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0 Introduction

Quantum Schur algebras (or ¢g-Schur algebras) were studied independently by Jimbo [1] and
Dipper and James [2]. This class of algebras plays a central role in linking the representations
of quantum general linear groups, quantum enveloping algebras of type A and Hecke algebras
of symmetric groups; see for example [3, 4, 5]. This provides a g-analogue of the classical theory
relating representation theories of Schur algebras, general linear groups and symmetric groups;
see a thorough treatment in [6]. The structure and representation theory of quantum Schur
algebras have been widely studied in the literature; see [5, 7] and the references given there.
Recently, the representation type of quantum Schur algebras was completely determined in [8],
and a presentation for quantum Schur algebras was given in [9, 10].

It is known that the classical Schur algebras are the degeneration of quantum Schur algebras
at ¢ = 1. Analogously, by considering their degeneration at ¢ = 0, we obtain the so-called
0-Schur algebras which have been studied by Donkin [5, §2.2] in terms of 0-Hecke algebras

of symmetric groups, as well as by Krob—Thibon [11] in connection with noncommutative
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symmetric functions. Also, Su [12] has defined generic multiplication in certain subalgebras of
0-Schur algebras and related them with the degenerate Ringel-Hall algebras.

The present paper is devoted to the study of the structure and representation type of
0-Schur algebras. We first give a presentation for 0-Schur algebras based on a geometric con-
struction of quantum Schur algebras due to Beilinson, Lusztig and MacPherson [13] and a
presentation for the degenerate Ringel-Hall algebras of linear quivers given in [14, 15]. We
then determine the representation type of 0-Schur algebras by using the structure and the rep-
resentation theory of 0-Hecke algebras developed in [16, 17, 18, 19] and some techniques in the

representation theory of algebras.

1 Quantum Schur algebras

In this section we recall the definition of quantum Schur algebras Sq(n,r) due to Dip-
per—James [2] and also review the geometric construction of Sq(n, ) given by Beilinson-Lusztig
—MacPherson [13]. We then apply multiplication formulas in [13, Lem. 3.2] to obtain certain
relations in Sg(n, 7). Finally, we introduce the notion of Ringel-Hall algebras defined by Ringel
[20].

Let & = &, denote the symmetric group on r letters with generating set {s; = (4,7 + 1) |
i €I}, where I = {1,2,...,r —1}. Let & = Z[q] be the polynomial ring with indeterminate
g. By definition, the Hecke algebra Hy(r) = Hq(S) of & is the o7/-algebra with generators T},

for ¢ € I, and relations

T? = (g — 1)T; +q, fori e I,

T,T; = T;T;, for i,j € I with |i — j| > 1;
TToT, = Ti TiTiyr, for1<i<r—1.

are two reduced expressions of w € &, then T;, --- T,

Ifw=s;-"8, =858, 5 , =

t %
T;, ---Tj,. Thus, the element T, :=T;, --- T}, is well defined. It is well known that Hy(r) is a
free o7-module with basis {T,, | w € &}.
Fix a positive integer n and let A(n,r) be the set of compositions of r into n parts. For

A= (A1,...,An) € A(n,r), define for 1 <i < n,

t

R={z|M+ -+ XN a+1<s< A+ + N
where \g = 0. If \; = 0, put R} := () by convention. In this way, we get a decomposition
{1,2,...,r7y =R} URyU---UR)
of {1,2,...,r} into a disjoint union of subsets. The subgroup

Gy :={we & |wR})=R})1<i<n}

9.
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is called a Young subgroup of & defined by the composition A\. We then define
T\ = Z T, € Hg(r)
weS )

which satisfies (see for example [7, Lem. 7.32])
x)\T; = qxy for each i € I with s; € &,. (1.0.1)

Following Dipper and James [2], the endomorphism algebra

Sq(n,r) = Enqu(,.)( @ x,\Hq(r)>
AEA(n,r)
is called the (integral) quantum Schur algebra of bidegree (n,r) over «7. For A\, u € A(n,r) and
w € G, define ¢}, € Sq(n,r) by

I EB x,Hy(r) — GB r,Hy(r), xz,h— 0,1, ws,h,
veA(n,r) veA(n,r)
where T, we, = ZIEGW&‘ T,.
We now recall the geometric construction of quantum Schur algebras given by Beilin-
son-Lusztig-MacPherson [13]. Let F be a field and let V' be an F-vector space of dimension 7.
Let § = §(n,V) be the set of n-step flags

ichc...cV, =V

The group G = GL(V) acts naturally on §. This induces a diagonal action of G on § x §
defined by g(f,§) = (gf, gf'), where g € G and f,§ € §.

Let =(n,r) denote the set of matrices A = (a;,;) € N**™ with a;; nonnegative integers
and >, ; i, @i,; = . Then there is a bijection from § x §/G to E(n,r) sending the orbit of
(f,") to A = (a;,;) with

ViV
Vi NV +VinV/_,

a;; =dimp for 1 <1i4,5 <n, (1.0.2)

where f= (Vi €12 C -~ C V= V), f = (W CVC---CV/=V)and Vo = Vj = 0 by
convention.

For A € E(n,r), we denote by O4 the orbit in § x §F corresponding to A. For each matrix
A = (a;;) € N**" define

row(A) = (Zn: aij,. - .,iaw) € N" and col(A) = (i a1, .- .,iai,n) e N".
=1 i=1 i=1

Jj=1

If F =T, is a finite field of ¢ elements. For A, B,C' € E(n,r), fix a representative (f',f") €
Oc¢ and put
capcg=|{F€F|(.]) € Oa, (i) € O} |

-3
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Clearly, ca,p, . is independent of the choice of (f,§”), and a necessary condition for c4 g c.q # 0
is that
row(A) = row(C), col(A) = row(B) and col(B) = col(C). (1.0.3)

Following [13, Prop. 1.2], for any given A, B,C' € Z(n, ), there is a polynomial g4 5.c(q) €
o/ = Z|q] such that for all prime powers ¢ # 1, the equality ga,5.c(q) = ca,p,c;q holds.

