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Polynomials of almost-normal arguments in C∗-algebras

N. Filonov, I. Kachkovskiy∗

Abstract

The functional calculus for normal elements in C∗-algebras is an important tool of
Analysis. We suggest an approximate substitute for such calculus for elements a with the
small self-commutator norm ‖[a, a∗]‖ 6 δ. We show that many properties of the functional
calculus are conserved up to order δ.

1 Introduction

Let a be a normal element of a unital C∗-algebra A. The notion of continuous function f(a)
of this element is well known. More precisely, there exists a unique C∗-algebra homomorphism

C(σ(a)) → A, f 7→ f(a)

from the algebra of continuous functions on the spectrum σ(a) to A such that the function
f(z) = z is mapped to a, σ(f(a)) = f(σ(a)), and

‖f(a)‖ = max
z∈σ(a)

|f(z)| (1.1)

(see, for example, [4]). This calculus is widely used in solving various problems in Analysis.
The aim of the present paper is to introduce an analog of functional calculus for non-normal
elements. We restrict the considered class of functions to polynomials (in z and z). Assume
that a is close to a normal element in the sense that the norm of its self-commutator [a, a∗] is
small. In what follows, assume that

‖a‖ 6 1, ‖[a, a∗]‖ 6 δ. (1.2)

We shall show that some properties of the functional calculus hold up to an error of order δ.
Polynomials of a (in the case aa∗ 6= a∗a) are, in general, not uniquely defined. We fix the

following definition. For a polynomial p(z) =
∑

k,l

pklz
k z̄l let

p(a) =
∑

k,l

pkla
k(a∗)l.
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It is clear that the map p 7→ p(a) is linear and involutive, i. e. p(a) = p(a)∗, where p̄(z) =
∑

p̄lkz
k z̄l. Using the inequality ‖[a, bm]‖ 6 m‖b‖m−1‖[a, b]‖ and (1.2), one can easily show that

the map p 7→ p(a) is “almost multiplicative”:

‖p(a)q(a)− (pq)(a)‖ 6 C(p, q)δ, (1.3)

where
C(p, q) =

∑

k,l,s,t

ls |pkl| |qst| .

It takes much more effort to obtain an estimate of the norm ‖p(a)‖. In the case of an analytic
polynomial p(z) =

∑

k pkz
k, the von Neumann inequality gives an answer, see, for example,

[11, I.9]:
‖p(a)‖ 6 max

|z|61
|p(z)| =: pmax,

where it is only assumed that ‖a‖ 6 1. We prove the following generalization of (1.1), see
Theorem 3.2:

‖p(a)‖ 6 pmax + Cδ, (1.4)

where the constant C depends on p, but does not depend on a and δ. The second term in the
right hand side of (1.4) is essential, see Remark 3.3.

If a is normal and µ /∈ f(σ(a)), then the usual functional calculus gives that the element
(f(a)− µ) is invertible and

∥

∥(f(a)− µ)−1
∥

∥ =
1

dist (µ, f(σ(a)))
. (1.5)

In Sections 3.3, 3.4, we prove an analogue of this statement (i. e. an estimate of the left hand
side of (1.5)) for elements that are close to normal.

The proofs are based on certain representation theorems for positive polynomials. If a real
polynomial of x1, x2 is non-negative on the unit disk {x : x21 + x22 < 1}, then, by a result of [9],
it admits a representation

∑

j

rj(x)
2 +

(

1− x21 − x22
)

∑

j

sj(x)
2 (1.6)

with real polynomials rj and sj (see Proposition 2.2 below). Such results are usually referred to
as Positivstellensatz. We also make use of Positivstellensatz for polynomials positive on subsets
of the real plane bounded by circle arcs. The corresponding results (for the sets bounded by
arbitrary algebraic curves) were obtained in [2, 7, 8, 9]. We concentrate on the quantitative
versions of these results, where it is possible to find explicit representations similar to (1.6).
They were partially obtained in [10, 5]. In our case, their proofs become less complex and
completely explicit.

Section 2 is devoted to the necessary results about polynomials, and Section 3 contains
applications to polynomial calculus in C∗-algebras.

