0-Schur 代数

邓邦明1,杨桂玉2

¹ 北京师范大学数学科学学院,北京 100875 ² 山东理工大学理学院,淄博 255049

摘要: 利用 Beilinson, Lusztig 和 MacPherson 关于量子 Schur 代数的一个几何构造以及 0-Hecke 代数的结构, 我们给出了 0-Schur 代数的一个表现并确定了它们的表示型。

关键词: 0-Schur 代数,表示型,表现

中图分类号: O153.3, O154.2

On 0-Schur algebras

Deng Bang-Ming¹, Yang Gui-Yu²

School of Mathematical Sciences, Beijing Normal University, Beijing 100875
 School of Science, Shandong University of Technology, Zibo 255049

Abstract: Based on a geometric construction of quantum Schur algebras due to Beilinson, Lusztig and MacPherson and the structure of 0-Hecke algebras, we give a presentation for 0-Schur algebras and determine their representation type.

Key words: 0-Schur algebra, representation type, presentation

0 Introduction

Quantum Schur algebras (or q-Schur algebras) were studied independently by Jimbo [1] and Dipper and James [2]. This class of algebras plays a central role in linking the representations of quantum general linear groups, quantum enveloping algebras of type A and Hecke algebras of symmetric groups; see for example [3, 4, 5]. This provides a q-analogue of the classical theory relating representation theories of Schur algebras, general linear groups and symmetric groups; see a thorough treatment in [6]. The structure and representation theory of quantum Schur algebras have been widely studied in the literature; see [5, 7] and the references given there. Recently, the representation type of quantum Schur algebras was completely determined in [8], and a presentation for quantum Schur algebras was given in [9, 10].

It is known that the classical Schur algebras are the degeneration of quantum Schur algebras at q=1. Analogously, by considering their degeneration at q=0, we obtain the so-called 0-Schur algebras which have been studied by Donkin [5, §2.2] in terms of 0-Hecke algebras of symmetric groups, as well as by Krob-Thibon [11] in connection with noncommutative

基金项目: 国家自然科学基金项目 (10731070), 高等学校博士学科点专项科研基金资助项目 (2007030061)

作者简介: 邓邦明(1966-), 男, 教授, 主要研究方向: 代数学。杨桂玉(1982-), 女, 讲师, 主要研究方向: 代数学。

symmetric functions. Also, Su [12] has defined generic multiplication in certain subalgebras of 0-Schur algebras and related them with the degenerate Ringel-Hall algebras.

The present paper is devoted to the study of the structure and representation type of 0-Schur algebras. We first give a presentation for 0-Schur algebras based on a geometric construction of quantum Schur algebras due to Beilinson, Lusztig and MacPherson [13] and a presentation for the degenerate Ringel–Hall algebras of linear quivers given in [14, 15]. We then determine the representation type of 0-Schur algebras by using the structure and the representation theory of 0-Hecke algebras developed in [16, 17, 18, 19] and some techniques in the representation theory of algebras.

1 Quantum Schur algebras

In this section we recall the definition of quantum Schur algebras $S_{\mathbf{q}}(n,r)$ due to Dipper–James [2] and also review the geometric construction of $S_{\mathbf{q}}(n,r)$ given by Beilinson–Lusztig –MacPherson [13]. We then apply multiplication formulas in [13, Lem. 3.2] to obtain certain relations in $S_{\mathbf{q}}(n,r)$. Finally, we introduce the notion of Ringel–Hall algebras defined by Ringel [20].

Let $\mathfrak{S} = \mathfrak{S}_r$ denote the symmetric group on r letters with generating set $\{s_i = (i, i+1) \mid i \in I\}$, where $I = \{1, 2, ..., r-1\}$. Let $\mathscr{A} = \mathbb{Z}[q]$ be the polynomial ring with indeterminate q. By definition, the Hecke algebra $H_q(r) = H_q(\mathfrak{S})$ of \mathfrak{S} is the \mathscr{A} -algebra with generators T_i , for $i \in I$, and relations

$$\begin{cases} T_i^2 = (q-1)T_i + q, & \text{for } i \in I; \\ T_i T_j = T_j T_i, & \text{for } i, j \in I \text{ with } |i-j| > 1; \\ T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}, & \text{for } 1 \leqslant i < r - 1. \end{cases}$$

If $w = s_{i_1} \cdots s_{i_t} = s_{j_1} \cdots s_{j_t}$ are two reduced expressions of $w \in \mathfrak{S}$, then $T_{i_1} \cdots T_{i_t} = T_{j_1} \cdots T_{j_t}$. Thus, the element $T_w := T_{i_1} \cdots T_{i_t}$ is well defined. It is well known that $H_q(r)$ is a free \mathscr{A} -module with basis $\{T_w \mid w \in \mathfrak{S}\}$.

Fix a positive integer n and let $\Lambda(n,r)$ be the set of compositions of r into n parts. For $\lambda = (\lambda_1, \ldots, \lambda_n) \in \Lambda(n,r)$, define for $1 \le i \le n$,

$$R_i^{\lambda} = \{ x \mid \lambda_1 + \dots + \lambda_{i-1} + 1 \leqslant x \leqslant \lambda_1 + \dots + \lambda_i \},\$$

where $\lambda_0 = 0$. If $\lambda_i = 0$, put $R_i^{\lambda} := \emptyset$ by convention. In this way, we get a decomposition

$$\{1, 2, \dots, r\} = R_1^{\lambda} \cup R_2^{\lambda} \cup \dots \cup R_n^{\lambda}$$

of $\{1, 2, \dots, r\}$ into a disjoint union of subsets. The subgroup

$$\mathfrak{S}_{\lambda} := \{ w \in \mathfrak{S} \mid wR_i^{\lambda} = R_i^{\lambda}, 1 \leqslant i \leqslant n \}$$

is called a Young subgroup of \mathfrak{S} defined by the composition λ . We then define

$$x_{\lambda} = \sum_{w \in \mathfrak{S}_{\lambda}} T_w \in H_{\mathbf{q}}(r)$$

which satisfies (see for example [7, Lem. 7.32])

$$x_{\lambda}T_{i} = qx_{\lambda} \text{ for each } i \in I \text{ with } s_{i} \in \mathfrak{S}_{\lambda}.$$
 (1.0.1)

Following Dipper and James [2], the endomorphism algebra

$$S_{\mathbf{q}}(n,r) := \operatorname{End}_{H_{\mathbf{q}}(r)} \left(\bigoplus_{\lambda \in \Lambda(n,r)} x_{\lambda} H_{\mathbf{q}}(r) \right)$$

is called the (integral) quantum Schur algebra of bidegree (n,r) over \mathscr{A} . For $\lambda, \mu \in \Lambda(n,r)$ and $w \in \mathfrak{S}$, define $\phi_{\lambda,\mu}^w \in S_{\boldsymbol{q}}(n,r)$ by

$$\phi_{\lambda,\mu}^w: \bigoplus_{\nu \in \Lambda(n,r)} x_{\nu} H_{\mathbf{q}}(r) \longrightarrow \bigoplus_{\nu \in \Lambda(n,r)} x_{\nu} H_{\mathbf{q}}(r), \quad x_{\nu} h \longmapsto \delta_{\mu,\nu} T_{\mathfrak{S}_{\lambda} w \mathfrak{S}_{\mu}} h,$$

where $T_{\mathfrak{S}_{\lambda}w\mathfrak{S}_{\mu}} = \sum_{x \in \mathfrak{S}_{\lambda}w\mathfrak{S}_{\mu}} T_x$.

We now recall the geometric construction of quantum Schur algebras given by Beilinson–Lusztig–MacPherson [13]. Let \mathbb{F} be a field and let V be an \mathbb{F} -vector space of dimension r. Let $\mathfrak{F} = \mathfrak{F}(n,V)$ be the set of n-step flags

$$V_1 \subset V_2 \subset \cdots \subset V_n = V$$
.

The group G = GL(V) acts naturally on \mathfrak{F} . This induces a diagonal action of G on $\mathfrak{F} \times \mathfrak{F}$ defined by $g(\mathfrak{f}, \mathfrak{f}') = (g\mathfrak{f}, g\mathfrak{f}')$, where $g \in G$ and $\mathfrak{f}, \mathfrak{f}' \in \mathfrak{F}$.

Let $\Xi(n,r)$ denote the set of matrices $A=(a_{i,j})\in\mathbb{N}^{n\times n}$ with $a_{i,j}$ nonnegative integers and $\sum_{1\leqslant i,j\leqslant n}a_{i,j}=r$. Then there is a bijection from $\mathfrak{F}\times\mathfrak{F}/G$ to $\Xi(n,r)$ sending the orbit of $(\mathfrak{f},\mathfrak{f}')$ to $A=(a_{i,j})$ with

$$a_{i,j} = \dim_{\mathbb{F}} \frac{V_i \cap V'_j}{V_{i-1} \cap V'_i + V_i \cap V'_{i-1}} \text{ for } 1 \leqslant i, j \leqslant n,$$
 (1.0.2)

where $\mathfrak{f} = (V_1 \subseteq V_2 \subseteq \cdots \subseteq V_n = V)$, $\mathfrak{f}' = (V_1' \subseteq V_2' \subseteq \cdots \subseteq V_n' = V)$ and $V_0 = V_0' = 0$ by convention.

For $A \in \Xi(n,r)$, we denote by \mathcal{O}_A the orbit in $\mathfrak{F} \times \mathfrak{F}$ corresponding to A. For each matrix $A = (a_{i,j}) \in \mathbb{N}^{n \times n}$, define

$$row(A) = (\sum_{j=1}^{n} a_{1,j}, \dots, \sum_{j=1}^{n} a_{n,j}) \in \mathbb{N}^{n} \text{ and } col(A) = (\sum_{i=1}^{n} a_{i,1}, \dots, \sum_{i=1}^{n} a_{i,n}) \in \mathbb{N}^{n}.$$

If $\mathbb{F} = \mathbb{F}_q$ is a finite field of q elements. For $A, B, C \in \Xi(n, r)$, fix a representative $(\mathfrak{f}', \mathfrak{f}'') \in \mathcal{O}_C$ and put

$$c_{A,B,C;q} = |\{\mathfrak{f} \in \mathfrak{F} \mid (\mathfrak{f}',\mathfrak{f}) \in \mathcal{O}_A, (\mathfrak{f},\mathfrak{f}'') \in \mathcal{O}_B\}|.$$

Clearly, $c_{A,B,C;q}$ is independent of the choice of $(\mathfrak{f}',\mathfrak{f}'')$, and a necessary condition for $c_{A,B,C;q} \neq 0$ is that

$$row(A) = row(C), col(A) = row(B) \text{ and } col(B) = col(C).$$

$$(1.0.3)$$

Following [13, Prop. 1.2], for any given $A, B, C \in \Xi(n, r)$, there is a polynomial $g_{A,B,C}(q) \in \mathscr{A} = \mathbb{Z}[q]$ such that for all prime powers $q \neq 1$, the equality $g_{A,B,C}(q) = c_{A,B,C;q}$ holds.

Definition 1.1 ([13]). Let $S'_{\mathbf{q}}(n,r)$ be the free $\mathbb{Z}[\mathbf{q}]$ -module with basis $\{\zeta_A \mid A \in \Xi(n,r)\}$ and with multiplication given by

$$\zeta_A \zeta_B = \sum_{C \in \Xi(n,r)} g_{A,B,C}(\boldsymbol{q}) \zeta_C$$
, for all $A, B \in \Xi(n,r)$.

