On Pseudo-BCI Algebras with Condition (pP)

Lu Yinfeng, Zhang Xiaohong

(Faculty of Sciences, Ningbo University, ZheJiang NingBo 315211)

Abstract: As a generalization of BCI-algebras with condition (S) and pseudo-BCK algebras with condition (pP), the notion of pseudo-BCI algebras with condition (pP) is introduced. An example of pseudo-BCI algebras with condition (pP) is given, the result that every anti-grouped pseudo-BCI algebras is with condition (pP) is proved. Some properties of pseudo-BCI algebras with condition (pP) are investigated and the branch properties of pseudo-BCI algebras with condition (pP) are discussed. **Keywords:**pseudo-BCK algebra;pseudo-BCI algebra;ps

1 Introduction

BCK/BCI-algebras with condition (S) is an important class of *BCK/BCI*-algebras which was first introduced by K. Iseki.

The notion of pseudo-*BCK* algebras with condition (pP) is introduced by A.Iorgulescu in [3], which is an extension of the notion of *BCK*-algebras with condition (S). In this paper, We introduce the notion of pseudo-*BCI* algebras with condition (pP), which is a generalization of *BCI*-algebras with condition (S) and pseudo-*BCK* algebras with condition (pP), then we studied some properties of pseudo-*BCI* algebras with condition (pP).

2 Preliminaries

Definition 2.1^[1] A pseudo-*BCI* algebra is a structure $(X; \le, \rightarrow, \rightsquigarrow, 1)$, where " \le " is a binary relation on *X*, " \rightarrow " and " \rightsquigarrow " are binary operations on *X* and "1" is an element of *X*, verifying the axioms: for all *x*, *y*, *z* \in *X*,

(1) $y \rightarrow z \leq (z \rightarrow x) \rightsquigarrow (y \rightarrow x), y \rightsquigarrow z \leq (z \rightsquigarrow x) \rightarrow (y \rightsquigarrow x);$ (2) $x \leq (x \rightarrow y) \rightsquigarrow y, x \leq (x \rightsquigarrow y) \rightarrow y;$ (3) $x \leq x;$ (4) $x \leq y, y \leq x \Rightarrow x \equiv y;$

(5) $x \le y \Leftrightarrow x \rightarrow y = 1 \Leftrightarrow x \rightsquigarrow y = 1$.

If $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ is a pseudo-*BCI* algebra satisfying $x \leq 1$ for all $x \in X$, then $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ is a pseudo-*BCK* algebra.

If $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ is a pseudo-*BCI* algebra satisfying $x \rightarrow y = x \rightsquigarrow y$ for all $x, y \in X$, then $(X; \rightarrow, 1)$ is a *BCI*-algebra.

Theorem 2.2^[1, 10] Let $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ be a pseudo-*BCI* algebra, then X satisfy the following properties $(\forall x, y, z \in X)$:

- (1) $1 \le x \implies x=1$;
- (2) $x \le y \Longrightarrow y \rightarrow z \le x \rightarrow z, y \rightsquigarrow z \le x \rightsquigarrow z;$
- (3) $x \le y, y \le z \Longrightarrow x \le z;$

Foundations: National Natural Science Foundation of China (Grant No. 60775038), Ningbo National Natural Science Foundation of China (Grant No. 2009A610078)

Brief author introduction:LÜ Yinfeng (1985-), Male, Yuyao Zhejiang, graduate student, research domain: algebra. E-mail: luyinfeng120@163.com