Definition 1.1 ([13]). Let S;(n,r) be the free Z[g]-module with basis {4 | A € Z(n,7)} and

with multiplication given by

CaCs= Y ganc(@)c, forall A,B € E(n,r),
CeE(n,r)
Then S;(n,r) is an associative algebra with identity described as follows. For each A\ =
(A1, .., An) € A(n,7), let diag(A) denote the diagonal matrix diag(Aq,...,\,) and write ¢, =
Cdiag(n)- By definition, for each A € ZE(n,r),

Ca, if A =col(A);

(1.1.1)
0, otherwise.

CxCa = { Ca, if A =row(A);

0, otherwise

and CaQ\ = {

Thus, ZAeA(n’T) Cdiag(x) 18 the identity of S (n, 7).
For each A € Z(n,r), let A = row(A) and p = col(A) and choose ws € & such that for
L<ig<n,
aij=|R}n (waRY)|.

By [21] (see [7] for the details), the correspondence

Car— ¢1(ri£)4w(A),col(A) (A € E(n,1)) (1.1.2)

induces an algebra isomorphism Sy (n,7) — Sq¢(n,7), where d is the shortest element in the
double coset &,ow(4)WAGcoi(4). In what follows, we will identify Sy (n,r) with Sg(n,r) under
the isomorphism above.

For each d > 1, we define in .o7:

(4] = [0+ [ wieh [ = L=

and set [0]' = 1 by convention.

Let Z(n)* be the set of all matrices A = (a; ;) € N**" such that a;; =0 forall 1 <i < n
and let Z(n, < 7)* be the subset of matrices A = (a; ;) € E(n)* satisfying [A] = 3, i<n @ij S
r.

Given A € Z(n, < r)* and j = (j1,...,jn) € N7, define

Caj = > @ Casx € Sq(n,r),

AENT, A+ AEE(n,T)

_4-
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where A + X := A+ diag(\) and A-j = A\ij1 + -+ + Ayjn. Also, for any A = (a; ;) € M,(Z),
define (4 =0 if a;; < 0 for some i # j, or |A| > r. Let O denote the n x n zero matrix and
E; ; denote the matrix with (¢, j)-entry 1 and all other entries 0. Let 0 = (0,...,0) € N",¢; =
0,...,0,1,0,...,0) € N* (with 1 in the ith position) for 1 <i < n.

By [13, Lem. 3.2] and a direct calculation, we obtain the following extended multiplication

formulas in Sg(n, 7).

Lemma 1.2. For 1 < h <mn, j,j’ € N, and A = (ax,;) € Z(n, < 1)*%, the following equalities
hold in Sq(n,r),

(1) Cos * Caw = @V ICag4503
(2) (A;j' : CO;j = qCOl(A)‘jCA;j_i_j/ ;
(3) CEh,,)L+1;0 ’ CA;.i = Zi<h;ah,+1,i>1 q2j>iah’j Hah,i + 1“CA+Eh>z:*Eh+1,L';j+6h,

+ E qEJN " CAJrEh,,f,*Eh-;-l,i;j
i>h+1ap41,i>1
q(2j>h a’hj*jh)

+ q—1 (<A—Eh+1,h;j+6h - CA_E’L+1,}L;j)

g Zamne o) [lay oy + 1] Cav By §

(4) CEh-H,h;O : (Ad = Zi<h;ah,i>1 qsz et [[ah+1,i + 1]] CAfEh,,i+Eh+1,1;j

S ant1, )

+ Z q j<i +1,j5 [[ah+1,l + 1]] CA*EhTi+Eh+1,i§j+€h+1
i>h+1an i>1
q(2j<h+1 an+1,=d(h+1))

+ qg—1 (CA—Eh,h,+1;j+€h+1 - CA—Eh,thl?j)

+q(2j<h ant1,5+35) H

api1,n + 1“ CAJFEthLh?j :

If aps1n = 0 (resp., appyr = 0), then A — Epiq1p, (resp., A — Eppt1) has a negative entry.

Hence, the third term in formula (3) (resp., (4)) is zero in this case.

For each 1 < i < n, define the elements
¢ = CE,;JH;O and f; = CEHM;O (1~2‘1)
in Sg(n,r). From Lemma 1.2 we deduce the following result.
Proposition 1.3. The following relations hold in Sq(n,r) for A\, € A(n,r) and 1 < 1,5 < n:

(Sl) C)\CH = 5&#(}\7 1= ZAeA(n,r) Crs

(52) eiln = Qurer—ein®is if i1 2 1, 60y = 0= Qafi if Aip1 =0,
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(S3) §ilx = Qreciqernfi if A 2 1, iy =0 =i if Ay =0,
(S4) (g —D)(eif; —F5e) = 0ij Doneninm (@ — @),
(S5) eie; = ejei, fify = ffi (li—jl > 1),

(S6) eZe;r1 — (g + 1)eseip1e; + gegpie? =0,

(S7) ee?.; — (@ + D)ejyreieips + qeqe; =0,

(S8) @fffir1 — (@ + Vfifisafi + firaf? =0,

(89) qfifi1 — (g + Dfipafifirs + 57,5 = 0.

Remarks 1.4. (1) The relations (S5)—(S9) are the so-called fundamental relations appeared in
Ringel-Hall algebras; see [20]. Indeed, (S1)—(S9) are the generating relations for the quantum
Schur algebra Sg(n,7) ®zq Q(q); see [22].

