0－Schur 代数

邓邦明 ${ }^{1}$ ，杨桂玉 ${ }^{2}$
${ }^{1}$ 北京师范大学数学科学学院，北京 100875
2 山东理工大学理学院，淄博 255049
摘要：利用 Beilinson，Lusztig 和 MacPherson 关于量子 Schur 代数的一个几何构造以及 0－Hecke 代数的结构，我们给出了 0－Schur 代数的一个表现并确定了它们的表示型。
关键词：0－Schur 代数，表示型，表现
中图分类号：O153．3，O154．2

On 0－Schur algebras

Deng Bang－Ming ${ }^{1}$ ，Yang Gui－Yu ${ }^{2}$
${ }^{1}$ School of Mathematical Sciences，Beijing Normal University，Beijing 100875
${ }^{2}$ School of Science，Shandong University of Technology，Zibo 255049
Abstract：Based on a geometric construction of quantum Schur algebras due to Beilinson， Lusztig and MacPherson and the structure of 0－Hecke algebras，we give a presentation for 0 －Schur algebras and determine their representation type．
Key words：0－Schur algebra，representation type，presentation

0 Introduction

Quantum Schur algebras（or q－Schur algebras）were studied independently by Jimbo［1］and Dipper and James［2］．This class of algebras plays a central role in linking the representations of quantum general linear groups，quantum enveloping algebras of type A and Hecke algebras of symmetric groups；see for example $[3,4,5]$ ．This provides a q－analogue of the classical theory relating representation theories of Schur algebras，general linear groups and symmetric groups； see a thorough treatment in［6］．The structure and representation theory of quantum Schur algebras have been widely studied in the literature；see $[5,7]$ and the references given there． Recently，the representation type of quantum Schur algebras was completely determined in［8］， and a presentation for quantum Schur algebras was given in $[9,10]$ ．

It is known that the classical Schur algebras are the degeneration of quantum Schur algebras at $q=1$ ．Analogously，by considering their degeneration at $q=0$ ，we obtain the so－called 0 －Schur algebras which have been studied by Donkin［5，§2．2］in terms of 0－Hecke algebras of symmetric groups，as well as by Krob－Thibon［11］in connection with noncommutative

[^0]symmetric functions．Also， $\mathrm{Su}[12]$ has defined generic multiplication in certain subalgebras of 0 －Schur algebras and related them with the degenerate Ringel－Hall algebras．

The present paper is devoted to the study of the structure and representation type of 0 －Schur algebras．We first give a presentation for 0 －Schur algebras based on a geometric con－ struction of quantum Schur algebras due to Beilinson，Lusztig and MacPherson［13］and a presentation for the degenerate Ringel－Hall algebras of linear quivers given in［14，15］．We then determine the representation type of 0 －Schur algebras by using the structure and the rep－ resentation theory of 0 －Hecke algebras developed in $[16,17,18,19]$ and some techniques in the representation theory of algebras．

1 Quantum Schur algebras

In this section we recall the definition of quantum Schur algebras $S_{q}(n, r)$ due to Dip－ per－James［2］and also review the geometric construction of $S_{\boldsymbol{q}}(n, r)$ given by Beilinson－Lusztig - MacPherson［13］．We then apply multiplication formulas in［13，Lem．3．2］to obtain certain relations in $S_{\boldsymbol{q}}(n, r)$ ．Finally，we introduce the notion of Ringel－Hall algebras defined by Ringel ［20］．

Let $\mathfrak{S}=\mathfrak{S}_{r}$ denote the symmetric group on r letters with generating set $\left\{s_{i}=(i, i+1) \mid\right.$ $i \in I\}$ ，where $I=\{1,2, \ldots, r-1\}$ ．Let $\mathscr{A}=\mathbb{Z}[\boldsymbol{q}]$ be the polynomial ring with indeterminate \boldsymbol{q} ．By definition，the Hecke algebra $H_{\boldsymbol{q}}(r)=H_{\boldsymbol{q}}(\mathfrak{S})$ of \mathfrak{S} is the \mathscr{A}－algebra with generators T_{i} ， for $i \in I$ ，and relations

$$
\begin{cases}T_{i}^{2}=(\boldsymbol{q}-1) T_{i}+\boldsymbol{q}, & \text { for } i \in I ; \\ T_{i} T_{j}=T_{j} T_{i}, & \text { for } i, j \in I \text { with }|i-j|>1 \\ T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}, & \text { for } 1 \leqslant i<r-1 .\end{cases}
$$

If $w=s_{i_{1}} \cdots s_{i_{t}}=s_{j_{1}} \cdots s_{j_{t}}$ are two reduced expressions of $w \in \mathfrak{S}$ ，then $T_{i_{1}} \cdots T_{i_{t}}=$ $T_{j_{1}} \cdots T_{j_{t}}$ ．Thus，the element $T_{w}:=T_{i_{1}} \cdots T_{i_{t}}$ is well defined．It is well known that $H_{\boldsymbol{q}}(r)$ is a free \mathscr{A}－module with basis $\left\{T_{w} \mid w \in \mathfrak{S}\right\}$ ．

Fix a positive integer n and let $\Lambda(n, r)$ be the set of compositions of r into n parts．For $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Lambda(n, r)$ ，define for $1 \leqslant i \leqslant n$ ，

$$
R_{i}^{\lambda}=\left\{x \mid \lambda_{1}+\cdots+\lambda_{i-1}+1 \leqslant x \leqslant \lambda_{1}+\cdots+\lambda_{i}\right\},
$$

where $\lambda_{0}=0$ ．If $\lambda_{i}=0$ ，put $R_{i}^{\lambda}:=\emptyset$ by convention．In this way，we get a decomposition

$$
\{1,2, \ldots, r\}=R_{1}^{\lambda} \cup R_{2}^{\lambda} \cup \cdots \cup R_{n}^{\lambda}
$$

of $\{1,2, \ldots, r\}$ into a disjoint union of subsets．The subgroup

$$
\mathfrak{S}_{\lambda}:=\left\{w \in \mathfrak{S} \mid w R_{i}^{\lambda}=R_{i}^{\lambda}, 1 \leqslant i \leqslant n\right\}
$$

is called a Young subgroup of \mathfrak{S} defined by the composition λ ．We then define

$$
x_{\lambda}=\sum_{w \in \mathfrak{S}_{\lambda}} T_{w} \in H_{\boldsymbol{q}}(r)
$$

which satisfies（see for example［7，Lem．7．32］）

$$
\begin{equation*}
x_{\lambda} T_{i}=\boldsymbol{q} x_{\lambda} \text { for each } i \in I \text { with } s_{i} \in \mathfrak{S}_{\lambda} . \tag{1.0.1}
\end{equation*}
$$

Following Dipper and James［2］，the endomorphism algebra

$$
S_{\boldsymbol{q}}(n, r):=\operatorname{End}_{H_{\boldsymbol{q}}(r)}\left(\bigoplus_{\lambda \in \Lambda(n, r)} x_{\lambda} H_{\boldsymbol{q}}(r)\right)
$$

is called the（integral）quantum Schur algebra of bidegree（ n, r ）over \mathscr{A} ．For $\lambda, \mu \in \Lambda(n, r)$ and $w \in \mathfrak{S}$ ，define $\phi_{\lambda, \mu}^{w} \in S_{\boldsymbol{q}}(n, r)$ by

$$
\phi_{\lambda, \mu}^{w}: \bigoplus_{\nu \in \Lambda(n, r)} x_{\nu} H_{\boldsymbol{q}}(r) \longrightarrow \bigoplus_{\nu \in \Lambda(n, r)} x_{\nu} H_{\boldsymbol{q}}(r), \quad x_{\nu} h \longmapsto \delta_{\mu, \nu} T_{\mathfrak{S}_{\lambda} w \mathfrak{S}_{\mu}} h,
$$

where $T_{\mathfrak{S}_{\lambda} w \mathfrak{S}_{\mu}}=\sum_{x \in \mathfrak{S}_{\lambda} w \mathfrak{S}_{\mu}} T_{x}$.
We now recall the geometric construction of quantum Schur algebras given by Beilin－ son－Lusztig－MacPherson［13］．Let \mathbb{F} be a field and let V be an \mathbb{F}－vector space of dimension r ． Let $\mathfrak{F}=\mathfrak{F}(n, V)$ be the set of n－step flags

$$
V_{1} \subseteq V_{2} \subseteq \cdots \subseteq V_{n}=V .
$$

The group $G=\operatorname{GL}(V)$ acts naturally on \mathfrak{F} ．This induces a diagonal action of G on $\mathfrak{F} \times \mathfrak{F}$ defined by $g\left(\mathfrak{f}, \mathfrak{f}^{\prime}\right)=\left(g \mathfrak{f}, g \mathfrak{f}^{\prime}\right)$ ，where $g \in G$ and $\mathfrak{f}, \mathfrak{f}^{\prime} \in \mathfrak{F}$ ．

Let $\Xi(n, r)$ denote the set of matrices $A=\left(a_{i, j}\right) \in \mathbb{N}^{n \times n}$ with $a_{i, j}$ nonnegative integers and $\sum_{1 \leqslant i, j \leqslant n} a_{i, j}=r$ ．Then there is a bijection from $\mathfrak{F} \times \mathfrak{F} / G$ to $\Xi(n, r)$ sending the orbit of $\left(\mathfrak{f}, \mathfrak{f}^{\prime}\right)$ to $A=\left(a_{i, j}\right)$ with

$$
\begin{equation*}
a_{i, j}=\operatorname{dim}_{\mathbb{F}} \frac{V_{i} \cap V_{j}^{\prime}}{V_{i-1} \cap V_{j}^{\prime}+V_{i} \cap V_{j-1}^{\prime}} \text { for } 1 \leqslant i, j \leqslant n, \tag{1.0.2}
\end{equation*}
$$

where $\mathfrak{f}=\left(V_{1} \subseteq V_{2} \subseteq \cdots \subseteq V_{n}=V\right), \mathfrak{f}^{\prime}=\left(V_{1}^{\prime} \subseteq V_{2}^{\prime} \subseteq \cdots \subseteq V_{n}^{\prime}=V\right)$ and $V_{0}=V_{0}^{\prime}=0$ by convention．

For $A \in \Xi(n, r)$ ，we denote by \mathcal{O}_{A} the orbit in $\mathfrak{F} \times \mathfrak{F}$ corresponding to A ．For each matrix $A=\left(a_{i, j}\right) \in \mathbb{N}^{n \times n}$ ，define

$$
\operatorname{row}(A)=\left(\sum_{j=1}^{n} a_{1, j}, \ldots, \sum_{j=1}^{n} a_{n, j}\right) \in \mathbb{N}^{n} \text { and } \operatorname{col}(A)=\left(\sum_{i=1}^{n} a_{i, 1}, \ldots, \sum_{i=1}^{n} a_{i, n}\right) \in \mathbb{N}^{n}
$$

If $\mathbb{F}=\mathbb{F}_{q}$ is a finite field of q elements．For $A, B, C \in \Xi(n, r)$ ，fix a representative $\left(f^{\prime}, \mathfrak{f}^{\prime \prime}\right) \in$ \mathcal{O}_{C} and put

$$
c_{A, B, C ; q}=\left|\left\{\mathfrak{f} \in \mathfrak{F} \mid\left(\mathfrak{f}^{\prime}, \mathfrak{f}\right) \in \mathcal{O}_{A},\left(\mathfrak{f}, \mathfrak{f}^{\prime \prime}\right) \in \mathcal{O}_{B}\right\}\right| .
$$

Clearly，$c_{A, B, C ; q}$ is independent of the choice of $\left(\mathfrak{f}^{\prime}, \mathfrak{f}^{\prime \prime}\right)$ ，and a necessary condition for $c_{A, B, C ; q} \neq 0$ is that

$$
\begin{equation*}
\operatorname{row}(A)=\operatorname{row}(C), \operatorname{col}(A)=\operatorname{row}(B) \text { and } \operatorname{col}(B)=\operatorname{col}(C) . \tag{1.0.3}
\end{equation*}
$$

Following［13，Prop．1．2］，for any given $A, B, C \in \Xi(n, r)$ ，there is a polynomial $g_{A, B, C}(\boldsymbol{q}) \in$ $\mathscr{A}=\mathbb{Z}[\boldsymbol{q}]$ such that for all prime powers $q \neq 1$ ，the equality $g_{A, B, C}(q)=c_{A, B, C ; q}$ holds．

Definition 1.1 （［13］）．Let $S_{q}^{\prime}(n, r)$ be the free $\mathbb{Z}[\boldsymbol{q}]$－module with basis $\left\{\zeta_{A} \mid A \in \Xi(n, r)\right\}$ and with multiplication given by

$$
\zeta_{A} \zeta_{B}=\sum_{C \in \Xi(n, r)} g_{A, B, C}(\boldsymbol{q}) \zeta_{C}, \text { for all } A, B \in \Xi(n, r) .
$$