- (4) $x \rightsquigarrow (y \rightarrow z) = y \rightarrow (x \rightsquigarrow z);$
- (5) $x \leq y \rightarrow z \Leftrightarrow y \leq x \rightsquigarrow z;$
- (6) $x \rightarrow y \leq (z \rightarrow x) \rightarrow (z \rightarrow y), x \rightarrow y \leq (z \rightarrow x) \rightarrow (z \rightarrow y);$
- (7) $x \leq y \Rightarrow z \rightarrow x \leq z \rightarrow y, z \rightsquigarrow x \leq z \rightsquigarrow y;$
- (8) $1 \rightarrow x = x, 1 \rightsquigarrow x = x;$
- $(9) ((y \rightarrow x) \rightarrow x = y \rightarrow x, ((y \rightarrow x) \rightarrow x) \rightarrow x = y \rightarrow x;$
- (10) $x \rightarrow y \leq (y \rightarrow x) \rightarrow 1, x \rightarrow y \leq (y \rightarrow x) \rightarrow 1;$
- $(11) (x \rightarrow y) \rightarrow 1 = (x \rightarrow 1) \rightsquigarrow (y \rightarrow 1), (x \rightsquigarrow y) \rightsquigarrow 1 = (x \rightsquigarrow 1) \rightarrow (y \rightsquigarrow 1);$
- $(12) x \rightarrow 1 = x \rightsquigarrow 1.$

Theorem 2.3^[1] A structure $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ is a pseudo-*BCI* algebra if and only if it satisfies

 $(\forall x, y, z \in X)$:

- $(1) y \rightarrow z \leq (z \rightarrow x) \rightsquigarrow (y \rightarrow x), y \rightsquigarrow z \leq (z \rightsquigarrow x) \rightarrow (y \rightsquigarrow x);$
- (2) $x \leq y, y \leq x \Rightarrow x \equiv y;$
- (3) $x \leq y \Leftrightarrow x \rightarrow y = 1 \Leftrightarrow x \rightsquigarrow y = 1;$
- (4) $1 \rightarrow x = x, 1 \rightsquigarrow x = x.$

Theorem 2.4^[12] Let $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ be a pseudo-*BCI* algebra, denote

 $K(X) = \{x \in X \mid x \le 1\}.$

We say K(X) is the pseudo-*BCK* part of *X*.

Definition 2.5^[9] A *BZ*-algebra is an algebra $(X; \rightarrow, 1)$ of type (2,0) in which the following axioms are satisfied:

- (1) $(y \rightarrow z) \rightarrow ((x \rightarrow y) \rightarrow (x \rightarrow z)) = 1$,
- (2) $x \rightarrow x=1$,
- (3) $1 \rightarrow x = x$,
- (4) if $x \rightarrow y = y \rightarrow x = 1$, then x = y.

Theorem 2.6^[10] A structure $(X; \rightarrow, \rightsquigarrow, 1)$ is a pseudo-*BCI* algebra if and only if it satisfies:

- (1) $(X; \rightarrow, 1)$ is a *BZ*-algebra;
- (2) (X; \rightsquigarrow , 1) is a *BZ*-algebra;
- (3) $\forall x, y \in X, x \rightarrow y=1 \Leftrightarrow x \rightsquigarrow y=1;$
- (4) $\forall x, y, z \in X, x \rightsquigarrow (y \rightarrow z) = y \rightarrow (x \rightsquigarrow z).$

The notion of branches in pseudo-*BCI* algebras was introduced in [13]. The set $V(a) = \{x \in X | x \le a\}$ is called a branch of pseudo-*BCI* algebra X, where a is a maximal element of X.

Theorem 2.7^[13] Let *a*, *b* be two maximal elements of a pseudo-*BCI* algebra *X*. Then $(\forall x, y \in X)$:

(1) $x \in V(a), y \in V(b) \Rightarrow x \rightarrow y \in V(a \rightarrow b), x \rightarrow y \in V(a \rightarrow b);$

(2) $x \rightarrow y \in V(1) \Leftrightarrow y \rightarrow x \in V(1), x \rightarrow y \in V(1) \Leftrightarrow y \rightarrow x \in V(1);$

(3) $x \rightarrow y \in V(1) \Leftrightarrow x, y \in V(a); x \rightsquigarrow y \in V(1) \Leftrightarrow x, y \in V(a)$, for some maximal element *a*;

(4) for $x \in V(b)$, $x \rightarrow a = b \rightarrow a$, $x \rightarrow a = b \rightarrow a$;

(5) for $a \neq b$, $V(a) \cap V(b) = \emptyset$.