(2) Let v be an indeterminate satisfying v? = g and let Q(v) be the field of rational
functions in v. In [9, 10] (see also [7, Ch. 13]), a presentation for the quantum Schur algebra
Seo(n,r) = S4(n,r) ® Q(v) is given. However, the generators given there satisfy the quantum
Serre relations, while the e¢;,f; defined in (1.2.1) satisfy the fundamental relations. But, in
order to obtain the quantum Serre relations in Ringel-Hall algebras, we have to twist the

multiplication; see [23].

In the following we introduced the Ringel-Hall algebra of the linear quiver

1 2 —1
Q: e .

FIG.1. Linear quiver with n — 1 vertices

Let F be a field. It is well known that for each 1 < i < j < n, there is a unique (up to
isomorphism) indecomposable representation M; ; of Q over F whose dimension vector dimM; ;
is a; + -+ 4+ a;_1, where ay,...,a,_1 denote the standard basis of Z"~1. In particular, the
S; =M, ;41 (1 <i < n) are all simple representations of Q.

Let Z(n)™ denote the set of all strictly upper triangular matrices in N"*". To each A =

(a; ;) € Z(n)™ we can attach a representation of @ by setting

M(A) = Mg(A) = @aiﬁjM,,j.

By the Krull-Schmidt Theorem, the correspondence A +— M(A) induces a bijection from
=(n)™ to the set of isoclasses of finite dimensional representations of @ over F. Following
[20], for A, B,C € Z(n)*, there exists gog’c(q) € of = Z|q] (called the Hall polynomial) such

- 6-
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that (pgc(q) = FAAZ;F((g))’MF(C) for each finite field F with ¢ elements, where FA]Z[]:((;){MF(C) is the

number of submodules X of My(A) such that X = My(C) and Mp(A)/X = Mp(B). The
(generic untwisted) Ringel-Hall algebra $4(Q) of @Q is by definition the free @/-module with
basis {us | A € Z(n)*} and with multiplication given by

UAUp = Z @S’B(q)uc for A,B € Z(n)".
Cex(n)t

We sometimes write w4y for us in order to make calculations in terms of representations of
Q. In particular, we write u; = ug,) for 1 <4 < n. It is known from [20] that the u; satisfy the

following fundamental relations (1 < 4,5 < n):
(H1) wyuy = wjui, (|i = j| > 1),

(H2) ufuipr — (g + Dwguipiu; + quipqui =0,
(H3) q“?ﬂui — (g + Dup1uuipr + uiu7,2+1 =0.

Let Z be a commutative ring with identity and take an element ¢ € Z. By viewing & as
an /-module with the action of g the multiplication by ¢, we obtain Z-algebras

H,(r)g = Hq(r) @ Z and Sy(n,7)z = Sq(n,r) Q@ X.

Moreover, by [7, Lem. 9.4], there is an Z-algebra isomorphism

Sq(n, 1) = Endg, (1), ( @ QJAHq(T).%)-

A€eA(n,r)

Similarly, we can consider the Ringel-Hall algebra of () over #

94(Q)z = 9H4(Q) ®r Z.

In the present paper we are mainly interested in the case where & is the ring Z of integers
or a field F with ¢ = 0.

2 A presentation for 0-Schur algebras

In this section we show that by specializing at ¢ = 0, the relations (S1)—(S9) become the
defining relations for the 0-Schur algebra. The proofs are modified from those in [10]; see also
[7, Ch. 13]. Thus, some of them are omitted.

As defined in the previous section, S4(n,r) is the quantum Schur algebra over &/ = Z|[q|
with basis {4 | A € Z(n,r)}. Put

So(n,r) :=So(n, 1)z = Sq(n, 1) @ Z,

-7
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called the 0-Schur algebra over Z. In other words, Sy(n,r) is the free Z-module with basis
{€a=C®1] A€ ZE(n,r)}, and the multiplication is defined by

CaCs= Y ganc(0)c forall A, B € E(n,r).

CeZ(n,r)

Given a polynomial f(q) in & and an integer a € Z, we write f(q), for f(a). In particular,
([d]')o = 1 = [d]o for each d > 1.
By letting g = 0, we obtain the elements

Cayj = Z Casn for A€ Z(n,<r)* and j € N™.

AENT, X-j=0
A+AEE(n,r)

in So(n,r). In particular, we have

¢; = Z (Eiﬁ,i+1+>\ and fi = Z CE'i+1,'i+)\

AEA(n,r—1) AeA(n,r—1)

in So(n,r) for 1 <1i < n. Proposition 1.3 gives the following consequence.

Lemma 2.1. The elements ¢;,f;,(x (1 <i<mn and X € A(n,r)) in So(n,r) satisfy the following

relations:
(DSl) C,\Qe = 5/\’;1@7 1= Z/\EA(n,r) Cxs
(DS2) ¢iCx = Opei—eipr i if Aig1 = 1, &y = 0= Cafi if Aig1 =0,
(DS3) §iCx = Qr—cipeiafi if Ai =1, fi{x =0 = (re; if A =0,

(DS4) eif; — fjei = 05 ( > Q- > 0,

AEA(r,7), A £0, M1 41=0 AEA(r,7), A =0,Xi 4170
(DSB) eie; = ejei, fif; = f;fi (li —jl > 1),
(DS6) e?e; 1 — e;eip1¢; =0,
(DS7) eiey ) — eigreieips =0,
(DS8) fit1f? = fifi+afi =0,
(DS9) §7 15 — fisafifirr = 0.

The main aim in this section is to show that So(n,r) is generated by the elements ¢;, f;, (\
with the defining relations (DS1)-(DS9).

First, we have the following lemma which can be proved by using the arguments completely
analogous to those in [7, Th. 13.31].

Lemma 2.2. The Z-algebra So(n,r) is generated by ¢;,§;,Cx for 1 <i<n and A € A(n,r).