Then $S_{q}^{\prime}(n, r)$ is an associative algebra with identity described as follows．For each $\lambda=$ $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Lambda(n, r)$ ，let $\operatorname{diag}(\lambda)$ denote the diagonal matrix $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and write $\zeta_{\lambda}=$ $\zeta_{\text {diag }(\lambda)}$ ．By definition，for each $A \in \Xi(n, r)$ ，

$$
\zeta_{\lambda} \zeta_{A}=\left\{\begin{array}{ll}
\zeta_{A}, & \text { if } \lambda=\operatorname{row}(A) ; \tag{1.1.1}\\
0, & \text { otherwise }
\end{array} \quad \text { and } \zeta_{A} \zeta_{\lambda}= \begin{cases}\zeta_{A}, & \text { if } \lambda=\operatorname{col}(A) ; \\
0, & \text { otherwise }\end{cases}\right.
$$

Thus，$\sum_{\lambda \in \Lambda(n, r)} \zeta_{\text {diag }(\lambda)}$ is the identity of $S_{q}^{\prime}(n, r)$ ．
For each $A \in \Xi(n, r)$ ，let $\lambda=\operatorname{row}(A)$ and $\mu=\operatorname{col}(A)$ and choose $w_{A} \in \mathfrak{S}$ such that for $1 \leqslant i, j \leqslant n$ ，

$$
a_{i, j}=\left|R_{i}^{\lambda} \cap\left(w_{A} R_{j}^{\mu}\right)\right| .
$$

By［21］（see［7］for the details），the correspondence

$$
\begin{equation*}
\zeta_{A} \longmapsto \phi_{\operatorname{row}(A), \operatorname{col}(A)}^{d_{A}}(A \in \Xi(n, r)) \tag{1.1.2}
\end{equation*}
$$

induces an algebra isomorphism $S_{q}^{\prime}(n, r) \rightarrow S_{\boldsymbol{q}}(n, r)$ ，where d_{A} is the shortest element in the double coset $\mathfrak{S}_{\operatorname{row}(A)} w_{A} \mathfrak{S}_{\operatorname{col}(A)}$ ．In what follows，we will identify $S_{\boldsymbol{q}}^{\prime}(n, r)$ with $S_{\boldsymbol{q}}(n, r)$ under the isomorphism above．

For each $d \geqslant 1$ ，we define in \mathscr{A} ：

$$
\llbracket d \rrbracket!=\llbracket 1 \rrbracket \llbracket 2 \rrbracket \cdots \llbracket d \rrbracket \text { with } \llbracket s \rrbracket=\frac{\boldsymbol{q}^{s}-1}{\boldsymbol{q}-1},
$$

and set $\llbracket 0 \rrbracket^{!}=1$ by convention．
Let $\Xi(n)^{ \pm}$be the set of all matrices $A=\left(a_{i, j}\right) \in \mathbb{N}^{n \times n}$ such that $a_{i, i}=0$ for all $1 \leqslant i \leqslant n$ and let $\Xi(n, \leqslant r)^{ \pm}$be the subset of matrices $A=\left(a_{i, j}\right) \in \Xi(n)^{ \pm}$satisfying $|A|=\sum_{1 \leqslant i, j \leqslant n} a_{i, j} \leqslant$ r ．

Given $A \in \Xi(n, \leqslant r)^{ \pm}$and $\mathbf{j}=\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{N}^{n}$ ，define

$$
\zeta_{A ; \mathrm{j}}:=\sum_{\lambda \in \mathbb{N}^{n}, A+\lambda \in \Xi(n, r)} \boldsymbol{q}^{\lambda \cdot \mathrm{j}} \zeta_{A+\lambda} \in S_{\boldsymbol{q}}(n, r),
$$

where $A+\lambda:=A+\operatorname{diag}(\lambda)$ and $\lambda \cdot \mathbf{j}=\lambda_{1} j_{1}+\cdots+\lambda_{n} j_{n}$ ．Also，for any $A=\left(a_{i, j}\right) \in M_{n}(\mathbb{Z})$ ， define $\zeta_{A ; \mathrm{j}}=0 \quad$ if $a_{i, j}<0$ for some $i \neq j$ ，or $|A|>r$ ．Let O denote the $n \times n$ zero matrix and $E_{i, j}$ denote the matrix with (i, j)－entry 1 and all other entries 0 ．Let $\mathbf{0}=(0, \ldots, 0) \in \mathbb{N}^{n}, \varepsilon_{i}=$ $(0, \ldots, 0,1,0, \ldots, 0) \in \mathbb{N}^{n}$（with 1 in the i th position）for $1 \leqslant i \leqslant n$ ．

By［13，Lem．3．2］and a direct calculation，we obtain the following extended multiplication formulas in $S_{q}(n, r)$ ．

Lemma 1．2．For $1 \leqslant h<n, \mathbf{j}, \mathbf{j}^{\prime} \in \mathbb{N}^{n}$ ，and $A=\left(a_{k, l}\right) \in \Xi(n, \leqslant r)^{ \pm}$，the following equalities hold in $S_{\boldsymbol{q}}(n, r)$ ，
（1）$\zeta_{O ; \mathbf{j}} \cdot \zeta_{A ; \mathbf{j}^{\prime}}=\boldsymbol{q}^{\mathrm{row}(A) \cdot \mathbf{j}} \zeta_{A ; \mathbf{j}+j^{\prime}}$ ；
（2）$\zeta_{A ; \mathbf{j}^{\prime}} \cdot \zeta_{O ; \mathbf{j}}=\boldsymbol{q}^{\operatorname{col}(A) \cdot \mathbf{j}} \zeta_{A ; \mathbf{j}+\mathbf{j}^{\prime}}$ ；
（3）$\zeta_{E_{h, h+1 ;} ; \mathbf{0}} \cdot \zeta_{A ; \mathbf{j}}=\sum_{i<h ; a_{h+1, i \geqslant 1}} \boldsymbol{q}^{\sum_{j>i} a_{h, j}}\left[\left[a_{h, i}+1\right]\right] \zeta_{A+E_{h, i}-E_{h+1, i} ; \mathbf{j}+\varepsilon_{h}}$

$$
\begin{aligned}
& +\sum_{i>h+1 ; a_{h+1, i>1}} \boldsymbol{q}^{\sum_{j>i} a_{h, j}} \zeta_{A+E_{h, i}-E_{h+1, i} ; \mathbf{j}} \\
& +\frac{\boldsymbol{q}^{\left(\sum_{j>h} a_{h, j}-\mathbf{j}_{h}\right)}}{\boldsymbol{q}-1}\left(\zeta_{A-E_{h+1, h} ; \mathbf{j}+\varepsilon_{h}}-\zeta_{A-E_{h+1, h ; \mathbf{j}}}\right) \\
& +\boldsymbol{q}^{\left(\sum_{j>h+1} a_{h, j}+\mathbf{j}_{(h+1)}\right)}\left[\left[a_{h, h+1}+1\right]\right] \zeta_{A+E_{h, h+1} ; \mathbf{j}} ;
\end{aligned}
$$

（4）$\zeta_{E_{h+1, h} ; \mathbf{0}} \cdot \zeta_{A ; \mathbf{j}}=\sum_{i<h ; a_{h, i \geqslant 1}} \boldsymbol{q}^{\sum_{j<i} a_{h+1, j}}\left[\left[a_{h+1, i}+1\right]\right] \zeta_{A-E_{h, i}+E_{h+1, i} ; \mathbf{j}}$

$$
\begin{aligned}
& +\sum_{i>h+1 ; a_{h, i} \geqslant 1} \boldsymbol{q}^{\sum_{j<i} a_{h+1, j}}\left[\left[a_{h+1, i}+1\right]\right] \zeta_{A-E_{h, i}+E_{h+1, i} ; \mathbf{j}+\varepsilon_{h+1}} \\
& +\frac{\boldsymbol{q}^{\left(\sum_{j<h+1} a_{h+1, j}-\mathbf{j}_{(h+1)}\right)}}{\boldsymbol{q}-1}\left(\zeta_{A-E_{h, h+1}: \mathbf{j}+\varepsilon_{h+1}}-\zeta_{\left.A-E_{h, h+1: \mathbf{j}}\right)}\right) \\
& +\boldsymbol{q}^{\left(\sum_{j<h} a_{h+1, j}+\mathbf{j}_{h}\right)}\left[\left[a_{h+1, h}+1\right]\right] \zeta_{A+E_{h+1, h} ; \mathbf{j}} .
\end{aligned}
$$

If $a_{h+1, h}=0\left(\right.$ resp．，$\left.a_{h, h+1}=0\right)$ ，then $A-E_{h+1, h}$（resp．，$\left.A-E_{h, h+1}\right)$ has a negative entry． Hence，the third term in formula（3）（resp．，（4））is zero in this case．

For each $1 \leqslant i<n$ ，define the elements

$$
\begin{equation*}
\mathfrak{e}_{i}=\zeta_{E_{i, i+1} ; \mathbf{0}} \text { and } \mathfrak{f}_{i}=\zeta_{E_{i+1, i} ; \mathbf{0}} \tag{1.2.1}
\end{equation*}
$$

in $S_{\boldsymbol{q}}(n, r)$ ．From Lemma 1.2 we deduce the following result．
Proposition 1．3．The following relations hold in $S_{\boldsymbol{q}}(n, r)$ for $\lambda, \mu \in \Lambda(n, r)$ and $1 \leqslant i, j<n$ ：
$(\mathrm{S} 1) \zeta_{\lambda} \zeta_{\mu}=\delta_{\lambda, \mu} \zeta_{\lambda}, 1=\sum_{\lambda \in \Lambda(n, r)} \zeta_{\lambda}$,
（S2） $\mathfrak{e}_{i} \zeta_{\lambda}=\zeta_{\lambda+\varepsilon_{i}-\varepsilon_{i+1}} \mathfrak{e}_{i}$ ，if $\lambda_{i+1} \geqslant 1, \mathfrak{e}_{i} \zeta_{\lambda}=0=\zeta_{\lambda} \mathfrak{f}_{i}$ if $\lambda_{i+1}=0$ ，
（S3） $\mathfrak{f}_{i} \zeta_{\lambda}=\zeta_{\lambda-\varepsilon_{i}+\varepsilon_{i+1}} \mathfrak{f}_{i}$ if $\lambda_{i} \geqslant 1, \mathfrak{f}_{i} \zeta_{\lambda}=0=\zeta_{\lambda} \mathfrak{e}_{i}$ if $\lambda_{i}=0$ ，
（S4）$(\boldsymbol{q}-1)\left(\mathfrak{e}_{i} \mathfrak{f}_{j}-\mathfrak{f}_{j} \mathfrak{e}_{i}\right)=\delta_{i, j} \sum_{\lambda \in \Lambda(n, r)}\left(\boldsymbol{q}^{\lambda_{i}}-\boldsymbol{q}^{\lambda_{i+1}}\right) \zeta_{\lambda}$,
（S5） $\mathfrak{e}_{i} \mathfrak{e}_{j}=\mathfrak{e}_{j} \mathfrak{e}_{i}, \mathfrak{f}_{i} \mathfrak{f}_{j}=\mathfrak{f}_{j} \mathfrak{f}_{i}(|i-j|>1)$ ，
（S6） $\mathfrak{e}_{i}^{2} \mathfrak{e}_{i+1}-(\boldsymbol{q}+1) \mathfrak{e}_{i} \mathfrak{e}_{i+1} \mathfrak{e}_{i}+\boldsymbol{q} \mathfrak{c}_{i+1} \mathfrak{e}_{i}^{2}=0$,
（S7） $\mathfrak{e}_{i} \mathfrak{e}_{i+1}^{2}-(\boldsymbol{q}+1) \mathfrak{e}_{i+1} \mathfrak{e}_{i} \mathfrak{e}_{i+1}+\boldsymbol{q} \mathfrak{e}_{i+1}^{2} \mathfrak{e}_{i}=0$,
（S8） $\boldsymbol{q} \boldsymbol{f}_{i}^{2} \mathfrak{f}_{i+1}-(\boldsymbol{q}+1) \mathfrak{f}_{i} \mathfrak{f}_{i+1} \mathfrak{f}_{i}+\mathfrak{f}_{i+1} \mathfrak{f}_{i}^{2}=0$,
（S9） $\boldsymbol{q} \mathfrak{f}_{i} \mathfrak{f}_{i+1}^{2}-(\boldsymbol{q}+1) \mathfrak{f}_{i+1} \mathfrak{f}_{i} \mathfrak{f}_{i+1}+\mathfrak{f}_{i+1}^{2} \mathfrak{f}_{i}=0$ ．
Remarks 1．4．（1）The relations（S5）－（S9）are the so－called fundamental relations appeared in Ringel－Hall algebras；see［20］．Indeed，（S1）－（S9）are the generating relations for the quantum Schur algebra $S_{\boldsymbol{q}}(n, r) \otimes_{\mathbb{Z}[\boldsymbol{q}]} \mathbb{Q}(\boldsymbol{q})$ ；see［22］．
（2）Let \boldsymbol{v} be an indeterminate satisfying $\boldsymbol{v}^{2}=\boldsymbol{q}$ and let $\mathbb{Q}(\boldsymbol{v})$ be the field of rational functions in \boldsymbol{v} ．In［9，10］（see also［7，Ch．13］），a presentation for the quantum Schur algebra $\mathbf{S}_{\boldsymbol{v}}(n, r):=S_{\boldsymbol{q}}(n, r) \otimes \mathbb{Q}(\boldsymbol{v})$ is given．However，the generators given there satisfy the quantum Serre relations，while the $\mathfrak{e}_{i}, \mathfrak{f}_{i}$ defined in（1．2．1）satisfy the fundamental relations．But，in order to obtain the quantum Serre relations in Ringel－Hall algebras，we have to twist the multiplication；see［23］．