Definition 2.8^[3, 9] A pseudo-*BCK* algebra $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ is called with condition (pP) (pseudo product) if it satisfies

(pP) for all $x, y \in X$, $\min\{z \in A | x \le y \rightarrow z\} = \min\{z \in A | y \le x \rightsquigarrow z\}$ exists (denoted by $x \otimes y$).

Definition 2.9^[10] A pseudo-*BCI* algebra $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ is called an anti-grouped pseudo-*BCI* algebra if it satisfies:

(G1) $\forall x, y, z \in X, (x \rightarrow y) \rightarrow (x \rightarrow z) = y \rightarrow z.$

(G2) $\forall x, y, z \in X, (x \rightsquigarrow y) \rightsquigarrow (x \rightsquigarrow z) = y \rightsquigarrow z.$

Theorem 2.10^[10] Let $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ be an anti-grouped pseudo-*BCI* algebra. Define

 $\forall x, y \in X, x \cdot y = (x \rightsquigarrow 1) \rightsquigarrow y = (y \rightarrow 1) \rightarrow x.$

Then $(X; \cdot, 1)$ is a non-commutative group.

Definition 2.11^[12] Let $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ be a pseudo-*BCI* algebra, denote

 $AG(X) = \{ x \in X \mid (x \to 1) \to 1 = x \}.$

We say AG(X) is the anti-grouped part of X.

3 Pseudo-*BCI* algebras with condition (pP)

Let $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ be a pseudo-*BCI* algebra, we denote $A(x, y) = \{t \in X \mid y \leq x \rightsquigarrow t\} = \{t \in X \mid x \leq y \rightarrow t\}, \forall x, y \in X.$

Lemma 3.1 Let $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ be a pseudo-*BCI* algebra and $a \in X$. Then the following conditions are equivalent:

- (1) a is maximal;
- (2) $(a \rightarrow 1) \rightarrow 1 = a;$
- (3) there is $x \in X$ such that $a = x \rightarrow 1$;
- (4) $x \rightarrow a = (a \rightarrow 1) \rightsquigarrow (x \rightarrow 1);$
- (5) $(a \rightarrow x) \rightarrow 1 = x \rightarrow a$.

Proof: $(1) \Leftrightarrow (2) \Leftrightarrow (3)$ (see [11]).

(2) \Rightarrow (4). By (2) and Theorem 2.2, $(a \rightarrow 1) \rightsquigarrow (x \rightarrow 1) = x \rightarrow ((a \rightarrow 1) \rightsquigarrow 1) = x \rightarrow ((a \rightarrow 1) \rightarrow 1) = x \rightarrow a$.

(4) \Rightarrow (5). By (4) and Theorem 2.2, $(a \rightarrow x) \rightarrow 1 = (a \rightarrow 1) \rightsquigarrow (x \rightarrow 1) = x \rightarrow a$.

 $(5) \Rightarrow (2). (a \rightarrow 1) \rightarrow 1 = 1 \rightarrow a = a.$

Theorem 3.2 Let x and y be two elements in a pseudo-*BCI* algebra $(X; \leq, \rightarrow, \rightsquigarrow, 1)$, then $a=(y \rightsquigarrow (x \rightsquigarrow 1)) \rightarrow 1$ is the greatest element of A(x, y) and $A(x, y) \subseteq V(a)$. Especially, if K(X) is the pseudo-*BCK* part of X, then $\{1, x, y\} \subseteq A(x, y) \subseteq K(X), \forall x, y \in K(X)$.