- 8-
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Now we define Uy(n,r) to be the Z-algebra generated by x;,y,,&\ for 1 < i < n and
A € A(n,r) subject to the relations (DS1")—(DS9’) which are obtained from (DS1)—(DS9) by
substituting the e;, f; and ¢ for the x;, y, and &y, respectively. Therefore, there is a surjective

algebra homomorphism

p: Uy(n,r) — So(n,r) (2.2.1)

taking x; — ¢;, y, — §; and & — (). The rest of this section is to show that p is an isomorphism.
Let $0(Q) = 94(Q) ® Z be the degenerate Ringel-Hall algebra of the linear quiver @
given in §2. The following result is taken from [14] and [15, Remarks 4.9(a)].

Lemma 2.3. As a Z-algebra, $H0(Q) is generated by u; = u; @ 1 (1 < i < n) subject to the

relations:
(DH1) wiu; = uwju,, (|i—j|>1),
(DH2) wu;yq — ujuipiu; =0,
(DH3) wu?,; — uip1uwiuigr = 0.
By Lemma 2.1 and the lemma above, there are an algebra homomorphism
¢ :9H0(Q) — Up(n,r), u; — x; (1 <i<n)
and an algebra anti-homomorphism
¥ $H0(Q) — Us(n,7), ui—y; (1<i<n)

We set

Uo(n,r)* =Im¢ and Uy(n,r)” = Imp,
that is, Up(n,r)* (resp., Us(n,r)”) is the Z-subalgebra of Uy(n,r) generated by the x; (resp.,
y;). Furthermore, let Uy(n,7)" be the Z-subalgebra of Uy(n,r) generated by the £, which is

clearly Z-free with basis {{x | A € A(n,r)}. From the relations (DS1")—(DS9’) we easily deduce
that

Uo(n,7) = Us(n,r)* - Ug(n,r)° - Up(n,r)". (2.3.1)
We now fix a field F. For A, B € E(n)", define B <4y A if and only if dimMy(B) =
dimMp(A) and for each C € Z(n)™*,
dim HOHI]FQ<MF(C), M]F(B)) 2 dim HOIII]FQ (M]F(C), MF<A)) for all C' (S E(’I’L)+

This is the so-called degeneration order on =(n)" which is a partial order independent of the
field IF; see [7, §1.6]. We write B <4z A if B <4y A and B # A.

For each pair 1 <7 < j < n and an integer a > 1, define a monomial

u?’j - U?U?Jrl T “?71 = ([[a]]!)j_i (uaEi,j =+ Z UX)

X<aqgaFE;

9.
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in H4(Q). For A= (a;;) € E(n)*, define a monomial

A a
u = un—l,n

n—1,n_ An—2n Al,n An—-2n—1_0n—-3 n—1 a1,n—1

un—Z,n U ul,n un—?,n—lun—?),n—l T ul,n—l T u;??;gu?,l?;?’utll,léz (232)
in $H4(Q). By [23] and [24, §6], we have

ut = H ([ai,j]]!)j_i(uA+ Z fA,B(Q)uB)a

1<i<j<n B<agA

where fa p(q) € &. We denote by uf' the monomial in (2.3.2) viewing as an element in $,(Q).
Thus,

ul =ua+ Y fap(0us. (2.3.3)
B<ggA
Since {us | A € E(n)T} is a Z-basis of H,(Q), it follows that {uf' | A € Z(n)*} is also a Z-basis

of ,60(@)
For A € E(n)*, define
xt = p(ug') € Up(n,r)™.

Dually, let Z(n)~ be the set of all strictly lower triangular matrices in N**". For A € Z(n)~,
define

vt =vi’) € Ug(n,r),

where A* denotes the transpose of A.
For A € N**" define 0(A) = (01(4),...,0,(A4)) € N" by setting for 1 <i < n,

oi(A) =a;; + Z (a;; +aj;).

1<5<i

For A = (\), 0 = (p;) € N, write A < p if A\; < p; for all 1 < ¢ < n. Applying an argument
similar to that in the proof of [7, Prop. 13.41], we obtain the following result.

Proposition 2.4. Given A € E(n)", B € Z(n)” and A € A(n,r), the following statements
hold in the algebra Uy(n, ).

(1) If A > o(A), then x2&, = Exx?, where N = X — col(A) + row(A),
(2) If \i < 0;(A) for some i, then x2&, = 0,
(3) If X\ = o(B), then &,yP = yBEv,, where X' = X\ + col(B) — row(B),
(4) If \i < 04(B) for some i, then £,yP = 0.
Corollary 2.5. The algebra Uy(n,r)" (resp., Up(n,r)”) is spanned by the set

{x* 1 AeEMm)T, |[A<r} (resp., {y* | A€Z(n)", |A] <r}).
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Proof. Since {uf' | A € Z(n)*} is a Z-basis of $0(Q), it follows that Uy(n,r)* is spanned by
x* = ¢(ug') for all A € E(n)™. If |A| = Y, 0:(A) > r, then applying Proposition 2.4(2) gives
x4 = DA xA¢, = 0. This proves the assertion for Uy(n,r)*.

The assertion for Uy(n, )~ can be proved similarly. O

For each matrix A = (a; ;) € N**" let AT (resp., A~) be the strictly upper (resp., lower)
triangular part of 4, i.e., AT € E(n)" and A~ € Z(n)~ with

A= A" +diag(ar .. ,ann) + A,
For any A € E(n)* and A € A(n,7), set
mAN) AT AT (2.5.1)

By (2.3.1) and Corollary 2.5, Uy(n,r) is spanned by all such m** with A € A(n,r), A € Z(n)*
satisfying |[AT| < r and |[A7| < 7.