In the following we introduced the Ringel－Hall algebra of the linear quiver

FIG．1．Linear quiver with $n-1$ vertices
Let \mathbb{F} be a field．It is well known that for each $1 \leqslant i<j \leqslant n$ ，there is a unique（up to isomorphism）indecomposable representation $M_{i, j}$ of Q over \mathbb{F} whose dimension vector $\underline{\operatorname{dim}} M_{i, j}$ is $\alpha_{i}+\cdots+\alpha_{j-1}$ ，where $\alpha_{1}, \ldots, \alpha_{n-1}$ denote the standard basis of \mathbb{Z}^{n-1} ．In particular，the $S_{i}:=M_{i, i+1}(1 \leqslant i<n)$ are all simple representations of Q ．

Let $\Xi(n)^{+}$denote the set of all strictly upper triangular matrices in $\mathbb{N}^{n \times n}$ ．To each $A=$ $\left(a_{i, j}\right) \in \Xi(n)^{+}$we can attach a representation of Q by setting

$$
M(A)=M_{\mathbb{F}}(A)=\bigoplus_{i, j} a_{i, j} M_{i, j} .
$$

By the Krull－Schmidt Theorem，the correspondence $A \mapsto M(A)$ induces a bijection from $\Xi(n)^{+}$to the set of isoclasses of finite dimensional representations of Q over \mathbb{F} ．Following ［20］，for $A, B, C \in \Xi(n)^{+}$，there exists $\varphi_{B, C}^{A}(\mathbf{q}) \in \mathscr{A}=\mathbb{Z}[\mathbf{q}]$（called the Hall polynomial）such
that $\varphi_{B, C}^{A}(q)=F_{M_{\mathbb{F}}(B), M_{\mathbb{F}}(C)}^{M_{\mathbb{F}}(A)}$ for each finite field \mathbb{F} with q elements，where $F_{M_{\mathbb{F}}(B), M_{\mathbb{F}}(C)}^{M_{\mathcal{F}}(A)}$ is the number of submodules X of $M_{\mathbb{F}}(A)$ such that $X \cong M_{\mathbb{F}}(C)$ and $M_{\mathbb{F}}(A) / X \cong M_{\mathbb{F}}(B)$ ．The （generic untwisted）Ringel－Hall algebra $\mathfrak{H}_{\boldsymbol{q}}(Q)$ of Q is by definition the free \mathscr{A}－module with basis $\left\{u_{A} \mid A \in \Xi(n)^{+}\right\}$and with multiplication given by

$$
u_{A} u_{B}=\sum_{C \in \Xi(n)^{+}} \varphi_{A, B}^{C}(\boldsymbol{q}) u_{C} \text { for } A, B \in \Xi(n)^{+}
$$

We sometimes write $u_{[M(A)]}$ for u_{A} in order to make calculations in terms of representations of Q ．In particular，we write $u_{i}=u_{\left[S_{i}\right]}$ for $1 \leqslant i<n$ ．It is known from［20］that the u_{i} satisfy the following fundamental relations $(1 \leqslant i, j<n)$ ：
（H1）$u_{i} u_{j}=u_{j} u_{i}, \quad(|i-j|>1)$ ，
（H2）$u_{i}^{2} u_{i+1}-(\boldsymbol{q}+1) u_{i} u_{i+1} u_{i}+\boldsymbol{q} u_{i+1} u_{i}^{2}=0$,
（H3） $\boldsymbol{q} u_{i+1}^{2} u_{i}-(\boldsymbol{q}+1) u_{i+1} u_{i} u_{i+1}+u_{i} u_{i+1}^{2}=0$ ．
Let \mathscr{R} be a commutative ring with identity and take an element $q \in \mathscr{R}$ ．By viewing \mathscr{R} as an \mathscr{A}－module with the action of \boldsymbol{q} the multiplication by q ，we obtain \mathscr{R}－algebras

$$
H_{q}(r)_{\mathscr{R}}:=H_{\boldsymbol{q}}(r) \otimes_{\mathscr{A}} \mathscr{R} \text { and } S_{q}(n, r)_{\mathscr{R}}=S_{\boldsymbol{q}}(n, r) \otimes_{\mathscr{A}} \mathscr{R} .
$$

Moreover，by［7，Lem．9．4］，there is an \mathscr{R}－algebra isomorphism

$$
S_{q}(n, r)_{\mathscr{R}} \cong \operatorname{End}_{H_{q}(r)_{\mathscr{R}}}\left(\bigoplus_{\lambda \in \Lambda(n, r)} x_{\lambda} H_{q}(r)_{\mathscr{R}}\right)
$$

Similarly，we can consider the Ringel－Hall algebra of Q over \mathscr{R}

$$
\mathfrak{H}_{q}(Q)_{\mathscr{R}}=\mathfrak{H}_{\boldsymbol{q}}(Q) \otimes_{\mathscr{A}} \mathscr{R} .
$$

In the present paper we are mainly interested in the case where \mathscr{R} is the ring \mathbb{Z} of integers or a field \mathbb{F} with $q=0$ ．

2 A presentation for 0－Schur algebras

In this section we show that by specializing at $\boldsymbol{q}=0$ ，the relations（S1）－（S9）become the defining relations for the 0 －Schur algebra．The proofs are modified from those in［10］；see also ［7，Ch．13］．Thus，some of them are omitted．

As defined in the previous section，$S_{\boldsymbol{q}}(n, r)$ is the quantum Schur algebra over $\mathscr{A}=\mathbb{Z}[\boldsymbol{q}]$ with basis $\left\{\zeta_{A} \mid A \in \Xi(n, r)\right\}$ ．Put

$$
S_{0}(n, r):=S_{0}(n, r)_{\mathbb{Z}}=S_{\boldsymbol{q}}(n, r) \otimes_{\mathscr{A}} \mathbb{Z}
$$

called the 0 －Schur algebra over \mathbb{Z} ．In other words，$S_{0}(n, r)$ is the free \mathbb{Z}－module with basis $\left\{\zeta_{A}=\zeta_{A} \otimes 1 \mid A \in \Xi(n, r)\right\}$ ，and the multiplication is defined by

$$
\zeta_{A} \zeta_{B}=\sum_{C \in \Xi(n, r)} g_{A, B, C}(0) \zeta_{C} \text { for all } A, B \in \Xi(n, r)
$$

Given a polynomial $f(\boldsymbol{q})$ in \mathscr{A} and an integer $a \in \mathbb{Z}$ ，we write $f(\boldsymbol{q})_{a}$ for $f(a)$ ．In particular， $\left(\llbracket d \rrbracket^{!}\right)_{0}=1=\llbracket d \rrbracket_{0}$ for each $d \geqslant 1$ ．

By letting $\boldsymbol{q}=0$ ，we obtain the elements

$$
\zeta_{A ; \mathbf{j}}=\sum_{\substack{\lambda \in \mathbb{N} n, \lambda \cdot j=0 \\ A+\lambda \in \Xi(n, r)}} \zeta_{A+\lambda} \text { for } A \in \Xi(n, \leqslant r)^{ \pm} \text {and } \mathbf{j} \in \mathbb{N}^{n}
$$

in $S_{0}(n, r)$ ．In particular，we have

$$
\mathfrak{e}_{i}=\sum_{\lambda \in \Lambda(n, r-1)} \zeta_{E_{i, i+1}+\lambda} \text { and } \mathfrak{f}_{i}=\sum_{\lambda \in \Lambda(n, r-1)} \zeta_{E_{i+1, i}+\lambda}
$$

in $S_{0}(n, r)$ for $1 \leqslant i<n$ ．Proposition 1.3 gives the following consequence．
Lemma 2．1．The elements $\mathfrak{e}_{i}, \mathfrak{f}_{i}, \zeta_{\lambda}(1 \leqslant i<n$ and $\lambda \in \Lambda(n, r))$ in $S_{0}(n, r)$ satisfy the following relations：
$(\mathrm{DS} 1) \zeta_{\lambda} \zeta_{\mu}=\delta_{\lambda, \mu} \zeta_{\lambda}, 1=\sum_{\lambda \in \Lambda(n, r)} \zeta_{\lambda}$,
（DS2） $\mathfrak{e}_{i} \zeta_{\lambda}=\zeta_{\lambda+\varepsilon_{i}-\varepsilon_{i+1}} \mathfrak{e}_{i}$ if $\lambda_{i+1} \geqslant 1, \mathfrak{e}_{i} \zeta_{\lambda}=0=\zeta_{\lambda} \mathfrak{f}_{i}$ if $\lambda_{i+1}=0$,
$(\mathrm{DS} 3) \mathfrak{f}_{i} \zeta_{\lambda}=\zeta_{\lambda-\varepsilon_{i}+\varepsilon_{i+1}} \mathfrak{f}_{i}$ if $\lambda_{i} \geqslant 1, \mathfrak{f}_{i} \zeta_{\lambda}=0=\zeta_{\lambda} \mathfrak{e}_{i}$ if $\lambda_{i}=0$ ，
（DS4） $\mathfrak{e}_{i} \mathfrak{f}_{j}-\mathfrak{f}_{j} \mathfrak{e}_{i}=\delta_{i, j}\left(\sum_{\lambda \in \Lambda(n, r), \lambda_{i} \neq 0, \lambda_{i+1}=0} \zeta_{\lambda}-\sum_{\lambda \in \Lambda(n, r), \lambda_{i}=0, \lambda_{i+1} \neq 0} \zeta_{\lambda}\right)$,
（DS5） $\mathfrak{e}_{i} \mathfrak{e}_{j}=\mathfrak{e}_{j} \mathfrak{e}_{i}, \mathfrak{f}_{i} \mathfrak{f}_{j}=\mathfrak{f}_{j} \mathfrak{f}_{i}(|i-j|>1)$,
（DS6） $\mathfrak{e}_{i}^{2} \mathfrak{e}_{i+1}-\mathfrak{e}_{i} \mathfrak{e}_{i+1} \mathfrak{e}_{i}=0$,
（DS7） $\mathfrak{e}_{i} \mathfrak{e}_{i+1}^{2}-\mathfrak{e}_{i+1} \mathfrak{e}_{i} \mathfrak{e}_{i+1}=0$,
（DS8） $\mathfrak{f}_{i+1} \mathfrak{f}_{i}^{2}-\mathfrak{f}_{i} \mathfrak{f}_{i+1} \mathfrak{f}_{i}=0$,
（DS9） $\mathfrak{f}_{i+1}^{2} \mathfrak{f}_{i}-\mathfrak{f}_{i+1} \mathfrak{f}_{i} \mathfrak{f}_{i+1}=0$.
The main aim in this section is to show that $S_{0}(n, r)$ is generated by the elements $\mathfrak{e}_{i}, \mathfrak{f}_{i}, \zeta_{\lambda}$ with the defining relations（DS1）－（DS9）．

First，we have the following lemma which can be proved by using the arguments completely analogous to those in［7，Th．13．31］．

Lemma 2．2．The \mathbb{Z}－algebra $S_{0}(n, r)$ is generated by $\mathfrak{e}_{i}, \mathfrak{f}_{i}, \zeta_{\lambda}$ for $1 \leqslant i<n$ and $\lambda \in \Lambda(n, r)$ ．

Now we define $U_{0}(n, r)$ to be the \mathbb{Z}－algebra generated by $\mathrm{x}_{i}, \mathrm{y}_{i}, \xi_{\lambda}$ for $1 \leqslant i<n$ and $\lambda \in \Lambda(n, r)$ subject to the relations（DS1＇）－（DS9＇）which are obtained from（DS1）－（DS9）by substituting the $\mathfrak{e}_{i}, \mathfrak{f}_{i}$ and ζ_{λ} for the $\mathrm{x}_{i}, \mathrm{y}_{i}$ and ξ_{λ} ，respectively．Therefore，there is a surjective algebra homomorphism

$$
\begin{equation*}
\rho: U_{0}(n, r) \longrightarrow S_{0}(n, r) \tag{2.2.1}
\end{equation*}
$$

taking $\mathrm{x}_{i} \mapsto \mathfrak{e}_{i}, \mathrm{y}_{i} \mapsto \mathfrak{f}_{i}$ and $\xi_{\lambda} \mapsto \zeta_{\lambda}$ ．The rest of this section is to show that ρ is an isomorphism．
Let $\mathfrak{H}_{0}(Q)=\mathfrak{H}_{\boldsymbol{q}}(Q) \otimes_{\mathscr{A}} \mathbb{Z}$ be the degenerate Ringel－Hall algebra of the linear quiver Q given in $\S 2$ ．The following result is taken from［14］and［15，Remarks 4．9（a）］．