The authors thank Prof. A. Pushnitski for valuable comments.
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2 Representations of non-negative polynomials

2.1 Statements of the results

Let λi ∈ R2, Ri ∈ R, i = 1, . . . , m − 1, R0 = 1. Consider the following polynomials
g0, . . . , gm−1 ∈ R[x1, x2]:

g0(x) = 1− |x|2, gi(x) = |x− λi|2 − R2
i , i = 1, . . . , m− 1, (2.1)

where x = (x1, x2), |x|2 = x21 + x22. Let

S = {x ∈ R
2 : gi(x) > 0, i = 0, . . . , m− 1}. (2.2)

The set S is a unit disk with several ”holes” centered in λi and of radii Ri.

Theorem 2.1. Let g0, . . . , gm−1 be the polynomials (2.1). Assume that the set S defined by

(2.2) is not empty. Let the polynomial p ∈ R[x1, x2] be positive on S. Then there exists an

integer N and polynomials

ri, rij ∈ R[x1, x2], i = 0, . . . , m− 1, j = 0, . . . , N,

such that

p =

N
∑

j=0

r2j +

m−1
∑

i=0

(

N
∑

j=0

r2ij

)

gi. (2.3)

Theorem 2.1 is proved in Section 2.3. The first result of this type was proved in [2] (for the
case m = 1 with S being a disk). The proof was not constructive and involved Zorn’s Lemma.
In [7], the result was generalized to a wider class of sets, including the ones of the type (2.2).
In [10] and [5], an alternative proof is presented with its major part being constructive and
based on the results of [6]. For the purposes of applications to functional calculus, a special
form (2.1) of gi is interesting. In this case the proof simplifies and becomes completely explicit.
We follow the construction of [5] and then apply the results of [6] directly.

If we replace positivity of p with non-negativity, then for m = 1 the result still holds. The
corresponding theorem was proved in [9]:

Proposition 2.2. [9] Let p ∈ R[x1, x2] be non-negative on the unit disk {x ∈ R2 : |x| 6 1}.
Then for some N it admits a representation

p =
N
∑

j=0

r2j +

(

N
∑

j=0

s2j

)

(

1− |x|2
)

,

where rj , sj ∈ R[x1, x2], j = 0, . . . , N .

The proof in [9] utilizes hard algebraic technique and is not constructive. In [8], an analog
of Theorem 2.1 for non-negative polynomials is established for m > 1 with some additional
assumptions on the zeros of p. The proof is also non-constructive. The next statement shows
that, in general, one cannot replace the assumption of positivity in Theorem 2.1 with non-
negativity.

Theorem 2.3. Let gi be defined by (2.1), and assume that λi 6= λj for some i and j. Then the

polynomial gigj can not be represented in the form (2.3).

This result is probably well known by the specialists, although we could not find it in the
literature. For the convenience of the reader, we give the proof in Section 2.4.
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2.2 Lemmas

We need the following particular case of the Lojasiewicz inequality (see, e. g., [1]). Recall
that the angle between intersecting circles is the minimal angle between their tangents in the
intersection points.

Lemma 2.4. Let g0, . . . , gm−1 be the polynomials (2.1). Assume that S 6= ∅ and none of

the disks {x : |x − λi| < Ri}, i > 0, is contained in the union of the others. Then for any

x ∈ [−1, 1]2 \ S the following estimate holds:

dist(x, S) 6 −c0min{g0(x), . . . , gm−1(x)}.

If the circles

{x ∈ R
2 : |x| = 1}, {x ∈ R

2 : |x− λi| = Ri}, i = 1, . . . , m− 1, (2.4)

are pairwise disjoint or tangent, then c0 = R−1
min, where Rmin = min

i=0,...,m−1
Ri. Otherwise, c0 can

be chosen as

c0 =

√
2 + 1

R2
min sin(ϕmin/2)

,

where ϕmin is the minimal angle between the pairs of intersecting non-tangent circles (2.4).

Remark 2.5. In our case the sets {x : gi(x) = 0} are circles, which is the reason why an
explicit constant in Lojasiewicz inequality can be written down.

The proof of Lemma 2.4 is elementary, we give it in Section 2.5. For the polynomials

q(x) =
∑

|α|6d

qαx
α ∈ R[x1, . . . , xn],

where α = (α1, . . . , αn) is a multiindex, consider a norm

‖q‖ = max
α

|qα|
α1! . . . αn!

(α1 + . . .+ αn)!
. (2.5)

The following proposition is also elementary and is proved in [5]:

Proposition 2.6. Let x, y ∈ [−1, 1]n, q ∈ R[x1, . . . , xn], deg q = d. Then

|q(x)− q(y)| 6 d2nd−1/2‖q‖|x− y|.