Then $S'_{\boldsymbol{q}}(n,r)$ is an associative algebra with identity described as follows. For each $\lambda = (\lambda_1, \ldots, \lambda_n) \in \Lambda(n,r)$, let $\operatorname{diag}(\lambda)$ denote the diagonal matrix $\operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ and write $\zeta_{\lambda} = \zeta_{\operatorname{diag}(\lambda)}$. By definition, for each $A \in \Xi(n,r)$,

$$\zeta_{\lambda}\zeta_{A} = \begin{cases}
\zeta_{A}, & \text{if } \lambda = \text{row}(A); \\
0, & \text{otherwise}
\end{cases} \text{ and } \zeta_{A}\zeta_{\lambda} = \begin{cases}
\zeta_{A}, & \text{if } \lambda = \text{col}(A); \\
0, & \text{otherwise.}
\end{cases}$$
(1.1.1)

Thus, $\sum_{\lambda \in \Lambda(n,r)} \zeta_{\operatorname{diag}(\lambda)}$ is the identity of $S'_{\boldsymbol{q}}(n,r)$.

For each $A \in \Xi(n,r)$, let $\lambda = \text{row}(A)$ and $\mu = \text{col}(A)$ and choose $w_A \in \mathfrak{S}$ such that for $1 \leq i, j \leq n$,

$$a_{i,j} = |R_i^{\lambda} \cap (w_A R_j^{\mu})|.$$

By [21] (see [7] for the details), the correspondence

$$\zeta_A \longmapsto \phi_{\text{row}(A),\text{col}(A)}^{d_A} \quad (A \in \Xi(n,r))$$
(1.1.2)

induces an algebra isomorphism $S'_{\mathbf{q}}(n,r) \to S_{\mathbf{q}}(n,r)$, where d_A is the shortest element in the double coset $\mathfrak{S}_{\text{row}(A)}w_A\mathfrak{S}_{\text{col}(A)}$. In what follows, we will identify $S'_{\mathbf{q}}(n,r)$ with $S_{\mathbf{q}}(n,r)$ under the isomorphism above.

For each $d \ge 1$, we define in \mathscr{A} :

$$[\![d]\!]! = [\![1]\!][\![2]\!] \cdots [\![d]\!] \text{ with } [\![s]\!] = \frac{q^s - 1}{q - 1},$$

and set [0]! = 1 by convention.

Let $\Xi(n)^{\pm}$ be the set of all matrices $A=(a_{i,j})\in\mathbb{N}^{n\times n}$ such that $a_{i,i}=0$ for all $1\leqslant i\leqslant n$ and let $\Xi(n,\leqslant r)^{\pm}$ be the subset of matrices $A=(a_{i,j})\in\Xi(n)^{\pm}$ satisfying $|A|=\sum_{1\leqslant i,j\leqslant n}a_{i,j}\leqslant r$

Given $A \in \Xi(n, \leqslant r)^{\pm}$ and $\mathbf{j} = (j_1, \dots, j_n) \in \mathbb{N}^n$, define

$$\zeta_{A;\mathbf{j}} := \sum_{\substack{\lambda \in \mathbb{N}^n, \ A+\lambda \in \Xi(n,r)}} \boldsymbol{q}^{\lambda \cdot \mathbf{j}} \zeta_{A+\lambda} \in S_{\boldsymbol{q}}(n,r),$$

where $A + \lambda := A + \operatorname{diag}(\lambda)$ and $\lambda \cdot \mathbf{j} = \lambda_1 j_1 + \cdots + \lambda_n j_n$. Also, for any $A = (a_{i,j}) \in M_n(\mathbb{Z})$, define $\zeta_{A;\mathbf{j}} = 0$ if $a_{i,j} < 0$ for some $i \neq j$, or |A| > r. Let O denote the $n \times n$ zero matrix and $E_{i,j}$ denote the matrix with (i,j)-entry 1 and all other entries 0. Let $\mathbf{0} = (0,\ldots,0) \in \mathbb{N}^n$, $\varepsilon_i = (0,\ldots,0,1,0,\ldots,0) \in \mathbb{N}^n$ (with 1 in the *i*th position) for $1 \leq i \leq n$.

By [13, Lem. 3.2] and a direct calculation, we obtain the following extended multiplication formulas in $S_q(n,r)$.

Lemma 1.2. For $1 \leqslant h < n$, $\mathbf{j}, \mathbf{j}' \in \mathbb{N}^n$, and $A = (a_{k,l}) \in \Xi(n, \leqslant r)^{\pm}$, the following equalities hold in $S_{\mathbf{q}}(n,r)$,

(1)
$$\zeta_{O;\mathbf{j}} \cdot \zeta_{A;\mathbf{j}'} = \boldsymbol{q}^{\operatorname{row}(A)\cdot\mathbf{j}} \zeta_{A;\mathbf{j}+\mathbf{j}'}$$

(2)
$$\zeta_{A:\mathbf{i}'} \cdot \zeta_{O:\mathbf{i}} = \boldsymbol{q}^{\operatorname{col}(A)\cdot\mathbf{j}} \zeta_{A:\mathbf{i}+\mathbf{i}'}$$
;

(3)
$$\zeta_{E_{h,h+1};\mathbf{0}} \cdot \zeta_{A;\mathbf{j}} = \sum_{i < h; a_{h+1,i \ge 1}} q^{\sum_{j > i} a_{h,j}} [[a_{h,i} + 1]] \zeta_{A+E_{h,i}-E_{h+1,i};\mathbf{j}+\varepsilon_{h}}$$

$$+ \sum_{i > h+1; a_{h+1,i \ge 1}} q^{\sum_{j > i} a_{h,j}} \zeta_{A+E_{h,i}-E_{h+1,i};\mathbf{j}}$$

$$+ \frac{q^{(\sum_{j > h} a_{h,j}-\mathbf{j}_{h})}}{q-1} (\zeta_{A-E_{h+1,h};\mathbf{j}+\varepsilon_{h}} - \zeta_{A-E_{h+1,h};\mathbf{j}})$$

$$+ q^{(\sum_{j > h+1} a_{h,j}+\mathbf{j}_{(h+1)})} [[a_{h,h+1} + 1]] \zeta_{A+E_{h,h+1};\mathbf{j}};$$

$$(4) \zeta_{E_{h+1,h};\mathbf{0}} \cdot \zeta_{A;\mathbf{j}} = \sum_{i < h; a_{h,i \ge 1}} q^{\sum_{j < i} a_{h+1,j}} [[a_{h+1,i} + 1]] \zeta_{A-E_{h,i}+E_{h+1,i};\mathbf{j}}$$

$$+ \sum_{i > h+1; a_{h,i \ge 1}} q^{\sum_{j < i} a_{h+1,j}} [[a_{h+1,i} + 1]] \zeta_{A-E_{h,i}+E_{h+1,i};\mathbf{j}+\varepsilon_{h+1}}$$

$$+ \frac{q^{(\sum_{j < h+1} a_{h+1,j} - \mathbf{j}_{(h+1)})}}{q-1} (\zeta_{A-E_{h,h+1};\mathbf{j}+\varepsilon_{h+1}} - \zeta_{A-E_{h,h+1};\mathbf{j}})$$

$$+ q^{(\sum_{j < h} a_{h+1,j} + \mathbf{j}_h)} [[a_{h+1,h} + 1]] \zeta_{A+E_{h+1,h};\mathbf{j}}.$$

If $a_{h+1,h} = 0$ (resp., $a_{h,h+1} = 0$), then $A - E_{h+1,h}$ (resp., $A - E_{h,h+1}$) has a negative entry. Hence, the third term in formula (3) (resp., (4)) is zero in this case.

For each $1 \leq i < n$, define the elements

$$e_i = \zeta_{E_{i,i+1};0} \text{ and } f_i = \zeta_{E_{i+1,i};0}$$
 (1.2.1)

in $S_{\mathbf{q}}(n,r)$. From Lemma 1.2 we deduce the following result.

Proposition 1.3. The following relations hold in $S_{\mathbf{q}}(n,r)$ for $\lambda, \mu \in \Lambda(n,r)$ and $1 \leq i,j < n$:

(S1)
$$\zeta_{\lambda}\zeta_{\mu} = \delta_{\lambda,\mu}\zeta_{\lambda}$$
, $1 = \sum_{\lambda \in \Lambda(n,r)} \zeta_{\lambda}$,

(S2)
$$\mathfrak{e}_i \zeta_{\lambda} = \zeta_{\lambda + \varepsilon_i - \varepsilon_{i+1}} \mathfrak{e}_i$$
, if $\lambda_{i+1} \geqslant 1$, $\mathfrak{e}_i \zeta_{\lambda} = 0 = \zeta_{\lambda} \mathfrak{f}_i$ if $\lambda_{i+1} = 0$,

(S3)
$$\mathfrak{f}_i \zeta_{\lambda} = \zeta_{\lambda - \varepsilon_i + \varepsilon_{i+1}} \mathfrak{f}_i \text{ if } \lambda_i \geqslant 1, \ \mathfrak{f}_i \zeta_{\lambda} = 0 = \zeta_{\lambda} \mathfrak{e}_i \text{ if } \lambda_i = 0,$$

(S4)
$$(\mathbf{q}-1)(\mathbf{e}_i\mathbf{f}_j-\mathbf{f}_j\mathbf{e}_i)=\delta_{i,j}\sum_{\lambda\in\Lambda(n,r)}(\mathbf{q}^{\lambda_i}-\mathbf{q}^{\lambda_{i+1}})\zeta_{\lambda},$$

(S5)
$$\mathfrak{e}_i \mathfrak{e}_j = \mathfrak{e}_j \mathfrak{e}_i, \, \mathfrak{f}_i \mathfrak{f}_j = \mathfrak{f}_j \mathfrak{f}_i \, (|i-j| > 1),$$

(S6)
$$\mathfrak{e}_i^2 \mathfrak{e}_{i+1} - (q+1)\mathfrak{e}_i \mathfrak{e}_{i+1} \mathfrak{e}_i + q \mathfrak{e}_{i+1} \mathfrak{e}_i^2 = 0$$

(S7)
$$\mathbf{e}_i \mathbf{e}_{i+1}^2 - (\mathbf{q} + 1)\mathbf{e}_{i+1}\mathbf{e}_i \mathbf{e}_{i+1} + \mathbf{q} \mathbf{e}_{i+1}^2 \mathbf{e}_i = 0$$

(S8)
$$\mathbf{q} \mathbf{f}_{i}^{2} \mathbf{f}_{i+1} - (\mathbf{q} + 1) \mathbf{f}_{i} \mathbf{f}_{i+1} \mathbf{f}_{i} + \mathbf{f}_{i+1} \mathbf{f}_{i}^{2} = 0$$
,

(S9)
$$q f_i f_{i+1}^2 - (q+1) f_{i+1} f_i f_{i+1} + f_{i+1}^2 f_i = 0.$$

Remarks 1.4. (1) The relations (S5)–(S9) are the so-called fundamental relations appeared in Ringel–Hall algebras; see [20]. Indeed, (S1)–(S9) are the generating relations for the quantum Schur algebra $S_{\mathbf{q}}(n,r) \otimes_{\mathbb{Z}[\mathbf{q}]} \mathbb{Q}(\mathbf{q})$; see [22].