Lemma 2．3．As a \mathbb{Z}－algebra， $\mathfrak{H}_{0}(Q)$ is generated by $u_{i}=u_{i} \otimes 1(1 \leqslant i<n)$ subject to the relations．
（DH1）$u_{i} u_{j}=u_{j} u_{i}, \quad(|i-j|>1)$,
（DH2）$u_{i}^{2} u_{i+1}-u_{i} u_{i+1} u_{i}=0$,
（DH3）$u_{i} u_{i+1}^{2}-u_{i+1} u_{i} u_{i+1}=0$.
By Lemma 2.1 and the lemma above，there are an algebra homomorphism

$$
\phi: \mathfrak{H}_{0}(Q) \longrightarrow U_{0}(n, r), u_{i} \longmapsto x_{i} \quad(1 \leqslant i<n)
$$

and an algebra anti－homomorphism

$$
\psi: \mathfrak{H}_{0}(Q) \longrightarrow U_{0}(n, r), u_{i} \longmapsto \mathrm{y}_{i}(1 \leqslant i<n) .
$$

We set

$$
U_{0}(n, r)^{+}=\operatorname{Im} \phi \text { and } U_{0}(n, r)^{-}=\operatorname{Im} \psi
$$

that is，$U_{0}(n, r)^{+}$（resp．，$U_{0}(n, r)^{-}$）is the \mathbb{Z}－subalgebra of $U_{0}(n, r)$ generated by the x_{i}（resp．， y_{i} ）．Furthermore，let $U_{0}(n, r)^{0}$ be the \mathbb{Z}－subalgebra of $U_{0}(n, r)$ generated by the ξ_{λ} which is clearly \mathbb{Z}－free with basis $\left\{\xi_{\lambda} \mid \lambda \in \Lambda(n, r)\right\}$ ．From the relations（DS1＇）－（DS9＇）we easily deduce that

$$
\begin{equation*}
U_{0}(n, r)=U_{0}(n, r)^{+} \cdot U_{0}(n, r)^{0} \cdot U_{0}(n, r)^{-} \tag{2.3.1}
\end{equation*}
$$

We now fix a field \mathbb{F} ．For $A, B \in \Xi(n)^{+}$，define $B \leqslant_{\mathrm{dg}} A$ if and only if $\underline{\operatorname{dim}} M_{\mathbb{F}}(B)=$ $\underline{\operatorname{dim}} M_{\mathbb{F}}(A)$ and for each $C \in \Xi(n)^{+}$,

$$
\operatorname{dim} \operatorname{Hom}_{\mathbb{F} Q}\left(M_{\mathbb{F}}(C), M_{\mathbb{F}}(B)\right) \geqslant \operatorname{dim} \operatorname{Hom}_{\mathbb{F} Q}\left(M_{\mathbb{F}}(C), M_{\mathbb{F}}(A)\right) \text { for all } C \in \Xi(n)^{+}
$$

This is the so－called degeneration order on $\Xi(n)^{+}$which is a partial order independent of the field \mathbb{F} ；see $[7, \S 1.6]$ ．We write $B<_{\mathrm{dg}} A$ if $B \leqslant_{\mathrm{dg}} A$ and $B \neq A$ ．

For each pair $1 \leqslant i<j \leqslant n$ and an integer $a \geqslant 1$ ，define a monomial

$$
u_{i, j}^{a}=u_{i}^{a} u_{i+1}^{a} \cdots u_{j-1}^{a}=\left(\llbracket a \rrbracket^{!}\right)^{j-i}\left(u_{a E_{i, j}}+\sum_{X<_{\mathrm{dg}} a E_{i, j}} u_{X}\right)
$$

in $\mathfrak{H}_{\boldsymbol{q}}(Q)$ ．For $A=\left(a_{i, j}\right) \in \Xi(n)^{+}$，define a monomial

$$
\begin{equation*}
\mathfrak{u}^{A}=u_{n-1, n}^{a_{n-1, n}} u_{n-2, n}^{a_{n-2, n}} \cdots u_{1, n}^{a_{1, n}} u_{n-2, n-1}^{a_{n-2, n-1}} u_{n-3, n-1}^{a_{n-3, n-1}} \cdots u_{1, n-1}^{a_{1, n-1}} \cdots u_{2,3}^{a_{2,3}} u_{1,3}^{a_{1,3}} u_{1,2}^{a_{1,2}} \tag{2.3.2}
\end{equation*}
$$

in $\mathfrak{H}_{\boldsymbol{q}}(Q)$ ．By［23］and［24，§6］，we have

$$
\mathfrak{u}^{A}=\prod_{1 \leqslant i<j \leqslant n}\left(\llbracket a_{i, j} \rrbracket^{!}\right)^{j-i}\left(u_{A}+\sum_{B<\operatorname{dg} A} f_{A, B}(\boldsymbol{q}) u_{B}\right),
$$

where $f_{A, B}(\boldsymbol{q}) \in \mathscr{A}$ ．We denote by \mathfrak{u}_{0}^{A} the monomial in（2．3．2）viewing as an element in $\mathfrak{H}_{0}(Q)$ ． Thus，

$$
\begin{equation*}
\mathfrak{u}_{0}^{A}=u_{A}+\sum_{B<\operatorname{dg}_{g} A} f_{A, B}(0) u_{B} . \tag{2.3.3}
\end{equation*}
$$

Since $\left\{u_{A} \mid A \in \Xi(n)^{+}\right\}$is a \mathbb{Z}－basis of $\mathfrak{H}_{0}(Q)$ ，it follows that $\left\{\mathfrak{u}_{0}^{A} \mid A \in \Xi(n)^{+}\right\}$is also a \mathbb{Z}－basis of $\mathfrak{H}_{0}(Q)$ ．

For $A \in \Xi(n)^{+}$，define

$$
\mathrm{x}^{A}=\phi\left(\mathfrak{u}_{0}^{A}\right) \in U_{0}(n, r)^{+} .
$$

Dually，let $\Xi(n)^{-}$be the set of all strictly lower triangular matrices in $\mathbb{N}^{n \times n}$ ．For $A \in \Xi(n)^{-}$， define

$$
\mathrm{y}^{A}=\psi\left(\mathfrak{u}_{0}^{A^{t}}\right) \in U_{0}(n, r)^{-},
$$

where A^{t} denotes the transpose of A ．
For $A \in \mathbb{N}^{n \times n}$ ，define $\sigma(A)=\left(\sigma_{1}(A), \ldots, \sigma_{n}(A)\right) \in \mathbb{N}^{n}$ by setting for $1 \leqslant i \leqslant n$,

$$
\sigma_{i}(A)=a_{i, i}+\sum_{1 \leq j<i}\left(a_{i, j}+a_{j, i}\right) .
$$

For $\lambda=\left(\lambda_{i}\right), \mu=\left(\mu_{i}\right) \in \mathbb{N}^{n}$ ，write $\lambda \leqslant \mu$ if $\lambda_{i} \leqslant \mu_{i}$ for all $1 \leqslant i \leqslant n$ ．Applying an argument similar to that in the proof of［7，Prop．13．41］，we obtain the following result．

Proposition 2．4．Given $A \in \Xi(n)^{+}, B \in \Xi(n)^{-}$and $\lambda \in \Lambda(n, r)$ ，the following statements hold in the algebra $U_{0}(n, r)$ ．
（1）If $\lambda \geqslant \sigma(A)$ ，then $\mathrm{x}^{A} \xi_{\lambda}=\xi_{\lambda^{\prime} \mathrm{x}^{A}}$ ，where $\lambda^{\prime}=\lambda-\operatorname{col}(A)+\operatorname{row}(A)$ ，
（2）If $\lambda_{i}<\sigma_{i}(A)$ for some i ，then $x^{A} \xi_{\lambda}=0$ ，
（3）If $\lambda \geqslant \sigma(B)$ ，then $\xi_{\lambda} y^{B}=y^{B} \xi_{\lambda^{\prime \prime}}$ ，where $\lambda^{\prime \prime}=\lambda+\operatorname{col}(B)-\operatorname{row}(B)$ ，
（4）If $\lambda_{i}<\sigma_{i}(B)$ for some i ，then $\xi_{\lambda} y^{B}=0$ ．
Corollary 2．5．The algebra $U_{0}(n, r)^{+}$（resp．，$\left.U_{0}(n, r)^{-}\right)$is spanned by the set

$$
\left\{\mathrm { x } ^ { A } | A \in \Xi (n) ^ { + } , | A | \leqslant r \} \quad \left(\text { resp. },\left\{\mathrm{y}^{A}\left|A \in \Xi(n)^{-},|A| \leqslant r\right\}\right) .\right.\right.
$$

Proof．Since $\left\{\mathfrak{u}_{0}^{A} \mid A \in \Xi(n)^{+}\right\}$is a \mathbb{Z}－basis of $\mathfrak{H}_{0}(Q)$ ，it follows that $U_{0}(n, r)^{+}$is spanned by $\mathrm{x}^{A}=\phi\left(\mathfrak{u}_{0}^{A}\right)$ for all $A \in \Xi(n)^{+}$．If $|A|=\sum_{i} \sigma_{i}(A)>r$ ，then applying Proposition 2．4（2）gives $\mathrm{x}^{A}=\sum_{\lambda \in \Lambda(n, r)} \mathrm{x}^{A} \xi_{\lambda}=0$ ．This proves the assertion for $U_{0}(n, r)^{+}$．

The assertion for $U_{0}(n, r)^{-}$can be proved similarly．
For each matrix $A=\left(a_{i, j}\right) \in \mathbb{N}^{n \times n}$ ，let A^{+}（resp．，A^{-}）be the strictly upper（resp．，lower） triangular part of A ，i．e．，$A^{+} \in \Xi(n)^{+}$and $A^{-} \in \Xi(n)^{-}$with

$$
A=A^{+}+\operatorname{diag}\left(a_{1,1}, \ldots, a_{n, n}\right)+A^{-} .
$$

For any $A \in \Xi(n)^{ \pm}$and $\lambda \in \Lambda(n, r)$ ，set

$$
\begin{equation*}
\mathfrak{m}^{(A, \lambda)}:=\mathrm{x}^{A^{+}} \xi_{\lambda} \mathrm{y}^{A^{-}} \tag{2.5.1}
\end{equation*}
$$

By（2．3．1）and Corollary $2.5, U_{0}(n, r)$ is spanned by all such $\mathfrak{m}^{(A, \lambda)}$ with $\lambda \in \Lambda(n, r), A \in \Xi(n)^{ \pm}$ satisfying $\left|A^{+}\right| \leqslant r$ and $\left|A^{-}\right| \leqslant r$ ．

Lemma 2．6．For all $s \geqslant 1$ and $1 \leqslant i<n$ ，the following equalities hold in $U_{0}(n, r)$ ：

$$
\begin{aligned}
& \text { (1) } \mathrm{x}_{i} \mathrm{y}_{i}^{s}-\mathrm{y}_{i}^{s} \mathrm{x}_{i}=\mathrm{y}_{i}^{s-1}\left(\Theta-\sum_{1 \leqslant t \leqslant s-1} \sum_{\substack{\lambda \in \Lambda(n, r), \lambda_{i}=t, \lambda_{i}+1<r-t+1}} \xi_{\lambda}\right) ; \\
& \text { (2) } \mathrm{y}_{i} \mathrm{x}_{i}^{s}-\mathrm{x}_{i}^{s} \mathrm{y}_{i}=-\mathrm{x}_{i}^{s-1}\left(\Theta-\sum_{1 \leqslant t \leqslant s-1} \sum_{\substack{\lambda \in \Lambda(n, r), \lambda_{i}=t, \lambda_{i+1}<r-t+1}} \xi_{\lambda}\right),
\end{aligned}
$$

$$
\text { where } \Theta=\sum_{\lambda \in \Lambda(n, r), \lambda_{i} \neq 0, \lambda_{i+1}=0} \xi_{\lambda}-\sum_{\lambda \in \Lambda(n, r), \lambda_{i}=0, \lambda_{i+1} \neq 0} \xi_{\lambda} \text {. }
$$

Proof．We prove the first equality by induction on s ．The second one is proved similarly．
By definition，the equality holds for $s=1$ ．Now suppose $s>1$ ．Then we have

$$
\begin{aligned}
& \mathrm{x}_{i} \mathrm{y}_{i}^{s}-\mathrm{y}_{i}^{s} \mathrm{x}_{i}=\left[\mathrm{x}_{i}, \mathrm{y}_{i}^{s-1}\right] \mathrm{y}_{i}+\mathrm{y}_{i}^{s-1}\left[\mathrm{x}_{i}, \mathrm{y}_{i}\right] \\
& =\mathrm{y}_{i}^{s-2}\left(\Theta-\sum_{1 \leqslant t \leqslant s-2} \sum_{\substack{\lambda \in \Lambda(n, r), \lambda_{i}=t, \lambda_{i+1}<r-t+1}} \xi_{\lambda}\right) \mathrm{y}_{i}+\mathrm{y}_{i}^{s-1} \Theta \text { (By induction hypothesis) } \\
& =\mathrm{y}_{i}^{s-1}\left(\Theta-\sum_{1 \leqslant t \leqslant s-1} \sum_{\substack{\lambda \in \Lambda(n, r), \lambda_{i}=t, \lambda_{i+1}<r-t+1}} \xi_{\lambda}\right) .
\end{aligned}
$$

This proves the first equality．
For a monomial $\mathfrak{m} \in \mathfrak{H}_{0}(Q)$（resp．， $\left.\mathfrak{m} \in U_{0}(n, r)\right)$ in the u_{i}（resp．，x_{i} and y_{i} ），let $\operatorname{deg}(\mathfrak{m})$ be the number of the u_{i}（resp．，x_{i} and y_{i} ）occurring in \mathfrak{m} ．In other words，if \mathfrak{m} is regarded as a word， $\operatorname{deg}(\mathfrak{m})$ is the length of the word．If we define for each $A=\left(a_{i, j}\right) \in \mathbb{N}^{n \times n}$ ，

$$
\operatorname{deg}(A)=\sum_{i, j}|i-j| a_{i, j}
$$

then $\operatorname{deg}(A)=\operatorname{deg} x^{A^{+}}+\operatorname{deg} y^{A^{-}}$.