Lemma 2.6. For all s > 1 and 1 < i < n, the following equalities hold in Uy(n,r):

(1) xiy; —yixi =y; (O = ) ) SVE

1<t<s—1 AEA(n,T),
SUE Xij=tXjpq<r—t+1

(2) v —x%y; = _Xz‘#l(@ - Z Z fA)7

1<t<s—1 AEA(n,T),
SUE A=t N1 <r—t+l

where © = Z & — Z I3V
)\GA(H,T),)\i#O,)\,H_l:O )\EA(H,T),)\iIO,)\,H_l;éO
Proof. We prove the first equality by induction on s. The second one is proved similarly.

By definition, the equality holds for s = 1. Now suppose s > 1. Then we have

iy = yixi = [ yi v v syl
S CE Z Z &\)y; +v;'© (By induction hypothesis)

1<t<s—2 XEA(n,T),
ST Ng=t,Njpq <r—t+1

=y le- Y Y 4.

1<t<s—1 XEA(n,T),
SUE =t Njpq<r—t41

This proves the first equality. O

For a monomial m € §,(Q) (resp., m € Uy(n,r)) in the u; (resp., x; and y,), let deg(m) be
the number of the u; (resp., x; and y;) occurring in m. In other words, if m is regarded as a
word, deg(m) is the length of the word. If we define for each A = (a; ;) € N**",

deg(A) = |i — jlai,
1)
then deg(A) = degx?” + degy”? .
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Lemma 2.7. Let m € Uy(n,r)* be a monomial in the x;. Then m is a Z-linear combination
of x*, A € E(n)* (hence, a Z-linear combination of x*&y, A € Z(n)t,\ € A(n,r)) with
deg(A) = deg(m). A similar result holds for monomials in they;.

Proof. Let m € $0(Q) be a monomial in the u; such that ¢(m) = m. Then deg(m) = deg(m).
Since $0(Q) is N""l-graded and {uj' | A € Z(n)*} is a Z-basis of $,(Q), m is a Z-linear
combination of uj with deg(A) = deg(m). Hence, m is a Z-linear combination of x* = ¢(u')

with deg(A) = deg(m).

The assertion for monomials in the y, can be proved analogously. O

The following theorem is an analogue to [7, Th. 13.44] which has been proved in [9] (see

also [10]). We provide a proof for completeness.

Theorem 2.8. The algebra homomorphism p : Uyg(n,r) — So(n,r) given in (2.2.1) is an

isomorphism.

Proof. Put
+ - -
M = {m = x4 §U(A)yA | A€ Z(n,r)}.

We aim to prove that M is a Z-basis for Uy(n,r). Since |[M| < |E(n, )|, which is the rank of
So(n, 1), it suffices to show that M spans Uy(n,r). Let B € Z(n)* with |[B*| < rand |[B~| <,
and let A € A(n,r). If A > o(B), there is a unique A = B + diag(\ — o(B)) € Z(n, ) such that
mBA = mA) | which belongs to M. It remains to prove that if \; < o;(B) for some i, then
m{Z N lies in the span of M.

We proceed by induction on deg(B). If deg(B) = 1,then B=E;_;;or E; ;_1,andso \; =0
and mPN) = x;_1&, or €4y, ,, which is zero by the definition. Assume now deg(B) > 1 and let

i be minimal with \; < 0;(B) = 0;,(B") 4+ 0;(B™). Let B; be the top left i x ¢ submatrix of B,

B,)\) I

write xB" = mxB andy B~ =y B m’ for some monomials m, m’. Then m(BA) = mxB: &,y B m’.
By Proposition 2.4(2), we can assume \; > ¢;(B*), otherwise m®*) = 0 which is obviously in

M. Now Proposition 2.4(1) implies that

+ - + p-
m(B,)\) — m(xBi &)y B; m = mf)\/XB"’ y B; m’,

where N = \ — col(B;") + row(B;"). Then X, = \; — (by; + -+ + bi—1:) =N — o;(Bf) > 0.

By repeatedly applying the commutator formula given in Lemma 2.6, we can write
+ - - p+
xBly BD =y BiyBl 4§

where f is a linear combination of monomials m&,m’ with A € A(n,r) and deg(mm’) < deg(B;).

Hence,

(B:\)

+ - - g+
m =mé&uxBiy Brm’ = méyy B xBim’ 4+ méy f.

- 12 -
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Since X, = \; — 0:(B;") < 0:(B;"), we have m&yy B xB m’ = 0 by Proposition 2.4(4). Further-
more, m&y, fm’ is a Z-linear combination of m(®"#) with deg(B’) < deg(B). By the induction
hypothesis, each m(B"#) lies in the span of M. Then m&,, fm’ is in the span of M, so is m(B).

The proof is completed. O]

From the proof of the above theorem, we obtain the following result.

Corollary 2.9. The algebra So(n,r) is generated by the elements ¢;,f;,(\ with (DS1)—(DS9)

as the generating relations. Moreover, the set

(A Gt | AeE(n,r)}

is a Z-basis for So(n,r), where e = p(x*") and 4~ = p(y*").

3 Representation type of Sy(n,r)

This section is devoted to determining the representation type of So(n,r). This is based
on the representation theory of 0-Hecke algebras developed in [16, 17, 18, 19]. Throughout this
section, we assume that Sy(n,r) = So(n,r)r denotes the 0-Schur algebra over an algebraically
closed field F.

Given a finite dimensional F-algebra A, by A-mod we denote the category of finite dimen-
sional left A-modules. The algebra A is said to be representation-finite if up to isomorphism,
there are only finitely many pairwise non-isomorphic indecomposable modules in A-mod. We
refer to [25, 26] for the definition of tame and wild algebras. If n =1 or r = 1, then Sy(n,r) is
clearly semisimple. Thus, in the following we always assume n,r > 2.