The next fact is proved in [6]:

Proposition 2.7. Let f ∈ R[y1, . . . , yn] be a homogeneous polynomial of degree d. Assume that

f is strictly positive on the simplex

∆n = {y ∈ R
n : yi > 0,

∑

i

yi = 1}. (2.6)

Let f∗ = min
y∈∆n

f(y) > 0. Then, for

N >
d(d− 1)‖f‖

2f∗
− d,

all the coefficients of the polynomial (y1 + . . .+ yn)
Nf(y1, . . . , yn) are positive.

4



2.3 Proof of Theorem 2.1

Without loss of generality, we may assume that 0 6 gi(x) 6 1 for all x ∈ S. If not, we
can normalize gi multiplying them by positive constants. This procedure does not affect the
statements and the fact that we control the bounds.

Theorem 2.8. Under the conditions of Theorem 2.1, let p∗ = min
x∈S

p(x) > 0. Then

p(x)− c0d
22d−1/2‖p‖

m−1
∑

i=0

(1− gi(x))
2kgi(x) >

p∗

2
, ∀x ∈ [−1, 1]2, (2.7)

where an integer k is chosen in such a way that (2k + 1)p∗ > mc0d
22d+1/2‖p‖, and c0 is the

constant from Lemma 2.4.

Proof. Let x ∈ S. Then p(x) > p∗. The elementary inequality

(1− t)2kt <
1

2k + 1
, 0 6 t 6 1, k > 0, (2.8)

and our choice of k give that the absolute value of the second term in the left hand side of (2.7)
does not exceed p∗

2
.

Assume now that x ∈ [−1, 1]2 \ S. Let y ∈ S, dist(x, y) = dist(x, S). Then Proposition
(2.6) and Lemma 2.4 give

p(x) > p(y)− |p(x)− p(y)| > p∗ − d22d−1/2‖p‖ dist(x, S) > p∗ + c0d
22d−1/2‖p‖gmin(x), (2.9)

where gmin(x) is the (negative) minimum of the values of gi(x). Note that (1− gmin(x))
2k > 1.

From (2.9), we get

p(x)− c0d
22d−1/2‖p‖(1− gmin(x))

2kgmin(x) > p(x)− c0d
22d−1/2‖p‖gmin(x) > p∗.

On the other hand, (2.8) and the choice of k imply that the terms of (2.7) with gi(x) > 0
contribute to the sum with no more than

(m− 1)c0d
22d−1/2‖p‖

2k + 1
6
p∗

2
.

Finally, the remaining terms in (2.7) with gi(x) < 0 may only increase the left hand side.

Theorem 2.9. Let p ∈ R[x1, x2], p∗ = min
x∈[−1;1]2

p(x) > 0. Then, for some M ∈ N,

p =
∑

|α|6M

bαγ
α1

1 γα2

2 γα3

3 γα4

4 , (2.10)

where bα > 0,

γ1(x) =
1

4
(1 + x1), γ2(x) =

1

4
(1− x1), γ3(x) =

1

4
(1 + x2), γ4(x) =

1

4
(1− x2). (2.11)

This theorem was obtained in [6] for arbitrary convex polyhedra. We reproduce its proof for
the square [−1, 1]2, because the explicit form of the results is considerably simpler.
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Proof. Consider the following R-algebra homomorphism

ϕ : R[y1, y2, y3, y4] → R[x1, x2], yi 7→ γi(x).

In order to prove the theorem, it suffices to find a polynomial p̃ ∈ R[y1, y2, y3, y4] with positive
coefficients such that ϕ(p̃) = p. Let p =

∑

i+j6d

pijx
i
1x

j
2. Consider the following homogeneous

polynomial

p̃1(y) =
∑

i+j6d

2i+jpij(y1 − y2)
i(y3 − y4)

j(y1 + y2 + y3 + y4)
d−i−j .

Note that ϕ(p̃1) = p, because

ϕ(y1 + y2 + y3 + y4) = 1, 2ϕ(y1 − y2) = x1, 2ϕ(y3 − y4) = x2.

Let
V = {y ∈ ∆4 : 2y1 + 2y2 = 2y3 + 2y4 = 1},

where ∆4 is the simplex (2.6). If y ∈ V , then p̃1(y) = p(4y1−1, 4y3−1) > p∗, as (4y1−1, 4y3−
1) ∈ [−1, 1]2. For an arbitrary y let y0 ∈ V , dist(y, y0) = dist(y, V ). Then, from Proposition
2.6,

p̃1(y) > p̃1(y0)− |p̃1(y)− p̃1(y0)| > p∗ − d222d−1‖p̃1‖ dist(y, V ). (2.12)

Let
r(y) = 2(y1 + y2 − y3 − y4)

2.

