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Abstract

We study the properties of rings satisfying Auslander-type conditions. If an
artin algebra Λ satisfies the Auslander condition (that is, Λ is an ∞-Gorenstein
artin algebra), then we construct two kinds of subcategories which form functorially
finite cotorsion pairs.

Noetherian rings satisfying ‘Auslander-type conditions’ on self-injective resolutions
can be regarded as certain non-commutative analogs of commutative Gorenstein rings.
Such conditions, especially dominant dimension and the n-Gorenstein condition, play a
crucial role in representation theory and non-commutative algebraic geometry (e.g. [A],
[AR2,3], [B], [C], [EHIS], [FGR], [FI], [HN], [IS], [Iy4,6], [M], [R], [Sm], [T], [W]). They
are also interesting from the viewpoint of some unsolved homological conjectures, e.g.
the finitistic dimension conjecture, Nakayama conjecture, Gorenstein symmetry conjec-
ture, and so on. It is therefore important to understand non-commutative ‘regular’ or
‘Gorenstein’ rings though it is still far from realized even for the case of finite dimen-
sional algebras. Recently, several authors (e.g. [Hu1,2,3], [Iy1,3]) have studied some
Auslander-type conditions, e.g. the quasi n-Gorenstein condition, the (l, n)-condition,
and so on. This paper is devoted to enlarge our knowledge of the homological behavior of
non-commutative rings. Especially we introduce Auslander-type conditions Gn(k) and
gn(k) and study their properties.

Throughout this paper, let Λ be a left and right noetherian ring (unless stated oth-
erwise). We denote by

0 → Λ → I0(Λ) → I1(Λ) → · · · → Ii(Λ) → · · ·

the minimal injective resolution of the left Λ-module Λ. We call Λ n-Gorenstein if
fd Ii(Λ) ≤ i for any 0 ≤ i ≤ n− 12, and call Λ ∞-Gorenstein if it is n-Gorenstein for all

1The first author was partially supported by Specialized Research Fund for the Doctoral Program of
Higher Education (Grant No. 20060284002), NSFC (Grant No. 10771095) and NSF of Jiangsu Province
of China (Grant No. BK2007517).

2Notice that there are other meanings to the notion of n-Gorenstein rings (e.g. [Iw1,2][EJ][EX]).
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n. In the latter case, Λ is also said to satisfy the Auslander condition. It was proved by
Auslander that the notion of n-Gorenstein rings is left-right symmetric [FGR; 3.7] (see
4.2 below). Our aim in this paper is to generalize the Auslander condition. In Section 3,
we introduce Auslander-type conditions Gn(k) and gn(k) and study their properties. In
section 4, we concentrate on the conditions Gn(k) and gn(k) for the case k = 0, 1. We
give a quick proof of well-known results on these conditions, then prove our main result.
In Section 5, we apply our results to the finitistic dimension and the (l, n)-condition.

We denote by mod Λ the category of finitely generated left Λ-modules, and by modΛ
the stable category of Λ [AB]. Put ( )∗ := HomΛ( , Λ) and

En := Extn
Λ( , Λ) : mod Λ → mod Λop for n ≥ 0,

Tn := Tr ◦Ωn−1 : modΛ → modΛop for n > 0,

where Ω : modΛ → modΛ is the syzygy functor and Tr : modΛ → modΛop is the
transpose functor [AB]. Let

grade X := inf{i ≥ 0 | EiX 6= 0} the grade,

s.grade X := inf{grade Y | Y ⊆ X} the strong grade,

r.grade X := inf{i > 0 | EiX 6= 0} the reduced grade.

When Λ is an artin algebra over R, we denote by D : mod Λ → mod Λop the duality
induced by the Matlis duality of R. Given two homomorphisms of modules, say f : A →
B and g : B → C, the composition homomorphism of f and g is denoted by fg : A → C.

1 Main result

1.1 For subcategories Ci (i = 1, 2) of mod Λ, we denote by E(C1, C2) the subcategory
of mod Λ consisting of C ∈ mod Λ such that there exists an exact sequence 0 → C2 →
C → C1 → 0 with Ci ∈ Ci (i = 1, 2). For a subcategory C of mod Λ, we use add C
to denote the subcategory of mod Λ consisting of all Λ-modules isomorphic to direct
summands of finite direct sums of modules in C.