(2) Let \mathbf{v} be an indeterminate satisfying $\mathbf{v}^2 = \mathbf{q}$ and let $\mathbb{Q}(\mathbf{v})$ be the field of rational functions in \mathbf{v} . In [9, 10] (see also [7, Ch. 13]), a presentation for the quantum Schur algebra $\mathbf{S}_{\mathbf{v}}(n,r) := S_{\mathbf{q}}(n,r) \otimes \mathbb{Q}(\mathbf{v})$ is given. However, the generators given there satisfy the quantum Serre relations, while the $\mathfrak{e}_i, \mathfrak{f}_i$ defined in (1.2.1) satisfy the fundamental relations. But, in order to obtain the quantum Serre relations in Ringel-Hall algebras, we have to twist the multiplication; see [23].

In the following we introduced the Ringel-Hall algebra of the linear quiver

FIG.1. Linear quiver with n-1 vertices

Let \mathbb{F} be a field. It is well known that for each $1 \leq i < j \leq n$, there is a unique (up to isomorphism) indecomposable representation $M_{i,j}$ of Q over \mathbb{F} whose dimension vector $\underline{\dim} M_{i,j}$ is $\alpha_i + \cdots + \alpha_{j-1}$, where $\alpha_1, \ldots, \alpha_{n-1}$ denote the standard basis of \mathbb{Z}^{n-1} . In particular, the $S_i := M_{i,i+1}$ $(1 \leq i < n)$ are all simple representations of Q.

Let $\Xi(n)^+$ denote the set of all strictly upper triangular matrices in $\mathbb{N}^{n\times n}$. To each $A=(a_{i,j})\in\Xi(n)^+$ we can attach a representation of Q by setting

$$M(A) = M_{\mathbb{F}}(A) = \bigoplus_{i,j} a_{i,j} M_{i,j}.$$

By the Krull-Schmidt Theorem, the correspondence $A \mapsto M(A)$ induces a bijection from $\Xi(n)^+$ to the set of isoclasses of finite dimensional representations of Q over \mathbb{F} . Following [20], for $A, B, C \in \Xi(n)^+$, there exists $\varphi_{B,C}^A(\mathbf{q}) \in \mathscr{A} = \mathbb{Z}[\mathbf{q}]$ (called the Hall polynomial) such

that $\varphi_{B,C}^A(q) = F_{M_{\mathbb{F}}(B),M_{\mathbb{F}}(C)}^{M_{\mathbb{F}}(A)}$ for each finite field \mathbb{F} with q elements, where $F_{M_{\mathbb{F}}(B),M_{\mathbb{F}}(C)}^{M_{\mathbb{F}}(A)}$ is the number of submodules X of $M_{\mathbb{F}}(A)$ such that $X \cong M_{\mathbb{F}}(C)$ and $M_{\mathbb{F}}(A)/X \cong M_{\mathbb{F}}(B)$. The (generic untwisted) Ringel-Hall algebra $\mathfrak{H}_q(Q)$ of Q is by definition the free \mathscr{A} -module with basis $\{u_A \mid A \in \Xi(n)^+\}$ and with multiplication given by

$$u_A u_B = \sum_{C \in \Xi(n)^+} \varphi_{A,B}^C(\boldsymbol{q}) u_C \text{ for } A, B \in \Xi(n)^+.$$

We sometimes write $u_{[M(A)]}$ for u_A in order to make calculations in terms of representations of Q. In particular, we write $u_i = u_{[S_i]}$ for $1 \le i < n$. It is known from [20] that the u_i satisfy the following fundamental relations $(1 \le i, j < n)$:

(H1)
$$u_i u_j = u_j u_i$$
, $(|i - j| > 1)$,

(H2)
$$u_i^2 u_{i+1} - (\boldsymbol{q} + 1) u_i u_{i+1} u_i + \boldsymbol{q} u_{i+1} u_i^2 = 0,$$

(H3)
$$qu_{i+1}^2u_i - (q+1)u_{i+1}u_iu_{i+1} + u_iu_{i+1}^2 = 0.$$

Let \mathscr{R} be a commutative ring with identity and take an element $q \in \mathscr{R}$. By viewing \mathscr{R} as an \mathscr{A} -module with the action of q the multiplication by q, we obtain \mathscr{R} -algebras

$$H_q(r)_{\mathscr{R}} := H_q(r) \otimes_{\mathscr{A}} \mathscr{R} \text{ and } S_q(n,r)_{\mathscr{R}} = S_q(n,r) \otimes_{\mathscr{A}} \mathscr{R}.$$

Moreover, by [7, Lem. 9.4], there is an \mathcal{R} -algebra isomorphism

$$S_q(n,r)_{\mathscr{R}} \cong \operatorname{End}_{H_q(r)_{\mathscr{R}}} \left(\bigoplus_{\lambda \in \Lambda(n,r)} x_{\lambda} H_q(r)_{\mathscr{R}} \right).$$

Similarly, we can consider the Ringel-Hall algebra of Q over \mathscr{R}

$$\mathfrak{H}_{q}(Q)_{\mathscr{R}} = \mathfrak{H}_{q}(Q) \otimes_{\mathscr{A}} \mathscr{R}.$$

In the present paper we are mainly interested in the case where \mathscr{R} is the ring \mathbb{Z} of integers or a field \mathbb{F} with q=0.

2 A presentation for 0-Schur algebras

In this section we show that by specializing at q = 0, the relations (S1)–(S9) become the defining relations for the 0-Schur algebra. The proofs are modified from those in [10]; see also [7, Ch. 13]. Thus, some of them are omitted.

As defined in the previous section, $S_{\mathbf{q}}(n,r)$ is the quantum Schur algebra over $\mathscr{A} = \mathbb{Z}[\mathbf{q}]$ with basis $\{\zeta_A \mid A \in \Xi(n,r)\}$. Put

$$S_0(n,r) := S_0(n,r)_{\mathbb{Z}} = S_{\mathbf{q}}(n,r) \otimes_{\mathscr{A}} \mathbb{Z},$$

called the 0-Schur algebra over \mathbb{Z} . In other words, $S_0(n,r)$ is the free \mathbb{Z} -module with basis $\{\zeta_A = \zeta_A \otimes 1 \mid A \in \Xi(n,r)\}$, and the multiplication is defined by

$$\zeta_A \zeta_B = \sum_{C \in \Xi(n,r)} g_{A,B,C}(0) \zeta_C \text{ for all } A, B \in \Xi(n,r).$$

Given a polynomial f(q) in \mathscr{A} and an integer $a \in \mathbb{Z}$, we write $f(q)_a$ for f(a). In particular, $(\llbracket d \rrbracket^!)_0 = 1 = \llbracket d \rrbracket_0$ for each $d \ge 1$.

By letting q = 0, we obtain the elements

$$\zeta_{A;\mathbf{j}} = \sum_{\substack{\lambda \in \mathbb{N}^n, \ \lambda \cdot \mathbf{j} = 0 \\ A + \lambda \in \Xi(n,r)}} \zeta_{A+\lambda} \text{ for } A \in \Xi(n,\leqslant r)^{\pm} \text{ and } \mathbf{j} \in \mathbb{N}^n.$$

in $S_0(n,r)$. In particular, we have

$$\mathfrak{e}_i = \sum_{\lambda \in \Lambda(n,r-1)} \zeta_{E_{i,i+1}+\lambda} \text{ and } \mathfrak{f}_i = \sum_{\lambda \in \Lambda(n,r-1)} \zeta_{E_{i+1,i}+\lambda}$$

in $S_0(n,r)$ for $1 \le i < n$. Proposition 1.3 gives the following consequence.

Lemma 2.1. The elements $\mathfrak{e}_i, \mathfrak{f}_i, \zeta_{\lambda}$ $(1 \leq i < n \text{ and } \lambda \in \Lambda(n,r))$ in $S_0(n,r)$ satisfy the following relations:

(DS1)
$$\zeta_{\lambda}\zeta_{\mu} = \delta_{\lambda,\mu}\zeta_{\lambda}, \ 1 = \sum_{\lambda \in \Lambda(n,r)} \zeta_{\lambda},$$

(DS2)
$$\mathfrak{e}_i \zeta_{\lambda} = \zeta_{\lambda + \varepsilon_i - \varepsilon_{i+1}} \mathfrak{e}_i$$
 if $\lambda_{i+1} \geqslant 1$, $\mathfrak{e}_i \zeta_{\lambda} = 0 = \zeta_{\lambda} \mathfrak{f}_i$ if $\lambda_{i+1} = 0$,

(DS3)
$$f_i \zeta_{\lambda} = \zeta_{\lambda - \varepsilon_i + \varepsilon_{i+1}} f_i \text{ if } \lambda_i \geqslant 1, f_i \zeta_{\lambda} = 0 = \zeta_{\lambda} e_i \text{ if } \lambda_i = 0,$$

(DS4)
$$\mathfrak{e}_i \mathfrak{f}_j - \mathfrak{f}_j \mathfrak{e}_i = \delta_{i,j} \Big(\sum_{\lambda \in \Lambda(n,r), \lambda_i \neq 0, \lambda_{i+1} = 0} \zeta_{\lambda} - \sum_{\lambda \in \Lambda(n,r), \lambda_i = 0, \lambda_{i+1} \neq 0} \zeta_{\lambda} \Big),$$

(DS5)
$$\mathfrak{e}_i \mathfrak{e}_j = \mathfrak{e}_j \mathfrak{e}_i, \, \mathfrak{f}_i \mathfrak{f}_j = \mathfrak{f}_j \mathfrak{f}_i \, (|i-j| > 1),$$

(DS6)
$$\mathfrak{e}_i^2 \mathfrak{e}_{i+1} - \mathfrak{e}_i \mathfrak{e}_{i+1} \mathfrak{e}_i = 0$$
,

(DS7)
$$\mathfrak{e}_i \mathfrak{e}_{i+1}^2 - \mathfrak{e}_{i+1} \mathfrak{e}_i \mathfrak{e}_{i+1} = 0$$
,

(DS8)
$$f_{i+1}f_i^2 - f_if_{i+1}f_i = 0$$
,

(DS9)
$$f_{i+1}^2 f_i - f_{i+1} f_i f_{i+1} = 0.$$

The main aim in this section is to show that $S_0(n,r)$ is generated by the elements $\mathfrak{e}_i,\mathfrak{f}_i,\zeta_\lambda$ with the defining relations (DS1)–(DS9).

First, we have the following lemma which can be proved by using the arguments completely analogous to those in [7, Th. 13.31].

Lemma 2.2. The \mathbb{Z} -algebra $S_0(n,r)$ is generated by $\mathfrak{e}_i,\mathfrak{f}_i,\zeta_\lambda$ for $1 \leq i < n$ and $\lambda \in \Lambda(n,r)$.

Now we define $U_0(n,r)$ to be the \mathbb{Z} -algebra generated by $\mathsf{x}_i,\mathsf{y}_i,\xi_\lambda$ for $1\leqslant i< n$ and $\lambda\in\Lambda(n,r)$ subject to the relations (DS1')–(DS9') which are obtained from (DS1)–(DS9) by substituting the \mathfrak{e}_i , \mathfrak{f}_i and ζ_λ for the x_i , y_i and ξ_λ , respectively. Therefore, there is a surjective algebra homomorphism

$$\rho: U_0(n,r) \longrightarrow S_0(n,r) \tag{2.2.1}$$

taking $x_i \mapsto \mathfrak{e}_i$, $y_i \mapsto \mathfrak{f}_i$ and $\xi_{\lambda} \mapsto \zeta_{\lambda}$. The rest of this section is to show that ρ is an isomorphism. Let $\mathfrak{H}_0(Q) = \mathfrak{H}_q(Q) \otimes_{\mathscr{A}} \mathbb{Z}$ be the degenerate Ringel-Hall algebra of the linear quiver Q given in §2. The following result is taken from [14] and [15, Remarks 4.9(a)].