Proof: Since

 $y \le (y \leadsto (x \leadsto 1)) \rightarrow (x \leadsto 1) = x \leadsto ((y \leadsto (x \leadsto 1)) \rightarrow 1) = x \leadsto a,$

 $y \rightsquigarrow (x \rightsquigarrow 1).$

 $\forall t \in A(x, y), y \leq x \rightsquigarrow t$, that is $y \rightsquigarrow (x \rightsquigarrow t) = 1$, then

 $t \rightarrow 1 = t \rightarrow (y \rightarrow (x \rightarrow t)) = y \rightarrow (x \rightarrow 1).$

So $a \rightarrow 1 = t \rightarrow 1$. By Lemma 3.1 (3), *a* is a maximal element of *X*, applying Lamme 3.1 (4), we have

 $t \rightarrow a = (a \rightarrow 1) \rightsquigarrow (t \rightarrow 1) = 1,$

so $t \le a$. Therefore, *a* is the greatest element of *X*, $t \in V(a)$ and $A(x, y) \subseteq V(a)$. The next part of Theorem 3.2 is obviously true.

The following example shows that A(x, y) may not has the least element.

Example 3.3 Let $X = \{a, b, c, d, 1\}$ with two binary operations as Table 1 and Table 2. Then $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ is a pseudo-*BCI* algebra, where $x \leq y$ if and only if $x \rightarrow y = 1$. $A(a, b) = \{a, b, 1\}$ has not any least element.

Table 1 Definition of " \rightarrow "						
\rightarrow	а	b	С	d	1	
a	1	b	С	С	1	
b	а	1	С	d	1	
С	С	С	1	b	С	
d	С	С	1	1	С	
1	а	b	С	d	1	

Table 2 Definition of "↔"

\rightsquigarrow	а	b	С	d	1
a	1	b	С	d	1
b	а	1	С	С	1
С	С	С	1	а	С
d	С	С	1	1	С
1	а	b	С	d	1

Figure 1 Hasse diagram

However there is a class of pseudo-*BCI* algebras such that any A(x, y) has the least element. Let us introduce the following definition.

Definition 3.4 A pseudo-*BCI* algebra $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ is called to be with condition (pP), if A(x, y) has the least element, for all $x, y \in X$.

The least element of A(x, y) is usually denoted by $x \otimes y$. By Definition 3.4, $x \otimes y$ is the element in *X* satisfies the following conditions:

- (1) $y \leq x \rightsquigarrow (x \otimes y), x \leq y \rightarrow (x \otimes y);$
- (2) $y \le x \rightsquigarrow t \Longrightarrow x \otimes y \le t, x \le y \longrightarrow t \Longrightarrow x \otimes y \le t. \forall t \in X.$

Obviously, a pseudo-*BCI* algebra $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ is with condition (pP) if and only if it satisfies one of the following conditions: $\forall x, y \in X$,

(1) A(x, y) is bounded;

(2) $\min\{t \in X | y \le x \rightsquigarrow t\}$ (or $\min\{t \in X | x \le y \rightarrow t\}$) exists;

(3) the inequality $y \le x \rightarrow u$ (or $x \le y \rightarrow u$) with u as the unknown has the least solution.

Now, we will give an example of pseudo-BCI algebra with condition (pP).

Example 3.5 Let $X = \{a, b, c, d, 1\}$ with two binary operations as Table 3 and Table 4. Then $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ is a pseudo-*BCI* algebra with condition (pP), where $x \leq y$ if and only if $x \rightarrow y = 1$. The " \otimes " multiplication table of X is as Table 5.

Table 3 Definition of " \rightarrow "						
\rightarrow	а	b	С	d	1	
а	1	b	С	d	1	
b	1	1	С	С	1	
С	С	С	1	а	С	
d	С	С	1	1	С	
1	а	b	С	d	1	

Table 4 Definition of "↔"						
\rightsquigarrow	а	b	С	d	1	
a	1	b	С	С	1	
b	1	1	С	С	1	
С	С	С	1	b	С	
d	С	С	1	1	С	
1	а	b	С	d	1	

Figure 2 Hasse diagram

Table 5 Definition of "⊗"						
\rightarrow	а	b	С	d	1	
а	а	b	d	d	a	
b	b	b	d	d	b	
С	С	d	b	b	С	
d	d	d	b	b	d	
1	а	b	С	d	1	

By Theorem 3.2, we have the following result.

Theorem 3.6 If $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ is a pseudo-*BCI* algebra with condition (pP), then the pseudo-*BCK* part of X is a pseudo-*BCK* algebra with condition (pP).