Let Ho(r) = Ho(r)r be the 0-Hecke algebra of & = &, over F. By [16], all the simple
(right) Ho(r)-modules have dimension one'. More precisely, each subset J C I gives rise to a
simple Hy(r)-module E; = F defined by

—z, ifieJ;

v T = (3.0.1)

0, otherwise,
where z € E; and i € I. Moreover, the E; form a complete set of simple Hy(r)-modules. It
follows that

Hy(r)/rad Ho(r) = F ><2-T- -1 x I,

where rad Hy(r) is the Jacobson radical of Hy(r); see [16, Th. 4.21]. Hence, the Gabriel quiver
(or Ext-quiver) I' of Hy(r) has vertex set {v; | J C I}, and the number of arrows from v, to
vg, for J, K C I, equals to dim pExt }%(T) (E;, Ex) which is described in [18, Th. 5.1] as follows.

'The Hy(r)-modules considered in [16, 17, 18] are left module. Since Ho(r) admits an anti-automorphism T; — T3, all

results there hold similarly for right Hq(7)-modules.

- 13-
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Lemma 3.1. Suppose J, K C I. Then dim Ext };IO(T)<EJ,EK) =1ifand only if J ¢ K & J
and |j — k| <1 for all j € J\K and k € K\J. Otherwise, we have Ext ;. (E,, Ex) = 0.

For each subset J C I, let P; and @; denote the projective cover and injective hull of
Sy, respectively. By [18, Prop. 4.5], Hy(r) is selfinjective and, moreover, P; = Q. (), where
o is a bijection I — I taking i — r —i. Without loss of generality, we set P; = e;Hy(r)
for an idempotent e; € Hy(r). Then {e; | J C I} is a complete set of primitive orthogonal
idempotents. By the lemma above, I' has two isolated vertices vy and vy, i.e., there are no

arrows starting or ending at vy and v;. This implies that
Hy(r) = F x F x eHy(r)e, (3.1.1)

where € = ) ; e; with the sum taking over all proper subsets J C I.

Recall that for each A € A(n,r), we have the element

Applying (1.0.1) gives 2 = z,. Hence, the Hy(r)-module Ty(n,r) := @AeA(n’r) xxHo(r) is
both projective and injective.

Suppose n > r. Then for
A=(1,...,1,0,...,0) € I(n,r),
——

we have zy = 1. Hence, if n > r, then So(n,r) = End g, (To(n,7)) is Morita equivalent to
H()(’I”).
For each A = (A1,...,A,) € A(n,r), consider the subset Jy of I defined by

JA:{/\h)\l+/\27-~')>\1+/\2+"'/\n}\{r}-

By [16, Cor. 4.14(2)],
x,\Ho(T') = @ PJ.

JCJx

This gives a decomposition

To(n,r)= @ =:Ho(r) = P(P))"Y, (3.1.2)

AEA(n,) JCI
where d; = [{A € A(n,r) | J C Jp}|.
Proposition 3.2. For each J C I, d; # 0 if and only if |J| < n — 1.
Proof. Suppose dy # 0. Then there exist A € A(n,r) such that J C J,. This implies that

] < Ty <n—1.
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Conversely, suppose [J| = m < n—1. Write J = {i; < -+ < i,,} and define A =
(Ay .-y ) € A(n,r) by setting

AL =1, 2 =l — 015, Am = G — I 15 Al =T — by Ay = - = Ay = 0.
Then J = J,. Therefore, d; # 0. O

Remark 3.3. The Hy(r)-module Ty(n,7) = @cp(n.r TrHo(r) is also known as tensor space.
More precisely, let I(n,r) = {i= (i1,...,4,) | 1 <i; <nforall 1 <j<r}. Thesymmetric

group &, acts on I(n,r) by place permutation:
iw = (lwa), tw@), - - lwe)) forall i€ lI(n,r), we6,.

Let Q be an F-vector space with basis {w; | 1 < 7 < n} whose r-fold tensor product Q®" has
basis {wi == w;;, ® - @uw;, | i = (i1,...,i) € I(n,r)}. Then To(n,r) is isomorphic to Q"
whose right Hy(r)-module structure is defined by

Wisys e < Tkt15
wily = 0, i = ik’-{-l; (331)

—Wj, 1y > ’ik+1,

where i = (i1,...,%,) € I(n,r) and k € I.
We claim that for each J C I, d;y = |X |, where

XJ = {i = (il,. i 77;7") € I(’I’L,T’) | ’ij > ij-i-l? ik > ’ik+1 for allj € O'(J), k€ I\O'(J)}
Indeed, since
Q%" = Ty(n,r) = @(PJ)dJ = @(Qa(h)d]v
JCI JCI
it follows that
dy = dimgHom () (Es (., s0C 0%") = dim rHom gy () (Ey (), Q).

By the definition of E, ), we have an isomorphism of F-spaces

HOHIHD(7-) (EO'(J)7 Q®T)
2z e Q¥ | 2T, = —zforall j € o(J), 2T}, =0 for all k € I\o(J)} := V.

It is easy to see that the coefficients of x = ), zjw; € V) satisfy

x; =0, if there exists j € o(J) such that i; < ij41; (3.32)
Zis, — o3 = 0, if there exists k € I'\o(J) such that iy < ig41.
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By viewing (3.3.2) as a system of homogeneous linear equations with variables z; for i € I(n,r),
we can identify V; with the space S; of solutions of (3.3.2). We conclude that all the x; with

i€ X; form a set of free variables for (3.3.2). Consequently,
dJ S dimFVJ = dim]FSJ = |XJ|
By Proposition 3.2, for arbitrary positive integers n,r, So(n,r) is Morita equivalent to

End g,y ( €D Pr) ZeHy(r)e, (3.3.3)

JCI,|J|<n—1
where e =3/ | jj<p1 €

Proposition 3.4. The algebra So(n,r) is selfinjective.