Lemma 2.3. As a \mathbb{Z} -algebra, $\mathfrak{H}_0(Q)$ is generated by $u_i = u_i \otimes 1$ $(1 \leqslant i < n)$ subject to the relations:

- (DH1) $u_i u_j = u_j u_i$, (|i j| > 1),
- (DH2) $u_i^2 u_{i+1} u_i u_{i+1} u_i = 0$,
- (DH3) $u_i u_{i+1}^2 u_{i+1} u_i u_{i+1} = 0.$

By Lemma 2.1 and the lemma above, there are an algebra homomorphism

$$\phi: \mathfrak{H}_0(Q) \longrightarrow U_0(n,r), \ u_i \longmapsto \mathsf{x}_i \ (1 \leqslant i < n)$$

and an algebra anti-homomorphism

$$\psi : \mathfrak{H}_0(Q) \longrightarrow U_0(n,r), \ u_i \longmapsto \mathsf{y}_i \ (1 \leqslant i < n).$$

We set

$$U_0(n,r)^+ = \text{Im } \phi \text{ and } U_0(n,r)^- = \text{Im } \psi,$$

that is, $U_0(n,r)^+$ (resp., $U_0(n,r)^-$) is the \mathbb{Z} -subalgebra of $U_0(n,r)$ generated by the x_i (resp., y_i). Furthermore, let $U_0(n,r)^0$ be the \mathbb{Z} -subalgebra of $U_0(n,r)$ generated by the ξ_λ which is clearly \mathbb{Z} -free with basis $\{\xi_\lambda \mid \lambda \in \Lambda(n,r)\}$. From the relations (DS1')–(DS9') we easily deduce that

$$U_0(n,r) = U_0(n,r)^+ \cdot U_0(n,r)^0 \cdot U_0(n,r)^-. \tag{2.3.1}$$

We now fix a field \mathbb{F} . For $A, B \in \Xi(n)^+$, define $B \leq_{\mathrm{dg}} A$ if and only if $\underline{\dim} M_{\mathbb{F}}(B) = \underline{\dim} M_{\mathbb{F}}(A)$ and for each $C \in \Xi(n)^+$,

$$\dim \operatorname{Hom}_{\mathbb{F}Q}(M_{\mathbb{F}}(C), M_{\mathbb{F}}(B)) \geqslant \dim \operatorname{Hom}_{\mathbb{F}Q}(M_{\mathbb{F}}(C), M_{\mathbb{F}}(A)) \text{ for all } C \in \Xi(n)^+.$$

This is the so-called degeneration order on $\Xi(n)^+$ which is a partial order independent of the field \mathbb{F} ; see [7, §1.6]. We write $B <_{\text{dg}} A$ if $B \leqslant_{\text{dg}} A$ and $B \neq A$.

For each pair $1 \le i < j \le n$ and an integer $a \ge 1$, define a monomial

$$u_{i,j}^a = u_i^a u_{i+1}^a \cdots u_{j-1}^a = ([a]!)^{j-i} (u_{aE_{i,j}} + \sum_{X <_{\text{dg}} aE_{i,j}} u_X)$$

in $\mathfrak{H}_{q}(Q)$. For $A=(a_{i,j})\in\Xi(n)^{+}$, define a monomial

$$\mathfrak{u}^A = u_{n-1,n}^{a_{n-1,n}} u_{n-2,n}^{a_{n-2,n}} \cdots u_{1,n}^{a_{1,n}} u_{n-2,n-1}^{a_{n-2,n-1}} u_{n-3,n-1}^{a_{n-3,n-1}} \cdots u_{1,n-1}^{a_{1,n-1}} \cdots u_{2,3}^{a_{2,3}} u_{1,3}^{a_{1,3}} u_{1,2}^{a_{1,2}} \tag{2.3.2}$$

in $\mathfrak{H}_{\boldsymbol{a}}(Q)$. By [23] and [24, §6], we have

$$\mathfrak{u}^A = \prod_{1 \leq i < j \leq n} (\llbracket a_{i,j} \rrbracket^!)^{j-i} (u_A + \sum_{B <_{\operatorname{dg}} A} f_{A,B}(\boldsymbol{q}) u_B),$$

where $f_{A,B}(q) \in \mathscr{A}$. We denote by \mathfrak{u}_0^A the monomial in (2.3.2) viewing as an element in $\mathfrak{H}_0(Q)$. Thus,

$$\mathfrak{u}_0^A = u_A + \sum_{B <_{dg}A} f_{A,B}(0)u_B. \tag{2.3.3}$$

Since $\{u_A \mid A \in \Xi(n)^+\}$ is a \mathbb{Z} -basis of $\mathfrak{H}_0(Q)$, it follows that $\{\mathfrak{u}_0^A \mid A \in \Xi(n)^+\}$ is also a \mathbb{Z} -basis of $\mathfrak{H}_0(Q)$.

For $A \in \Xi(n)^+$, define

$$\mathsf{x}^A = \phi(\mathfrak{u}_0^A) \in U_0(n,r)^+.$$

Dually, let $\Xi(n)^-$ be the set of all strictly lower triangular matrices in $\mathbb{N}^{n\times n}$. For $A\in\Xi(n)^-$, define

$$\mathsf{y}^A = \psi(\mathfrak{u}_0^{A^t}) \in U_0(n,r)^-,$$

where A^t denotes the transpose of A.

For $A \in \mathbb{N}^{n \times n}$, define $\sigma(A) = (\sigma_1(A), \dots, \sigma_n(A)) \in \mathbb{N}^n$ by setting for $1 \leq i \leq n$,

$$\sigma_i(A) = a_{i,i} + \sum_{1 \le j < i} (a_{i,j} + a_{j,i}).$$

For $\lambda = (\lambda_i), \mu = (\mu_i) \in \mathbb{N}^n$, write $\lambda \leqslant \mu$ if $\lambda_i \leqslant \mu_i$ for all $1 \leqslant i \leqslant n$. Applying an argument similar to that in the proof of [7, Prop. 13.41], we obtain the following result.

Proposition 2.4. Given $A \in \Xi(n)^+$, $B \in \Xi(n)^-$ and $\lambda \in \Lambda(n,r)$, the following statements hold in the algebra $U_0(n,r)$.

- (1) If $\lambda \geqslant \sigma(A)$, then $\mathsf{x}^A \xi_\lambda = \xi_{\lambda'} \mathsf{x}^A$, where $\lambda' = \lambda \mathrm{col}(A) + \mathrm{row}(A)$,
- (2) If $\lambda_i < \sigma_i(A)$ for some i, then $x^A \xi_{\lambda} = 0$,
- (3) If $\lambda \geqslant \sigma(B)$, then $\xi_{\lambda} y^B = y^B \xi_{\lambda''}$, where $\lambda'' = \lambda + \operatorname{col}(B) \operatorname{row}(B)$,
- (4) If $\lambda_i < \sigma_i(B)$ for some i, then $\xi_{\lambda} y^B = 0$.

Corollary 2.5. The algebra $U_0(n,r)^+$ (resp., $U_0(n,r)^-$) is spanned by the set

$$\left\{\mathbf{x}^A\mid A\in\Xi(n)^+,\, |A|\leqslant r\right\}\quad \left(\mathit{resp.},\, \left\{\mathbf{y}^A\mid A\in\Xi(n)^-,\, |A|\leqslant r\right\}\right).$$

Proof. Since $\{\mathfrak{u}_0^A \mid A \in \Xi(n)^+\}$ is a \mathbb{Z} -basis of $\mathfrak{H}_0(Q)$, it follows that $U_0(n,r)^+$ is spanned by $\mathsf{x}^A = \phi(\mathfrak{u}_0^A)$ for all $A \in \Xi(n)^+$. If $|A| = \sum_i \sigma_i(A) > r$, then applying Proposition 2.4(2) gives $\mathsf{x}^A = \sum_{\lambda \in \Lambda(n,r)} \mathsf{x}^A \xi_\lambda = 0$. This proves the assertion for $U_0(n,r)^+$.

The assertion for $U_0(n,r)^-$ can be proved similarly.

For each matrix $A = (a_{i,j}) \in \mathbb{N}^{n \times n}$, let A^+ (resp., A^-) be the strictly upper (resp., lower) triangular part of A, i.e., $A^+ \in \Xi(n)^+$ and $A^- \in \Xi(n)^-$ with

$$A = A^{+} + \operatorname{diag}(a_{1,1}, \dots, a_{n,n}) + A^{-}.$$

For any $A \in \Xi(n)^{\pm}$ and $\lambda \in \Lambda(n,r)$, set

$$\mathfrak{m}^{(A,\lambda)} := \mathsf{x}^{A^+} \xi_{\lambda} \mathsf{y}^{A^-}. \tag{2.5.1}$$

By (2.3.1) and Corollary 2.5, $U_0(n,r)$ is spanned by all such $\mathfrak{m}^{(A,\lambda)}$ with $\lambda \in \Lambda(n,r)$, $A \in \Xi(n)^{\pm}$ satisfying $|A^+| \leq r$ and $|A^-| \leq r$.

Lemma 2.6. For all $s \ge 1$ and $1 \le i < n$, the following equalities hold in $U_0(n,r)$:

$$(2)\ \mathbf{y}_i\mathbf{x}_i^{\,s}-\mathbf{x}_i^{\,s}\mathbf{y}_i=-\mathbf{x}_i^{\,s-1}\big(\Theta-\sum_{1\leqslant t\leqslant s-1}\sum_{\stackrel{\lambda\in\Lambda(n,r),}{\lambda_i=t,\lambda_{i+1}< r-t+1}}\xi_\lambda\big),$$

$$where \ \Theta = \sum_{\lambda \in \Lambda(n,r), \lambda_i \neq 0, \lambda_{i+1} = 0} \xi_{\lambda} - \sum_{\lambda \in \Lambda(n,r), \lambda_i = 0, \lambda_{i+1} \neq 0} \xi_{\lambda}.$$

Proof. We prove the first equality by induction on s. The second one is proved similarly.

By definition, the equality holds for s=1. Now suppose s>1. Then we have

$$\begin{split} &\mathbf{x}_{i}\mathbf{y}_{i}^{s}-\mathbf{y}_{i}^{s}\mathbf{x}_{i}=\left[\mathbf{x}_{i},\mathbf{y}_{i}^{s-1}\right]\mathbf{y}_{i}+\mathbf{y}_{i}^{s-1}\left[\mathbf{x}_{i},\mathbf{y}_{i}\right]\\ &=\mathbf{y}_{i}^{s-2}\left(\Theta-\sum_{1\leqslant t\leqslant s-2}\sum_{\substack{\lambda\in\Lambda(n,r),\\\lambda_{i}=t,\lambda_{i+1}< r-t+1}}^{\lambda\in\Lambda(n,r),}\xi_{\lambda}\right)\mathbf{y}_{i}+\mathbf{y}_{i}^{s-1}\Theta \ \ \text{(By induction hypothesis)}\\ &=\mathbf{y}_{i}^{s-1}\left(\Theta-\sum_{1\leqslant t\leqslant s-1}\sum_{\substack{\lambda\in\Lambda(n,r),\\\lambda_{i}=t,\lambda_{i+1}< r-t+1}}^{\lambda\in\Lambda(n,r),}\xi_{\lambda}\right). \end{split}$$

This proves the first equality.