Lemma 2．7．Let $\mathfrak{m} \in U_{0}(n, r)^{+}$be a monomial in the x_{i} ．Then \mathfrak{m} is a \mathbb{Z}－linear combination of $\mathrm{x}^{A}, A \in \Xi(n)^{+}$（hence，a \mathbb{Z}－linear combination of $\mathrm{x}^{A} \xi_{\lambda}, A \in \Xi(n)^{+}, \lambda \in \Lambda(n, r)$ ）with $\operatorname{deg}(A)=\operatorname{deg}(\mathfrak{m})$ ．A similar result holds for monomials in the y_{i} ．

Proof．Let $\widetilde{\mathfrak{m}} \in \mathfrak{H}_{0}(Q)$ be a monomial in the u_{i} such that $\phi(\widetilde{\mathfrak{m}})=\mathfrak{m}$ ．Then $\operatorname{deg}(\widetilde{\mathfrak{m}})=\operatorname{deg}(\mathfrak{m})$ ． Since $\mathfrak{H}_{0}(Q)$ is \mathbb{N}^{n-1}－graded and $\left\{\mathfrak{u}_{0}^{A} \mid A \in \Xi(n)^{+}\right\}$is a \mathbb{Z}－basis of $\mathfrak{H}_{0}(Q)$ ，$\widetilde{\mathfrak{m}}$ is a \mathbb{Z}－linear combination of \mathfrak{u}_{0}^{A} with $\operatorname{deg}(A)=\operatorname{deg}(\widetilde{\mathfrak{m}})$ ．Hence， \mathfrak{m} is a \mathbb{Z}－linear combination of $x^{A}=\phi\left(\mathfrak{u}_{0}^{A}\right)$ with $\operatorname{deg}(A)=\operatorname{deg}(\mathfrak{m})$ ．

The assertion for monomials in the y_{i} can be proved analogously．

The following theorem is an analogue to［7，Th．13．44］which has been proved in［9］（see also［10］）．We provide a proof for completeness．

Theorem 2．8．The algebra homomorphism $\rho: U_{0}(n, r) \rightarrow S_{0}(n, r)$ given in（2．2．1）is an isomorphism．

Proof．Put

$$
\mathcal{M}=\left\{\mathfrak{m}^{(A)}=\mathrm{x}^{A^{+}} \xi_{\sigma(A)} \mathrm{y}^{A^{-}} \mid A \in \Xi(n, r)\right\}
$$

We aim to prove that \mathcal{M} is a \mathbb{Z}－basis for $U_{0}(n, r)$ ．Since $|\mathcal{M}| \leqslant|\Xi(n, r)|$ ，which is the rank of $S_{0}(n, r)$ ，it suffices to show that \mathcal{M} spans $U_{0}(n, r)$ ．Let $B \in \Xi(n)^{ \pm}$with $\left|B^{+}\right| \leqslant r$ and $\left|B^{-}\right| \leqslant r$ ， and let $\lambda \in \Lambda(n, r)$ ．If $\lambda \geqslant \sigma(B)$ ，there is a unique $A=B+\operatorname{diag}(\lambda-\sigma(B)) \in \Xi(n, r)$ such that $\mathfrak{m}^{(B, \lambda)}=\mathfrak{m}^{(A)}$ ，which belongs to \mathcal{M} ．It remains to prove that if $\lambda_{i}<\sigma_{i}(B)$ for some i ，then $\mathfrak{m}^{(B, \lambda)}$ lies in the span of \mathcal{M} ．

We proceed by induction on $\operatorname{deg}(B)$ ．If $\operatorname{deg}(B)=1$ ，then $B=E_{i-1, i}$ or $E_{i, i-1}$ ，and so $\lambda_{i}=0$ and $\mathfrak{m}^{(B, \lambda)}=x_{i-1} \xi_{\lambda}$ or $\xi_{\lambda} y_{i-1}$ ，which is zero by the definition．Assume now $\operatorname{deg}(B)>1$ and let i be minimal with $\lambda_{i}<\sigma_{i}(B)=\sigma_{i}\left(B^{+}\right)+\sigma_{i}\left(B^{-}\right)$．Let B_{i} be the top left $i \times i$ submatrix of B ， write $\mathrm{x}^{B^{+}}=\mathfrak{m} \mathrm{x}^{B_{i}^{+}}$and $\mathrm{y}^{B^{-}}=\mathrm{y}^{B_{i}^{-}} \mathfrak{m}^{\prime}$ for some monomials $\mathfrak{m}, \mathfrak{m}^{\prime}$ ．Then $\mathfrak{m}^{(B, \lambda)}=\mathfrak{m} \mathrm{x}^{B_{i}^{+}} \xi_{\lambda} \mathrm{y}^{B_{i}^{-}} \mathfrak{m}^{\prime}$ ． By Proposition 2．4（2），we can assume $\lambda_{i} \geq \sigma_{i}\left(B^{+}\right)$，otherwise $\mathfrak{m}^{(B, \lambda)}=0$ which is obviously in \mathcal{M} ．Now Proposition 2．4（1）implies that

$$
\mathfrak{m}^{(B, \lambda)}=\mathfrak{m}\left(\mathrm{x}^{B_{i}^{+}} \xi_{\lambda}\right) \mathrm{y}^{B_{i}^{-}} \mathfrak{m}^{\prime}=\mathfrak{m} \xi_{\lambda^{\prime}} \mathrm{x}^{B_{i}^{+}} \mathrm{y}^{B_{i}^{-}} \mathfrak{m}^{\prime}
$$

where $\lambda^{\prime}=\lambda-\operatorname{col}\left(B_{i}^{+}\right)+\operatorname{row}\left(B_{i}^{+}\right)$．Then $\lambda_{i}^{\prime}=\lambda_{i}-\left(b_{1, i}+\cdots+b_{i-1, i}\right)=\lambda_{i}-\sigma_{i}\left(B_{i}^{+}\right) \geq 0$ ．
By repeatedly applying the commutator formula given in Lemma 2．6，we can write

$$
\mathrm{x}^{B_{i}^{+}} \mathrm{y}^{B_{i}^{-}}=\mathrm{y}^{B_{i}^{-}} \mathrm{x}^{B_{i}^{+}}+f
$$

where f is a linear combination of monomials $\widehat{\mathfrak{m}} \xi_{\lambda} \widehat{\mathfrak{m}}^{\prime}$ with $\lambda \in \Lambda(n, r)$ and $\operatorname{deg}\left(\widehat{\mathfrak{m}} \widehat{\mathfrak{m}}^{\prime}\right)<\operatorname{deg}\left(B_{i}\right)$ ． Hence，

$$
\mathfrak{m}^{(B, \lambda)}=\mathfrak{m} \xi_{\lambda^{\prime}} \mathrm{x}^{B_{i}^{+}} \mathrm{y}^{B_{i}^{-}} \mathfrak{m}^{\prime}=\mathfrak{m} \xi_{\lambda^{\prime}} \mathrm{y}^{B_{i}^{-}} \mathrm{x}^{B_{i}^{+}} \mathfrak{m}^{\prime}+\mathfrak{m} \xi_{\lambda^{\prime}} f \mathfrak{m}^{\prime}
$$

Since $\lambda_{i}^{\prime}=\lambda_{i}-\sigma_{i}\left(B_{i}^{+}\right)<\sigma_{i}\left(B_{i}^{-}\right)$，we have $\mathfrak{m} \xi_{\lambda^{\prime}} \mathrm{y}^{B_{i}^{-}} \mathrm{X}^{B_{i}^{+}} \mathfrak{m}^{\prime}=0$ by Proposition 2．4（4）．Further－ more， $\mathfrak{m} \xi_{\lambda^{\prime}} f \mathfrak{m}^{\prime}$ is a \mathbb{Z}－linear combination of $\mathfrak{m}^{\left(B^{\prime}, \mu\right)}$ with $\operatorname{deg}\left(B^{\prime}\right)<\operatorname{deg}(B)$ ．By the induction hypothesis，each $\mathfrak{m}^{\left(B^{\prime}, \mu\right)}$ lies in the span of \mathcal{M} ．Then $\mathfrak{m} \xi_{\lambda^{\prime}} f \mathfrak{m}^{\prime}$ is in the span of \mathcal{M} ，so is $\mathfrak{m}{ }^{(B, \lambda)}$ ． The proof is completed．

From the proof of the above theorem，we obtain the following result．
Corollary 2．9．The algebra $S_{0}(n, r)$ is generated by the elements $\mathfrak{e}_{i}, \mathfrak{f}_{i}, \zeta_{\lambda}$ with（DS1）－（DS9） as the generating relations．Moreover，the set

$$
\left\{\mathfrak{e}^{A^{+}} \zeta_{\sigma(A)} \mathfrak{f}^{A^{-}} \mid A \in \Xi(n, r)\right\}
$$

is a \mathbb{Z}－basis for $S_{0}(n, r)$ ，where $\mathfrak{e}^{A^{+}}=\rho\left(\mathrm{x}^{A^{+}}\right)$and $\mathfrak{f}^{A^{-}}=\rho\left(\mathrm{y}^{A^{-}}\right)$．

3 Representation type of $S_{0}(n, r)$

This section is devoted to determining the representation type of $S_{0}(n, r)$ ．This is based on the representation theory of 0 －Hecke algebras developed in $[16,17,18,19]$ ．Throughout this section，we assume that $S_{0}(n, r)=S_{0}(n, r)_{\mathbb{F}}$ denotes the 0－Schur algebra over an algebraically closed field \mathbb{F} ．

Given a finite dimensional \mathbb{F}－algebra A ，by A－ \bmod we denote the category of finite dimen－ sional left A－modules．The algebra A is said to be representation－finite if up to isomorphism， there are only finitely many pairwise non－isomorphic indecomposable modules in A－mod．We refer to $[25,26]$ for the definition of tame and wild algebras．If $n=1$ or $r=1$ ，then $S_{0}(n, r)$ is clearly semisimple．Thus，in the following we always assume $n, r \geqslant 2$ ．

Let $H_{0}(r)=H_{0}(r)_{\mathbb{F}}$ be the 0 －Hecke algebra of $\mathfrak{S}=\mathfrak{S}_{r}$ over \mathbb{F} ．By［16］，all the simple （right）$H_{0}(r)$－modules have dimension one ${ }^{1}$ ．More precisely，each subset $J \subseteq I$ gives rise to a simple $H_{0}(r)$－module $E_{J}=\mathbb{F}$ defined by

$$
x \cdot T_{i}= \begin{cases}-x, & \text { if } i \in J \tag{3.0.1}\\ 0, & \text { otherwise }\end{cases}
$$

where $x \in E_{J}$ and $i \in I$ ．Moreover，the E_{J} form a complete set of simple $H_{0}(r)$－modules．It follows that

$$
H_{0}(r) / \operatorname{rad} H_{0}(r) \cong \underbrace{\mathbb{F} \times \cdots \times \mathbb{F}}_{2^{r-1}},
$$

where $\operatorname{rad} H_{0}(r)$ is the Jacobson radical of $H_{0}(r)$ ；see［16，Th．4．21］．Hence，the Gabriel quiver （or Ext－quiver）Γ of $H_{0}(r)$ has vertex set $\left\{v_{J} \mid J \subseteq I\right\}$ ，and the number of arrows from v_{J} to v_{K} ，for $J, K \subseteq I$ ，equals to $\operatorname{dim}_{\mathbb{F}} \operatorname{Ext}_{H_{0}(r)}^{1}\left(E_{J}, E_{K}\right)$ which is described in［18，Th．5．1］as follows．

