ∗‖1 ≤ α̂ϑ

B′
n

f ∗

A′
n

Fn ∩ C(δ)

As far as the number of excluded vectors goes, i.e. the size of the set A′
n(δ, ϑ), we

have Lemma 3.5. This points out that even though we can make the tolerance ϑ as small
as desired, the number of excluded vectors around f∗ in Lemma 3.6 does not necessarily
become small.

Finally, we note that the result of Theorem 3.3 might be improved by tightening the
bounds of Proposition 3.3 in the ways indicated in its proof.

3.4 Maximum entropy probability distributions

The maximum entropy method, MaxEnt, is most commonly presented as the solution
to the problem of inferring a unique probability distribution from limited information
(constraints). A very appealing construction of such distributions in the discrete case is
the “Wallis derivation”, given by Jaynes in [Jay03], §11.4. The main idea is that the n units
to be allocated to the m boxes are thought of as probability quanta, each of size 1/n. These
quanta are used to construct rational approximations to an m-vector with real entries.
When n is large, the result is the most likely (greatest number of realizations) probability
distribution that satisfies the constraints, which we have denoted ϕ∗. The norm formulation
of entropy concentration in §3.3 lends itself perfectly to obtaining non-asymptotic bounds
in this situation.

To emphasize that here we are viewing vectors in Fn as discrete probability distribu-
tions, we use p in place of f and Pn in place of Fn. Thus Lemma 3.6 becomes
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Corollary 3.1 Given any δ, ε > 0 and 0 < ϑ < 1/2, and the MaxEnt vector ϕ∗, if
m < 1/2ϑ3e1/ϑ and

n >
3

4
µ∗max

(

1

α̂ϑ
,

1

ϑ∞
,

1

ϕ∗
min

)

where α̂ is as in Lemma 3.6, the discrete p.d. p∗ with rational elements obtained from ν∗

as specified in Definition 2.1 is s.t.

p∗ ∈ A′
n(δ, α̂ϑ) and

#p∗

#{p ∈ Pn ∩ C(δ), ‖p − ϕ∗‖1 > ϑ} >
1

ε
.

Corollary 3.1 increases the applicability of our concentration results significantly, as
the principal use of the MaxEnt method is to infer probability distributions7. The lower
bound on n is simple: the first term depends on the desired tolerance ϑ and concentration
factor ε, the second just on the desired accuracies δ, and the third on the maximum entropy
solution ϕ∗. We illustrate this result in §4.3 using the probability distribution of the length
of a queue.

We mentioned Laplace’s principle of indifference in the Introduction. Corollary 3.1
allows us to derive a quantified justification of this principle from entropy concentration:

Corollary 3.2 Given any ε > 0 and 0 < ϑ 6 min(0.09, 1/m), let α̂ ∈ (0, 1) be the solution
of the equation

N(α) =
3m

4αϑ
,

where N(α) is defined in Theorem 3.3. Let u∗ ∈ Pn be the rational p.d. obtained from
the uniform MaxEnt vector (1/m, . . . , 1/m) according to Definition 2.1. Then for any
n > N(α̂), u∗ is s.t.

#u∗

#{p ∈ Pn, ‖p − (1/m, . . . , 1/m)‖1 > ϑ} >
1

ε
and ‖u∗ − (1/m, . . . , 1/m)‖1 6 α̂ϑ.

Consider constructing a discrete m-element p.d. from quanta of size 1/n in the absence
of any constraints at all on the frequencies, that is in the situation of complete ignorance,
apart from the fact that there are m mutually-exclusive possibilities. Corollary 3.2 says
that if n > N(α̂), there is a dominant p.d. u∗ ∈ Pn which has 1/ε times more realizations
than the entrire set of p.d.’s in Pn which differ from (1/m, . . . , 1/m) by more than ϑ in ℓ1
norm. Further, this dominant p.d. is uniform to within α̂ϑ in ℓ1 norm.

For example, with n > 1232818, the p.d. u∗ has at least 108 times as as many real-
izations as the entire set of p.d.’s that differ from (0.5, 0.5) by more than 0.01 in ℓ1 norm;
further, u∗ is no farther than 1.22 · 10−6 in ℓ1 norm from (0.5, 0.5).

7The application to probability distributions invites comparison with the concentration of measure results
in [DP09].
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4 Examples

We begin with a simple example of die tosses, and then give an example involving a traffic
problem and an example having to do with the probability distribution of the size of a
queue. In the first two examples the units (balls) out of which we construct the composite
object are clearly distinguishable, but we do not make any use of their distinguishing
characteristics. In the last example, one would be hard pressed to say that the units can
be distinguished in any way.

The examples follow this recipe:

1. Formulate the problem with constraints on frequencies, treating them as continuous
(real numbers).

2. Solve to find the MaxEnt vector ϕ∗ ∈ R
m and its entropy H∗.

3. Define tolerances δ, linking the continuous problem to the discrete allocation problem.

4. Choose ε and η or ϑ to calculate N .

5. For any n > N , construct the integral count vector ν∗ by rounding and adjusting
nϕ∗, and the rational frequency vector f∗ as ν∗/n. If we are talking about discrete
p.d.’s p, as in §3.4, interpret f∗ as p∗.

4.1 Die tosses

We use E.T. Jaynes’s classic example of tossing a die (see [Jay82] or [Jay83], Ch. 11)
to illustrate the parameters δ, ε, and η appearing in Theorem 3.1, to compare with the
results of [Jay82] which use the asymptotic chi-squared approximation (Theorem 3.2), and
to relate entropy concentration to Sanov’s theorem in information theory.

Jaynes considers 1000 tosses of a die in two situations: first, no other information at
all is known (including fairness or biasedness of the die), and second, it is also known that
the average of the 1000 tosses is 4.5. What can be said in each case about the number of
times that each face occurred?