For a left Λ-module C, we use pd C, fd C and id C to denote the projective dimension,
flat dimension and injective dimension of C, respectively. A module C in mod Λ is called
n-torsionfree if Ei Tr C = 0 for any 1 ≤ i ≤ n [AB]. For n,m ≥ 0, we define several full
subcategories of mod Λ as follows:

Wn := {C ∈ mod Λ | r.grade C > n},
Fn := {C ∈ mod Λ | C is n-torsionfree},
Pn := {C ∈ mod Λ | pdΛ C < n},
In := {C ∈ mod Λ | idΛ C < n},

Xn,m := Wn ∩Fm,

Yn,m := add E(Im,Pn).
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For example, we have W0 = F0 = mod Λ and P0 = I0 = 0. Notice that E(Im,Pn) is
not necessarily closed under direct summands (e.g. take Λ to be the path algebra of the
quiver • → • → • and n = m = 1). We denote by Wop

n , Fop
n , Pop

n , Iop
n , X op

n,m and Yop
n,m

the corresponding categories for Λop.

1.2 Following Salce [Sa], we call a pair (X ,Y) of subcategories of mod Λ a cotorsion
pair if

X = {C ∈ mod Λ | Ext1
Λ(C,Y) = 0} and Y = {C ∈ mod Λ | Ext1

Λ(X , C) = 0}.

Notice that we do not assume the vanishing of higher Ext-groups Exti
Λ (i > 1).

1.3 Now we can state a main result in this paper, which we shall prove in 4.9.

Theorem Let Λ be an ∞-Gorenstein artin algebra. Then (Xi,j−1,Yi,j) (i ≥ 0, j ≥ 1)
and (Yi,j,DX op

j,i−1) (i ≥ 1, j ≥ 0) form cotorsion pairs.

Moreover, we will show that they are functorially finite in the sense of 2.3 below. For
example, we have cotorsion pairs (Wi,Yi,1) (j := 1) and (Fj−1, Ij) (i := 0).

2 Preliminaries

2.1 Let us start with the following simple observation, which will be used frequently
in this paper.

Lemma Let Y be a full subcategory of mod Λ which is closed under extensions, and
0 → C1 → Y → C0 → 0 an exact sequence with Y ∈ Y. If there exists an exact
sequence 0 → Y0 → X → C0 → 0 with Y0 ∈ Y, then there exist exact sequences
0 → C1 → Y1 → X → 0 with Y1 ∈ Y.

Proof The middle row in the following pull-back diagram gives our desired exact
sequence:

0 0

↑ ↑
0−−−−→C1−−−−→Y −−−−→C0−−−−→0

‖ ↑ ↑
0−−−−→C1−−−−→Y1−−−−→X−−−−→0

↑ ↑
Y0 = Y0

↑ ↑
0 0

2.2 Assume that C ⊃ D are full subcategories of mod Λ and C ∈ C, D ∈ D. A
morphism f : D → C is said to be a right D-approximation of C if HomΛ(X, f) :
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HomΛ(X,D) → HomΛ(X,C) → 0 is exact for any X ∈ D. A right D-approximation
f : D → C is called minimal if an endomorphism g : D → D is an automorphisn
whenever f = gf . The subcategory D is said to be contravariantly finite in C if any
C ∈ C has a right D-approximation. Dually, we define the notions of (minimal) left

D-approximations and covariantly finite subcategories. The subcategory of C is said to
be functorially finite in C if it is both contravariantly finite and covariantly finite in C
[AR1].

2.3 Let Λ be an artin algebra. We call a cotorsion pair (X ,Y) functorially finite if
the following equivalent conditions are satisfied:

(1) X is a contravariantly finite subcategory of mod Λ.
(2) Y is a covariantly finite subcategory of mod Λ.

(3) For any C ∈ mod Λ, there exists an exact sequence 0 → Y → X
f→ C → 0 with

X ∈ X and Y ∈ Y .
(4) For any C ∈ mod Λ, there exists an exact sequence 0 → C

g→ Y ′ → X ′ → 0 with
X ′ ∈ X and Y ′ ∈ Y .

2.3.1 (Wakamatsu’s Lemma) Let X be a subcategory of mod Λ which is closed

under extensions. If 0 → A → B
f→ C is exact and f is a minimal right X -approximation

of C, then Ext1
Λ(X , A) = 0 holds.