Lemma 3.7^[11] Let $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ be an anti-grouped pseudo-*BCI* algebra. Then $(\forall x, y \in X)$:

- (1) $x \le y \Rightarrow x=y;$
- (2) $x=(x\rightarrow y)\rightarrow y, x=(x\rightarrow y)\rightarrow y.$

Theorem 3.8 Every anti-grouped pseudo-*BCI* algebra $(X; \le, \rightarrow, \rightsquigarrow, 1)$ is with condition (pP) in which $x \otimes y = (y \rightsquigarrow 1) \rightarrow x$ for all $x, y \in X$.

Proof: $\forall x, y \in X$, by Theorem 3.2, $a=(y \rightsquigarrow (x \rightsquigarrow 1)) \rightarrow 1$ is the greatest element of A(x, y). Since X is an anti-grouped pseudo-*BCI* algebra, every element in X is maximal.By Lemma 3.1, $a=(y \rightsquigarrow (x \rightsquigarrow 1)) \rightarrow 1=(y \rightsquigarrow (x \rightarrow 1)) \rightarrow 1=(x \rightarrow (y \rightsquigarrow 1)) \rightarrow 1=(y \rightsquigarrow 1) \rightarrow x$. By Lemma 3.7 (1), $A(x, y) = \{t \in X \mid y \le x \rightsquigarrow t\} = \{t \in X \mid y = x \rightsquigarrow t\}$, we have $a=(y \rightsquigarrow 1) \rightarrow x=((x \rightsquigarrow t) \rightsquigarrow 1) \rightarrow x=((x \rightsquigarrow 1) \rightarrow (t \rightsquigarrow 1)) \rightarrow x = (x \rightsquigarrow 1) \rightarrow x=(x \rightarrowtail 1) \rightarrow$

 $(t \leftrightarrow ((x \leftrightarrow 1) \rightarrow 1)) \rightarrow x = (t \leftrightarrow x) \rightarrow x = t$, thus $A(x, y) = \{a\}$.

Hence *a* is the least element of A(x, y). Therefore, *X* is with condition (pP) and $x \otimes y = (y \rightsquigarrow 1) \rightarrow x$.

Theorem 3.9 Let $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ be a pseudo-*BCI* algebra with condition (pP), then the following holds: for all $x, y, z \in X$.

(1) $x \otimes y \leq z \Leftrightarrow x \leq y \rightarrow z \Leftrightarrow y \leq x \rightsquigarrow z;$

(2) $(x \rightarrow y) \otimes x \leq y; x \otimes (x \rightarrow y) \leq y;$

 $(3) z \rightarrow (y \rightarrow x) = (z \otimes y) \rightarrow x; z \rightarrow (y \rightarrow x) = (y \otimes z) \rightarrow x;$

(4) $x \le y \Rightarrow x \otimes z \le y \otimes z; z \otimes x \le z \otimes y;$

(5) $(x \otimes y) \otimes z = x \otimes (y \otimes z);$

(6) $(y \rightarrow z) \otimes (x \rightarrow y) \leq x \rightarrow z; (x \rightsquigarrow y) \otimes (y \rightsquigarrow z) \leq x \rightsquigarrow z;$

(7) $x \otimes 1 = 1 \otimes x = x;$

 $(8) x \otimes (y \rightarrow z) \leq y \rightarrow (x \otimes z); (y \rightsquigarrow z) \otimes x \leq y \rightsquigarrow (z \otimes x);$

 $(9) x \rightarrow y \leq (x \otimes z) \rightarrow (y \otimes z); x \rightsquigarrow y \leq (z \otimes x) \rightsquigarrow (z \otimes y).$

Proof: (1) By Definition 3.4.

(2) By the above (1) and $x \rightarrow y \le x \rightarrow y$, we have $(x \rightarrow y) \otimes x \le y$. Similarly, we can proof $x \otimes (x \rightarrow y) \le y$.