4.1.1 Entropy concentration

The die tosses can be thought of as assignments of n = 1000 balls to m = 6 boxes. In the
first case theMaxEnt solution is ϕ∗ = (1/6, . . . , 1/6) withH∗ = ln 6 = 1.7918. No element
of ϕ∗ is 0, so we have µ∗ = m = 6. For this example Jaynes uses two values of ε, 0.05 and
0.005. From Theorem 3.2, these imply entropy deviations 2000∆H = χ2

5(0.05) = 11.07
and 2000∆H = χ2

5(0.005) = 16.75, which translate to η = 0.00309 and η = 0.00467 in our
formulation. Part (a) of Table 4.1 lists the N and α̂ of Theorem 3.1 for η = 0.00309 and
various ε, starting from 0.05. Part (b) does the same for η = 0.00467.
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η ε α̂ N
0.00309 0.05 0.340 16071

0.005 0.326 16858
5 · 10−6 0.295 18866
5 · 10−12 0.255 22223
5 · 10−18 0.227 25261
5 · 10−36 0.175 33739

(a)

η ε α̂ N
0.00467 0.05 0.340 10065

0.005 0.326 10585

5 · 10−6 0.293 11913
5 · 10−12 0.252 14132
5 · 10−18 0.224 16141
5 · 10−36 0.172 21747

(b)
η ε α̂ N
0.0067 0.01 0.330 6945

0.0001 0.304 7597

10−8 0.270 8704
10−16 0.226 10633
10−32 0.176 14144
10−64 0.125 20771

(c)

Table 4.1: The N of Theorem 3.1 for Jaynes’ die tosses. (a): no other information and
η = 0.00309, (b): no other information and η = 0.00467, (c): mean of 4.5 and η = 0.0067,
δ= = 0.00467.

In the second case, when the mean of the 1000 tosses is also known, the information is ex-
pressed by A= = (1, 2, 3, 4, 5, 6) , b= = (4.5), and we have ϕ∗ = (0.0543, 0.0788, 0.1142, 0.1654,
0.2398, 0.3475) with H∗ = 1.61358. Now 9A=9∞ = 21, |b=|min = 4.5, and by Proposition
2.1 the achievable tolerance δ= is 0.00467. Here Jaynes takes ε = 0.0001, leading to
2000∆H = 0.012 and η = 0.0067. Part (c) of Table 4.1 lists N under these conditions.

To interpret the third row of Table 4.1(c), for example, keep in mind that there are
68704 ≈ 106773 possible sequences of 8704 tosses, and

(

8704+5
5

)

≈ 4.2 · 1017 possible fre-
quency/count vectors, of which about 1 in 44000 has average equal to 4.5 (see §4.1.3).
Then this row of the table says that

Out of all the possible sequences of 8704 or more tosses whose frequency vectors
satisfy the equality constraint (mean) to relative accuracy 0.00467, at most one
in 108 has frequencies/counts with entropy less than 99.33% of the maximum.

We see from Table 4.1 that

• The asymptotic χ2 result and our exact bound are quite far apart: for all of the bold
entries in the table, the χ2 result is 1000. Only a small part of this difference can be
attributed to our ignoring equality constraints in the dimension of Fn, recall §3.2.3.

• N is very insensitive to ε: in the whole table, ε decreases by 30 orders of magnitude
before N so much as doubles.
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• The effect of optimizing the parameter α appearing in Theorem 3.1 can be significant,
as illustrated in Fig. 4.1.

1

2ϑ0(α)
N(α)

α̂
1

2ϑ∞

60000

70000

50000

40000

30000

20000

10000

0
0.1 0.30.2 0.4 0.5 0.6 0.7 0.8 0.9

Figure 4.1: The quantities 1/(2ϑ0(α)) and N(α) of Theorem 3.1 vs. α in the case N = 7597
of Table 4.1(c).

4.1.2 Sanov bound

Sanov’s theorem ([CT91], Theorem 12.4.1) bounds the probability of a set of n-sequences
in terms of the distribution with minimum cross-entropy (relative entropy) in this set,
assuming that the p.d. generating the sequences is known8. The theorem involves sets of
sequences and maximum entropy, so it is useful to understand how it relates to the entropy
concentration results. The Sanov theorem is usually expressed in the terminology of the
“theory of types”, see Table 4.2. Stated in our terminology,
Theorem. (Sanov, equiprobable version) If C is a subset of Rm and all n-sequences of m
symbols are equiprobable, then

Pr(C ∩ Fn) 6
1

mn

(

n+m− 1

n

)

enH
∗

where H∗ is the entropy of the maximum entropy distribution in C.
[The proof of this version of the theorem is simple: using Table 4.2 to translate probability
to #, what is to be proved reduces to #(C ∩ Fn) 6

(

n+m−1
n

)

enH
∗
. But

(

n+m−1
n

)

= |Fn| is
an upper bound on |C ∩ Fn|, and then we use the bound of (3.4).]

First we give a numerical example. Take the set C defined by fi > 0,
∑

i fi = 1,
∑6

i=1 ifi =
4.5 which we considered in §4.1.1. Then H∗ = 1.61358, so with n = 9542 the theorem gives

8The perhaps more familiar Chernoff bound follows from Sanov’s theorem. See e.g. [DP09] where the
Chernoff bound is expressed in terms of relative entropy.
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type frequency vector
type class set of realizations of a type
size of type class C #C
probability of class C under uniform p.d., 1/mn #C/mn

Table 4.2: Information theory (theory of types) terms in [CT91] and [Csi99] on the left,
and our terms on the right.

7.88 · 10−714 as an upper bound for the probability of C ∩F9542. Therefore, by the last row
of Table 4.2, #(C ∩F9542) 6 1.04 · 106712. This is a big number, but 69542 ≈ 107425 is much
bigger still, leading to the small probability.

Recalling §3.1, we see that the Sanov result is an upper bound on the number of real-
izations of the sequences in the set An defined in (3.2). Lemma 3.2 is a lower bound on
this number, and Theorem 3.1 is a lower bound on the ratio of this number to the comple-
mentary number #Bn. (See (A.10) in the proof of the theorem in the Appendix.) In the
Sanov bound, the set An is interpreted as a set of “bad” or undesirable sequences whose
probability we want to limit. On the contrary, in the entropy concentration results, An is
viewed as the “good” set of interest, whose dominance we want to demonstrate, whereas
Bn is the undesirable set. The concentration results then show not only that the good set
An has a lot of realizations (Lemma 3.2), but that in fact its realizations dominate those
of the bad set Bn. In other words, the concentration result answers the question

If we adopt the set An, or even the vector f∗ itself, as our prediction or estimate
in the face of the limited information, how reliable is this prediction? What
about these other possible frequency vectors that also accord with the given
information?