It is easy to see that ϕ(r) = 0 and

r(y) = (2y1 + 2y2 − 1)2 + (2y3 + 2y4 − 1)2 if y ∈ ∆4.

If we rewrite the last expression in the coordinates y1+y2√
2
, y1−y2√

2
, y3+y4√

2
, y3−y4√

2
(having made two

rotations over π/4), we get
r(y) > 8 dist(y, V )2, y ∈ ∆4. (2.13)

Let

p̃2(y) = p̃1(y) +
24d−6d4‖p̃1‖2

p∗
(y1 + y2 + y3 + y4)

d−2r(y).

We still have ϕ(p̃2) = p. Let us apply the inequalities (2.12) and (2.13):

p̃2(y) > p∗ − d222d−1‖p̃1‖ dist(y, V ) +
24d−3d4‖p̃1‖2

p∗
dist(y, V )2

=
24d−3d4‖p̃1‖2

p∗

(

dist(y, V )− p∗
d222d−1‖p̃1‖

)2

+
p∗
2

>
p∗
2
, y ∈ ∆4.

Finally, Proposition 2.7 with N > d(d−1)‖p̃2‖
p∗

− d gives us that all the coefficients of

p̃(y) = (y1 + y2 + y3 + y4)
N p̃2(y)

are positive. Applying the homomorphism ϕ to p̃, we get the desired representation of p.
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Proof of Theorem 2.1. Let us apply Theorem 2.8 to p. It is enough to find a representation
of the first term in the left hand side of (2.7), because the second term, if moved to the right
hand side, already has the desired form. By Theorem 2.9, the left hand side of (2.7) can be
represented in the form (2.10). Note that γi can be rewritten as

1

4
(1± x1,2) =

1

8

(

(1± x1,2)
2 + g0(x) + x22,1

)

. (2.14)

Substituting the last equality into (2.10), we get the desired representation for (2.7) and there-
fore for p.

Remark 2.10. The proof of Theorem 2.1 is constructive. We have a polynomial p such that
p(x) > p∗ > 0, x ∈ S. Then

p(x) = p̂(x) + c0d
22d−1/2‖p‖

m−1
∑

i=0

(1− gi(x))
2kgi(x), (2.15)

where k is chosen in such a way that (2k + 1)p∗ > mc0d
22d+1/2‖p‖. The second term in the

right hand side of (2.15) is an explicit expression of the form (2.3), and the coefficients of p̂
can be found from (2.15). From Theorem 2.8, we know that p̂(x) > p∗/2, x ∈ [−1; 1]2. It now
suffices to represent

p̂(x) =
∑

k+l6d̂

p̂kl x
k
1x

l
2

in the form (2.3). Consider the following polynomials in R[y1, y2, y3, y4]:

p̃1(y) =
∑

i+j6d̂

2i+j p̂ij(y1 − y2)
i(y3 − y4)

j(y1 + y2 + y3 + y4)
d̂−i−j ,

p̃2(y) = p̃1(y) +
24d̂−5d̂4‖p̃1‖2

p∗
(y1 + y2 + y3 + y4)

d̂−2(y1 + y2 − y3 − y4)
2,

and

p̃(y) = (y1 + y2 + y3 + y4)
N p̃2(y), where N >

d̂(d̂− 1)‖p̃2‖
p∗

− d̂.

From the proof of Theorem 2.9, if we replace in the last expression yi with γi(x) defined by
(2.11), we will get p̂(x). The coefficients of p̃ are positive. Therefore, if we substitute yi with γi
and then apply (2.14), we will get an expression of the form (2.3) for p̂(x). Combining it with
(2.15), we get the desired expression for p.

2.4 Proof of Theorem 2.3

Let gi be defined by (2.1). Let us denote

Si = {x ∈ R
2 : gi(x) = 0}, Si(C) = {x ∈ C

2 : gi(x) = 0}. (2.16)

Lemma 2.11. Let q ∈ R[x1, x2], q(x) = 0 on some arc of Si. Then gi | q.
Proof. Consider q as an analytic function on Si(C). The set Si(C) is connected, so q ≡ 0 on the
whole Si(C). Hilbert’s Nullstellensatz (see, for example, [12, Section 16.3]) gives that gi | qk for
some integer k (in C[x1, x2] and, consequently, in R[x1, x2]). The polynomial gi is irreducible,
so gi | q.
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Lemma 2.12. Let λi 6= λj. Then Si(C) ∩ Sj(C) 6= ∅.