For a monomial $\mathfrak{m} \in \mathfrak{H}_0(Q)$ (resp., $\mathfrak{m} \in U_0(n,r)$) in the u_i (resp., x_i and y_i), let $\deg(\mathfrak{m})$ be the number of the u_i (resp., x_i and y_i) occurring in \mathfrak{m} . In other words, if \mathfrak{m} is regarded as a word, $\deg(\mathfrak{m})$ is the length of the word. If we define for each $A = (a_{i,j}) \in \mathbb{N}^{n \times n}$,

$$\deg(A) = \sum_{i,j} |i - j| a_{i,j},$$

then $\deg(A) = \deg x^{A^+} + \deg y^{A^-}$.

Lemma 2.7. Let $\mathfrak{m} \in U_0(n,r)^+$ be a monomial in the x_i . Then \mathfrak{m} is a \mathbb{Z} -linear combination of x^A , $A \in \Xi(n)^+$ (hence, a \mathbb{Z} -linear combination of $x^A\xi_\lambda$, $A \in \Xi(n)^+$, $\lambda \in \Lambda(n,r)$) with $\deg(A) = \deg(\mathfrak{m})$. A similar result holds for monomials in the y_i .

Proof. Let $\widetilde{\mathfrak{m}} \in \mathfrak{H}_0(Q)$ be a monomial in the u_i such that $\phi(\widetilde{\mathfrak{m}}) = \mathfrak{m}$. Then $\deg(\widetilde{\mathfrak{m}}) = \deg(\mathfrak{m})$. Since $\mathfrak{H}_0(Q)$ is \mathbb{N}^{n-1} -graded and $\{\mathfrak{u}_0^A \mid A \in \Xi(n)^+\}$ is a \mathbb{Z} -basis of $\mathfrak{H}_0(Q)$, $\widetilde{\mathfrak{m}}$ is a \mathbb{Z} -linear combination of \mathfrak{u}_0^A with $\deg(A) = \deg(\widetilde{\mathfrak{m}})$. Hence, \mathfrak{m} is a \mathbb{Z} -linear combination of $\mathsf{x}^A = \phi(\mathfrak{u}_0^A)$ with $\deg(A) = \deg(\mathfrak{m})$.

The assertion for monomials in the y_i can be proved analogously.

The following theorem is an analogue to [7, Th. 13.44] which has been proved in [9] (see also [10]). We provide a proof for completeness.

Theorem 2.8. The algebra homomorphism $\rho: U_0(n,r) \to S_0(n,r)$ given in (2.2.1) is an isomorphism.

Proof. Put

$$\mathcal{M} = \{ \mathfrak{m}^{(A)} = \mathsf{x}^{A^+} \xi_{\sigma(A)} \mathsf{y}^{A^-} \mid A \in \Xi(n, r) \}.$$

We aim to prove that \mathcal{M} is a \mathbb{Z} -basis for $U_0(n,r)$. Since $|\mathcal{M}| \leq |\Xi(n,r)|$, which is the rank of $S_0(n,r)$, it suffices to show that \mathcal{M} spans $U_0(n,r)$. Let $B \in \Xi(n)^{\pm}$ with $|B^+| \leq r$ and $|B^-| \leq r$, and let $\lambda \in \Lambda(n,r)$. If $\lambda \geqslant \sigma(B)$, there is a unique $A = B + \operatorname{diag}(\lambda - \sigma(B)) \in \Xi(n,r)$ such that $\mathfrak{m}^{(B,\lambda)} = \mathfrak{m}^{(A)}$, which belongs to \mathcal{M} . It remains to prove that if $\lambda_i < \sigma_i(B)$ for some i, then $\mathfrak{m}^{(B,\lambda)}$ lies in the span of \mathcal{M} .

We proceed by induction on $\deg(B)$. If $\deg(B)=1$, then $B=E_{i-1,i}$ or $E_{i,i-1}$, and so $\lambda_i=0$ and $\mathfrak{m}^{(B,\lambda)}=\mathsf{x}_{i-1}\xi_\lambda$ or $\xi_\lambda\mathsf{y}_{i-1}$, which is zero by the definition. Assume now $\deg(B)>1$ and let i be minimal with $\lambda_i<\sigma_i(B)=\sigma_i(B^+)+\sigma_i(B^-)$. Let B_i be the top left $i\times i$ submatrix of B, write $\mathsf{x}^{B^+}=\mathsf{m}\mathsf{x}^{B_i^+}$ and $\mathsf{y}^{B^-}=\mathsf{y}^{B_i^-}\mathsf{m}'$ for some monomials m,m' . Then $\mathsf{m}^{(B,\lambda)}=\mathsf{m}\mathsf{x}^{B_i^+}\xi_\lambda\mathsf{y}^{B_i^-}\mathsf{m}'$. By Proposition 2.4(2), we can assume $\lambda_i\geq\sigma_i(B^+)$, otherwise $\mathsf{m}^{(B,\lambda)}=0$ which is obviously in \mathcal{M} . Now Proposition 2.4(1) implies that

$$\mathfrak{m}^{(B,\lambda)} = \mathfrak{m}(\mathsf{x}^{B_i^+}\xi_\lambda)\mathsf{y}^{B_i^-}\mathfrak{m}' = \mathfrak{m}\xi_{\lambda'}\mathsf{x}^{B_i^+}\mathsf{y}^{B_i^-}\mathfrak{m}',$$

where $\lambda' = \lambda - \operatorname{col}(B_i^+) + \operatorname{row}(B_i^+)$. Then $\lambda'_i = \lambda_i - (b_{1,i} + \dots + b_{i-1,i}) = \lambda_i - \sigma_i(B_i^+) \ge 0$.

By repeatedly applying the commutator formula given in Lemma 2.6, we can write

$${\bf x}^{B_i^+}{\bf y}^{\;B_i^-}={\bf y}^{\;B_i^-}{\bf x}^{B_i^+}+f,$$

where f is a linear combination of monomials $\widehat{\mathfrak{m}}\xi_{\lambda}\widehat{\mathfrak{m}}'$ with $\lambda \in \Lambda(n,r)$ and $\deg(\widehat{\mathfrak{m}}\widehat{\mathfrak{m}}') < \deg(B_i)$. Hence,

$$\mathfrak{m}^{(B,\lambda)} = \mathfrak{m} \xi_{\lambda'} \mathsf{x}^{B_i^+} \mathsf{y}^{B_i^-} \mathfrak{m}' = \mathfrak{m} \xi_{\lambda'} \mathsf{y}^{B_i^-} \mathsf{x}^{B_i^+} \mathfrak{m}' + \mathfrak{m} \xi_{\lambda'} f \mathfrak{m}'.$$

Since $\lambda'_i = \lambda_i - \sigma_i(B_i^+) < \sigma_i(B_i^-)$, we have $\mathfrak{m}\xi_{\lambda'}\mathsf{y}^{B_i^-}\mathsf{x}^{B_i^+}\mathfrak{m}' = 0$ by Proposition 2.4(4). Furthermore, $\mathfrak{m}\xi_{\lambda'}f\mathfrak{m}'$ is a \mathbb{Z} -linear combination of $\mathfrak{m}^{(B',\mu)}$ with $\deg(B') < \deg(B)$. By the induction hypothesis, each $\mathfrak{m}^{(B',\mu)}$ lies in the span of \mathcal{M} . Then $\mathfrak{m}\xi_{\lambda'}f\mathfrak{m}'$ is in the span of \mathcal{M} , so is $\mathfrak{m}^{(B,\lambda)}$. The proof is completed.

From the proof of the above theorem, we obtain the following result.

Corollary 2.9. The algebra $S_0(n,r)$ is generated by the elements $\mathfrak{e}_i, \mathfrak{f}_i, \zeta_\lambda$ with (DS1)–(DS9) as the generating relations. Moreover, the set

$$\{\mathfrak{e}^{A^+}\zeta_{\sigma(A)}\mathfrak{f}^{A^-}\mid A\in\Xi(n,r)\}$$

is a \mathbb{Z} -basis for $S_0(n,r)$, where $\mathfrak{e}^{A^+} = \rho(\mathsf{x}^{A^+})$ and $\mathfrak{f}^{A^-} = \rho(\mathsf{y}^{A^-})$.

3 Representation type of $S_0(n,r)$

This section is devoted to determining the representation type of $S_0(n,r)$. This is based on the representation theory of 0-Hecke algebras developed in [16, 17, 18, 19]. Throughout this section, we assume that $S_0(n,r) = S_0(n,r)_{\mathbb{F}}$ denotes the 0-Schur algebra over an algebraically closed field \mathbb{F} .

Given a finite dimensional \mathbb{F} -algebra A, by A-mod we denote the category of finite dimensional left A-modules. The algebra A is said to be representation-finite if up to isomorphism, there are only finitely many pairwise non-isomorphic indecomposable modules in A-mod. We refer to [25, 26] for the definition of tame and wild algebras. If n=1 or r=1, then $S_0(n,r)$ is clearly semisimple. Thus, in the following we always assume $n,r\geqslant 2$.

Let $H_0(r) = H_0(r)_{\mathbb{F}}$ be the 0-Hecke algebra of $\mathfrak{S} = \mathfrak{S}_r$ over \mathbb{F} . By [16], all the simple (right) $H_0(r)$ -modules have dimension one¹. More precisely, each subset $J \subseteq I$ gives rise to a simple $H_0(r)$ -module $E_J = \mathbb{F}$ defined by

$$x \cdot T_i = \begin{cases} -x, & \text{if } i \in J; \\ 0, & \text{otherwise,} \end{cases}$$
 (3.0.1)

where $x \in E_J$ and $i \in I$. Moreover, the E_J form a complete set of simple $H_0(r)$ -modules. It follows that

$$H_0(r)/\mathrm{rad}\,H_0(r)\cong\underbrace{\mathbb{F}\times\cdots\times\mathbb{F}}_{2^{r-1}},$$

where rad $H_0(r)$ is the Jacobson radical of $H_0(r)$; see [16, Th. 4.21]. Hence, the Gabriel quiver (or Ext-quiver) Γ of $H_0(r)$ has vertex set $\{v_J \mid J \subseteq I\}$, and the number of arrows from v_J to v_K , for $J, K \subseteq I$, equals to dim $\mathbb{F}\text{Ext}^1_{H_0(r)}(E_J, E_K)$ which is described in [18, Th. 5.1] as follows.

The $H_0(r)$ -modules considered in [16, 17, 18] are left module. Since $H_0(r)$ admits an anti-automorphism $T_i \mapsto T_i$, all results there hold similarly for right $H_0(r)$ -modules.

Lemma 3.1. Suppose $J, K \subseteq I$. Then $\dim \operatorname{Ext}^1_{H_0(r)}(E_J, E_K) = 1$ if and only if $J \nsubseteq K \nsubseteq J$ and $|j - k| \leq 1$ for all $j \in J \setminus K$ and $k \in K \setminus J$. Otherwise, we have $\operatorname{Ext}^1_{H_0(r)}(E_J, E_K) = 0$.