4.1.3 The exact number of frequency vectors satisfying the constraints

The n tosses of the die with average known to equal 4.5 are characterized by a count vector
ν = (ν1, . . . , ν6) s.t. νi > 0, ν1 + · · · + ν6 = n, and 2(1ν1 + 2ν2 + · · · + 6ν6) = 9n. These
constraints define a polytope C in N

6 which depends on n. Using the theory and algorithms
in [VWBC05] for counting lattice points in parametric polytopes, it is possible to compute
the exact number of lattice points in this polytope, i.e. the number of vectors ν ∈ N

6

satisfying the constraints (exactly), as a function of n. The result is a long expression,
polynomial in floors of sub-expressions linear in n; a much simpler slight approximation
(see [BV08] for the details) is the ordinary polynomial

|C ∩ Fn| =
19n4

11520
+
n3

32
+

113n2

576
+

2101723n

4196000
+

225740219

755280000
.

There is some distance between the easy upper bound |C∩Fn| 6 |Fn| =
(

n+5
n

)

and this exact
result: for n = 1000 the bound is 8.46 ·1012 , whereas the exact result is 1.680752 ·109 , quite
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a bit smaller. (But if we reduce m to 4, reflecting the correct dimension of Fn, recall §3.2.3,
the bound improves to 4.2 · 1010.) For n = 8704, the above exact result is 9.48684 · 1012
and the bound is 4.2 · 1017.

4.2 Vehicle or network traffic

Five cities are connected by two highways as shown in Fig. 4.2. The total number of cars
in the 5 cities is known. From measurements made on one day, the number of cars that left

1 5

2
3

4

Figure 4.2: Five cities connected by two highways.

cities 1, 2, and 4 is known. The number of cars that travelled the highway segment from 2
to 3 is also known, and finally it is known that at least a certain number travelled the 5 to
3 segment (this segment was observed for only part of the day). Given this information,
what is the most likely number (fraction) of cars that travelled between each pair of cities
on that day? This is the 5 × 5 matrix C = [cij ]; cii represents the fraction of cars that
left city i and returned to it. (Clearly, instead of cars, we could be considering packets or
other units of traffic in a communications network.) Our information is

∑

16j65

cij = ri, i = 1, 2, 4, c13 + c14 + c23 + c24 = s23, c13 + c53 + c14 > s53,

where the ri and sij are also fractions of the total. Suppose that (r1, r2, r4) = (0.13, 0.25, 0.1),
and (s23, s53) = (0.11, 0.07). Then the MaxEnt vector ϕ∗ = (c∗11, . . . , c

∗
15, c

∗
21, . . . , c

∗
25, . . .)

arranged in matrix form is












0.030790 0.030790 0.018816 0.018816 0.030790
0.059210 0.059210 0.036184 0.036184 0.059210
0.052 0.052 0.052 0.052 0.052
0.02 0.02 0.02 0.02 0.02
0.052 0.052 0.052 0.052 0.052













,

with H∗ = 3.1419. We also have

9A=9∞ = 5, 9A69∞ = 3, |b=|min = 0.1, |b6|min = 0.07.

None of the elements of ϕ∗ is 0, so µ∗ = m = 25. Table 4.3 lists some values of N obtained
from Theorems 3.1, 3.3, and Lemma 3.6 assuming the tolerances δ = (0.005, 0.01,∞,∞)
for satisfying the constraints.
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η ε α̂ N
Th3.1

0.01 10−6 0.9163 120000
10−12 0.9126
10−24 0.8995

0.005 0.8326
0.8257
0.7991

0.001 0.3567 160807
0.3471 165692
0.3171 183001

ϑ ε α̂ N
Th3.3 N

Le3.6
0.05 10−6 0.9833 416022 489889

10−12 0.9825 428261 502121
10−24 0.9799 471616 545477

0.01 0.9163 1.35 · 107 1.58 · 107
0.9126 1.38 · 107 1.62 · 107
0.8995 1.49 · 107 1.72 · 107

0.005 0.8326 5.96 · 107 6.96 · 107
0.8253 6.08 · 107 7.08 · 107
0.7991 6.51 · 107 7.52 · 107

Table 4.3: Traffic example with δ = (0.005, 0.01,∞,∞). Empty entries indicate repetition
of previous values. Left: theN(δ, ε, η) of Theorem 3.1. 120000 is the value of (m−1)/(2ϑ∞).
Right: the N(δ, ε, ϑ) of Theorem 3.3 and Lemma 3.6.

In this problem it makes much more sense to think of the frequency or count vectors
as (traffic) matrices. Consider the 3d row of Table 4.3 on the right. With n = 545500, by
Definition 2.1 we get the count matrix

ν∗ =













16796 16796 10265 10264 16796
32299 32299 19738 19738 32299
28366 28366 28366 28366 28366
10910 10910 10910 10910 10910
28366 28366 28366 28366 28366













.

How are we to interpret this? First, the number of all possible 5× 5 count matrices with
total sum 545500 is |F545500| =

(545500+24
24

)

= 7.77 · 10113. Second, 1.171 · 10104 of these
matrices satisfy the constraints. (To find this number we express (r1, r2, r4), (s23, s53), and
δ as rationals, resulting in inequalities such as

(13/100 − 1/2000)n 6 ν11 + ν12 + ν13 + ν14 + ν15 6 (13/100 + 1/2000)n,
(25/100 − 1/2000)n 6 ν21 + ν22 + ν23 + ν24 + ν25 6 (25/100 + 1/2000)n,
(7/100 − 7/10000)n 6 ν13 + ν53 + ν14,

etc, and proceed as in §4.1.3 to find the number of lattice points in the polytope.) So about
1 out of every 1010 of the possible traffic matrices satisfies the constraints. Third, each of
these matrices can be realized in many ways (multinomial coefficient). Now the entry for
NTh3.3 in the third row of Table 4.3 on the right says:

Consider all the assignments of the 545500 cars to the 25 matrix elements that
result in one of the 1.171·10104 matrices that satisfy the constraints to accuracy
δ. Only one in 1024 of these assignments results in a matrix that deviates from
ν∗ by more than 27300 in ℓ1 norm9.

9This follows from the fact that ‖f − ϕ∗‖1 6 ϑ ⇒ ‖ν − ν∗‖1 6 nϑ+m.
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And the entry for NLe3.6 says something more impressive:

The MaxEnt matrix ν∗ can be realized in 1024 as many ways as the entire
set of 1.171 · 10104 matrices that satisfy the constraints but differ from ν∗ by
more than 27300 in ℓ1 norm. ν∗/n differs from ϕ∗ by no more than 43.75 in ℓ1
norm10.