Proof. Let the circles Si and Sj be the solution sets of the equations

(x1 − a1)
2 + (x2 − a2)

2 = R2
1, (x1 − b1)

2 + (x2 − b2)
2 = R2

2.

Subtracting one from another, we get a system of a linear and a quadratic equation. The linear
one is solvable (because λi 6= λj), and after substituting the solution, we get a non-degenerate
quadratic equation in one complex variable, which also has a solution.

Proof of Theorem 2.3. Assume that p = gigj satisfies (2.3). On the set Si∩∂S, the left hand side
of (2.3) equals zero. All the terms r2k and r2klgk in the right hand side of (2.3) are non-negative
on Si ∩ ∂S, and therefore are equal to zero on this set. By Lemma 2.11, they all are multiples
of gi. Similarly, all the terms in the right hand side are multiples of gj. Then gi | rk, gj | rk,
and g2i g

2
j | r2k.

Next, for k 6= i the polynomials gk and gi are coprime. So, g2i | r2kl for k 6= i, and g2j | r2kl
for k 6= j. Then any term in the right hand side of (2.3) is a multiple of either g2i gj or gig

2
j . If

we divide (2.3) by gigj , we get that the left hand side is identically 1, and the right hand side
equals zero at least on Si(C) ∩ Sj(C). This contradiction proves the theorem.

2.5 Proof of Lemma 2.4

Lemma 2.13. Let S1, S2 be a pair of intersecting circles with centers at λ1, λ2 and of radii

R1, R2. Let y, y′ be the intersection points of S1 and S2, and let ϕ = ∠(S1, S2) be the angle

between the circles S1 and S2. Assume that x lies inside of the first circle, so that |x−λ1| < R1,

and suppose also that the points x and λ2 are in the same half-plane with respect to the line

λ1y. Finally, let |x− y| 6 min(R1, R2) sinϕ/2. Then

|x− y| 6 2

sinϕ/2
max
i=1,2

(Ri − |x− λi|) . (2.17)

Proof. It is easy to see that

∠yλ1λ2 + ∠yλ2λ1 = ϕ or π − ϕ.

So, max (∠yλ1λ2,∠yλ2λ1) > ϕ/2, which gives

|yy′|
2

= R1 sin∠yλ1λ2 = R2 sin∠yλ2λ1 > min(R1, R2) sinϕ/2 > |x− y|. (2.18)

Denote the intersection points of the line λ1λ2 with the circles S1 and S2 by z
′ and z respectively

(the distance between z and z′ is chosen to be smallest possible). From (2.18) it follows that x
lies inside the sector λ1yz

′.
Let us show that at least one of the following conditions holds:
1) ∠(xy, S1) > ϕ/2;
2) |x− λ2| < R2 and ∠(xy, S2) > ϕ/2.
Indeed, ∠zyz′ = ϕ/2 or (π − ϕ)/2. If x does not belong to the intersection of the disks,

then ∠(xy, S1) > ∠zyz′ > ϕ/2, and the first condition holds. If x belongs to the intersection,
then max (∠(xy, S1),∠(xy, S2)) > ϕ/2, and either 1) or 2) is true.
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The cases 1) and 2) can be treated in a similar way. Let us restrict ourselves to the first
one. Denote ψ = ∠(xy, S1). By the cosine theorem for the triangle xyλ1, we have

|x− λ1| =
√

R2
1 + |x− y|2 − 2R1|x− y| sinψ 6

√

R2
1 − R1|x− y| sinψ,

because, by assumption, |x− y| 6 R1 sinϕ/2 6 R1 sinψ. Consequently,

R1 − |x− λ1| > R1



1−
√

1− |x− y| sinψ
R1



 >
|x− y| sinψ

2
>

|x− y| sinϕ/2
2

,

and this implies (2.17).