[^1]Lemma 3．1．Suppose $J, K \subseteq I$ ．Then $\operatorname{dim} \operatorname{Ext}_{H_{0}(r)}^{1}\left(E_{J}, E_{K}\right)=1$ if and only if $J \nsubseteq K \nsubseteq J$ and $|j-k| \leqslant 1$ for all $j \in J \backslash K$ and $k \in K \backslash J$ ．Otherwise，we have $\operatorname{Ext}_{H_{0}(r)}^{1}\left(E_{J}, E_{K}\right)=0$ ．

For each subset $J \subseteq I$ ，let P_{J} and Q_{J} denote the projective cover and injective hull of S_{J} ，respectively．By［18，Prop．4．5］，$H_{0}(r)$ is selfinjective and，moreover，$P_{J} \cong Q_{\sigma(J)}$ ，where σ is a bijection $I \rightarrow I$ taking $i \mapsto r-i$ ．Without loss of generality，we set $P_{J}=e_{J} H_{0}(r)$ for an idempotent $e_{J} \in H_{0}(r)$ ．Then $\left\{e_{J} \mid J \subseteq I\right\}$ is a complete set of primitive orthogonal idempotents．By the lemma above，Γ has two isolated vertices v_{\emptyset} and v_{I} ，i．e．，there are no arrows starting or ending at v_{\emptyset} and v_{I} ．This implies that

$$
\begin{equation*}
H_{0}(r) \cong \mathbb{F} \times \mathbb{F} \times \widehat{e} H_{0}(r) \widehat{e}, \tag{3.1.1}
\end{equation*}
$$

where $\widehat{e}=\sum_{J} e_{J}$ with the sum taking over all proper subsets $J \subseteq I$ ．
Recall that for each $\lambda \in \Lambda(n, r)$ ，we have the element

$$
x_{\lambda}=\sum_{w \in \mathfrak{G}_{\lambda}} T_{w} \in H_{0}(r) .
$$

Applying（1．0．1）gives $x_{\lambda}^{2}=x_{\lambda}$ ．Hence，the $H_{0}(r)$－module $T_{0}(n, r):=\bigoplus_{\lambda \in \Lambda(n, r)} x_{\lambda} H_{0}(r)$ is both projective and injective．

Suppose $n \geqslant r$ ．Then for

$$
\lambda=(\underbrace{1, \ldots, 1}_{r}, 0, \ldots, 0) \in I(n, r),
$$

we have $x_{\lambda}=1$ ．Hence，if $n \geqslant r$ ，then $S_{0}(n, r)=\operatorname{End}_{H_{0}(r)}\left(T_{0}(n, r)\right)$ is Morita equivalent to $H_{0}(r)$ ．

For each $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Lambda(n, r)$ ，consider the subset J_{λ} of I defined by

$$
J_{\lambda}=\left\{\lambda_{1}, \lambda_{1}+\lambda_{2}, \ldots, \lambda_{1}+\lambda_{2}+\cdots \lambda_{n}\right\} \backslash\{r\} .
$$

By［16，Cor．4．14（2）］，

$$
x_{\lambda} H_{0}(r) \cong \bigoplus_{J \subseteq J_{\lambda}} P_{J} .
$$

This gives a decomposition

$$
\begin{equation*}
T_{0}(n, r)=\bigoplus_{\lambda \in \Lambda(n, r)} x_{\lambda} H_{0}(r)=\bigoplus_{J \subseteq I}\left(P_{J}\right)^{d_{J}}, \tag{3.1.2}
\end{equation*}
$$

where $d_{J}=\left|\left\{\lambda \in \Lambda(n, r) \mid J \subseteq J_{\lambda}\right\}\right|$ ．
Proposition 3．2．For each $J \subseteq I, d_{J} \neq 0$ if and only if $|J| \leqslant n-1$ ．
Proof．Suppose $d_{J} \neq 0$ ．Then there exist $\lambda \in \Lambda(n, r)$ such that $J \subseteq J_{\lambda}$ ．This implies that $|J| \leqslant\left|J_{\lambda}\right| \leqslant n-1$ ．

Conversely，suppose $|J|=m \leqslant n-1$ ．Write $J=\left\{i_{1}<\cdots<i_{m}\right\}$ and define $\lambda=$ $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \Lambda(n, r)$ by setting

$$
\lambda_{1}=i_{1}, \lambda_{2}=i_{2}-i_{1}, \ldots, \lambda_{m}=i_{m}-i_{m-1}, \lambda_{m+1}=r-i_{m}, \lambda_{m+2}=\cdots=\lambda_{n}=0 .
$$

Then $J=J_{\lambda}$ ．Therefore，$d_{J} \neq 0$ ．
Remark 3．3．The $H_{0}(r)$－module $T_{0}(n, r)=\bigoplus_{\lambda \in \Lambda(n, r)} x_{\lambda} H_{0}(r)$ is also known as tensor space． More precisely，let $I(n, r)=\left\{\mathbf{i}=\left(i_{1}, \ldots, i_{r}\right) \mid 1 \leqslant i_{j} \leqslant n\right.$ for all $\left.1 \leqslant j \leqslant r\right\}$ ．The symmetric group \mathfrak{S}_{r} acts on $I(n, r)$ by place permutation：

$$
\mathbf{i} w=\left(i_{w(1)}, i_{w(2)}, \ldots, i_{w(r)}\right) \text { for all } \mathbf{i} \in I(n, r), w \in \mathfrak{S}_{r} .
$$

Let Ω be an \mathbb{F}－vector space with basis $\left\{\omega_{i} \mid 1 \leqslant i \leqslant n\right\}$ whose r－fold tensor product $\Omega^{\otimes r}$ has basis $\left\{\omega_{\mathbf{i}}:=\omega_{i_{1}} \otimes \cdots \otimes \omega_{i_{r}} \mid \mathbf{i}=\left(i_{1}, \ldots, i_{r}\right) \in I(n, r)\right\}$ ．Then $T_{0}(n, r)$ is isomorphic to $\Omega^{\otimes r}$ whose right $H_{0}(r)$－module structure is defined by

$$
\omega_{\mathbf{i}} T_{k}= \begin{cases}\omega_{\mathbf{i} s_{k}}, & i_{k}<i_{k+1} \tag{3.3.1}\\ 0, & i_{k}=i_{k+1} \\ -\omega_{\mathbf{i}}, & i_{k}>i_{k+1}\end{cases}
$$

where $\mathbf{i}=\left(i_{1}, \ldots, i_{r}\right) \in I(n, r)$ and $k \in I$ ．
We claim that for each $J \subseteq I, d_{J}=\left|X_{J}\right|$ ，where

$$
X_{J}=\left\{\mathbf{i}=\left(i_{1}, \ldots, i_{r}\right) \in I(n, r) \mid i_{j}>i_{j+1}, i_{k} \geqslant i_{k+1} \text { for all } j \in \sigma(J), k \in I \backslash \sigma(J)\right\} .
$$

Indeed，since

$$
\Omega^{\otimes r} \cong T_{0}(n, r) \cong \bigoplus_{J \subseteq I}\left(P_{J}\right)^{d_{J}} \cong \bigoplus_{J \subseteq I}\left(Q_{\sigma(J)}\right)^{d_{J}},
$$

it follows that

$$
d_{J}=\operatorname{dim}_{\mathbb{F}} \operatorname{Hom}_{H_{0}(r)}\left(E_{\sigma(J)}, \operatorname{soc} \Omega^{\otimes r}\right)=\operatorname{dim}_{\mathbb{F}} \operatorname{Hom}_{H_{0}(r)}\left(E_{\sigma(J)}, \Omega^{\otimes r}\right) .
$$

By the definition of $E_{\sigma(J)}$ ，we have an isomorphism of \mathbb{F}－spaces

$$
\begin{aligned}
& \operatorname{Hom}_{H_{0}(r)}\left(E_{\sigma(J)}, \Omega^{\otimes r}\right) \\
\cong & \left\{x \in \Omega^{\otimes r} \mid x T_{j}=-x \text { for all } j \in \sigma(J), x T_{k}=0 \text { for all } k \in I \backslash \sigma(J)\right\}:=V_{J} .
\end{aligned}
$$

It is easy to see that the coefficients of $x=\sum_{\mathbf{i}} x_{\mathbf{i}} \omega_{\mathbf{i}} \in V_{J}$ satisfy

$$
\begin{cases}x_{\mathbf{i}}=0, & \text { if there exists } j \in \sigma(J) \text { such that } i_{j} \leqslant i_{j+1} \tag{3.3.2}\\ x_{\mathbf{i s}_{k}}-x_{\mathbf{i}}=0, & \text { if there exists } k \in I \backslash \sigma(J) \text { such that } i_{k}<i_{k+1} .\end{cases}
$$

By viewing（3．3．2）as a system of homogeneous linear equations with variables $x_{\mathbf{i}}$ for $\mathbf{i} \in I(n, r)$ ， we can identify V_{J} with the space S_{J} of solutions of（3．3．2）．We conclude that all the $x_{\mathbf{i}}$ with $\mathbf{i} \in X_{J}$ form a set of free variables for（3．3．2）．Consequently，

$$
d_{J}=\operatorname{dim}_{\mathbb{F}} V_{J}=\operatorname{dim}_{\mathbb{F}} S_{J}=\left|X_{J}\right| .
$$

By Proposition 3．2，for arbitrary positive integers $n, r, S_{0}(n, r)$ is Morita equivalent to

$$
\begin{equation*}
\operatorname{End}_{H_{0}(r)}\left(\bigoplus_{J \subseteq I,|J| \leqslant n-1} P_{J}\right) \cong e H_{0}(r) e \tag{3.3.3}
\end{equation*}
$$

where $e=\sum_{J \subseteq I,|J| \leqslant n-1} e_{J}$ ．
Proposition 3．4．The algebra $S_{0}(n, r)$ is selfinjective．
Proof．It is known that the usual duality $D=\operatorname{Hom}_{\mathbb{F}}(-, \mathbb{F})$ induces the Nakayama functor

$$
\nu=D \operatorname{Hom}_{H_{0}(r)}\left(-, H_{0}(r)\right): \bmod -H_{0}(r) \longrightarrow \bmod -H_{0}(r),
$$

where $\bmod -H_{0}(r)$ denotes the category of finite dimensional right $H_{0}(r)$－modules．Since $P_{J} \cong$ $Q_{\sigma(J)}$ for each subset $J \subseteq I$ ，we have

$$
\nu\left(P_{J}\right) \cong Q_{J} \cong P_{\sigma(J)} .
$$

Hence，the set $\left\{P_{J}|J \subseteq I,|J| \leqslant n-1\}\right.$ is stable under ν ，up to isomorphism．By［27，Lem．2．2］ and the selfinjectivity of $H_{0}(r)$ ，we infer that $e H_{0}(r) e$ is selfinjective．Consequently，$S_{0}(n, r)$ is selfinjective．

Furthermore，from（3．3．3）it follows that $S_{0}(r-1, r)$ is Morita equivalent to $\mathbb{F} \times \widehat{e} H_{0}(r) \widehat{e}$ ． In conclusion，we obtain the following result which is a slight generalization of $[5, \S 2.2(5)]$ ．

Proposition 3．5．Suppose $n \geqslant r-1$ ．Then $S_{0}(n, r)$ and $H_{0}(r)$ have the same representation type．

Combining the results above gives the following theorem．
Theorem 3．6．Suppose $n \geqslant 3$ ．Then $S_{0}(n, r)$ is representation－finite（resp．，tame，wild）if and only if $r \leqslant 3$（resp．，$r=4, r \geqslant 5$ ）．

Proof．It is shown in［19，Th．2．1］that the 0 －Hecke algebra $H_{0}(r)$ is representation－finite（resp．， tame，wild）if and only if $r \leqslant 3$（resp．，$r=4, r \geqslant 5$ ）．

Suppose $n \geqslant 3$ ．Then by Proposition 3．5，$S_{0}(n, r)$ and $H_{0}(r)$ have the same representation type in case $r \leqslant 4$ ．Therefore，$S_{0}(n, r)$ is representation－finite（resp．，tame）if and only if $r \leqslant 3$ （resp．，$r=4$ ）．

Now let $r \geqslant 5$ ．Then by Lemma 3．1，the Gabriel quiver Γ of $H_{0}(r)$ contains a full subquiver Σ of the following form

FIG．2．Subquiver of the Gabriel quiver Γ of $H_{0}(r)$

Since $n \geqslant 3$ ，all P_{J} with

$$
J \in\{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{1,4\},\{2,3\}\}
$$

occur as direct summands in $T_{0}(n, r)$ ，it follows that the Gabriel quiver of $S_{0}(n, r)$ also contains a full subquiver of the form Σ ．Hence，$S_{0}(n, r)$ is wild．

The rest of this section is devoted to determining the representation type of $S_{0}(2, r)$ with $r \geqslant 2$ ．For each $0 \leqslant i \leqslant r$ ，put $\lambda^{(i)}=(i, r-i) \in \Lambda(2, r)$ ．Then

$$
x_{\lambda^{(0)}} H_{0}(r) \cong P_{\emptyset} \cong x_{\lambda^{(r)}} H_{0}(r), \quad x_{\lambda^{(i)}} H_{0}(r) \cong P_{\emptyset} \oplus P_{\{i\}} \text { for } 1 \leqslant i<r
$$