4.3 Queue length distribution

Suppose we have a single-server G/G/1 queue of finite capacity c ∈ N, in which customers
arrive at rate λ and experience a mean waiting time W̄ . The known or measured λ and
W̄ imply (Little’s law) a mean queue length L̄ = λW̄ ∈ R. So we consider the system
under the following two states of knowledge: (a) besides c, only the mean queue length
L̄ is known, (b) in addition, we know that the probability that the queue is empty is in
the interval [a1, b1], and the probability that it is full is in [a2, b2]. What can be said in
these two scenarios about the distribution p0, p1, . . . , pc of the queue’s length L? (This
is a simple example; much more complex MaxEnt queueing problems are addressed in
[Kou94], [BGdMT06].)

Using what was said in §3.4, here we have the problem of inferring a unique discrete
p.d. (p0, p1, . . . , pc) ∈ R

c+1 from the information

1p1 + 2p2 + · · ·+ cpc = L̄, (4.1)

in the first case, and from

1p1 + 2p2 + · · ·+ cpc = L̄, p0 ∈ [a1, b1] , pc ∈ [a2, b2] (4.2)

in the second case. We interpret information (4.1) as assigning n probability quanta of size
1/n to m = c+1 boxes under the constraint that the “mean box index” must equal L̄, and
information (4.2) as imposing the additional constraints that the fraction assigned to box
0 must be between a1 and b1, while that assigned to box c must be between a2 and b2. If
we take c = 12, L̄ = 5.63, the MaxEnt p.d. ϕ∗ in the first case is, as expected, geometric:

ϕ∗
k = 0.0897 · 0.9739k , with H∗ = 2.5600.

Now we add information to the effect that the probability of being empty is larger than
expected while that of being full is smaller than expected, expressed by p0 ∈ [0.12, 0.14],
p12 ∈ [0.01, 0.04]. We get a distribution of lower entropy, geometric between 1 and 11:

ϕ∗
0 = 0.12, ϕ∗

k = 0.0768 · 0.987k , ϕ∗
12 = 0.04 with H∗ = 2.5432. (4.3)

To investigate the concentration around p∗ = ν∗/n, in case (4.1) we have 9A=9∞ =
78, |b=|min = 5.63, and in case (4.2) we add 9A69∞ = 1, |b6|min = 0.01. If we choose the

10In this case we have α̂ = 6.87 · 10−4.
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tolerances δ= = 10−5, δ6 = 10−3, Table 4.4 lists some values of N obtained from Theorem
3.3 and from Corollary 3.1 for ε = 10−20. The results are the same for both scenarios even
though the ϕ∗ with bounded p0 and p12 has lower entropy, for two reasons: first, because
H∗ does not appear in Theorem 3.3 or Corollary 3.1; second, because ϑ∞ (Proposition
2.2) is the same in both cases. To interpret the first line of Table 4.4, suppose we choose

(δ=, δ6) ϑ ε ϑ∞ NTh3.3 α̂ NCo3.1
10−5, 10−3 0.01 10−20 7.22 · 10−7 8.31 · 106 1.76 · 10−4 1.35 · 107

0.001 1.00 · 109 8.37 · 10−6 1.17 · 109
10−4 1.23 · 1011 6.84 · 10−7 1.42 · 1011
10−5 1.45 · 1013 5.70 · 10−8 1.68 · 1013
10−6 1.67 · 1015 5.02 · 10−9 1.94 · 1015

Table 4.4: Denominator N of the rational approximation p∗ ∈ PN to the MaxEnt p.d.
ϕ∗ ∈ R

13, from Theorem 3.3 and from Corollary 3.1. Results are the same whether only
the mean is known, or bounds on p0 and p12 are also known. Recall that ϑ∞ depends only
on δ. Empty entries signify no change from above.

n = 13500000. We then find

p∗ =
1

13500000
(1620000, 964722, 977442, 990323, 1003387, 1016618, 1030037,

1043613, 1057372, 1071308, 1085429, 1099749, 540000).
(4.4)

By Corollary 3.1, this rational approximation to the MaxEnt p.d. (4.3) has at least 1020

times more realizations than the entire set of p.d.’s which satisfy the constraints to accuracy
δ but differ from the p.d. (4.3) by more than 0.01 in ℓ1 norm.

5 Conclusion

The phenomenon of entropy concentration appears when a large number of units is allo-
cated to containers subject to constraints that are linear functions of the numbers of units
in each container: most allocations will result in frequency (normalized count) vectors
with entropy close to that of the vector of maximum entropy that satisfies the constraints.
Asymptotic proofs of this phenomenon are known, beginning with the work of E. T. Jaynes,
but here we provided explicit bounds on how large the number of units must be for con-
centration to any desired degree to occur, and at the same time dealt with the fact that
constraints cannot be satisfied exactly by rational frequencies, but only to some prescribed
tolerances. We also established a perhaps more useful version of the concentration result,
in terms of deviation from the maximum entropy vector, instead of the usual maximum
entropy value, as well as results that pertain to the maximum entropy vector itself and not
to a whole set of vectors around it. Because of its conceptual simplicity and minimality of
assumptions, entropy concentration is a powerful justification of the widely-used discrete
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MaxEnt method (the other being axiomatic formulations), and we believe that the ex-
plicit, non-asymptotic bounds strengthen it considerably. All of our results were illustrated
with detailed numerical examples.
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A Proofs

Proof of Proposition 2.1

Rounding ensures that ‖ν̃ − nϕ∗‖∞ 6 1/2. From the explanation after Definition 2.1,
the adjustment of ν̃to ν∗ ensures ‖ν∗ − nϕ∗‖∞ 6 1, which establishes the ℓ∞ claim. In
more detail, the 0 elements of ν∗ coincide with those of ϕ∗, and this adjustment causes
at most ⌊µ∗/2⌋ of the non-zero elements of ν∗ to differ from the corresponding elements
of nϕ∗ by 6 1, so ‖ν∗ − nϕ∗‖1 6 1 · ⌊µ∗/2⌋ + (1/2) · (µ∗ − ⌊µ∗/2⌋) 6 3µ∗/4. Hence
‖ν∗/n− ϕ∗‖1 6 (3/4)µ∗/n, which establishes the claim for the ℓ1 norm.