Proof of Lemma 2.4. Let x /∈ S. Then there exists i such that gi(x) < 0. Let y be the closest
to x point of S, dist(x, S) = |x− y|. It is clear that y ∈ Si (see (2.16)). If y belongs to Si only
for a single i, or if it is a tangent point of Si and Sj (but not an intersection point), then

dist(x, S) = |x− y| = Ri − |x− λi| =
R2

i − |x− λi|2
Ri + |x− λi|

6
−gi(x)
Rmin

, i 6= 0, (2.19)

dist(x, S) = |x− y| = |x|2 − 1

|x|+ 1
6

−g0(x)
R0

for i = 0, (2.20)

and there is nothing more to prove.
Let ε = Rmin sin(ϕmin/2), and consider the case |x − y| > ε. Then −gi(x) > Rminε (see

(2.19), (2.20)). However, dist(x, S) 6
√
2 + 1 for all x ∈ [−1, 1]2. Then,

dist(x, S) 6 −
√
2 + 1

εRmin
gi(x),

which also completes the proof in this case.
Suppose now that |x−y| < ε and y is an intersection point of multiple circles. First assume

that none of these circles is S0. Then there exists Sj such that it contains y and its center λj
lies in the same half-plane as x with respect to λiy (otherwise, the point y would not be the
closest to x point of S). By Lemma 2.13,

|x− y| 6 −2min gi(x)

Rmin sin(ϕmin/2)
6

−(
√
2 + 1)min gi(x)

R2
min sin(ϕmin/2)

.

The case when one of the circles is S0 can be treated in a similar way, there are several options.
There may exists a pair of circles Si, Sj , i, j > 0, satisfying the conditions of Lemma 2.13.
Or, alternatively, one of the circles may satisfy Condition 1) from the proof of Lemma 2.13.
These two cases were already considered. The third alternative is that the point x lies outside
of S0 and the angle between xy and S0 is not less that ϕ/2. Here a similar cosine-theorem
computation can be made. We omit further details.
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3 Polynomials of almost-normal elements

3.1 Positive elements of C∗-algebras

Let A be a unital C∗-algebra with the unit 1. Recall that a Hermitian element b ∈ A is called
positive (b > 0) if one of the following two equivalent conditions holds (see, for example, [4,
§1.6]):

1. σ(b) ⊂ [0,+∞).

2. b = h∗h for some h ∈ A.

The set of all positive elements in A is a cone: if a, b > 0, then αa+βb > 0 for all real α, β > 0.
There exists a partial ordering on the set of Hermitian elements of A: a 6 b iff b− a > 0. The
ordering is consistent with addition. For a Hermitian b, it is true that −‖b‖1 6 b 6 ‖b‖1 and,
moreover, if 0 6 b 6 β1, β ∈ R, then ‖b‖ 6 β. The following fact is also well known.

Proposition 3.1. Let h ∈ A, ρ > 0. Then h∗h > ρ21 if and only if the element h is invertible

and ‖h−1‖ 6 ρ−1.

3.2 Estimate of the norm ‖p(a)‖
Consider a polynomial p ∈ C[x1, x2]. It can be uniquely represented in the form

p(z) =
∑

k,l

pklz
kz̄l. (3.1)

In this section, we associate z with x1+ ix2, z̄ with x1− ix2, and p(z) with p(x1, x2). For a ∈ A,
denote

p(a) =
∑

k,l

pkla
k(a∗)l. (3.2)

Theorem 3.2. Let p ∈ C[x1, x2]. There exists a constant C(p) such that the estimate

‖p(a)‖ 6 pmax + C(p)δ (3.3)

holds for all a satisfying (1.2). Here p(a) is defined by (3.2), and pmax = max
|z|61

|p(z)|.

Proof. Consider the polynomial
q(z) = p2max − |p(z)|2. (3.4)

It is non-negative on the disk {z ∈ C : |z| 6 1} and has real coefficients as a polynomial in
x1, x2. By Proposition 2.2, it admits a representation

q(z) =
N
∑

j=0

rj(z)
2 +

(

N
∑

j=0

sj(z)
2

)

(

1− |z|2
)

.

The polynomials q, rj, sj are real, their coefficients at zk z̄l and zlz̄k are mutually conjugate.
Therefore, q(a), rj(a), sj(a) are Hermitian elements of A. Using (1.3), we get

∥

∥

∥

∥

∥

q(a)−
N
∑

j=0

rj(a)
2 −

N
∑

j=0

sj(a) (1− aa∗) sj(a)

∥

∥

∥

∥

∥

6 C1(p)δ. (3.5)
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The element 1− aa∗ is positive, and therefore can be represented as h∗h for some h ∈ A. So,
in the last equation, all the terms in sums are positive. In view of the results of Section 3.1,
this gives q(a) > −C1(p)δ1, from which, using (3.4) and (1.3), we get

p(a)∗p(a) 6
(

p2max + C2(p)δ
)

1

and, therefore,

‖p(a)‖ 6 pmax +
C2(p)δ

2pmax
.

