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Abstract

We prove that the electromagnetic fields in dielectric media whose

susceptibility follows a fractional power-law dependence in a wide fre-

quency range can be described by differential equations with time

derivatives of noninteger order. We obtain fractional integro-differential

equations for electromagnetic waves in a dielectric. The electromag-

netic fields in dielectrics demonstrate a fractional power-law relax-

ation. The fractional integro-differential equations for electromagnetic

waves are common to a wide class of dielectric media regardless of the

type of physical structure, the chemical composition, or the nature of

the polarizing species (dipoles, electrons, or ions).
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1 Introduction

Debye formulated his theory of dipole relaxation in dielectrics in 1912 [1]. A

large number of dielectric relaxation measurements show that the classical

Debye behavior is very rarely observed experimentally [2, 3, 4]. Dielectric

measurements by Jonscher for a wide class of various substances confirm that

different dielectric spectra are described by power laws [2, 3].

For the majority of materials, the dielectric susceptibility in a wide fre-

quency range follows a fractional power-law called the universal response

[2, 3]. This law is found both in dipolar media beyond their loss peak fre-

quency and in media where the polarization arises from movements of either

ionic or electronic hopping charge carriers. It was shown in [5] that the

frequency dependence of the dielectric susceptibility χ̃(ω) = χ′(ω)− iχ′′(ω)

follows a common universal pattern for virtually all kinds of media over many

decades of frequency,

χ′(ω) ∼ ωn−1, χ′′(ω) ∼ ωn−1, (ω ≫ ωp), (1)

and

χ′(0)− χ′(ω) ∼ ωm, χ′′(ω) ∼ ωm, (ω ≪ ωp), (2)

where χ′(0) is the static polarization, 0 < n,m < 1, and ωp is the loss peak

frequency. We note that the ratio of the imaginary to the real component

of the susceptibility is independent of frequency. The frequency dependence

given by equation (1) implies that the imaginary and real components of the

complex susceptibility at high frequencies satisfy the relation

χ′′(ω)

χ′(ω)
= cot

(πn

2

)

, (ω ≫ ωp). (3)

Experimental behavior (2) leads to a similar frequency-independent rule for
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the low-frequency polarization decrement,

χ′′(ω)

χ′(0)− χ′(ω)
= tan

(πm

2

)

, (ω ≪ ωp). (4)

The laws of universal response for dielectric media [2, 3] can be described

using fractional calculus [6]. The theory of integrals and derivatives of non-

integer order goes back to Leibniz, Liouville, Riemann, Grunwald, and Let-

nikov [6]. Fractional analysis has found many applications in recent studies

in mechanics and physics. The interest in fractional equations has been grow-

ing continuously during the last few years because of numerous applications.

In a short time, the list of applications has becomes long (see, e.g., [7, 8, 9]).

In Refs. [10, 11, 12, 13], fractional calculus has used to explain the nature of

nonexponential relaxation, and equations were obtained containing operators

of fractional integration and differentiation.

Here, we prove that a fractional power-law frequency dependence in a time

domain gives integro-differential equations with derivatives and integrals of

noninteger order. We obtain fractional equations that describe electromag-

netic waves for a wide class of dielectric media. The power laws of Jonscher

are represented by fractional integro-differential equations. The electromag-

netic fields in the dielectric media demonstrate universal fractional damping.

The suggested fractional equations are common (universal) to a wide class

of materials regardless of the type of physical structure, the chemical com-

position, or the nature of the polarizing species.
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2 Fractional equations for universal laws

We consider Eqs. (1) and (3). For the region ω ≫ ωp, universal fractional

power law (1) can be presented in the form

χ̃(ω) = χα (iω)
−α, (0 < α < 1) (5)

with some positive constant χα and α = 1− n. Here,

(iω)α = |ω|α exp{i α π sgn(ω)/2}.

It is easy to see that relation (3) is satisfied for (5).