Thus，$T_{0}(2, r) \cong\left(P_{\emptyset}\right)^{r+1} \oplus\left(\bigoplus_{i=1}^{r-1} P_{\{i\}}\right)$ and

$$
\begin{equation*}
S_{0}(2, r) \cong \mathbb{F}^{(r+1) \times(r+1)} \times \text { End }_{H_{0}(r)}\left(\bigoplus_{i=1}^{r-1} P_{\{i\}}\right) \tag{3.6.1}
\end{equation*}
$$

By Lemma 3．1，the Gabriel quiver of $A_{0}(r):=\operatorname{End}_{H_{0}(r)}\left(\bigoplus_{i=1}^{r-1} P_{\{i\}}\right)$ has the form

$$
\Delta_{r}: \stackrel{v_{\{1\}}}{\bullet} \underset{\beta_{1}}{\stackrel{\alpha_{1}}{\longrightarrow}} \cdot v_{\{2\}} \stackrel{\alpha_{2}}{\underset{\beta_{2}}{\longrightarrow}} \cdots \underset{\beta_{r-2}}{\stackrel{\alpha_{r-2}}{\leftrightarrows}} v_{\{r-1\}}
$$

FIG．3．Gabriel quiver of $A_{0}(r)$

Hence，$A_{0}(r) \cong \mathbb{F} \Delta_{r} / \mathcal{I}_{r}$ for some admissible ideal \mathcal{I}_{r} of the path algebra $\mathbb{F} \Delta_{r}$ ．Our next aim is to determine the ideal \mathcal{I}_{r} by induction on r ．

Recall from $\S 2$ that $S_{0}(2, r)$ has a basis $\left\{\zeta_{A} \mid A \in \Xi(2, r)\right\}$ ．By（1．1．2），for each $0 \leqslant i \leqslant r$ ， the idempotent $\zeta_{\lambda^{(i)}}$ is the composition

$$
T_{0}(2, r)=\bigoplus_{j=0}^{r} x_{\lambda^{(j)}} H_{0}(r) \xrightarrow{\pi_{i}} x_{\lambda^{(i)}} H_{0}(r) \xrightarrow{\kappa_{i}} \bigoplus_{j=0}^{r} x_{\lambda^{(j)}} H_{0}(r)=T_{0}(2, r)
$$

where π_{i} and κ_{i} denote the canonical projection and inclusion，respectively．Hence，$S_{0}(2, r) \zeta_{\lambda(0)} \cong$ $S_{0}(2, r) \zeta_{\lambda(r)}$ is a simple projective module．In particular，$\zeta_{\lambda^{(0)}}$ and $\zeta_{\lambda(r)}$ are primitive idempo－ tents．For each $1 \leqslant i<r, \zeta_{\lambda^{(i)}}$ decomposes into a sum of orthogonal primitive idempotents $\zeta_{\lambda^{(i)}}=\zeta_{\lambda^{(i)}}^{\prime}+\zeta_{\lambda^{(i)}}^{\prime \prime}$ such that $S_{0}(n, r) \zeta_{\lambda^{(i)}}^{\prime} \cong S_{0}(n, r) \zeta_{\lambda^{(0)}}$ ．Consequently，

$$
\begin{equation*}
S_{0}(2, r) / S_{0}(2, r) \zeta_{\lambda(0)} S_{0}(2, r) \cong A_{0}(r) \cong S_{0}(2, r) / S_{0}(2, r) \zeta_{\lambda(r)} S_{0}(2, r), \tag{3.6.2}
\end{equation*}
$$

and for $1 \leqslant i<r$ ，

$$
\begin{equation*}
S_{0}(2, r) / S_{0}(2, r) \zeta_{\lambda^{(i)}} S_{0}(2, r) \cong A_{0}(r) / A_{0}(r) e_{i} A_{0}(r), \tag{3.6.3}
\end{equation*}
$$

where e_{i} denotes the idempotent of $A_{0}(r)$ corresponding to the vertex $v_{\{i\}}$ of Δ_{r} ．In other words，e_{i} is the composition of the canonical projection and inclusion

$$
\bigoplus_{j=1}^{r-1} P_{\{j\}} \longrightarrow P_{\{i\}} \longrightarrow \bigoplus_{j=1}^{r-1} P_{\{j\}} .
$$

Proposition 3．7．Suppose $\lambda=(1, r-1)$ and $\mu=(0, r-1)$ ．Then there is an algebra isomorphism

$$
\phi: S_{0}(2, r) / S_{0}(2, r) \zeta_{\lambda} S_{0}(2, r) \longrightarrow S_{0}(2, r-1) / S_{0}(2, r-1) \zeta_{\mu} S_{0}(2, r-1) .
$$

Analogously，suppose $\rho=(r-1,1)$ and $\tau=(r-1,0)$ ，Then there is an algebra isomorphism

$$
\psi: S_{0}(2, r) / S_{0}(2, r) \zeta_{\rho} S_{0}(2, r) \longrightarrow S_{0}(2, r-1) / S_{0}(2, r-1) \zeta_{\tau} S_{0}(2, r-1) .
$$

Proof．We only prove the first assertion．The second one can be proved similarly．
By Corollary 2．9，$S_{0}(2, r)$ has generators $\mathfrak{e}, \mathfrak{f}$ and $\zeta_{\nu}(\nu \in \Lambda(2, r))$ with relations：
$\zeta_{\nu} \zeta_{\nu^{\prime}}=\delta_{\nu, \nu^{\prime}} \zeta_{\nu}, 1=\sum_{\nu \in \Lambda(2, r)} \zeta_{\nu} ;$
（DS2） $\mathfrak{e} \zeta_{\nu}=\zeta_{\nu+\varepsilon_{1}-\varepsilon_{2}} \mathfrak{e}$ if $\nu_{2} \geq 1, \mathfrak{e} \zeta_{\nu}=0=\zeta_{\nu} \mathfrak{f}$ if $\nu_{2}=0 ;$
（DS3） $\mathfrak{f} \zeta_{\nu}=\zeta_{\nu-\varepsilon_{1}+\varepsilon_{2}} \mathfrak{f}$ if $\nu_{1} \geq 1, \mathfrak{f} \zeta_{\nu}=0=\zeta_{\nu} \mathfrak{e}$ if $\nu_{1}=0 ;$
（DS4） $\mathfrak{e f}-\mathfrak{f e}=\zeta_{(r, 0)}-\zeta_{(0, r)}$.
While $S_{0}(2, r-1)$ has generators $\mathfrak{e}, \mathfrak{f}$ and $\zeta_{\theta}(\theta \in \Lambda(2, r-1))$ with similar relations．Write

$$
\mathcal{K}_{\lambda}=S_{0}(2, r) \zeta_{\lambda} S_{0}(2, r) \text { and } \mathcal{K}_{\mu}=S_{0}(2, r-1) \zeta_{\mu} S_{0}(2, r-1) .
$$

Consider the following elements in $S_{0}(2, r-1) / \mathcal{K}_{\mu}$ ：

$$
\mathfrak{e}^{\prime}=\mathfrak{e}+\mathcal{K}_{\mu}, \mathfrak{f}^{\prime}=\mathfrak{f}+\mathcal{K}_{\mu}, \zeta_{\nu}^{\prime}= \begin{cases}\zeta_{\left(\nu_{1}-1, \nu_{2}\right)}+\mathcal{K}_{\mu}, & \text { if } \nu_{1} \geqslant 1 \\ 0, & \text { otherwise }\end{cases}
$$

where $\nu=\left(\nu_{1}, \nu_{2}\right) \in \Lambda(2, r)$ ．It is straightforward to check that $\mathfrak{e}^{\prime}, \mathfrak{f}^{\prime}, \zeta_{\nu}^{\prime}$ satisfy the generating relations（DS1）－（DS4）for $S_{0}(2, r)$ ．Thus，there is a surjective algebra homomorphism

$$
\widetilde{\phi}: S_{0}(2, r) \longrightarrow S_{0}(2, r-1) / \mathcal{K}_{\mu}
$$

which takes $\mathfrak{e} \mapsto \mathfrak{e}^{\prime}, \mathfrak{f} \mapsto \mathfrak{f}^{\prime}$ and $\zeta_{\nu} \mapsto \zeta_{\nu}^{\prime}$ for $\nu \in \Lambda(2, r)$ ．Since $\widetilde{\phi}\left(\zeta_{\lambda}\right)=0$ ，it induces a surjective homomorphism

$$
\phi: S_{0}(2, r) / \mathcal{K}_{\lambda} \longrightarrow S_{0}(2, r-1) / \mathcal{K}_{\mu}
$$

We now prove that ϕ is an isomorphism by a dimension comparison．By（3．6．1）and（3．6．2），

$$
\operatorname{dim} S_{0}(2, r-1) / \mathcal{K}_{\mu}=\operatorname{dim} S_{0}(2, r-1)-r^{2}=\binom{r+2}{3}-r^{2}
$$

On the other hand，for each $0 \leqslant i \leqslant r$ ，put $\lambda^{(i)}=(i, r-i) \in \Lambda(2, r)$ as above．Note that $\lambda=\lambda^{(1)}$ ．Since $\sum_{i=0}^{r} \zeta_{\lambda^{(i)}}=1$ ，we obtain a decomposition

$$
\mathcal{K}_{\lambda}=\zeta_{\lambda^{(0)}} \mathcal{K}_{\lambda} \oplus \zeta_{\lambda^{(1)}} \mathcal{K}_{\lambda} \oplus \cdots \oplus \zeta_{\lambda^{(r)}} \mathcal{K}_{\lambda}
$$

We are going to compute the dimensions of

$$
\zeta_{\lambda^{(i)}} \mathcal{K}_{\lambda} \zeta_{\lambda^{(j)}}=\left(\zeta_{\lambda^{(i)}} S_{0}(2, r) \zeta_{\lambda}\right) \cdot\left(\zeta_{\lambda} S_{0}(2, r) \zeta_{\lambda^{(j)}}\right)
$$

A direct calculation shows that $\zeta_{\lambda^{(0)}} S_{0}(2, r) \zeta_{\lambda}=\mathbb{F} \zeta_{A_{0}}$ and $\zeta_{\lambda^{(r)}} S_{0}(2, r) \zeta_{\lambda}=\mathbb{F} \zeta_{A_{r}}$ ，where

$$
A_{0}=\left(\begin{array}{cc}
0 & 0 \\
1 & r-1
\end{array}\right) \text { and } A_{r}=\left(\begin{array}{cc}
1 & r-1 \\
0 & 0
\end{array}\right)
$$

For $1 \leqslant i<r, \zeta_{\lambda^{(i)}} S_{0}(2, r) \zeta_{\lambda}$ has a basis $\left\{\zeta_{A_{1}^{(i)}}, \zeta_{A_{2}^{(i)}}\right\}$ ，where

$$
A_{1}^{(i)}=\left(\begin{array}{cc}
1 & i-1 \\
0 & r-i
\end{array}\right) \text { and } A_{2}^{(i)}=\left(\begin{array}{cc}
0 & i \\
1 & r-i-1
\end{array}\right)
$$

Similarly，$\zeta_{\lambda} S_{0}(2, r) \zeta_{\lambda(0)}=\mathbb{F} \zeta_{B_{0}}$ and $\zeta_{\lambda} S_{0}(2, r) \zeta_{\lambda(r)}=\mathbb{F} \zeta_{B_{r}}$ ，where

$$
B_{0}=\left(\begin{array}{cc}
0 & 1 \\
0 & r-1
\end{array}\right) \text { and } B_{r}=\left(\begin{array}{cc}
1 & 0 \\
r-1 & 0
\end{array}\right)
$$

For $1 \leqslant i<r, \zeta_{\lambda} S_{0}(2, r) \zeta_{\lambda^{(i)}}$ has a basis $\left\{\zeta_{B_{1}^{(i)}}, \zeta_{B_{2}^{(i)}}\right\}$ ，where

$$
B_{1}^{(i)}=\left(\begin{array}{cc}
1 & 0 \\
i-1 & r-i
\end{array}\right) \text { and } B_{2}^{(i)}=\left(\begin{array}{cc}
0 & 1 \\
i & r-i-1
\end{array}\right)
$$

Furthermore，$\zeta_{\lambda(0)} \mathcal{K}_{\lambda}$ has a basis

$$
\left\{\zeta_{A} \left\lvert\, A=\left(\begin{array}{cc}
0 & 0 \\
i & r-i
\end{array}\right)\right. \text { for } 0 \leqslant i \leqslant r\right\}
$$

and $\zeta_{\lambda(r)} \mathcal{K}_{\lambda}$ has a basis

$$
\left\{\zeta_{A} \left\lvert\, A=\left(\begin{array}{cc}
i & r-i \\
0 & 0
\end{array}\right)\right. \text { for } 0 \leqslant i \leqslant r\right\}
$$