For each subset $J \subseteq I$, let P_J and Q_J denote the projective cover and injective hull of S_J , respectively. By [18, Prop. 4.5], $H_0(r)$ is selfinjective and, moreover, $P_J \cong Q_{\sigma(J)}$, where σ is a bijection $I \to I$ taking $i \mapsto r - i$. Without loss of generality, we set $P_J = e_J H_0(r)$ for an idempotent $e_J \in H_0(r)$. Then $\{e_J \mid J \subseteq I\}$ is a complete set of primitive orthogonal idempotents. By the lemma above, Γ has two isolated vertices v_\emptyset and v_I , i.e., there are no arrows starting or ending at v_\emptyset and v_I . This implies that

$$H_0(r) \cong \mathbb{F} \times \mathbb{F} \times \widehat{e}H_0(r)\widehat{e},$$
 (3.1.1)

where $\hat{e} = \sum_{J} e_{J}$ with the sum taking over all proper subsets $J \subseteq I$.

Recall that for each $\lambda \in \Lambda(n,r)$, we have the element

$$x_{\lambda} = \sum_{w \in \mathfrak{S}_{\lambda}} T_w \in H_0(r).$$

Applying (1.0.1) gives $x_{\lambda}^2 = x_{\lambda}$. Hence, the $H_0(r)$ -module $T_0(n,r) := \bigoplus_{\lambda \in \Lambda(n,r)} x_{\lambda} H_0(r)$ is both projective and injective.

Suppose $n \ge r$. Then for

$$\lambda = (\underbrace{1, \dots, 1}_{r}, 0, \dots, 0) \in I(n, r),$$

we have $x_{\lambda} = 1$. Hence, if $n \ge r$, then $S_0(n,r) = \operatorname{End}_{H_0(r)}(T_0(n,r))$ is Morita equivalent to $H_0(r)$.

For each $\lambda = (\lambda_1, \dots, \lambda_n) \in \Lambda(n, r)$, consider the subset J_{λ} of I defined by

$$J_{\lambda} = \{\lambda_1, \lambda_1 + \lambda_2, \dots, \lambda_1 + \lambda_2 + \dots + \lambda_n\} \setminus \{r\}.$$

By [16, Cor. 4.14(2)],

$$x_{\lambda}H_0(r) \cong \bigoplus_{J \subseteq J_{\lambda}} P_J.$$

This gives a decomposition

$$T_0(n,r) = \bigoplus_{\lambda \in \Lambda(n,r)} x_{\lambda} H_0(r) = \bigoplus_{J \subseteq I} (P_J)^{d_J}, \tag{3.1.2}$$

where $d_J = |\{\lambda \in \Lambda(n,r) \mid J \subseteq J_\lambda\}|.$

Proposition 3.2. For each $J \subseteq I$, $d_J \neq 0$ if and only if $|J| \leq n-1$.

Proof. Suppose $d_J \neq 0$. Then there exist $\lambda \in \Lambda(n,r)$ such that $J \subseteq J_\lambda$. This implies that $|J| \leq |J_\lambda| \leq n-1$.

Conversely, suppose $|J| = m \le n-1$. Write $J = \{i_1 < \dots < i_m\}$ and define $\lambda = (\lambda_1, \dots, \lambda_n) \in \Lambda(n, r)$ by setting

$$\lambda_1 = i_1, \lambda_2 = i_2 - i_1, \dots, \lambda_m = i_m - i_{m-1}, \lambda_{m+1} = r - i_m, \lambda_{m+2} = \dots = \lambda_n = 0.$$

Then $J = J_{\lambda}$. Therefore, $d_J \neq 0$.

Remark 3.3. The $H_0(r)$ -module $T_0(n,r) = \bigoplus_{\lambda \in \Lambda(n,r)} x_\lambda H_0(r)$ is also known as tensor space. More precisely, let $I(n,r) = \{ \mathbf{i} = (i_1,\ldots,i_r) \mid 1 \leqslant i_j \leqslant n \text{ for all } 1 \leqslant j \leqslant r \}$. The symmetric group \mathfrak{S}_r acts on I(n,r) by place permutation:

$$iw = (i_{w(1)}, i_{w(2)}, \dots, i_{w(r)})$$
 for all $i \in I(n, r), w \in \mathfrak{S}_r$.

Let Ω be an \mathbb{F} -vector space with basis $\{\omega_i \mid 1 \leq i \leq n\}$ whose r-fold tensor product $\Omega^{\otimes r}$ has basis $\{\omega_i := \omega_{i_1} \otimes \cdots \otimes \omega_{i_r} \mid \mathbf{i} = (i_1, \dots, i_r) \in I(n, r)\}$. Then $T_0(n, r)$ is isomorphic to $\Omega^{\otimes r}$ whose right $H_0(r)$ -module structure is defined by

$$\omega_{\mathbf{i}} T_{k} = \begin{cases}
\omega_{\mathbf{i}s_{k}}, & i_{k} < i_{k+1}; \\
0, & i_{k} = i_{k+1}; \\
-\omega_{\mathbf{i}}, & i_{k} > i_{k+1},
\end{cases}$$
(3.3.1)

where $\mathbf{i} = (i_1, \dots, i_r) \in I(n, r)$ and $k \in I$.

We claim that for each $J \subseteq I$, $d_J = |X_J|$, where

$$X_J = \{ \mathbf{i} = (i_1, \dots, i_r) \in I(n, r) \mid i_j > i_{j+1}, i_k \geqslant i_{k+1} \text{ for all } j \in \sigma(J), k \in I \setminus \sigma(J) \}.$$

Indeed, since

$$\Omega^{\otimes r} \cong T_0(n,r) \cong \bigoplus_{J \subseteq I} (P_J)^{d_J} \cong \bigoplus_{J \subseteq I} (Q_{\sigma(J)})^{d_J},$$

it follows that

$$d_J = \dim_{\mathbb{F}} \operatorname{Hom}_{H_0(r)}(E_{\sigma(J)}, \operatorname{soc} \Omega^{\otimes r}) = \dim_{\mathbb{F}} \operatorname{Hom}_{H_0(r)}(E_{\sigma(J)}, \Omega^{\otimes r}).$$

By the definition of $E_{\sigma(J)}$, we have an isomorphism of \mathbb{F} -spaces

$$\operatorname{Hom}_{H_0(r)}(E_{\sigma(J)}, \Omega^{\otimes r})$$

$$\cong \{x \in \Omega^{\otimes r} \mid xT_j = -x \text{ for all } j \in \sigma(J), \ xT_k = 0 \text{ for all } k \in I \setminus \sigma(J)\} := V_J.$$

It is easy to see that the coefficients of $x = \sum_{\mathbf{i}} x_{\mathbf{i}} \omega_{\mathbf{i}} \in V_J$ satisfy

$$\begin{cases} x_{\mathbf{i}} = 0, & \text{if there exists } j \in \sigma(J) \text{ such that } i_{j} \leqslant i_{j+1}; \\ x_{\mathbf{i}s_{k}} - x_{\mathbf{i}} = 0, & \text{if there exists } k \in I \setminus \sigma(J) \text{ such that } i_{k} < i_{k+1}. \end{cases}$$
(3.3.2)

By viewing (3.3.2) as a system of homogeneous linear equations with variables x_i for $i \in I(n, r)$, we can identify V_J with the space S_J of solutions of (3.3.2). We conclude that all the x_i with $i \in X_J$ form a set of free variables for (3.3.2). Consequently,

$$d_J = \dim_{\mathbb{F}} V_J = \dim_{\mathbb{F}} S_J = |X_J|.$$

By Proposition 3.2, for arbitrary positive integers $n, r, S_0(n, r)$ is Morita equivalent to

End
$$_{H_0(r)}$$
 $\Big(\bigoplus_{J \subset I, |J| \leq n-1} P_J \Big) \cong eH_0(r)e,$ (3.3.3)

where $e = \sum_{J \subseteq I, |J| \leq n-1} e_J$.

Proposition 3.4. The algebra $S_0(n,r)$ is selfinjective.

Proof. It is known that the usual duality $D = \operatorname{Hom}_{\mathbb{F}}(-, \mathbb{F})$ induces the Nakayama functor

$$\nu = D\operatorname{Hom}_{H_0(r)}(-, H_0(r)) : \operatorname{mod-}H_0(r) \longrightarrow \operatorname{mod-}H_0(r),$$

where $\operatorname{\mathbf{mod}}
olimits_0(r)$ denotes the category of finite dimensional right $H_0(r)$ -modules. Since $P_J \cong Q_{\sigma(J)}$ for each subset $J \subseteq I$, we have

$$\nu(P_J) \cong Q_J \cong P_{\sigma(J)}$$
.

Hence, the set $\{P_J \mid J \subseteq I, |J| \le n-1\}$ is stable under ν , up to isomorphism. By [27, Lem. 2.2] and the selfinjectivity of $H_0(r)$, we infer that $eH_0(r)e$ is selfinjective. Consequently, $S_0(n,r)$ is selfinjective.

Furthermore, from (3.3.3) it follows that $S_0(r-1,r)$ is Morita equivalent to $\mathbb{F} \times \widehat{e}H_0(r)\widehat{e}$. In conclusion, we obtain the following result which is a slight generalization of [5, §2.2(5)].

Proposition 3.5. Suppose $n \ge r - 1$. Then $S_0(n,r)$ and $H_0(r)$ have the same representation type.

Combining the results above gives the following theorem.

Theorem 3.6. Suppose $n \ge 3$. Then $S_0(n,r)$ is representation-finite (resp., tame, wild) if and only if $r \le 3$ (resp., r = 4, $r \ge 5$).

Proof. It is shown in [19, Th. 2.1] that the 0-Hecke algebra $H_0(r)$ is representation-finite (resp., tame, wild) if and only if $r \leq 3$ (resp., r = 4, $r \geq 5$).

Suppose $n \ge 3$. Then by Proposition 3.5, $S_0(n,r)$ and $H_0(r)$ have the same representation type in case $r \le 4$. Therefore, $S_0(n,r)$ is representation-finite (resp., tame) if and only if $r \le 3$ (resp., r = 4).

Now let $r \ge 5$. Then by Lemma 3.1, the Gabriel quiver Γ of $H_0(r)$ contains a full subquiver Σ of the following form

FIG.2. Subquiver of the Gabriel quiver Γ of $H_0(r)$

Since $n \ge 3$, all P_J with

$$J \in \{\{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}\}$$

occur as direct summands in $T_0(n, r)$, it follows that the Gabriel quiver of $S_0(n, r)$ also contains a full subquiver of the form Σ . Hence, $S_0(n, r)$ is wild.

