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ON PROLONGATIONS OF CONTACT MANIFOLDS

MIRKO KLUKAS AND BIJAN SAHAMIE

Abstract. In this note, we apply spectral sequences to both derive an obstruction
to the existence of n-fold prolongations and to derive a topological classification.
Prolongations were formerly used in an attempt to prove that every Engel structure
on M × S1 with characteristic line field tangent to the fibers is determined by
both the contact structure induced on a cross section and the twisting of the Engel
structure along the fibers. Our results show that the former results need some
modification: to determine the Engel structure we have to additionaly fix a class in
the first cohomology of M .

1. Introduction

The current note goals to present a discussion of prolongations of contact manifolds.

For an introduction to the notions we point the reader to [7, §2.2] and [1, §1.2] (or to
[8] for Engel structures). Given a 3-dimensional contact manifold (M, ξ), we define its

prolongation P(ξ) as the S1-bundle over M we obtain from projectivizing the contact
planes ξ (cf. §4 or see [7, §2.2] and [1, §1.2]). In [1], Adachi discusses prolongations of

contact manifolds and introduces a notion of an n-fold prolongation which he defines
as a fiberwise n-fold covering of P(ξ). This notion is then employed in an attempt to

prove that Engel structures D on 4-manifolds M × S1, where M is a closed, oriented
3-manifold and D is an Engel structure with characteristic foliation tangent to the

S1-fibers, are determined by the contact structure induced on a cross section ofM×S1

and the twisting of D along the S1-fibers (see [1, Theorem 1(2)]). His introduction

of the n-fold prolongation and the statement in his Theorem 1(2) in [1] suggest that
n-fold prolongations of contact manifolds always exist and are unique. Additionally,

the proof of Theorem 1(2) in [1] seems to essentially rest on a lifting argument which

however does not work, generally (cf. §2).

By applying methods from spin geometry, more precisely from the characterization
of spin structures, we see that there exists a topological obstruction to the existence

of n-fold prolongations. This obstruction is non-zero, mostly, showing that n-fold

prolongations do often not exist (see §5). On the other hand, we are able to show
a general existence result of 2-fold and 4-fold prolongations (cf. Proposition 5.1).

Along these lines we notice the following phenomenon: although there is a unique
connected, n-fold covering of the circle S1, ϕn : S1 −→ S1 say, there might be plenty

of n-fold coverings of the S
1-bundle P(ξ) that look like ϕn, fiberwise (see example
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in §2). A similar subtlety arises in the characterization of spin structures on vector
bundles (cf. [5, Theorem 1.7]). The results of this article are based on the following

observation.

Theorem 1.1. Given an S1-bundle P → M a fiberwise n-fold covering of M exists

if and only if the mod-n reduction en(E) of the Euler class e(E) is zero. In case of

existence, the isomorphism classes of fiberwise n-fold coverings of M stay in one-to-

one correspondence with elements of H1(M ;Zn).

In fact, the one-to-one correspondence results from a free and transitive H1(M ;Zn)-

action on the set of fiberwise n-fold coverings. With this in place, we are able to show
that every Engel structure D on M × S1 whose characteristic foliation is tangent to

the fibers is determined up to isotopy by a set of data associated to D, which are

specified in the following Theorem 1.2. This is a modified (corrected) version of [1,
Theorem 1(2)].

Theorem 1.2. Suppose we are given an oriented Engel structure D on M×S
1 whose

characteristic line field is tangent to the S1-fibers. Denote by ξ the contact structure

on the base given by ξ = π∗([D,D]) where π is the projection of M × S1 onto M .

Let n ∈ N denote the twisting number of D and α is a suitable class in H1(M ;Zn)

associated to D. Then D is determined up to isotopy by the set of data (ξ, n, α).

It is possible to give explicit descriptions of model Engel structures Dα
n(ξ) for every

set of data (ξ, n, α). In fact, using appropriate twistings of a model Engel structure
D0
n(ξ) on M × S1 along a set of generators for H1(M ;Z) it is possible to give models

for Dα
n(ξ). These descriptions are not necessary for our purposes, so we omit a general

discussion. However, the considerations presented in §2 may be thought of as a model

example to which we point the interested reader.