Proof. Tt is known that the usual duality D = Homyp(—,F) induces the Nakayama functor
v = DHomp, ()(—, Ho(r)) : mod-Hy(r) — mod-Hy(r),

where mod-Hy(r) denotes the category of finite dimensional right Hy(r)-modules. Since P; =

Qo (1) for each subset J C I, we have
v(Pr) 2 Qs = Py

Hence, the set {P; | J C I, |J| < n—1} is stable under v, up to isomorphism. By [27, Lem. 2.2]
and the selfinjectivity of Ho(r), we infer that eHy(r)e is selfinjective. Consequently, So(n, ) is

selfinjective. O

Furthermore, from (3.3.3) it follows that Sy(r — 1,r) is Morita equivalent to F x eHy(r)e.

In conclusion, we obtain the following result which is a slight generalization of [5, §2.2(5)].

Proposition 3.5. Suppose n = r — 1. Then So(n,r) and Hy(r) have the same representation

type.
Combining the results above gives the following theorem.

Theorem 3.6. Suppose n > 3. Then So(n,r) is representation-finite (resp., tame, wild) if and

only if r <3 (resp., r =4, r > 5).

Proof. 1t is shown in [19, Th. 2.1] that the 0-Hecke algebra Hy(r) is representation-finite (resp.,
tame, wild) if and only if r < 3 (resp., r =4, r > 5).

Suppose n > 3. Then by Proposition 3.5, Sy(n,r) and Hy(r) have the same representation
type in case r < 4. Therefore, Sy(n,r) is representation-finite (resp., tame) if and only if » < 3
(resp., r = 4).

Now let » > 5. Then by Lemma 3.1, the Gabriel quiver I" of Hy(r) contains a full subquiver
> of the following form

- 16 -
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U{2,3}
‘s
P35
U{1,3}y
V{1,2} . «U{1,4}
A
Y
vy Vs v

FIG.2. Subquiver of the Gabriel quiver T' of Hy(r)

Since n > 3, all P; with

Je {1}, {2}, {3}, {1.2}, {1, 3}, {1,4},{2,3}}

occur as direct summands in Ty(n, ), it follows that the Gabriel quiver of Sy(n, ) also contains

a full subquiver of the form ¥. Hence, Sy(n,r) is wild. O

The rest of this section is devoted to determining the representation type of Sy(2,r) with
r > 2. For each 0 < i < r, put A® = (i,r —i) € A(2,7). Then

x)\(o)Ho(’l“) N Q?)\(T)HO(’I“), x)\(i)Ho(T) 2Pd P{i} forl<i<r.

Thus, Ty(2,7) = (Py)" ™' @ (@-, Pyy) and

r—1

So(2,7) = FOFXCH0 5 End g, ) (@D Priy)- (3.6.1)

=1

By Lemma 3.1, the Gabriel quiver of Ay(r) := End g, () (@:11 Py;y) has the form

ATI ,U{i} i ’Ufz} o | oreg ’U.{r—l}
B1 B2 Br—2

FIG.3. Gabriel quiver of Ao(r)

Hence, Ay(r) = FA, /Z, for some admissible ideal Z,. of the path algebra FA,. Our next aim is
to determine the ideal Z, by induction on r.
Recall from §2 that Sy(2,r) has a basis {Ca | A € Z(2,7)}. By (1.1.2), for each 0 < i < r,

the idempotent () is the composition

TQ(Q,’I“) = @l‘)\u)Ho(T) L) 1‘)\(1:)H0(T> i) @x)\(j)HQ(T> = T0(2,7‘),

Jj=0 Jj=0
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where 7; and k; denote the canonical projection and inclusion, respectively. Hence, So(2, 7)) =
So(2,7)(x is a simple projective module. In particular, (4o and (ye) are primitive idempo-
tents. For each 1 < ¢ < r, {» decomposes into a sum of orthogonal primitive idempotents
G = Gy + Yy such that So(n, 7)) = So(n,7)(\0. Consequently,

S0(2,7)/S0(2,7)Ch@S0(2,7) = Aog(r) = So(2,7)/S0(2,7)CximS0(2,7), (3.6.2)
and for 1 <i<r,
50(2, T)/So(2, T)C)\(i)SO(2a T) = Ao(T)/A()(T)eiAo(T), (363)

where e; denotes the idempotent of Ag(r) corresponding to the vertex vy of A,. In other

words, e; is the composition of the canonical projection and inclusion

r—1 r—1
P rPyy — Puy — P Py

j=1 j=1

Proposition 3.7. Suppose A = (1,r — 1) and p = (0,7 — 1). Then there is an algebra

isomorphism
¢ :80(2,7)/S0(2,7)xS0(2,7) —> So(2,7 —1)/So(2,7 — 1)(,S0(2,7 — 1).
Analogously, suppose p= (r —1,1) and 7 = (r — 1,0), Then there is an algebra isomorphism
¥ :50(2,7)/50(2,7)(,5(2,7) — So(2,7 —1)/So(2,7 — 1) S0(2,7 — 1).

Proof. We only prove the first assertion. The second one can be proved similarly.