The polarization density P(t, r) can be written as

P(t, r) = F−1

(

P̃(ω, r)
)

= ε0F
−1

(

χ̃(ω)Ẽ(ω, r)
)

, (6)

where P̃(ω, r) is the Fourier transform F of P(t, r). Substitution of (5) into

(6) gives

P(t, r) = ε0χαF
−1

(

(iω)−αẼ(ω, r)
)

.

We note that the Fourier transform of the fractional Liouville integral

[6, 14]

(Iα+f)(t) =
1

Γ(α)

∫ t

−∞

f(t′)dt′

(t− t′)1−α

is given by the relation (see Theorem 7.1 in [6] and Theorem 2.15 in [14]):

(FIα+f)(ω) =
1

(iω)α
(Ff)(ω),

where 0 < Re(α) < 1 and f(t) ∈ L1(R), or 1 ≤ p < 1/Re(α) and f(t) ∈

Lp(R).

Using the fractional Liouville integral and the fractional power law (5)

for χ̃(ω) in the frequency domain, we obtain

P(t, r) = ε0χα(I
α
+E)(t, r), (0 < α < 1). (7)
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This equation shows that the polarization densityP(t, r) in the high-frequency

region is proportional to the fractional Liouville integral of the electric field

E(t, r).

We consider Eqs. (2) and (4). For the region ω ≪ ωp, universal fractional

power law (2) can be presented as

χ̃(ω) = χ̃(0)− χβ(iω)
β, (0 < β < 1) (8)

with some positive constants χβ, χ̃(0), and β = m. It is easy to prove that

equation (4) is satisfied.

We note that the Fourier transforms of the fractional Liouville derivative

[6, 14]

(Dβ
+f)(t) =

∂k

∂tk
(Ik−β

+ f)(t) =
1

Γ(k − β)

∂k

∂tk

∫ t

−∞

f(t′)dt′

(t− t′)β−k+1
,

where k − 1 < β < k, are given by the formula (see Theorem 7.1 in [6] and

Theorem 2.15 in [14]):

(FDβ
+f)(ω) = (iω)β(Ff)(ω),

where 0 < Re(β) < 1 and f(t) ∈ L1(R), or 1 ≤ p < 1/Re(β) and f(t) ∈

Lp(R).

Using the definition of the fractional Liouville derivative and fractional

power laws (8), we can represent polarization density (6) in the form

P(t, r) = ε0χ̃(0)E(t, r)− ε0χβ(D
β
+E)(t, r), (0 < β < 1). (9)

This equation shows that the polarization density P(t, r) in the low-frequency

region is determined by the fractional Liouville derivative of the electric field

E(t, r).

Relations (7) and (9) can be considered universal laws. These equa-

tions with integro-differentiation of noninteger order allow obtaining frac-

tional wave equations for electric and magnetic fields.
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3 Universal electromagnetic wave equation

Here, we obtain fractional equations for electromagnetic fields in dielectric

media. Using the Maxwell equations, we obtain

ε0
∂2E(t, r)

∂t2
+

∂2P(t, r)

∂t2
+

1

µ

(

grad divE−∇2E
)

+
∂j(t, r)

∂t
= 0. (10)

For ω ≫ ωp, the polarization density P(t, r) is related with E(t, r) by

equation (7). Substituting (7) in (10), we obtain the fractional differential

equation for the electric field

1

v2
∂2E(t, r)

∂t2
+

χα

v2
(D2−α

+ E)(t, r) +
(

grad divE−∇2E
)

= −µ
∂j(t, r)

∂t
, (11)

where 0 < α < 1, and v2 = 1/(ε0µ). We note that divE 6= 0 for ρ(t, r) = 0.

For ω ≪ ωp, the fields P(t, r) and E(t, r) are related by Eq. (9). In this

case, equation (10) becomes

1

v2β

∂2E

∂t2
−

aβ
v2β

(D2+β
+ E) +

(

grad divE−∇2E
)

= −µ
∂j

∂t
, (0 < β < 1), (12)

where

v2β =
1

ε0µ [1 + χ̃(0)]
, aβ =

χβ

1 + χ̃(0)
.

Equations (11) and (12) describe the time evolution of the electric field in

dielectric media. These equations are fractional differential equations [14]

with derivatives of the orders 2− α and 2 + β.