The rest of this section is devoted to determining the representation type of $S_0(2,r)$ with $r \ge 2$. For each $0 \le i \le r$, put $\lambda^{(i)} = (i, r - i) \in \Lambda(2, r)$. Then

$$x_{\lambda^{(0)}}H_0(r) \cong P_\emptyset \cong x_{\lambda^{(r)}}H_0(r), \quad x_{\lambda^{(i)}}H_0(r) \cong P_\emptyset \oplus P_{\{i\}} \quad \text{for } 1 \leqslant i < r.$$

Thus, $T_0(2,r)\cong (P_\emptyset)^{r+1}\oplus \left(\bigoplus_{i=1}^{r-1}P_{\{i\}}\right)$ and

$$S_0(2,r) \cong \mathbb{F}^{(r+1)\times(r+1)} \times \text{End}_{H_0(r)} \Big(\bigoplus_{i=1}^{r-1} P_{\{i\}}\Big).$$
 (3.6.1)

By Lemma 3.1, the Gabriel quiver of $A_0(r) := \operatorname{End}_{H_0(r)} \left(\bigoplus_{i=1}^{r-1} P_{\{i\}} \right)$ has the form

$$\Delta_r : \xrightarrow{V\{1\}} \xrightarrow{\alpha_1} \xrightarrow{V\{2\}} \xrightarrow{\alpha_2} \dots \xrightarrow{\alpha_{r-2}} \xrightarrow{V\{r-1\}} \xrightarrow{\beta_{r-2}}$$

FIG.3. Gabriel quiver of
$$A_0(r)$$

Hence, $A_0(r) \cong \mathbb{F}\Delta_r/\mathcal{I}_r$ for some admissible ideal \mathcal{I}_r of the path algebra $\mathbb{F}\Delta_r$. Our next aim is to determine the ideal \mathcal{I}_r by induction on r.

Recall from §2 that $S_0(2,r)$ has a basis $\{\zeta_A \mid A \in \Xi(2,r)\}$. By (1.1.2), for each $0 \leqslant i \leqslant r$, the idempotent $\zeta_{\lambda^{(i)}}$ is the composition

$$T_0(2,r) = \bigoplus_{j=0}^r x_{\lambda^{(j)}} H_0(r) \xrightarrow{\pi_i} x_{\lambda^{(i)}} H_0(r) \xrightarrow{\kappa_i} \bigoplus_{j=0}^r x_{\lambda^{(j)}} H_0(r) = T_0(2,r),$$

where π_i and κ_i denote the canonical projection and inclusion, respectively. Hence, $S_0(2,r)\zeta_{\lambda^{(0)}}\cong S_0(2,r)\zeta_{\lambda^{(r)}}$ is a simple projective module. In particular, $\zeta_{\lambda^{(0)}}$ and $\zeta_{\lambda^{(r)}}$ are primitive idempotents. For each $1\leqslant i< r$, $\zeta_{\lambda^{(i)}}$ decomposes into a sum of orthogonal primitive idempotents $\zeta_{\lambda^{(i)}}=\zeta'_{\lambda^{(i)}}+\zeta''_{\lambda^{(i)}}$ such that $S_0(n,r)\zeta'_{\lambda^{(i)}}\cong S_0(n,r)\zeta_{\lambda^{(0)}}$. Consequently,

$$S_0(2,r)/S_0(2,r)\zeta_{\lambda(0)}S_0(2,r) \cong A_0(r) \cong S_0(2,r)/S_0(2,r)\zeta_{\lambda(r)}S_0(2,r),$$
 (3.6.2)

and for $1 \leq i < r$,

$$S_0(2,r)/S_0(2,r)\zeta_{\lambda^{(i)}}S_0(2,r) \cong A_0(r)/A_0(r)e_iA_0(r), \tag{3.6.3}$$

where e_i denotes the idempotent of $A_0(r)$ corresponding to the vertex $v_{\{i\}}$ of Δ_r . In other words, e_i is the composition of the canonical projection and inclusion

$$\bigoplus_{j=1}^{r-1} P_{\{j\}} \longrightarrow P_{\{i\}} \longrightarrow \bigoplus_{j=1}^{r-1} P_{\{j\}}.$$

Proposition 3.7. Suppose $\lambda = (1, r - 1)$ and $\mu = (0, r - 1)$. Then there is an algebra isomorphism

$$\phi: S_0(2,r)/S_0(2,r)\zeta_{\lambda}S_0(2,r) \longrightarrow S_0(2,r-1)/S_0(2,r-1)\zeta_{\mu}S_0(2,r-1).$$

Analogously, suppose $\rho = (r-1,1)$ and $\tau = (r-1,0)$, Then there is an algebra isomorphism

$$\psi: S_0(2,r)/S_0(2,r)\zeta_0S_0(2,r) \longrightarrow S_0(2,r-1)/S_0(2,r-1)\zeta_\tau S_0(2,r-1).$$

Proof. We only prove the first assertion. The second one can be proved similarly. By Corollary 2.9, $S_0(2,r)$ has generators \mathfrak{e} , \mathfrak{f} and ζ_{ν} ($\nu \in \Lambda(2,r)$) with relations:

(DS1)
$$\zeta_{\nu}\zeta_{\nu'} = \delta_{\nu,\nu'}\zeta_{\nu}, \ 1 = \sum_{\nu \in \Lambda(2,r)} \zeta_{\nu};$$

(DS2)
$$\mathfrak{e}\zeta_{\nu} = \zeta_{\nu+\varepsilon_1-\varepsilon_2}\mathfrak{e}$$
 if $\nu_2 \geq 1$, $\mathfrak{e}\zeta_{\nu} = 0 = \zeta_{\nu}\mathfrak{f}$ if $\nu_2 = 0$;

(DS3)
$$\mathfrak{f}\zeta_{\nu} = \zeta_{\nu-\varepsilon_1+\varepsilon_2}\mathfrak{f}$$
 if $\nu_1 \geq 1$, $\mathfrak{f}\zeta_{\nu} = 0 = \zeta_{\nu}\mathfrak{e}$ if $\nu_1 = 0$;

(DS4)
$$ef - fe = \zeta_{(r,0)} - \zeta_{(0,r)}$$
.

While $S_0(2, r-1)$ has generators \mathfrak{e} , \mathfrak{f} and ζ_{θ} ($\theta \in \Lambda(2, r-1)$) with similar relations. Write

$$\mathcal{K}_{\lambda} = S_0(2, r) \zeta_{\lambda} S_0(2, r)$$
 and $\mathcal{K}_{\mu} = S_0(2, r - 1) \zeta_{\mu} S_0(2, r - 1)$.

Consider the following elements in $S_0(2, r-1)/\mathcal{K}_{\mu}$:

$$\mathbf{e}' = \mathbf{e} + \mathcal{K}_{\mu}, \ \mathbf{f}' = \mathbf{f} + \mathcal{K}_{\mu}, \ \zeta_{\nu}' = \begin{cases} \zeta_{(\nu_1 - 1, \nu_2)} + \mathcal{K}_{\mu}, & \text{if } \nu_1 \geqslant 1; \\ 0, & \text{otherwise,} \end{cases}$$

where $\nu = (\nu_1, \nu_2) \in \Lambda(2, r)$. It is straightforward to check that $\mathfrak{e}', \mathfrak{f}', \zeta_{\nu}'$ satisfy the generating relations (DS1)–(DS4) for $S_0(2, r)$. Thus, there is a surjective algebra homomorphism

$$\widetilde{\phi}: S_0(2,r) \longrightarrow S_0(2,r-1)/\mathcal{K}_{\mu}$$

which takes $\mathfrak{e} \mapsto \mathfrak{e}'$, $\mathfrak{f} \mapsto \mathfrak{f}'$ and $\zeta_{\nu} \mapsto \zeta_{\nu}'$ for $\nu \in \Lambda(2, r)$. Since $\widetilde{\phi}(\zeta_{\lambda}) = 0$, it induces a surjective homomorphism

$$\phi: S_0(2,r)/\mathcal{K}_{\lambda} \longrightarrow S_0(2,r-1)/\mathcal{K}_{\mu}.$$

We now prove that ϕ is an isomorphism by a dimension comparison. By (3.6.1) and (3.6.2),

$$\dim S_0(2, r-1)/\mathcal{K}_{\mu} = \dim S_0(2, r-1) - r^2 = \binom{r+2}{3} - r^2.$$

On the other hand, for each $0 \le i \le r$, put $\lambda^{(i)} = (i, r - i) \in \Lambda(2, r)$ as above. Note that $\lambda = \lambda^{(1)}$. Since $\sum_{i=0}^{r} \zeta_{\lambda^{(i)}} = 1$, we obtain a decomposition

$$\mathcal{K}_{\lambda} = \zeta_{\lambda^{(0)}} \mathcal{K}_{\lambda} \oplus \zeta_{\lambda^{(1)}} \mathcal{K}_{\lambda} \oplus \cdots \oplus \zeta_{\lambda^{(r)}} \mathcal{K}_{\lambda}.$$

We are going to compute the dimensions of

$$\zeta_{\lambda^{(i)}} \mathcal{K}_{\lambda} \zeta_{\lambda^{(j)}} = (\zeta_{\lambda^{(i)}} S_0(2, r) \zeta_{\lambda}) \cdot (\zeta_{\lambda} S_0(2, r) \zeta_{\lambda^{(j)}}).$$

A direct calculation shows that $\zeta_{\lambda^{(0)}}S_0(2,r)\zeta_{\lambda}=\mathbb{F}\zeta_{A_0}$ and $\zeta_{\lambda^{(r)}}S_0(2,r)\zeta_{\lambda}=\mathbb{F}\zeta_{A_r}$, where

$$A_0 = \begin{pmatrix} 0 & 0 \\ 1 & r-1 \end{pmatrix}$$
 and $A_r = \begin{pmatrix} 1 & r-1 \\ 0 & 0 \end{pmatrix}$.

For $1 \leqslant i < r$, $\zeta_{\lambda^{(i)}} S_0(2,r) \zeta_{\lambda}$ has a basis $\{\zeta_{A_1^{(i)}}, \zeta_{A_2^{(i)}}\}$, where

$$A_1^{(i)} = \begin{pmatrix} 1 & i-1 \\ 0 & r-i \end{pmatrix} \text{ and } A_2^{(i)} = \begin{pmatrix} 0 & i \\ 1 & r-i-1 \end{pmatrix}.$$

Similarly, $\zeta_{\lambda}S_0(2,r)\zeta_{\lambda^{(0)}}=\mathbb{F}\zeta_{B_0}$ and $\zeta_{\lambda}S_0(2,r)\zeta_{\lambda^{(r)}}=\mathbb{F}\zeta_{B_r}$, where

$$B_0 = \begin{pmatrix} 0 & 1 \\ 0 & r-1 \end{pmatrix}$$
 and $B_r = \begin{pmatrix} 1 & 0 \\ r-1 & 0 \end{pmatrix}$.

For $1 \leqslant i < r$, $\zeta_{\lambda} S_0(2,r) \zeta_{\lambda^{(i)}}$ has a basis $\{\zeta_{B_2^{(i)}}, \zeta_{B_2^{(i)}}\}$, where

$$B_1^{(i)} = \begin{pmatrix} 1 & 0 \\ i-1 & r-i \end{pmatrix}$$
 and $B_2^{(i)} = \begin{pmatrix} 0 & 1 \\ i & r-i-1 \end{pmatrix}$.

Furthermore, $\zeta_{\lambda^{(0)}} \mathcal{K}_{\lambda}$ has a basis

$$\{\zeta_A \mid A = \begin{pmatrix} 0 & 0 \\ i & r-i \end{pmatrix} \text{ for } 0 \leqslant i \leqslant r\},$$

and $\zeta_{\lambda^{(r)}} \mathcal{K}_{\lambda}$ has a basis

$$\{\zeta_A \mid A = \begin{pmatrix} i & r-i \\ 0 & 0 \end{pmatrix} \text{ for } 0 \leqslant i \leqslant r\}.$$

Hence, $\dim \zeta_{\lambda^{(0)}} \mathcal{K}_{\lambda} = \dim \zeta_{\lambda^{(r)}} \mathcal{K}_{\lambda} = r + 1$.