Proof of Proposition 2.2

Beginning with the equality constraints (2.1), note that A=ϕ∗ = b= ⇔ A=(ϕ∗ − f) +
A=f = b=. Set A=(f−ϕ∗) = β. Then we have A=f = b=+β, with ‖β‖∞ = ‖A=(f−ϕ∗)‖∞.
Now ‖A=(f−ϕ∗)‖∞ 6 9A=9∞ ‖f−ϕ∗‖∞, where 9 ·9∞ denotes the matrix infinity norm
(also known as the “maximum row sum” norm). The inequality holds because the vector
norm ‖·‖∞ is compatible with the (rectangular) matrix norm 9 ·9∞ (see [HJ90], §5.7). So
if we make ‖f − ϕ∗‖∞ 6 δ=|b=|min/ 9A=9∞, we will have ‖β‖∞ 6 δ=|b=|min, as required
by (2.1). The inequality constraints (2.2) are handled in exacty the same way.

Finally, for the equalities with zeros (2.3) we have A=0f = ζ, where ‖ζ‖∞ = ‖A=0(f −
ϕ∗)‖∞.

Proof of Proposition 2.3

Theorem 16.3.2 of [CT91] is a similar result, but in terms of the ℓ1 norm. The function
f (x) = −x lnx, x ∈ [0, 1], is concave and has a maximum at x = 1/e. Let a > 0 be
6 γ, and consider the difference of the values of f (x) at two points that are a apart:
g (x) = f (x+ a) − f (x). Since g′ (x) 6 0 always, the maximum of g (x) occurs at x = 0
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and equals −a ln a. So if γ 6 1/e,

∀x, max
06a6γ

f (x+ a)− f (x) = γ ln
1

γ
, γ 6

1

e
.

(This is tighter than what we would get by simply applying the defining inequality of
concavity to f .) We have now shown that if |fi − ϕ∗

i | 6 γ, then |fi ln fi − ϕ∗
i lnϕ

∗
i | 6

γ ln 1/γ. The result of the proposition follows.

Proof of Proposition 2.4

Using Proposition 2.3, we want to find a γ̂ s.t. mγ ln 1/γ 6 ηH∗ for all γ 6 γ̂. Setting
y = 1/γ and ζ = m/ (ηH∗), we want to find a ŷ s.t. for all y > ŷ, y > ζ ln y. We claim that
this inequality, where ζ ≫ 1 and y is expected to be ≫ 1, is satisfied by ŷ = (1 + c) ζ ln ζ,
for any c > 0. Indeed,

ŷ > ζ ln ŷ ⇔ ζ1+c > (1 + c) ζ ln ζ ⇔ ζc/ ln ζ > 1 + c, (A.1)

which is possible for any c > 0 if ζ is large enough. With c = 0.5, this condition is√
ζ/ ln ζ > 3/2. But this holds for ζ > 21, a very mild requirement. Finally, the function

y/ ln y is increasing for y > 1, so the l.h.s. of (A.1) will hold for all y > ŷ as desired. We
have now shown that H∗ −H(f) 6 ηH∗ will hold if f is s.t.

‖f − ϕ∗‖∞ 6
2

3

ηH∗

ln(m/ηH∗)
,

where the “2/3” can be tightened to 1/(1 + c).

Proof of Proposition 3.1

Begin with #f =
( n
nf1,...,nfm

)

=
( n
nf1,...,nfµ

)

and use the fact that

lnx! = x lnx− x+
1

2
lnx+ ln

√
2π +

ϑ

12x
, ϑ ∈ (0, 1), (A.2)

which is defined for all x > 0 by x! = Γ(x+ 1). Then we find

ln#f = nH(f)− (µ− 1) ln
√
2πn−

∑

fi>0

ln
√

fi +
ϑ0
12n

−
∑

fi>0

ϑi
12nfi

.

Finally, for the upper bound in Prop. 3.1, the sum of the last two terms is maximized
when ϑ0 = 1, ϑi = 0. For the lower bound, it is minimized when ϑ0 = 0, ϑi = 1.
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Proof of Lemma 3.1

We begin by observing that the sum over Fn ∩ C(δ) is bounded above by the sum over all
of Fn and then use the bound of Proposition 3.1 on #f to find

#Bn(δ, η) 6
∑

f ∈ Fn

H(f) < (1 − η)H∗

#f 6 en(1−η)H
∗

e
1

12n

∑

f∈Fn

S(f, n). (A.3)

To evaluate the last sum, let F
(µ)
n be the subset of Fn consisting of vectors with µ non-zero

elements. Since the F
(µ)
n form a partition of Fn,

∑

f∈Fn

S(f, n) =

m
∑

µ=1

∑

f∈F
(µ)
n

S(f, n) =

m
∑

µ=1

(

m

µ

)

∑

f1 = ν1/n, . . . , fµ = νµ/n
ν1 + · · ·+ νµ = n, νi > 1

S(f, n),

where the
(m
µ

)

comes from the fact that as pointed out in Proposition 3.1, #f depends
only on the non-zero elements and not on their positions. Thus

∑

f∈Fn

S(f, n) =

m
∑

µ=1

(

m

µ

)

1

(2πn)
µ−1
2

∑

ν1 + · · ·+ νµ = n
ν1, . . . , νµ > 1

(
√
n)µ

√
ν1 · · · νµ

. (A.4)

We now need an auxiliary result on the inner sum in (A.4):

Proposition A.1 For any µ > 2,

∑

ν1 + · · ·+ νµ = n
ν1, . . . , νµ > 1

1
√
ν1 · · · νµ

<
πµ/2

Γ(µ/2)
nµ/2−1.

Proposition A.1 is proved separately later. Using this result in (A.4),

∑

f∈Fn

S(f, n) =
√

2π/n

m
∑

µ=1

(

m

µ

)

(n

2

)µ/2 1

Γ(µ/2)
< 4

√

2π/n
(

1 +
√

n/4
)m

< 4
√
2π0.6mn

m−1
2 .

For the first inequality we used Γ(µ/2) > 2µ/2−2 and for the second we assumed that
n > 100 and m > 2. Combining the above with (A.3), and again assuming n > 100 we
obtain the result of the lemma.
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Proof of Proposition 3.2

Ignoring the rational requirement for the moment and denoting f by x, only x1, . . . , xm−1

are independent, so our set is the subset of Rm−1 belonging to

|xi − ϕ∗
i | 6 ϑ, i = 1, . . . ,m− 1, (m− 1)-dimensional cube,

|(x1 + · · ·+ xm−1)− (ϕ∗
1 + · · ·+ ϕ∗

m−1)| 6 ϑ, region between two hyperplanes,
x1 + · · · + xm−1 6 1, xi > 0, unit (m− 1)-dimensional simplex.