Acknowledgements. The first author wishes to thank Hansjörg Geiges for pointing
his interest to the subject and for contributing the proof of Lemma 3.1.

2. An Introducing Example

In this section we discuss an introducing example of prolongations and fiberwise

coverings. For a brief introduction of the relation between these two notions we point
the reader to §4. What is done in the remainder of this article can be explicitly

checked in terms of this example which we leave to the interested reader.

Let M = T 3 be the 3-dimensional torus with coordinates (x, y, z) and consider the

trivial S1-bundle P = T 3 × S1. Given some vector α ∈ Z3 ∩ [0, n − 1]3 we define a
fiberwise n-fold covering φα : T

3 × S1 → T 3 × S1 by setting

φα(p, θ) =
(

p, n θ + 〈α,p〉
)

,
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where we implicitly used the identification S1 = R/Z. When restricting to fibers of
the S1-bundle T 3×S1 the map φα looks like the unique (connected) non-trivial n-fold

covering of S1. Observe, that α determines a cohomology class in H1(T 3;Zn) which
we also denote by α: By the universal coefficient theorem we know that the group

H1(T 3;Zn) is isomorphic to Hom(H1(T
3;Z);Zn) whose every element – by fixing the

standard generators ofH1(T
3;Z) – is uniquely determined by a vector in Z3∩[0, n−1]3.

For α and α
′ with α 6= α

′ the coverings φα and φα′ are not equivalent: Suppose they
are equivalent, then there exists a covering isomorphism ψ such that φα ◦ ψ = φα′ .

The morphism ψ∗ induced on the fundamental group of T 3×S1 is given by the matrix

ψ∗ =









1 0 0 0
0 1 0 0

0 0 1 0
a b c 1









for suitable integers a, b, c ∈ Z and we have that (φα)∗ψ∗ = (φα′)∗. This implies the
equality α

′ = α+n · (a, b, c) which means that α′ = α considering the fact that they

are both vectors in Z
3 ∩ [0, n− 1]3.

Conversely, given a fiberwise n-fold covering φ : T 3×S1 → T 3×S1 we associate to it a

cohomology class α in H1(T 3;Zn) as follows: As outlined above we have to assign an
element in Zn to each of the standard generators of H1(T

3;Z). Take such a standard

generator, c say, and lift it to an embedded circle c̃ →֒ T 3 × S
1 which is unique up

to multiplication (in the sense of homotopy groups) with a S1-fiber. Write p2 for the

projection of T 3 × S1 to the S1-factor, then the composition of p2 with φ and c̃ gives
rise to a map S1 → S1 whose degree is denoted by k ∈ Z. We define

α(c) = [k],

where [k] ∈ Zn denotes the mod-n reduction of k. Note that, since φ is a fiberwise

n-fold covering, multiplication of c̃ with a S
1-fiber increases the degree by n. Thus

α(c) is independent of the choice of the lift c̃ and, hence, well-defined.

2.1. Non-equivalent n-fold Prolongations of (T 3, ξ). Choose ξ to be the unique

Stein fillable contact structure on T 3, i.e. ξ is defined by the kernel of the contact
1-form sin(2π z) dx+ cos(2π z) dy. Hence, the contact planes are spanned by ∂z and

Vp = cos(2π z) ∂x + sin(2π z) ∂y

where p = (x, y, z). The prolongation P(ξ) can be naturally identified with the 4-

dimensional torus T 3× S1 and the corresponding Engel structure D(ξ) is spanned by
the tangent vectors ∂θ and

cos(π θ) ∂z + sin(π θ) Vp.
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Using the fiberwise n-fold covering φα defined above we can pull back the Engel
structure D(ξ) to obtain a new Engel structure Dn

α
(ξ). At the point (p, θ) the Engel

plane Dn
α
(ξ)(p,θ) is spanned by the tangent vectors ∂θ and

cos
(

π
(

n θ + 〈α,p〉
))

∂z + sin
(

π
(

n θ + 〈α,p〉
))

Vp.