Remark 3.3. The fact that C = C(p) in (3.3) may depend on p is essential. As an example,
consider A =M2(C),

a =

(

0
√
δ

0 0

)

, 0 < δ < 1.

It is clear that a satisfies (1.2). Let ε < 1. There exists a continuous function f such that
f(z) = −1/z for |z| > ε and |f(z)| 6 1/ε, |z| 6 1. There also exist a polynomial q of the type
(3.1) such that |q(z)− f(z)| 6 ε, |z| 6 1. Now, let

p(z) =
1

ε

(

z + z2q(z)
)

.

Then pmax 6 2 + ε2, but p(a) = a/ε and ‖p(a)‖ =
√
δ/ε. Taking ε small, we get that (3.3) can

not hold for any fixed C.

Theorem 3.4. Let Rj > 0, j = 1, . . . , m− 1. Consider the set

S = {z ∈ C : |z| 6 1, |z − λj | > Rj , j = 1, . . . , m− 1} (3.6)

(we assume S 6= ∅). Let p ∈ C[x1, x2]. For each ε > 0 there exists a constant C(p, ε) such that

the estimate

‖p(a)‖ 6 max
z∈S

|p(z)|+ ε+ C(p, ε)δ

holds for all a ∈ A satisfying

‖a‖ 6 1, ‖[a, a∗]‖ 6 δ, ‖(a− λj)
−1‖ 6 R−1

j , j = 1, . . . , m− 1. (3.7)

Proof. The proof is similar to the proof of Theorem 3.2, with using Theorem 2.1 instead of
Proposition 2.2. Consider

q(z) = p2max + εpmax − |p(z)|2,
where now pmax = max

x∈S
|p(x)|. Note that (3.7) implies gi(a) > 0. Similarly to the proof of

Theorem 3.2, we get
q(a) > −C1δ1,

p(a)p(a)∗ 6
(

p2max + εpmax + C2δ
)

1,

and

‖p(a)‖ 6 pmax

√

1 +
ε

pmax
+
C2(p, ε)δ

p2max

6 pmax + ε+
C2(p, ε)δ

p2max

.
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Corollary 3.5. Under the conditions of Theorem 3.4, there exist a constant C(p, ε) such that

‖ Im p(a)‖ 6 max
z∈S

| Im p(z)|+ ε+ C(p, ε)δ.

Proof. It suffices to apply Theorem 3.4 to the polynomial q(z) = p(z)−p(z)
2i

.

Remark 3.6. In other words, if the values of p on S are “almost real”, then the element p(a)
itself is “almost self-adjoint”.

Corollary 3.7. Under the assumptions of Theorem 3.4, there exists a constant C(p, ε) such

that

‖p(a)p(a)∗ − 1‖ 6 max
z∈S

∣

∣|p(z)|2 − 1
∣

∣+ ε+ C(p, ε)δ, (3.8)

‖p(a)∗p(a)− 1‖ 6 max
z∈S

∣

∣|p(z)|2 − 1
∣

∣+ ε+ C(p, ε)δ. (3.9)

Proof. It is sufficient to apply Theorem 3.4 to the polynomial q(z) = |p(z)|2− 1 and use (1.3).

Remark 3.8. Denote the right hand side of (3.8), (3.9) by γ. If γ < 1, then

(1− γ)1 6 p(a)∗p(a) 6 (1 + γ)1, (1− γ)1 6 p(a)p(a)∗ 6 (1 + γ)1,

which implies that p(a) and p(a)∗p(a) are invertible. The element u = p(a) (p(a)∗p(a))−1/2 is
unitary (because it is also invertible and uu∗ = 1) and close to u:

‖p(a)− u‖ 6
√

1 + γ

(

1√
1− γ

− 1

)

→ 0 as γ → 0.

This means that if the absolute values of p on S are close to 1, then the element p(a) is close
to a unitary one.

3.3 Resolvent estimates for p(a)

Theorem 3.9. Let Rj > 0, j = 1, . . . , m− 1, let S be defined by (3.6). Let also p ∈ C[x1, x2].
Then for each ε > 0 and κ > 0 there exist constants C(p,κ, ε), δ0(p,κ, ε) such that for all

δ < δ0(p,κ, ε) and for all µ ∈ C satisfying dist(µ, p(S)) > κ the estimate

‖(p(a)− µ1)−1‖ 6 κ
−1 + ε+ C(p,κ, ε)δ

holds for all a ∈ A satisfying (3.7).