(A.5)
We will construct inside this set an (m− 1)-dimensional rectangular parallelepiped P whose
intersection with Fn is easy to count. To construct P we will determine its two extreme
points, the one with the largest coordinates, ϕ∗ + y, and the one with the smallest, ϕ∗ − z,
where yi, zi > 0.

If ϕ∗ + y satisfies (A.5), then

yi 6 ϑ, y1 + · · ·+ ym−1 6 ϑ, y1 + · · ·+ ym−1 6 ϕ∗
m, yi > −ϕ∗

i .

The 4th inequality is true, and the 2nd implies the first. The 2nd and 3d inequalities are
satisfied if y1 + · · ·+ ym−1 = min (ϑ,ϕ∗

m), and y1 · · · ym−1 will be maximized if

y1 = · · · = ym−1 =
1

m− 1
min (ϑ,ϕ∗

m) . (A.6)

Since ϕ∗ has µ∗ > 1 non-zero elements, we can assume w.l.o.g. that ϕ∗
m > 0.

Similarly, for the other extreme point ϕ∗ − z we must have z1 + · · · + zm−1 6 ϑ and
zi 6 ϕ∗

i . If some ϕ∗
i are 0 the corresponding zi are 0, and w.l.o.g. we can take the non-zero

zi to be z1, . . . , zµ∗−1. Then the zi that satisfy the inequalities and maximize the product
z1 · · · zµ∗−1 are

z1 = · · · = zµ∗−1 = ϑ/ (µ∗ − 1) . (A.7)

But this needs ϑ/ (µ∗ − 1) 6 ϕ∗
i for all the non-zero ϕ∗

i , which we have assumed.
Thus from (A.6) and (A.7) µ∗ − 1 sides of P have length yi + zi =

1
m−1 min (ϑ,ϕ∗

m) +
1

µ∗−1ϑ, and the other m − µ∗ sides have length yi + zi =
1

m−1 min (ϑ,ϕ∗
m). Again w.l.o.g.

we can take ϕ∗
m to be ϕ∗

max, the largest element of ϕ∗. So if we assume that ϑ 6 ϕ∗
max, P

has µ∗ − 1 sides of length ϑ
(

1
m−1 + 1

µ∗−1

)

and m− µ∗ sides of length ϑ
m−1 .

Now a k-dimensional parallelepiped with sides of lengths L1, . . . , Lk, irrespective of its
location in R

k, contains at least ⌊L1⌋ · · · ⌊Lk⌋ lattice points, i.e. points in Z
k. (This can be

established by induction on k. For k = 1 it says that a segment of length L on the real axis
contains at least ⌊L⌋ integers.) Applying this to P with all its m− 1 dimensions scaled up
by n, the scaled P must contain at least

⌊

nϑ

(

1

m− 1
+

1

µ∗ − 1

)⌋µ∗−1 ⌊ nϑ

m− 1

⌋m−µ∗

(A.8)

points whose coordinates are rational numbers with denominator n, i.e. vectors in Fn. The
first factor and its attendant condition ϑ 6 (µ∗ − 1)ϕ∗

min are absent if µ∗ = 1.
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Proof of Lemma 3.2

Let 0 < α < 1 be some constant whose purpose is expained later, in the proof of Theorem
3.1. We begin by deriving a lower bound on the size of An(δ, αη), a subset of An(δ, η).
Consider the set A = {f ∈ Fn | ‖f − ϕ∗‖∞ 6 ϑ0}. Since ϑ0 6 ϑ∞, Proposition 2.2 implies
that anyf in this set also belongs to C (δ). Further, by the middle expression in the
definition of ϑ0, Proposition 2.4 implies that any such f also has entropy at least (1 −
αη)H∗. Thus all f in the set A belong to An (δ, αη). Finally ϑ0 satisfies the conditions
of Proposition 3.2, hence the size of A is bounded from below by Λ (n, ϑ0, µ

∗). But A ⊆
An (δ, αη) ⊆ An (δ, η), so we established the first claim of the lemma.

Now suppose that all f in An(δ, αη) have at least µ > 1 non-zero elements; for the
purposes of this proof we may take these to be the first µ elements. Then by Proposition
3.1, if g is an arbitrary element of An(δ, αη),

#An(δ, αη) > |An(δ, αη)| en(1−αη)H
∗

e
− 1

12n

(

1
g1

+···+ 1
gµ

)

1

(2πn)
µ−1
2

1
√
g1 · · · gµ

. (A.9)

Let ξ = (ng1, . . . , ngµ); this vector has integral entries, all positive, and summing to n. The
maximum of 1/ξ1+· · ·+1/ξµ equals µ−1+1/(n−µ+1), occurring when ξ1 = · · · = ξµ−1 = 1
and ξµ = n−µ+1. Thus the exponential in (A.9) is at least e−µ/12. Further, the maximum
of

√
g1 · · · gµ subject to g1+ · · ·+gµ = 1 occurs at g1 = · · · = gµ = 1/µ, so the last factor in

(A.9) is at least µµ/2. Finally An(δ, η) ⊇ An(δ, αη), and so (A.9) implies the second result
of the lemma, but with the number µ still undetermined. By requiring ‖f − ϕ∗‖∞ to be
less than the smallest non-zero element of ϕ∗, we can ensure that there is no element of f
which is 0 while the corresponding element of ϕ∗ is positive; this is accomplished by the
last term on the r.h.s. of (3.7). Thus we can take µ equal to µ∗, the number of non-zero
elements of ϕ∗.

Proof of Theorem 3.1

The upper bound on #Bn and the lower bound on #An are given by Lemmas 3.1 and 3.2.
Both these bounds increase when the entropy tolerance η decreases towards 0, as makes
sense. To simplify the proof we assume that Λ (n, ϑ0, µ

∗) > 1. Then combining the two
bounds and unifying some numerical constants

#An(δ, η)

#Bn(δ, η)
>

0.249

0.6m
e−µ

∗/12

(

µ∗

2π

)µ∗/2

n−
m+µ∗−2

2 en(1−α)ηH
∗

, n >
m− 1

J2, µ∗ = mKϑ0
.