The Engel manifolds (T 3 × S1,Dn
α
(ξ)) are non-equivalent pairwise if we consider iso-

topies through Engel structures with characteristic foliation tangent to the S1-fibers.
These special isotopies for instance appear in the proof of Theorem 1.2. If considering

general isotopies through Engel structures, then it is not clear which of them are
isotopic and which are not.

3. Characterization of Fiberwise n-fold Coverings

Let us denote by ϕn : S1 → S1 the connected n-fold covering of the unit circle S1,

where n ∈ N is some positive integer. Suppose we are given a S1-bundle P → M
over a closed, oriented manifold M . We define a fiberwise n-fold covering of P

as a pair (Q, φ) where Q is a S1-bundle over M and φ is a smooth map Q→ P such

that its restriction φ|Qx
for every x ∈M is a map Qx → Px which corresponds to the

n-fold covering map ϕn : S1 → S1. Before we move our focus to the characterization
of fiberwise n-fold coverings we show that their existence is tied to the following

condition on the Euler classes of the bundles.

Lemma 3.1. Let πQ : Q → M and πP : P → M be two principal S1-bundles such

that there is a bundle map φ : Q → P whose restriction to the fibers corresponds to

the map ϕn, then e(P ) = n · e(Q).

Proof. Given vector fields RQ and RP , whose flows induce the S
1-actions on the circle

bundles Q and P . Let further αP be a connection 1-form on P . Hence, we have that

LRP
αP = 0 and αP (RP ) = 1 (cf. [3, Definition 7.2.3]). Further, denote by ωP the

curvature form on M . Then, (πP )
∗ωP = dαP and according to [3, p. 340] we have

e(P ) = −
[ωP
2π

]

.

Defining αQ as 1/n · φ∗(αP ) it is easy to verify that it is a connection 1-form on Q.

Denote by ωQ the associated curvature form. Then we have

(πQ)
∗ωQ = dαQ = 1/n · φ∗(πP )

∗ωP = (πQ)
∗(1/n · ωP ).

By the injectivity of π∗

Q (cf. Proposition 3.2) we see that ωQ = 1/n ·ωP which implies

e(Q) = −
[ωP
2π

]

= −
[ ωQ
2πn

]

= 1/n · e(P ).

�
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From the relationship of the Euler classes presented in Lemma 3.1 we see that the
mod-n reduction of the Euler class is an obstruction to the existence of fiberwise

n-fold coverings, i.e. the existence of fiberwise n-fold coverings imply the vanishing of
the mod-n reduction of the Euler class. Even more, in Theorem 1.1 we will see that

the vanishing of the mod-n reduction is equivalent to the existence of fiberwise n-fold
coverings. As in the characterization of spin structures used in [5, §1] (see especially

Sequences (1.2) and (1.4) of [5]), we find it opportune to work with Čech cohomology.

Proposition 3.2. A S1-bundle S1 −→ P −→ M induces the following long exact

sequence

0 // H1(M ;Zn)
π∗

// H1(P ;Zn)
ι∗

// H1(S1;Zn)
d

// H2(M ;Zn)

where the map d sends the generator of H1(S1;Zn) to the mod n reduction of the

Euler class e(P ).

To give a bit of explanation, observe, that an n-fold covering of the space P corre-
sponds to an element in H1(P ;Zn) (cf. [5, Appendix A]). A fiberwise n-fold covering

(Q, φ) is an ordinary n-fold covering and, thus, we may think of the pair [(Q, φ)] (or
simply [Q]) as an element in the first cohomology of P . The statement that it is

ϕn fiberwise is equivalent to saying that the pullback bundle ι∗(Q, φ) is isomorphic
to ϕn. In terms of the exact sequence presented in Proposition 3.2, this amounts to

saying that ι∗[Q] = [ϕn] where [ϕn] is a generator of H1(S1;Zn) (cf. [5, §1] and [5,
Appendix A]).

Proof of Theorem 1.1. By Proposition 3.2, the following sequence is exact

0 // H1(M ;Zn)
π∗

// H1(P ;Zn)
ι∗

// H1(S1;Zn)
d

// H2(M ;Zn).