(3) $z \le (z \to (y \to x)) \longrightarrow (y \to x) = y \to ((z \to (y \to x)) \longrightarrow x)$, By the above (1), $z \otimes y \le (z \to (y \to x)) \longrightarrow x$, hence $z \to (y \to x) \le ((z \to (y \to x)) \longrightarrow x) \to x \le (z \otimes y) \to x$. On the other hand, $z \le y \to (z \otimes y) \le ((z \otimes y) \to x) \longrightarrow (y \to x)$, hence $(z \otimes y) \to x \le (((z \otimes y) \to x) \longrightarrow (y \to x)) \to (y \to x) \le (y \to x)$. Therefore, $z \to (y \to x) = (z \otimes y) \to x$. Similarly, we can proof $z \longrightarrow (y \to x) = (y \otimes z) \longrightarrow x$.

(4) If $x \le y$, then $z \le y \rightsquigarrow (y \otimes z) \le x \rightsquigarrow (y \otimes z)$, so we have $x \otimes z \le y \otimes z$. Similarly, we can proof $x \le y$ $\Rightarrow z \otimes x \le z \otimes y$.

(5) $\forall b \in X$, By the above (1) and (3), $(x \otimes y) \otimes z \leq b \Leftrightarrow x \otimes y \leq z \rightarrow b \Leftrightarrow x \leq y \rightarrow (z \rightarrow b) \Leftrightarrow x \leq (y \otimes z) \rightarrow b \Leftrightarrow x \otimes (y \otimes z) \leq b$, hence $(x \otimes y) \otimes z = x \otimes (y \otimes z)$.

(6) Since $y \to z \le (x \to y) \to (x \to z)$, so $(y \to z) \otimes (x \to y) \le x \to z$. Similarly, $(x \to y) \otimes (y \to z) \le x \to z$.

(7) By the above (2), $1 \otimes x = (x \rightarrow x) \otimes x \leq x$. In addition, $x \leq 1 \rightsquigarrow (1 \otimes x) = 1 \otimes x$. Therefore, $1 \otimes x = x$. Similarly, $x \otimes 1 = x$.

(8) By the above (2), $(y \rightarrow z) \otimes y \leq z$. By the above (4), $x \otimes ((y \rightarrow z) \otimes y) \leq x \otimes z$. By the above (5), $(x \otimes (y \rightarrow z)) \otimes y \leq x \otimes z$, thus $x \otimes (y \rightarrow z) \leq y \rightarrow (x \otimes z)$. Similarly, $(y \sim z) \otimes x \leq y \sim (z \otimes x)$.

(9) By the above (2), $(x \rightarrow y) \otimes x \leq y$. By the above (4), $((x \rightarrow y) \otimes x) \otimes z \leq y \otimes z$. By the above (5), $(x \rightarrow y) \otimes (x \otimes z) \leq y \otimes z$. Therefore, $x \rightarrow y \leq (x \otimes z) \rightarrow (y \otimes z)$. Similarly, we can proof $x \rightsquigarrow y \leq (z \otimes x) \rightsquigarrow (z \otimes y)$.

By Theorem 3.9 (4), (5), (7), we know that if $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ is a pseudo-*BCI* algebra with condition (pP), then $(X; \leq, \otimes, 1)$ is a partially ordered monoid with 1 as the unit element.

Theorem 3.10 Let $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ be a pseudo-*BCI* algebra with condition (pP), then X is a *BCI*-algebra if and only if $x \otimes y = y \otimes x$, for all $x, y \in X$.

Proof: $\forall b \in X, x \otimes y \leq b \Leftrightarrow x \leq y \rightarrow b \Leftrightarrow x \leq y \rightarrow b \Leftrightarrow y \otimes x \leq b$, hence $x \otimes y = y \otimes x$, for all $x, y \in X$.

Conversely, for all x, y, $z \in X$, $x \le y \rightarrow z \iff x \otimes y \le z \iff y \otimes x \le z \iff x \le y \rightarrow z$, thus $y \rightarrow z = y \rightarrow z$. Therefore, X is a *BCI*-algebra.

We now give a characterization of a pseudo-BCI algebra with condition (pP).