(A.10)
When everything else is fixed, this lower bound on #An/#Bn (eventually) increases as
n → ∞, as we want it to. In general, this behavior would have been impossible if α were
1. This is why we introduced α and required it to be < 1: it serves to strictly separate our
bounds on #An and #Bn. There is freedom in choosing the value of α, which we exploit
below.
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To establish (3.5) we need the l.h.s. of (A.10) to be > 1/ε+1. This reduces to requiring

n > C1 lnn+ C2, n > (m− 1) /ϑ0, (A.11)

where the constants C1, C2 are

C1 =
0.5(m + µ∗)− 1

(1− α)ηH∗
, C2 =

m ln 0.6 + (0.5 ln 2π + 1/12 − 0.5 ln µ∗)µ∗ + ln
(

1/ε+1
0.249

)

(1− α)ηH∗
.

(A.12)
We will now show that (A.11) is satisfied by

N(α) =

{

1.5C1 ln(C1 + C2) + C2, if C2 > 0 and C1 +C2 > 21,
1.5C1 lnC1 + C2, if C2 6 0.

(A.13)

First, assume C2 > 0. Setting n = 1.5C1 ln(C1 +C2) +C2 in (A.11) with k = 1 we reduce
to

√

C1 + C2 > 1.5
C1

C1 + C2
ln(C1 + C2) +

C2

C1 + C2
.

The r.h.s. of this condition is a convex combination of 1.5 ln(C1 + C2) and 1, so the first
condition will hold if

√
C1 + C2 > 1.5 ln(C1 + C2), which is true when C1 + C2 > 21.

Now let C2 6 0. Putting n = 1.5C1 lnC1 + C2 in (A.11), we reduce to establishing
C1.5
1 > 1.5 lnC1+C2, which will hold if C1.5

1 > lnC1.5
1 , always true.

The r.h.s. of (A.13) depends on α ∈ (0, 1), which has up to this point been left
unspecified. We finally need n > N(α) and n > (m− 1) /

(

J2, µ∗ = mKϑ0
)

, and we observe
that as α ր, the first of these bounds increases while the second decreases. Further, the
first bound is finite at 0 and infinite at 1, whereas the second is infinite at 0 and finite
at 1. Thus there is an optimal α which makes the two bounds equal, the α̂ which solves
N(α) = (m− 1) /

(

J2, µ∗ = mKϑ0 (α)
)

.

Proof of Proposition A.1

It seems that the inequality

∑

ν1 + · · ·+ νµ = n
ν1, . . . , νµ > 1

1
√
ν1 · · · νµ

6

∫

x1 + · · ·+ xµ = n
x1, . . . , xµ > 0

dx1 · · · dxµ√
x1 · · · xµ

= nµ/2−1 πµ/2

Γ(µ/2)
,

should hold (see [GR80], 4.635, #4). Being unable to show this directly, we go through a
more circuitous and lengthier proof.

Consider the simplest case µ = 2 first. We can bound the sum as follows:

∑

ν1 + ν2 = n
ν1, ν2 > 1

1√
ν1ν2

=

n−1
∑

ν=1

1
√

ν(n− ν)
<

∫ n

0

dx
√

x(n− x)
= π. (A.14)
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To see this, note that
∑n/2

ν=1 1/
√

ν(n− ν) <
∫ n/2
0 dx/

√

x(n− x) = π/2 because the sum
is a lower Riemann sum for the integral. Since the summand is symmetric about n/2,
doubling this produces the desired result.

Now consider the case of even µ, i.e. µ = 2λ. Divide the νi into λ pairs, each of which
sums to some number > 2 and these numbers in turn sum to n:

∑

ν1 + · · ·+ ν2λ = n
ν1, . . . , ν2λ > 1

1√
ν1 · · · ν2λ

=

∑

k1 + · · ·+ kλ = n
k1, . . . , kλ > 2

(

∑

ν1 + ν2 = k1
ν1, ν2 > 1

1√
ν1ν2

· · ·
∑

ν2λ−1 + ν2λ = kλ
ν2λ−1, ν2λ > 1

1
√
ν2λ−1ν2λ

)

< πλ
∑

k1 + · · ·+ kλ = n
k1, . . . , kλ > 2

1. (A.15)

Here the inequality follows by applying (A.14), which does not depend on n, to each of the
inner sums. Further,

∑

k1 + · · ·+ kλ = n
k1, . . . , kλ > 2

1 =
∑

k1 + · · ·+ kλ = n− 2λ
k1, . . . , kλ > 0

1 =

(

n− λ− 1

λ− 1

)

,

where in the first equality we assume w.l.o.g. that 2λ < n, and the 2nd equality follows
from the fact that the number of compositions of N into M parts (i.e. the solutions of
k1 + · · · + kM = N , ki > 0), is

(N+M−1
M−1

)

. Finally we bound the binomial coefficient by
(n−λ−1
λ−1

)

< nλ−1

(λ−1)! , to arrive at

∑

ν1 + · · ·+ ν2λ = n
ν1, . . . , ν2λ > 1

1√
ν1 · · · ν2λ

<
πλ

Γ(λ)
nλ−1. (A.16)

Now we turn to the case of odd µ, i.e. µ = 2λ+ 1. Similarly to what we did above,

∑

ν1 + · · ·+ ν2λ + ν2λ+1 = n
ν1, . . . , ν2λ, ν2λ+1 > 1

1
√
ν1 · · · ν2λν2λ+1

=

∑

k1 + k2 = n
k1 > 1, k2 > 2λ

(

∑

ν2λ+1=k1

1
√
ν2λ+1

∑

ν1 + · · ·+ ν2λ = k2
ν1, . . . , ν2λ > 1

1√
ν1 · · · ν2λ

)

. (A.17)
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By (A.16), the r.h.s. does not exceed

πλ

Γ(λ)

∑

k1 + k2 = n
k1 > 1, k2 > 2λ

kλ−1
2√
k1

<
πλ

Γ(λ)

n−1
∑

k=1

kλ−1

√
n− k

,

and this last sum can be bounded by the integral

∫ n

0

kλ−1

√
n− k

dk = nλ−1/2

∫ 1

0

xλ−1

√
1− x

dx = nλ−1/2Γ(λ)Γ(1/2)

Γ(λ+ 1/2)
.

We have thus shown that for µ = 2λ+ 1,

∑

ν1 + · · ·+ ν2λ+1 = n
ν1, . . . , ν2λ+1 > 1

1
√
ν1 · · · ν2λ+1

<
πλ+1/2

Γ(λ+ 1/2)
nλ−1/2. (A.18)

Eqs. (A.16) and (A.18) establish the proposition for all µ > 2.