In the following, the mod-n-reduction of the Euler class e(P ) will be denoted by
en. Suppose that a fiberwise n-fold covering Q exists. Then, [Q] is an element

of H1(P ;Zn) such that ι∗[Q] = [ϕn], because Q −→ P is the n-fold covering ϕn,
fiberwise. Thus, by exactness of the sequence,

0 = d(ι∗[Q]) = d[ϕn] = en.

Conversely, assuming that en = 0 we have that d[ϕn] = 0. By exactness, this im-

plies the existence of an element q ∈ H1(P ;Zn) which is mapped to [ϕn] under ι
∗.

But, q corresponds to a fiberwise n-fold covering of P . The isomorphism classes of
fiberwise coverings correspond to the set (ι∗)−1([ϕn]) on which π∗ – by the sequence

above – induces a free and transitive H1(M ;Zn)-action. Hence, we obtain a one-
to-one correspondence between H1(M ;Zn) and the isomorphism classes of fiberwise

coverings. �
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It remains to prove Proposition 3.2. We just sketch the proof, since it is analogous
to the proofs of the exact sequences used in the characterization of spin structures

(see [5, §1]).

Sketch of Proof of Proposition 3.2. We look at the Leray-Serre spectral sequence with

E2-page given by Ep,q
2 = Hp(M ;Hq(S1;Zn)) (see [6]). By applying the fact that

Hq(S1;Zn) is non-zero for q = 0, 1 only, we see that E1,0
∞

= E1,0
2 = H1(M ;Zn) and

that E0,1
∞

= E0,1
3 . Thus, we obtain the following exact sequence

0 // H1(M ;Zn) // H1(P ;Zn) // E0,1
2

d
0,1
2

// H2(M ;Zn).

Continuing with a careful analysis of the E1-page, we see that E
0,1
2 equals H1(S1;Zn)

and we obtain the exact sequence as proposed. With a discussion of d0,12 as done

similarly for the spin case (see [4] and cf. [5, §1]) it is possible to prove that d0,12 sends
the generator of H1(S1;Zn) to the mod-n reduction of the Euler class e(P ). �

4. Engel Structures with trivial Characteristic Line Field

An Engel structure is a maximally non-integrable 2-plane distribution D on a 4-

dimensional manifold Q, i.e. D is defined as a 2-plane bundle for which E = [D,D] is
of rank 3 and [E , E ] of rank 4. Inside the Engel structure D there is a line field L given

by the condition that [L, E ] ⊂ E . This line field is called the characteristic line field

and its induced foliation the characteristic foliation of D. Engel structures arise

in a natural way as prolongations of contact 3-manifolds. That is, given a contact 3-

manifold (M, ξ) one can consider the bundle Pξ whose fibers are the projectivizations
of the contact planes, i.e. for every p ∈ M a point q ∈ (Pξ)p accords a line l ⊂ ξp in

the contact plane. Note that by construction this 4-manifold carries the structure of
a S1-bundle ρ : Pξ →M overM . Furthermore, we obtain a natural plane distribution

Dξ ⊂ T Pξ given by

(Dξ)q = Tqρ
−1(l).

This distribution defines an Engel structure whose characteristic line field is tangent

to the S1-fibers of the bundle.

Now, assume we are given an oriented S1-bundle π : Q→M over some 3-manifoldM

carrying an Engel structure D ⊂ TQ with characteristic line field L tangent to the
fibers. Since the induced distribution [D,D] ⊂ TQ is preserved by any flow tangent

to L we obtain a well defined contact structure ξ = π∗([D,D]) on M . Furthermore,
one obtains the development map

φD : (Q,D) −→ (Pξ,Dξ)

by assigning to a point q ∈ Q the element φD(q) in (P(ξ))π(q) which corresponds to the

1-dimensional subspace Tqπ(Dq) of the contact plane ξπ(q). Note, that φD(D) = Dξ
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and that φD defines a fiberwise n-fold covering of P(ξ), where n ∈ N denotes the
degree of the development map restricted to a fiber. In contrast to the definition of

Adachi, we will refer to such (Q,D) as an n-fold prolongation of (M, ξ).