Proof. Let gi, i = 0, . . . , m− 1, be the polynomials from Theorem 2.1:

g0(z) = 1− |z|2, gi(z) = |z − λi|2 − R2
i , i = 1, . . . , m− 1.

Fix γ > 0 and consider
q(z) = |p(z)− µ|2 − κ

2 + γ.

The coefficients of q considered as a polynomial in x1 and x2 are real. Moreover, q(z) > γ > 0
for z ∈ S. By Theorem 2.1, there exists a representation

q(z) =

N
∑

j=1

rj(z)
2 +

m−1
∑

i=0

(

N
∑

j=0

rij(z)
2

)

gi(z).
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The polynomials q, rj, rij , gi are real, so the elements q(a), rj(a), rij(a), gi(a) are Hermitian.
Similarly to the proof of Theorem 3.2, we obtain

q(a) >
m−1
∑

i=0

(

N
∑

j=0

rij(a)gi(a)rij(a)

)

− C ′δ1.

By Proposition 3.1, the inequality ‖(a − λi1)
−1‖ 6 R−1

i yields (a − λi1)(a − λi1)
∗ > R2

i .
Therefore, gi(a) > 0 and gi(a) = h∗ihi for some hi ∈ A. Then

q(a) >
m−1
∑

i=0

N
∑

j=0

(hirij(a))
∗ (hirij(a))− C ′δ1 > −C ′δ1.

Using the definition of q, we get

(p(a)− µ1)∗(p(a)− µ1) >
(

κ
2 − γ − C ′′δ

)

1. (3.10)

The constant C ′′, in general, depends on p,κ, γ, and µ. Let us show that it can be chosen to
be independent of µ. For |µ| > ‖p(a)‖+ κ the statement of the theorem becomes trivial, as

∥

∥(p(a)− µ1)−1
∥

∥ 6
1

|µ| − ‖p(a)‖ 6 κ
−1.

So, we can restrict ourselves to a compact set

M = {µ ∈ C : |µ| 6 ‖p(a)‖+ κ, dist(µ, p(S)) > κ}.

The condition q(z) > γ holds there. By Remark 2.10, for the coefficients rj and rij we have
explicit formulas, which depend on µ continuously. Therefore, the constant C ′′ may be chosen
independent on µ ∈M .

Let us choose γ and δ0 such that γ + C ′′δ 6 κ2/2. Now, (3.10) and Proposition 3.1 give

‖(p(a)− µ1)−1‖ 6
(

κ
2 − γ − C ′′δ

)−1/2
6 κ

−1 +
γ

κ2
+
C ′′δ

κ2
.

The choice γ 6 εκ2 completes the proof.

Remark 3.10. In the case [a, a∗] = 0, the standard functional calculus gives an implication

σ(a) ⊂ S ⇒ ‖(p(a)− µ1)−1‖ 6
1

dist(µ, p(S))
.

Theorem 3.9 is an analog of this statement for non-normal elements. We obtain a weaker
estimate of (p(a)− µ1)−1, while assuming a stronger condition

‖(a− λj1)
−1‖ 6 R−1

j , j = 1, . . . , m− 1,

instead of σ(a) ⊂ S.
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3.4 Estimates of pseudospectra

Definition 3.11. Let A be a unital Banach algebra, a ∈ A. The set

σε(a) = {λ ∈ C : ‖(a− λ1)−1‖ > 1/ε} ∪ σ(a)

is called the ε-pseudospectrum of the element a.

Its main properties can be found, for example, in [3, Ch. 9]. Note that, under the assumptions
of Theorem 3.9, σε(a) ⊂ Oε(S) for all ε > 0, where Oε(S) is the ε-neighbourhood of S. In the
case of normal a the following equality holds:

σκ(p(a)) = Oκ (p(σ(a))) , κ > 0.

Theorem 3.9 is an analogue of the last statement.

Corollary 3.12. Under the assumptions of Theorem 3.9, for all ε > 0 and κ > 0 there exist

C(p,κ, ε) and δ0(p,κ, ε) such that

σκ′(p(a)) ⊂ Oκ(p(S)), (κ′)−1 = κ
−1 + ε+ C(p, χ, ε)δ, δ < δ0(p,κ, ε).

Proof. Assume that dist(µ, p(S)) > κ. By Theorem 3.9, ‖(p(a) − µ1)−1‖ 6 (κ′)−1 and so
µ /∈ σκ′ (p(a)).
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