Hence， $\operatorname{dim} \zeta_{\lambda^{(0)}} \mathcal{K}_{\lambda}=\operatorname{dim} \zeta_{\lambda^{(r)}} \mathcal{K}_{\lambda}=r+1$ ．

Now fix $1 \leqslant i \leqslant r-1$ ．Then $\zeta_{\lambda^{(i)}} \mathcal{K}_{\lambda} \zeta_{\lambda^{(0)}}$（resp．，$\zeta_{\lambda^{(i)}} \mathcal{K}_{\lambda} \zeta_{\lambda(r)}$ ）has a basis ζ_{C}（resp．，ζ_{D} ）with

$$
C=\left(\begin{array}{cc}
0 & i \\
0 & r-i
\end{array}\right) \quad \text { (resp., } D=\left(\begin{array}{cc}
i & 0 \\
r-i & 0
\end{array}\right) \text {). }
$$

By［7，Th．13．18（1）］and［28，Th．3．2］，for $1 \leqslant j \leqslant r-1$ ，we have

$$
\begin{aligned}
\zeta_{A_{1}^{(i)}} \zeta_{B_{1}^{(j)}} & =\sum_{m=0}^{\min \{i-1, j-1\}} \zeta_{X_{m}} \text { with } X_{m}=\left(\begin{array}{cc}
1+m \\
j-1-m & \begin{array}{c}
i-1-m \\
r-j-i+m+1
\end{array}
\end{array}\right), \\
\zeta_{A_{1}^{(i)}} \zeta_{B_{2}^{(j)}}= & \zeta_{A_{2}^{(i)}} \zeta_{B_{1}^{(j)}}=\zeta_{Y} \text { with } Y=\left(\begin{array}{cc}
0 & i \\
j & r-j-i
\end{array}\right), \\
\zeta_{A_{2}^{(i)}} \zeta_{B_{2}^{(j)}}= & \sum_{m=0}^{\min \{i, j\}} \zeta_{X_{m-1}}=\zeta_{A_{1}^{(i)}} \zeta_{B_{1}^{(j)}}+\zeta_{A_{1}^{(i)}} \zeta_{B_{2}^{(j)}} .
\end{aligned}
$$

Since

$$
\zeta_{Y} \neq 0 \Longleftrightarrow r-j-i \geqslant 0 \Longleftrightarrow j \leqslant r-i,
$$

it follows that

$$
\operatorname{dim} \zeta_{\lambda^{(i)}} \mathcal{K}_{\lambda} \zeta_{\lambda^{(j)}}= \begin{cases}2, & \text { if } 1 \leqslant j \leqslant r-i \\ 1, & \text { if } r-i<j \leqslant r-1 .\end{cases}
$$

Hence，

$$
\operatorname{dim} \zeta_{\lambda^{(i)}} \mathcal{K}_{\lambda}=\sum_{j=0}^{r} \operatorname{dim} \zeta_{\lambda^{(i)}} \mathcal{K}_{\lambda} \zeta_{\lambda^{(j)}}=2 r+1-i .
$$

Consequently，we obtain that

$$
\begin{aligned}
\operatorname{dim} \mathcal{K}_{\lambda} & =\sum_{i=0}^{r} \operatorname{dim} \zeta_{\lambda^{(i)}} \mathcal{K}_{\lambda}=2(r+1)+\sum_{i=1}^{r-1}(2 r+1-i)=\frac{3 r^{2}+3 r+2}{2} \\
& =\operatorname{dim} S_{0}(2, r)-\operatorname{dim} S_{0}(2, r-1) / \mathcal{K}_{\mu} .
\end{aligned}
$$

This together with the surjectivity of ϕ implies that ϕ is an isomorphism．
The proposition above together with（3．6．2）and（3．6．3）implies that ϕ induces a surjective algebra homomorphism

$$
\bar{\phi}: A_{0}(r) \longrightarrow A_{0}(r-1)
$$

taking $e_{1} \mapsto 0$ and $e_{i} \mapsto e_{i-1}$ ，for $2 \leqslant i \leqslant r-1$ with $\operatorname{Ker} \bar{\phi}=A_{0}(r) e_{1} A_{0}(r)$ ．Similarly，ψ induces a surjective algebra homomorphism

$$
\bar{\psi}: A_{0}(r) \longrightarrow A_{0}(r-1)
$$

taking $e_{r-1} \mapsto 0$ and $e_{i} \mapsto e_{i}$ ，for $1 \leqslant i \leqslant r-2$ with $\operatorname{Ker} \bar{\psi}=A_{0}(r) e_{r-1} A_{0}(r)$ ．
Corollary 3．8．Suppose $r \geqslant 2$ ．Then $A_{0}(r) \cong \mathbb{F} \Delta_{r} / \mathcal{I}_{r}$ ，where \mathcal{I}_{r} is the ideal of $\mathbb{F} \Delta_{r}$ generated by $\left\{\beta_{1} \alpha_{1}, \alpha_{r-2} \beta_{r-2}, \beta_{i} \alpha_{i}-\alpha_{i-1} \beta_{i-1}\right.$ for $\left.2 \leqslant i \leqslant r-2\right\}$ ．

Proof．Obviously，$A_{0}(2) \cong \mathbb{F} \cong \mathbb{F} \Delta_{1}$ ．By the proof of［19，Th．2．1］，we have

$$
A_{0}(3) \cong \mathbb{F} \Delta_{2} /\left\langle\beta_{1} \alpha_{1}, \alpha_{1} \beta_{1}\right\rangle \text { and } A_{0}(4) \cong \mathbb{F} \Delta_{3} /\left\langle\beta_{1} \alpha_{1}, \alpha_{1} \beta_{1}-\beta_{2} \alpha_{2}, \alpha_{2} \beta_{2}\right\rangle .
$$

Hence，the assertion is true for $r=2,3,4$ ．Applying the surjective homomorphisms $\bar{\phi}$ and $\bar{\psi}$ together with an induction on r proves the assertion for all $r \geqslant 2$ ．

Theorem 3．9．Let $r \geqslant 2$ ．Then $S_{0}(2, r)$ is representation－finite（resp．，tame，wild）if $r \leqslant 5$ （resp．，$r=6, r \geqslant 7$ ）．

Proof．By（3．6．1），$S_{0}(2, r)$ and $A_{0}(r)$ have the same representation type．It is clear that $A_{0}(r)$ is representation－finite for $r \leqslant 4$ ．By applying the covering technique developed in［29，30］， we obtain that there are 40 isolasses of indecomposable $A_{0}(5)$－modules．Hence，$A_{0}(5)$ is also representation－finite．

By［31］and［32，Th．4．2］，$A_{0}(6)$ is a selfinjective algebra of tubular type which is tame．
It remains to show that $A_{0}(r)$ is wild for $r \geqslant 7$ ．The universal cover of $A_{0}(r)$ has the following form

FIG．4．Universal cover of $A_{0}(r)$
with all squares commutative and all paths $1 \longrightarrow 2 \longrightarrow 1$ and $r-1 \longrightarrow r-2 \longrightarrow r-1$ being
zero．The quiver \widetilde{Q}_{r} contains a full subquiver of the form

FIG．5．Subquiver of \widetilde{Q}_{r}
with all squares commutative which gives rise to a wild algebra．Hence，$A_{0}(r)$ is wild for $r \geqslant 7$ ．

参考文献（References）

［1］M．Jimbo，A q－difference analogue of $U(g)$ and the Yang－Baxter equation［J］．Lett．Math． Phys．，10（1）：63－69， 1985.
［2］R．Dipper and G．James，The q－Schur Algebra［J］．Proc．London Math．Soc．（3）， 59（1）：23－50， 1989.
［3］R．Dipper and S．Donkin，Quantum $G L_{n}[J]$ ．Proc．London Math．Soc．（3），63（1）：165－211， 1991.
［4］B．Parshall，J．Wang，Quantum linear groups［M］．Memoirs Amer．Math．Soc．，no． 439. Providence：Amer．Math．Soc．， 1991.
［5］S．Donkin，The q－Schur Algebra［M］．Cambridge：Cambridge University Press， 1998.
［6］J．A．Green，Polynomial Representations of $\mathrm{GL}_{n}[\mathrm{M}]$ ．2nd ed．，with an appendix on Schen－ sted correspondence and Littelmann paths by K．Erdmann，J．A．Green and M．Schocker． Lecture Notes in Mathematics，no．830．Berlin：Springer－Verlag， 2007.
［7］B．Deng，J．Du，B．Parshall and J．Wang，Finite dimensional algebras and quantum groups ［M］．Mathematical Surveys and Monographs Volume 150．Providence：Amer．Math．Soc．， 2008.
［8］K．Erdmann and D．Nakano，Representation type of q－Schur algebras［J］．Trans．Amer． Math．Soc．，353：4729－4756， 2010.
［9］S．Doty and A．Giaquinto，Presenting Schur algebras［J］．Int．Math．Res． Not．，36：1907－1944， 2002.
［10］J．Du and B．Parshall，Monomial bases for q－Schur algebras［J］．Trans．Amer．Math．Soc．， 355：1593－1620， 2003.
［11］D．Krob and J．Y．Thibon，Noncommutative symmetric functions．IV．Quantum linear groups and Hecke algebras at $q=0$［J］．J．Algebraic Combin．，6：339－376， 1997.
［12］X．Su，A generic multiplication in quantised Schur algebras［J］．Quarterly J．of Mathemat－ ics，61（4）：437－445， 2010.
［13］A．Beilinson，G．Lusztig and R．MacPherson，A geometric setting for the quantum defor－ mation of $\mathrm{GL}_{n}[J]$ ．Duke Math．J．，61：655－677， 1990.
［14］M．Reineke，Generic extensions and multiplicative bases of quantum groups at $q=0$［J］． Represent．Theory，5：147－163， 2001.
［15］B．Deng，J．Du and A．Mah，Presenting degenerate Ringel－Hall algebras of cyclic quivers ［J］．J．Pure App．Algebra，214：1787－1799， 2010.
［16］P．N．Norton，0－Hecke algebras［J］．J．Austral．Math．Soc．，27：337－357， 1979.
［17］R．W．Carter，Representation theory of the 0－Hecke algebras［J］．J．Algebra，104：89－103， 1986.
［18］M．Fayers，0－Hecke algebras of finite Coxeter groups［J］．J．Pure Appl．Algebra，199：27－41， 2005.
［19］B．Deng and G．Yang，Representation type of 0－Hecke algebras［J］．Science in China A （accepted）．
［20］C．M．Ringel，Hall algebras and quantum groups［J］．Invent．Math．，101：583－592， 1990.
［21］J．Du，A note on the quantized Weyl reciprocity at roots of unity［J］．Alg．Colloq．，2：363－372， 1995.
［22］G．Yang，Quantum Schur algebras and their degenerations［D］．Beijing：Beijing Normal University， 2010.
［23］C．M．Ringel，Hall algebras revisited［A］．In Quantum Deformations of Algebras and Their Representations，A．Joseph \＆S．Shnider（eds．），Israel Mathematical Conference Proceed－ ings，no．7，Bar－Ilan University，Bar－Ilan，1993，pp．171－176．
［24］B．Deng and J．Du，On bases of quantized enveloping algebras［J］．Pacific J．Math．， 202：33－48， 2005.
［25］C．M．Ringel，Tame algebras and integral quadratic forms［M］．Lecture Notes in Mathe－ matics，no．1099．Berlin：Springer－Verlag， 1984.
［26］D．Simson and A．Skowroáski，Elements of the representation theory of associative algebras ［M］．Vol．3．Representation－infinite tilted algebras．London Mathematical Society Student Texts，72．Cambridage：Cambridge University Press， 2007.
［27］A．Skowronski and K．Yamagata，Galois coverings of selfinjective algebras by repeatitive algebras［J］．Trans．Amer．Math．Soc．，351：715－734， 1999.
［28］B．Deng and G．Yang，Quantum Schur algebras revisited［J］．J．Pure Appl．Algebra（ac－ cepted）．
［29］K．Bongartz and P．Gabriel，Covering spaces in representation－theory［J］．Invent．Math．， 65：331－378， 1982.
［30］P．Gabriel，The universal cover of a repersentation－finite algebra［A］．In：Representations of algebras，Lecture Notes in Math．903，68－105，Berlin－Heidelberg－New York， 1981.
［31］J．Bialkowski and A．Skowronski，Selfinjective algebras of tubular type［J］．Collq．Math．， 94：175－194， 2002.
［32］J．Bialkowski and A．Skowronski，Socle deformations of selfinjective algebras of tubular type［J］．J．Math．Soc．Japan，56：687－716， 2004.

[^0]: 基金项目：国家自然科学基金项目（10731070），高等学校博士学科点专项科研基金资助项目（2007030061）
 作者简介：邓邦明（1966－），男，教授，主要研究方向：代数学。杨桂玉（1982－），女，讲师，主要研究方向：代数学。

[^1]: ${ }^{1}$ The $H_{0}(r)$－modules considered in $[16,17,18]$ are left module．Since $H_{0}(r)$ admits an anti－automorphism $T_{i} \mapsto T_{i}$ ，all results there hold similarly for right $H_{0}(r)$－modules．