Theorem 3.11 A structure $(X; \otimes, \leq, \rightarrow, \rightsquigarrow, 1)$ is a pseudo-*BCI* algebra with condition (pP) if

and only if the following hold $(\forall x, y, z \in X)$:

 $(1) y \rightarrow z \leq (z \rightarrow x) \rightsquigarrow (y \rightarrow x), y \rightsquigarrow z \leq (z \rightsquigarrow x) \rightarrow (y \rightsquigarrow x);$

(2) $x \le y, y \le x \Rightarrow x = y;$

(3)
$$x \le y \Leftrightarrow x \rightarrow y = 1 \Leftrightarrow x \rightsquigarrow y = 1;$$

- (4) $1 \rightarrow x = x, 1 \rightsquigarrow x = x;$
- (5) $x \rightarrow (y \rightarrow z) = (x \otimes y) \rightarrow z; x \rightarrow (y \rightarrow z) = (y \otimes x) \rightarrow z.$

Proof: By Theorem 2.3 and Theorem 3.9 (3), we only need to show the sufficiency. By the above (5), we have

 $x \rightarrow (y \rightarrow (x \otimes y)) = (x \otimes y) \rightarrow (x \otimes y) = 1,$

and $x \otimes y$ is a solution of the inequality $x \le y \rightarrow u$ with *u* as the unknown. Also, for any solution *t* of $x \le y \rightarrow u$, since

 $(x \otimes y) \rightarrow t = x \rightarrow (y \rightarrow t) = 1,$

we obtain $x \otimes y \le t$. Hence $x \otimes y$ is the least solution of $x \le y \rightarrow u$. Therefore, X is a pseudo-BCI algebra with condition (pP)

It is easy to proof the following lemma.

Lemma 3.12 Let $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ be a pseudo-*BCI* algebra, K(X) and AG(X) respectively the

pseudo-BCK part and anti-grouped part of X. Then

- (1) $K(X) \cap AG(X) = \{1\};$
- (2) *X* is a pseudo-*BCK* algebra if and only if $AG(X) = \{1\}$;
- (3) *X* is an anti-grouped pseudo-*BCI* algebra if and only if $K(X) = \{1\}$.

Theorem 3.13 Let $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ be a pseudo-*BCI* algebra with condition (pP). Then $(X; \otimes, \rightarrow, \neg)$

1) is a non-commutative group if and only if $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ is an anti-grouped pseudo-*BCI* algebra.

Proof: Let $(X; \otimes, 1)$ be a non-commutative group and x is an element in the pseudo-*BCK* part K(X) of X. Denoe x^{-1} for the inverse element of x. Since 1 is the unit element of X, we have $x \otimes x^{-1}=1$. By Theorem 3.9 (4) (7) and $x \le 1$, we obtain

 $1 = x \otimes x^{-1} \le 1 \otimes x^{-1} = x^{-1}$, that is $x^{-1} = 1$. Hence

 $x=x\otimes 1=x\otimes x^{-1}=1$.

Therefore, $K(X) = \{1\}$. By Lemma 3.12 (3), X is an anti-grouped pseudo-BCI algebra.

Conversely, Let $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ be an anti-grouped pseudo-*BCI* algebra. By Theorem 2.10,

 $(X; \cdot, 1)$ is a non-commutative group, where $x \cdot y = (x \rightarrow 1) \rightarrow y = (y \rightarrow 1) \rightarrow x$. $\forall x, y \in X$. By Theorem 3.8, $x \otimes y = (y \rightarrow 1) \rightarrow x = (y \rightarrow 1) \rightarrow x$. Hence $x \cdot y = x \otimes y$. Therefore, $(X; \otimes, 1)$ is just the non-commutative group $(X; \cdot, 1)$.

Theorem 3.14 Suppose that V(a) is a branch of a pseudo-BCI algebra $(X; \leq, \rightarrow, \rightsquigarrow, 1)$ with

condition (pP). If V(a) is bounded, so is every branch V(b) of X.