Now fix $1 \le i \le r-1$. Then $\zeta_{\lambda^{(i)}} \mathcal{K}_{\lambda} \zeta_{\lambda^{(0)}}$ (resp., $\zeta_{\lambda^{(i)}} \mathcal{K}_{\lambda} \zeta_{\lambda^{(r)}}$) has a basis ζ_C (resp., ζ_D) with

$$C = \begin{pmatrix} 0 & i \\ 0 & r-i \end{pmatrix} \text{ (resp., } D = \begin{pmatrix} i & 0 \\ r-i & 0 \end{pmatrix}).$$

By [7, Th. 13.18(1)] and [28, Th. 3.2], for $1 \le j \le r - 1$, we have

$$\begin{split} \zeta_{A_1^{(i)}}\zeta_{B_1^{(j)}} &= \sum_{m=0}^{\min\{i-1,j-1\}} \zeta_{X_m} \text{ with } X_m = \binom{1+m}{j-1-m} \frac{i-1-m}{r-j-i+m+1}, \\ \zeta_{A_1^{(i)}}\zeta_{B_2^{(j)}} &= \zeta_{A_2^{(i)}}\zeta_{B_1^{(j)}} = \zeta_Y \text{ with } Y = \binom{0}{j} \frac{i}{r-j-i}, \\ \zeta_{A_2^{(i)}}\zeta_{B_2^{(j)}} &= \sum_{m=0}^{\min\{i,j\}} \zeta_{X_{m-1}} = \zeta_{A_1^{(i)}}\zeta_{B_1^{(j)}} + \zeta_{A_1^{(i)}}\zeta_{B_2^{(j)}}. \end{split}$$

Since

$$\zeta_Y \neq 0 \iff r - j - i \geqslant 0 \iff j \leqslant r - i,$$

it follows that

$$\dim \zeta_{\lambda^{(i)}} \mathcal{K}_{\lambda} \zeta_{\lambda^{(j)}} = \begin{cases} 2, & \text{if } 1 \leqslant j \leqslant r - i; \\ 1, & \text{if } r - i < j \leqslant r - 1. \end{cases}$$

Hence,

$$\dim \zeta_{\lambda^{(i)}} \mathcal{K}_{\lambda} = \sum_{j=0}^{r} \dim \zeta_{\lambda^{(i)}} \mathcal{K}_{\lambda} \zeta_{\lambda^{(j)}} = 2r + 1 - i.$$

Consequently, we obtain that

$$\dim \mathcal{K}_{\lambda} = \sum_{i=0}^{r} \dim \zeta_{\lambda^{(i)}} \mathcal{K}_{\lambda} = 2(r+1) + \sum_{i=1}^{r-1} (2r+1-i) = \frac{3r^2 + 3r + 2}{2}$$
$$= \dim S_0(2,r) - \dim S_0(2,r-1) / \mathcal{K}_{\mu}.$$

This together with the surjectivity of ϕ implies that ϕ is an isomorphism.

The proposition above together with (3.6.2) and (3.6.3) implies that ϕ induces a surjective algebra homomorphism

$$\bar{\phi}: A_0(r) \longrightarrow A_0(r-1)$$

taking $e_1 \mapsto 0$ and $e_i \mapsto e_{i-1}$, for $2 \leqslant i \leqslant r-1$ with Ker $\bar{\phi} = A_0(r)e_1A_0(r)$. Similarly, ψ induces a surjective algebra homomorphism

$$\bar{\psi}: A_0(r) \longrightarrow A_0(r-1)$$

taking $e_{r-1} \mapsto 0$ and $e_i \mapsto e_i$, for $1 \leqslant i \leqslant r-2$ with $\operatorname{Ker} \bar{\psi} = A_0(r)e_{r-1}A_0(r)$.

Corollary 3.8. Suppose $r \ge 2$. Then $A_0(r) \cong \mathbb{F}\Delta_r/\mathcal{I}_r$, where \mathcal{I}_r is the ideal of $\mathbb{F}\Delta_r$ generated by $\{\beta_1\alpha_1, \ \alpha_{r-2}\beta_{r-2}, \ \beta_i\alpha_i - \alpha_{i-1}\beta_{i-1} \ for \ 2 \le i \le r-2\}$.

Proof. Obviously, $A_0(2) \cong \mathbb{F} \cong \mathbb{F}\Delta_1$. By the proof of [19, Th. 2.1], we have

$$A_0(3) \cong \mathbb{F}\Delta_2/\langle \beta_1\alpha_1, \alpha_1\beta_1 \rangle$$
 and $A_0(4) \cong \mathbb{F}\Delta_3/\langle \beta_1\alpha_1, \alpha_1\beta_1 - \beta_2\alpha_2, \alpha_2\beta_2 \rangle$.

Hence, the assertion is true for r=2,3,4. Applying the surjective homomorphisms $\bar{\phi}$ and $\bar{\psi}$ together with an induction on r proves the assertion for all $r \geq 2$.

Theorem 3.9. Let $r \ge 2$. Then $S_0(2,r)$ is representation-finite (resp., tame, wild) if $r \le 5$ (resp., r = 6, $r \ge 7$).

Proof. By (3.6.1), $S_0(2,r)$ and $A_0(r)$ have the same representation type. It is clear that $A_0(r)$ is representation-finite for $r \leq 4$. By applying the covering technique developed in [29, 30], we obtain that there are 40 isolasses of indecomposable $A_0(5)$ -modules. Hence, $A_0(5)$ is also representation-finite.

By [31] and [32, Th. 4.2], $A_0(6)$ is a selfinjective algebra of tubular type which is tame.

It remains to show that $A_0(r)$ is wild for $r \ge 7$. The universal cover of $A_0(r)$ has the following form

FIG.4. Universal cover of $A_0(r)$

with all squares commutative and all paths $1 \longrightarrow 2 \longrightarrow 1$ and $r-1 \longrightarrow r-2 \longrightarrow r-1$ being

zero. The quiver \widetilde{Q}_r contains a full subquiver of the form

FIG.5. Subquiver of \widetilde{Q}_r

with all squares commutative which gives rise to a wild algebra. Hence, $A_0(r)$ is wild for $r \ge 7$.

参考文献 (References)

- [1] M. Jimbo, A q-difference analogue of U(g) and the Yang-Baxter equation [J]. Lett. Math. Phys., 10(1):63-69, 1985.
- [2] R. Dipper and G. James, *The q-Schur Algebra* [J]. Proc. London Math. Soc. (3), 59(1):23–50, 1989.
- [3] R. Dipper and S. Donkin, Quantum GL_n [J]. Proc. London Math. Soc. (3), 63(1):165–211, 1991.
- [4] B. Parshall, J. Wang, *Quantum linear groups* [M]. Memoirs Amer. Math. Soc., no. 439. Providence: Amer. Math. Soc., 1991.
- [5] S. Donkin, The q-Schur Algebra [M]. Cambridge: Cambridge University Press, 1998.
- [6] J. A. Green, Polynomial Representations of GL_n [M]. 2nd ed., with an appendix on Schensted correspondence and Littelmann paths by K. Erdmann, J. A. Green and M. Schocker. Lecture Notes in Mathematics, no. 830. Berlin: Springer-Verlag, 2007.
- [7] B. Deng, J. Du, B. Parshall and J. Wang, Finite dimensional algebras and quantum groups [M]. Mathematical Surveys and Monographs Volume 150. Providence: Amer. Math. Soc., 2008.
- [8] K. Erdmann and D. Nakano, Representation type of q-Schur algebras [J]. Trans. Amer. Math. Soc., 353:4729-4756, 2010.

- [9] S. Doty and A. Giaquinto, Presenting Schur algebras [J]. Int. Math. Res. Not.,36:1907–1944, 2002.
- [10] J. Du and B. Parshall, Monomial bases for q-Schur algebras [J]. Trans. Amer. Math. Soc., 355:1593–1620, 2003.
- [11] D. Krob and J.Y. Thibon, Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at q = 0 [J]. J. Algebraic Combin., 6:339–376, 1997.
- [12] X. Su, A generic multiplication in quantised Schur algebras [J]. Quarterly J. of Mathematics, 61(4):437–445, 2010.
- [13] A. Beilinson, G. Lusztig and R. MacPherson, A geometric setting for the quantum deformation of GL_n [J]. Duke Math. J., 61:655–677, 1990.
- [14] M. Reineke, Generic extensions and multiplicative bases of quantum groups at q=0 [J]. Represent. Theory, 5:147–163, 2001.
- [15] B. Deng, J. Du and A. Mah, Presenting degenerate Ringel-Hall algebras of cyclic quivers [J]. J. Pure App. Algebra, 214:1787–1799, 2010.
- [16] P. N. Norton, 0-Hecke algebras [J]. J. Austral. Math. Soc., 27:337–357, 1979.
- [17] R. W. Carter, Representation theory of the 0-Hecke algebras [J]. J. Algebra, 104:89–103, 1986.
- [18] M. Fayers, 0-Hecke algebras of finite Coxeter groups [J]. J. Pure Appl. Algebra, 199:27–41, 2005.
- [19] B. Deng and G. Yang, Representation type of 0-Hecke algebras [J]. Science in China A (accepted).
- [20] C. M. Ringel, Hall algebras and quantum groups [J]. Invent. Math., 101:583–592, 1990.
- [21] J. Du, A note on the quantized Weyl reciprocity at roots of unity [J]. Alg. Colloq., 2:363–372, 1995.
- [22] G. Yang, Quantum Schur algebras and their degenerations [D]. Beijing: Beijing Normal University, 2010.
- [23] C. M. Ringel, Hall algebras revisited [A]. In Quantum Deformations of Algebras and Their Representations, A. Joseph & S. Shnider (eds.), Israel Mathematical Conference Proceedings, no. 7, Bar-Ilan University, Bar-Ilan, 1993, pp. 171–176.
- [24] B. Deng and J. Du, On bases of quantized enveloping algebras [J]. Pacific J. Math., 202:33–48, 2005.

- [25] C. M. Ringel, *Tame algebras and integral quadratic forms* [M]. Lecture Notes in Mathematics, no. 1099. Berlin: Springer-Verlag, 1984.
- [26] D. Simson and A. Skowroáski, Elements of the representation theory of associative algebras
 [M]. Vol. 3. Representation-infinite tilted algebras. London Mathematical Society Student Texts, 72. Cambridge: Cambridge University Press, 2007.
- [27] A. Skowronski and K. Yamagata, Galois coverings of selfinjective algebras by repeatitive algebras [J]. Trans. Amer. Math. Soc., 351:715–734, 1999.
- [28] B. Deng and G. Yang, *Quantum Schur algebras revisited* [J]. J. Pure Appl. Algebra (accepted).
- [29] K. Bongartz and P. Gabriel, Covering spaces in representation-theory [J]. Invent. Math., 65:331–378, 1982.
- [30] P. Gabriel, The universal cover of a repersentation-finite algebra[A]. In: Representations of algebras, Lecture Notes in Math. **903**, 68–105, Berlin-Heidelberg-New York, 1981.
- [31] J. Bialkowski and A. Skowronski, Selfinjective algebras of tubular type [J]. Collq. Math., 94:175–194, 2002.
- [32] J. Bialkowski and A. Skowronski, Socle deformations of selfinjective algebras of tubular type [J]. J. Math. Soc. Japan, 56:687–716, 2004.