By Corollary 2.9, Sp(2,7) has generators e, f and (, (v € A(2,r)) with relations:

(DS1) Gl = 0uurCuy 1 =3 cniam Cus
(DS2) eC, = Cpue, e, if o >1,¢e¢, =0=(,fif vro =0;
(DS3) ¢ = Qucyref if 1 2 1, §(, = 0= (e if 11 =0;
(DS4) ef —fe = Cr,0) — C(0,r)-

While Sy(2,7 — 1) has generators e, f and (y (0 € A(2,7 — 1)) with similar relations. Write

Ky =50(2,7)(\S0(2,7) and I, = Sp(2,7 — 1), S0(2,7 — 1).
Consider the following elements in Sy(2,7 —1)/K,:

Conatm) +Kuy  ifn > 14

0, otherwise,

¢ = e+ Ky F =F+K,, c;—{
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where v = (v1,15) € A(2,7). It is straightforward to check that ¢’,§,(/ satisfy the generating
relations (DS1)—(DS4) for So(2,r). Thus, there is a surjective algebra homomorphism

¢ 80(2,m) — So(2,7 —1)/K,,

which takes e — ¢/, f — f and ¢, — ¢, for v € A(2,7). Since ¢((x) = 0, it induces a surjective
homomorphism

& So(2,7)/Kx — So(2,1 — 1)/K,.

We now prove that ¢ is an isomorphism by a dimension comparison. By (3.6.1) and (3.6.2),

dim Sp(2,7 — 1)/K,, = dim Sp(2,r — 1) — 1 = (r —;’)— 2) —r2

On the other hand, for each 0 < i < r, put A¥ = (i,7 — i) € A(2,7) as above. Note that

A=A, Since Y7 (1@ = 1, we obtain a decomposition
Kx = QoK@ Gy ® - & G K.
We are going to compute the dimensions of
QOKAGo = (G So(2,7)C) - (S0 (2, )¢ )-
A direct calculation shows that () So(2,7)(\ = F(a, and (3 S0(2,7)(x = F(a,, where
0 0 1 r—1

A0:<1 T_l) and AT:<0 : )
For 1 <i <7, (\S0(2,7)Cx has a basis {¢,,(,m }, where

A=) A0 (0 1),
Similarly, (xSo(2,7)Cv0 = F(p, and (450(2,7){x» = F(p,, where

BO:(S ril)andBT:(ril g)

For 1 <i <7, (x5(2,7)¢\@ has a basis {(zm, gz}, where

BU= (L L) B0 = (0 1)

2 r—i—1

Furthermore, ¢, K, has a basis
{Ca| A= (? TO_Z,) for 0 <i<r},

and (K, has a basis
{Ca| A= (O S) for 0 <i < r}.

Hence, dim () [y = dim (K =r + 1.
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Now fix 1 < i <r—1. Then (o KaCro (resp., (xin KaCx ) has a basis (¢ (resp., (p) with

o i i 0
C:(O Tii) (resp.,D:(rii 0)).
By [7, Th. 13.18(1)] and [28, Th. 3.2], for 1 < j < r — 1, we have

min{i—1,j—1}
o . _ 14+m t1—1—m
CAg”CB@* E: (X Wltth*(jﬂ—m r—j—i+m+1)’

m=0

CaCp = CuCpw = Gy with Y = (O ' .),

j r—=73—1
mingi,j}

CapCpp = Z (X1 = Ca0Cp0 (a0 (g0
m=0

Since

(y#0<=r—j—iz20<«<j<r—i,

it follows that

. 9, if1<j<r—i
dim (o Kalyho =

1, ifr—i<j<r—1L

Hence,

dim o Ky = Zdim GGy =2r+1—1.

=0

Consequently, we obtain that

T r—1
. . N 3ri+3r+2
dimCy = ;dlmg(i>l€)\ =2(r+1)+ ;(27“ +1—19)= —
=dim Sy (2,7) — dim Sy(2,r — 1) /KC,..
This together with the surjectivity of ¢ implies that ¢ is an isomorphism. O

The proposition above together with (3.6.2) and (3.6.3) implies that ¢ induces a surjective
algebra homomorphism
Ao(r) — Ao(r — 1)

o
taking e; —+ 0 and e; + e;_1, for 2 <4 < r—1 with Ker ¢ = Ay(r)e; Ag(r). Similarly, ¢ induces

a surjective algebra homomorphism
¥z Ag(r) — Ao(r — 1)
taking e,_; +— 0 and e; — e;, for 1 <i <r — 2 with Kert) = Ag(r)e,_1 Ag(r).
Corollary 3.8. Suppose r > 2. Then Ay(r) = FA,/Z,., where I, is the ideal of FA, generated

by {froa, ar_afr_a, Bicy — i_1Bi—1 for2 <i<r—2}.
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Proof. Obviously, A¢(2) = F = FA,. By the proof of [19, Th. 2.1], we have

Ap(3) =FAy/(frar,a181) and Ag(4) = FA;/(frar, a1 1 — Paa, azfs).

Hence, the assertion is true for r = 2,3,4. Applying the surjective homomorphisms ¢ and 1)

together with an induction on r proves the assertion for all r > 2. O

Theorem 3.9. Let r > 2. Then So(2,7) is representation-finite (resp., tame, wild) if r < 5
(resp., r =6, 1r>7).

Proof. By (3.6.1), So(2,7) and Ay(r) have the same representation type. It is clear that Ay(r)
is representation-finite for » < 4. By applying the covering technique developed in [29, 30],
we obtain that there are 40 isolasses of indecomposable Ay (5)-modules. Hence, Ay(5) is also
representation-finite.

By [31] and [32, Th. 4.2], Ay(6) is a selfinjective algebra of tubular type which is tame.

It remains to show that Ay(r) is wild for » > 7. The universal cover of Ay(r) has the

following form

Ny

r—2

<
<

r—3 T

.
<
-
/

Qr 3\/
¢ N\

r—3 T

<
<

-1
—1
—1

%
D
N P
2

FIG.4. Universal cover of Ao(r)

with all squares commutative and all paths 1 — 2 — landr—1— 7 —2 — r — 1 being
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zero. The quiver @T contains a full subquiver of the form

NN
</\/\/\/

FIG.5. Subquiver of @r

with all squares commutative which gives rise to a wild algebra. Hence, Ag(r) is wild for
r>"7. O
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