Proof: Let m_a be the least element of V(a) and let

 $m_b = m_a \otimes (a \rightarrow 1) \otimes b$.

 $\forall x \in V(b)$, since $b \in V(b)$, by Theorem 2.7 (3), we have $b \rightarrow x \in V(1)$. Since $a \in V(a)$, $1 \in V(1)$, by Theorem 2.7 (1), $a \rightarrow 1 \in V(a \rightarrow 1)$. Applying Theorem 2.7 (1) again, we have

 $(a \rightarrow 1) \rightarrow (b \rightarrow x) \in V((a \rightarrow 1) \rightarrow 1) = V(a).$

Then $m_a \rightarrow ((a \rightarrow 1) \rightarrow (b \rightarrow x))=1$ by m_a being the least element of V(a). by Theorem 3.9 (3), we can get

call get

 $m_b \rightarrow x = (m_a \otimes (a \rightarrow 1) \otimes b) \rightarrow x = m_a \rightarrow ((a \rightarrow 1) \rightarrow (b \rightarrow x)) = 1.$

Hence $m_b \le x$. As a special case, we have $m_b \le b$, thus $m_b \in V(b)$. Hence m_b is the least element of V(b). Therefore, V(b) is bounded.

References

- [1] W.A. Dudek and Y.B. Jun, "Pseudo-BCI algebras", East Asian Mathematical Journal, vol. 24, no. 2, pp. 187-190, 2008.
- [2] G. Georgescu and A. Iorgulescu, "Pseudo-BCK algebras: an extension of BCK algebras", Combinatorics, computability and logic, Springer Ser. Discrete Math. Theor. Comput. Sci., pp. 97-114, 2001.
- [3] Iorgulescu, Classes of pseudo-BCK algebras-Part I, Journal of Multiple-Valued Logic and Soft Computing, 2006, 12 (1-2): 71-130.
- [4] J. Meng and Y.L. Liu, An introduction to BCI-algebras, Shaanxi Scientific and Technological Press: Xian, 2001.
- [5] Y.S. Huang, BCI-algebra, Science Press, Beijing, 2006.
- [6] Y.L. Liu, S.Y. Liu and Y. Xu, "Pseudo-BCK algebras and PD-posets", Soft Computing, vol. 11, pp. 91-101, 2007.
- [7] Y.F. Lu and X.H. Zhang, "Q-type pseudo-BCI algebras and 2-type pseudo-q filters", submitted.
- [8] J. Meng and Y.B. Jun, BCK-algebras, Kyung moon sa, Seoul, Korea, 1994
- [9] X.H. Zhang, Fuzzy Logics and Algebraic Analysis, Science Press, Beijing, 2008.
- [10] X.H. Zhang and Y.B. Jun, "Anti-grouped pseudo-BCI algebras and anti-grouped pseudo-BCI Filters", submitted.
- [11] X.H. Zhang, "Pseudo-BCI filters and subalgebras in pseudo-BCI algebras", submitted.
- [12] X.H. Zhang, "Pseudo-BCK part and Anti-grouped part of pseudo-BCI algebras", Proceedings of 2010 International Conference on Progress in Informatics and Computing, 2010.
- [13] Y.F. Lu and X.H. Zhang, "Commutative Pseudo-BCI Algebras and Commutative Pseudo-BCI Filters", Proceedings of 3rd International Symposium on Knouledge Acquisition and Modeling, 2010.

具有条件(pP)的伪-BCI 代数

卢银锋,张小红

(宁波大学理学院,浙江 宁波 315211)

摘要:作为具有条件(S)的 BCI-代数和具有条件(pP)的伪-BCK 代数的推广,引入了具有条件(pP)的伪-BCI 代数的概念。给出了具体的例子,证明了群逆伪-BCI 代数都是具有条件(pP)的伪-BCI 代数,研究了具有条件(pP)的伪-BCI 代数的性质和它的分支的性质。 关键词: 伪-BCK 代数; 伪-BCI 代数; 具有条件(pP)的伪-BCI 代数

中图分类号: 0153.1