Using the Maxwell equations, we obtain the equation for the magnetic

field

∂2B(t, r)

∂t2
=

1

ε0µ
∇2B(t, r) +

1

ε0

∂

∂t
curlP(t, r) +

1

ε0
curlj(t, r). (13)

In experiments, the field B(t, r) can be presented as B(t, r) = 0 for t ≤ 0,

and B(t, r) 6= 0 for t > 0. For ω ≫ ωp, the polarization density P(t, r) is
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related to E(t, r) by equation (7), which leads to the fractional differential

equation for magnetic field in the form

1

v2
∂2B(t, r)

∂t2
+

χα

v2
(

0D
2−α
t B

)

(t, r)−∇2B(t, r) = µ curl j(t, r), (14)

where 0 < α < 1, v2 = 1/(ε0µ), and 0D
2−α
t is the Riemann-Liouville deriva-

tive [14] on [0,∞) such that

(0D
2−α
t f)(t) =

1

Γ(α)

∂2

∂t2

∫ t

0

f(t′)dt′

(t− t′)1−α
, (0 < α < 1).

For ω ≪ ωp, we obtain

1

v2β

∂2B(t, r)

∂t2
−

aβ
v2β

(

0D
2+β
t B

)

(t, r)−∇2B(t, r) = µ curl j(t, r), (15)

where 0 < β < 1, and

v2β =
1

ε0µ [1 + χ̃(0)]
, aβ =

χβ

1 + χ̃(0)
.

Equations (14) and (15) are fractional differential equations that describe the

magnetic field in dielectric media and demonstrate a power-law relaxation.

They can be written in a general form. Such a general fractional differential

equation for the magnetic field has the form

(0D
α
t B)(t, r)− λ1

(

0D
β
t B

)

(t, r)− λ2∇
2B(t, r) = f(t, r), (16)

where 1 ≤ β < α < 3. The curl of the current density of free charges

is regarded as an external source: f(t, r) = µλ2 curl j(t, r). Equation (16)

yields Eq. (14) for α = 2, 1 < β < 2, and

λ1 = −χα, λ2 = v2 = 1/(ε0µ).

Equation (15) can be written in form (16) for 2 < α < 3, β = 2, and

λ1 =
1

aβ
=

1 + χ̃(0)

χβ

, λ2 = −
v2β
aβ

=
−1

ε0µχβ

.
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An exact solution of Eq. (16) can be written in terms of Wright functions [14]

using Theorem 5.5 in [14]. We note that Wright functions can be represented

as derivatives of the Mittag-Leffler function Eα,β[z] (see [14]). Solutions of

equation (16) describe the fractional power-law damping of the magnetic

field in dielectric media. An important property of the evolution described

by the fractional differential equations is that the solutions have fractional

power-law tails.

4 Conclusion

We have prove that the electromagnetic fields and waves in a wide class of

dielectric media must be described by fractional differential equations with

derivatives of the order 2−α and 2+β, where 0 < α < 1 and 0 < β < 1. The

parameters α = 1−n and β = m are defined by the exponents n andm in the

experimentally measured frequency dependence of the dielectric susceptibil-

ity, called the universal response laws. An important property of the dynam-

ics described by fractional differential equations for electromagnetic fields is

that the solutions have fractional power-law tails. The suggested fractional

integro-differential equations for the universal electromagnetic waves in di-

electrics are common (universal) to a wide class of media regardless of the

type of physical structure, the chemical composition, or the nature of the

polarizing species (dipoles, electrons, or ions).

We note that the differential equations with derivatives of noninteger

order proposed for describing the electromagnetic field in dielectric media

can be solved numerically. For example, the Grunwald-Letnikov discretiza-

tion scheme [6] is used for numerically model the electromagnetic field in

dielectrics described by fractional differential equations. For small fraction-
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ality of α (or β), an ε-expansion [15] in the small parameter ε = α (or

ε = 1 − β) can be used. We note that a possible physical interpretation of

fractional integrals and derivatives can be connected with memory effects or

fractal properties of media (see, e.g., [16, 17]).
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