Proof of Lemma 3.3

First we show that if n > 1/ϑ0(α) then f
∗ ∈ An(δ, αη). By Proposition 2.1, n > 1/ϑ0 (α) ⇒

‖f∗ − ϕ∗‖∞ 6 ϑ∞, so by Proposition 2.2 f∗ ∈ C (δ). Further, ‖f∗ − ϕ∗‖∞ 6
2
3

αηH∗

ln(m/(αηH∗))

means that H (f∗) > (1− αη)H∗ by Proposition 2.4. Therefore n > 1/ϑ0 (α) implies that
f∗ belongs to the set An (δ, αη) as claimed.

Next we put a lower bound on #f∗. Applying Proposition 3.1 we see that #f is > the
r.h.s. of (A.9) in the proof of Lemma 3.2 with |An(δ, αη)| = 1, so #f is > the bound of
Lemma 3.2 on #An(δ, η) with Λ = 1. Then from the proof of Theorem 3.1, we see that
#f∗/#Bn(δ, η) is > the r.h.s. of (A.10), but with the condition on n being n > 1/ϑ0(α).
The rest of the proof of Theorem 3.1 then applies, to the point where n has to satisfy
n > N(α) and n > 1/ϑ0(α). α̂ equalizes these bounds, and the completion of the proof of
Theorem 3.1 then establishes that if n > 1/ϑ0(α̂), #f

∗/#Bn(δ, η) > 1/ε+ 1.

Proof of Proposition 3.3

The function y ln(m/y), m > 2, is increasing for y ∈ (0, 1/2]. The first implication in
the proposition then follows immediately from Theorem 16.3.2 of [CT91], the ℓ1 norm
bound on entropy, which states that if two m-vectors p, q are s.t. ‖p− q‖1 6 1/2, then
|H (p)−H (q)| 6 ‖p− q‖1 ln (m/ ‖p− q‖1).

To prove the second implication we use Pinsker’s inequality and the “triangle inequal-
ity” for cross- or relative entropy, or divergence D(·‖·). Applied to f and ϕ∗, Pinsker’s
inequality states that D(f‖ϕ∗) > 1

2‖f −ϕ∗‖21 (see [CT91], Lemma 12.6.1). Then the trian-
gle inequality, using the uniform distribution as the prior or reference distribution ([CT91],
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Theorem 12.6.1), implies that H(ϕ∗)−H(f) > D(f‖ϕ∗). What we want to prove follows
from the above two inequalities.

Pinsker’s inequality can be tightened in two ways: [OW05] show that the 1/2 can be
replaced by a factor c(ϕ∗) > 1/2, and [FHT03] give right-hand sides that are polynomials
involving powers of the norm beyond the square.

Proof of Lemma 3.4

Entirely analogous to that of Lemma 3.1, except that the setB′
n is defined by (3.9) instead of

(3.3), and the factor en(1−η)H
∗
in (A.3), coming from the upper bound on #f of Proposition

3.1, is replaced by the factor en(H
∗−ϑ2/2) of Proposition 3.3.

Proof of Lemma 3.5

The proof follows that of Lemma 3.2: first we lower-bound the size of A′
n (δ, αϑ) and

then the entropy of the f in it. The basic difference is that here we have ℓ1 norms. If
‖f − ϕ∗‖1 6 ϑ′0, so is ‖f − ϕ∗‖∞, and then Proposition 3.2 says that the size of A′

n (δ, ϑ
′
0)

is at least Λ (n, ϑ′0, µ
∗). Second, concerning the entropy of f ∈ A′

n (δ, ϑ
′
0), by Proposition

3.3 ‖f − ϕ∗‖1 6 ϑ′0 implies that H (f) is at least H∗ − h(αϑ). The proof then follows that
of Lemma 3.2, except that the term en(1−αη)H

∗
in (A.9) is replaced by en(H

∗−h(αϑ)).

Proof of Proposition 3.4

∂ψ/∂α is always negative, and ψ(ϑ2/2, ϑ) > 0 if m < 1/2ϑ3e1/ϑ. This establishes the first
part. For the second part, we note, in addition, that ψ(1, ϑ) < 0 even for m = 2.

Proof of Theorem 3.3

The proof uses Lemmas 3.4 and 3.5 and is completely analogous to that of Theorem 3.1.
The main feature is that H∗ falls out of the new (A.10), the exponential is enψ(α,ϑ) with
ψ(α, ϑ) = ϑ2/2 − h(αϑ), and the condition on n is now n > (m − 1)/

(

J2, µ∗ = mKϑ′0
)

.
C1, C2 are the same as in Theorem 3.1, except for the denominators. Finally, N(α) is finite
at α = 0 and increases to ∞ at α = α0, whereas 1/ϑ

′
0(α) is infinite at α = 0 and decreases

to a finite value at α = α0. Thus the equation N(α) = (m− 1)/
(

J2, µ∗ = mKϑ0(α)
)

has a
root α̂ between 0 and α0, which equates the two sides and is therefore the optimal α.

Proof of Lemma 3.6

The proof is analogous to that of Lemma 3.3. First, by Proposition 2.1, n > 1/ϑ′0(α)
implies that f∗ ∈ C(δ). Second, if n > 3µ∗/(4ϑ′0(α)) then ‖f∗ − ϕ∗‖1 6 αϑ by the 2nd
claim of Proposition 2.1. Hence if n > 3µ∗/(4ϑ′0(α)), f

∗ belongs to the set A′
n (δ, αϑ). Next,

by the argument in the proof of Lemma 3.3, #f∗ can be lower-bounded by the bound of
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Lemma 3.5 with Λ = 1. So #f/#B′
n(δ, ϑ) is lower-bounded by the new (A.10) as in the

proof of Theorem 3.3 but the condition on n is now n > 3µ∗/(4ϑ′0(α)). The rest follows as
in the proof of Theorem 3.3.

Proof of Corollary 3.2

In this case there are no constraints, so by Proposition 2.2 ϑ∞ = ∞. Also, µ∗ = m and
ϕ∗
min = 1/m. Further, if ϑ < 1/m, then 1/(α̂ϑ) > m, so the condition of Corollary 3.1

on n is n > 3m/(4α̂ϑ). The conditions ϑ < 1/m and m < 1/2ϑ3e1/ϑ are satisfied if
ϑ 6 min(0.09, 1/m). Finally, ϑ′0(α) = αϑ.
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