Conversely, given a fiberwise n-fold covering φ : Q→ P(ξ), we obtain an Engel struc-

ture D = (Tφ)−1
(

D(ξ)
)

on Q whose associated development map φD equals φ. Thus,
according to the classification of fiberwise n-fold coverings presented in Theorem 1.1

we have proved the following statement.

Corollary 4.1. A contact manifold (M, ξ) admits an n-fold prolongation if and only

if the mod-n reduction en(P(ξ)) of the Euler class e(P(ξ)) vanishes. The isomorphism

classes of n-fold prolongations stay in one-to-one correspondence with elements in

H1(M ;Zn). �

Now we have everything ready to prove a modified version of [1, Theorem 1(2)].

Proof of Theorem 1.2. Let D0 and D1 be two Engel structures on Q inducing the

same set of data (ξ, n, α). According to our classification of fiberwise n-fold coverings
of P(ξ) the n-fold prolongations (Q,D0) and (Q,D1) are both equivalent, i.e. there is

an isomorphism ψ which makes the following diagram commutative

(Q,D)

π

��
66

66
66

66
66

66
66

66
66

66
66

6

ψ
//

φD0

$$HHHHHHHHHHHHH
(Q,D′)

π

����
��

��
��

��
��

��
��

��
��

��
�

φD1

zzuuuuuuuuuuuuu

P(ξ)

��

(M, ξ).

Observe, that ψ is also an isomorphism of S1-bundles over the identity of M . Hence,

assuming that Q is the trivial S1-bundle M × S1, the bundle map ψ is isotopic to the
identity, showing that D0 ≃ D1. �

5. On Euler Classes of Prolongations

In §3 we derived a characterization of fiberwise n-fold coverings and we have seen that
the mod-n reduction of the Euler class determines their existence (see Theorem 1.1).

In §4 we have seen that every n-fold prolongation (Q,D) of a contact manifold (M, ξ)

naturally carries the structure of a fiberwise n-fold covering of the prolongation P(ξ)
via the development map φD (see Corollary 4.1). Thus, the existence of n-fold pro-

longations of contact manifolds is connected to the vanishing of the mod-n reduction
of the Euler class e(P(ξ)). Since this represents a special situation it is natural to ask

whether or not prolongations exist, always.
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Proposition 5.1. Every 3-dimensional contact manifold (M, ξ) admits both 2-fold
prolongations and 4-fold prolongations.

Proof. Suppose we are given an oriented contact manifold (M, ξ). Choose a Riemann-

ian metric on M and a trivialization of the tangent bundle TM . Then the 2-plane
field ξ can be described in terms of its corresponding Gauß map fξ :M → S2, assign-

ing to each x ∈ M the positive normal vector to ξ(x). Consider the tangent bundle
TS2 over the 2-sphere. In fact, f ∗

ξ TS
2 = ξ. Combining naturality of the Euler class

under pullback and the fact that e(TS2) = 2 · u0, where u0 is the positive generator

of H2(S2;Z), we conclude that

e(ξ) = 2 · f ∗

ξ u0.

Naturally, the unit-sphere bundle ξ1 of ξ is a fiberwise 2-fold covering of the prolon-
gation P(ξ) such that Lemma 3.1 implies e(P(ξ)) = 2 · e(ξ1). Combining this with the

equality above and the fact that e(ξ) = e(ξ1) we have

e(P(ξ)) = 4 · f ∗

ξ u0.

And, hence, both the mod-4 reduction e4(ξ) and the mod-2 reduction e2(ξ) of the

Euler class e(P(ξ)) vanishes. By Theorem 1.1 the result follows. �

As a consequence of the last proof we, additionally, see that n-fold prolongations of

contact manifolds (M, ξ) do often not exist: Recall that the class f ∗

ξ u0 classifies the
homotopy class of ξ over the 2-skeleton of M (cf. [3, §4.2]). Since in every homotopy

class of 2-plane fields there is an overtwisted contact structure it is easy to find
examples for which e(P(ξ)) = 4 · f ∗

ξ u0 is non-zero when reduced modulo n.
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