2.3.2 Proof of 2.3 (3)⇒(1) f is a right X -approximation of C by Ext1
Λ(X , Y ) = 0.

(1)⇒(3) Let f : X → C be a minimal right X -approximaiton of C. Since Λ ∈ X , f
is surjective. Since X is closed under extensions, Ker f ∈ Y holds by 2.3.1.

(3)⇒(4) (cf. [Sa]) Let 0 → C → I → Ω−1C → 0 and 0 → Y → X → Ω−1C → 0 be
exact sequences with I the injective envelope of C, X ∈ X and Y ∈ Y . Applying 2.1,
we have the desired sequence.

(2)⇔(4) and (4)⇒(3) can be shown dually.

2.3.3 Let Λ be an artin algebra and (X ,Y) a pair of subcategories of mod Λ which
are closed under direct summands. If Ext1

Λ(X ,Y) = 0 and the conditions 2.3(3)(4) are
satisfied, then (X ,Y) is a functorially finite cotorsion pair.

Proof By the condition 2.3(3), Ext1
Λ(C,Y) = 0 implies C ∈ X . By the condition

2.3(4), Ext1
Λ(X , C) = 0 implies C ∈ Y .

For a full subcategory C of mod Λ, we denote by C the corresponding subcategory of
modΛ. We denote by Ωn(mod Λ) the full subcategory of mod Λ consisting of C ∈ mod Λ
such that there exists an exact sequence 0 → C → P0 → · · · → Pn−1 with projective Pi.

2.4 We collect some useful results.
(1) We have the following diagram whose rows are equivalences and columns are
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dualities [Iy5; 1.1.1]:

Wn=X n,0
Ω−−−−→ X n,1

Ω−−−−→· · · Ω−−−−→X 1,n−1
Ω−−−−→X 0,n= Fn

↓Tr ↓Tr ↓Tr ↓Tr

Fop
n =X op

0,n
Ω←−−−−X op

1,n−1
Ω←−−−−· · · Ω←−−−−X op

n−1,1
Ω←−−−−X op

n,0=Wop
n

In particular, we have Fn = ΩnWn ⊆ Ωn(mod Λ) for any n ≥ 1.
(2) By (1), Ωn(mod Λ) ⊆ Fm if and only if Tr Ωn(mod Λ) ⊆ Wop

m if and only if
r.grade Tn+1C ≥ m + 1 holds for any C ∈ mod Λ.

(3) Ext1
Λ(X,Y ) = 0 holds for any X ∈ Wn and Y ∈ Pn. In fact, we take a projective

resolution 0 → Pn−1 → · · · → P0 → Y → 0 and apply the functor HomΛ(X, ), then we
get Ext1

Λ(X,Y ) ' Ext2
Λ(X, ΩY ) ' · · · ' Extn

Λ(X, Ωn−1Y ) = Extn
Λ(X,Pn−1) = 0.

(4) Let C be in mod Λ. We let σC : C → C∗∗ denote the canonical evaluation
homomorphism; thus σC(x)(f) = f(x) for any x ∈ C and f ∈ C∗. Then there exists
an exact sequence 0 → E1Tr C → C

σC−→ C∗∗ → E2Tr C → 0 [AB]. Recall that C is
called torsionless (resp. reflexive) if σC is a monomorphism (resp. an isomorphism). So
C is torsionless (resp. reflexive) if and only if it is 1-torsionfree (resp. 2-torsionfree). In
particular, we have F1 = Ω(mod Λ).

(5) For any X ∈ mod Λ and n > 0, we have an exact sequence 0 → EnX → TnX
f→

Ω Tn+1X → 0 such that f ∗ is an isomorphism [Ho3].
(6) If X ∈ mod Λ satisfies grade EiX > i for any 0 ≤ i ≤ n, then grade X > n [Ho2;

6.2][Iy1; 2.3].
(7) For l, n ≥ 0, the following conditions are equivalent [Iy1; 6.1][Hu1; 2.8].

(i) fd Ii(Λ
op) < l holds for any 0 ≤ i < n.

(ii) s.grade ElC ≥ n holds for any C ∈ mod Λ.
In this case, we say that Λop satisfies the (l, n)-condition (or Λ satisfies the (l, n)op-

condition).

3 The conditions Gn(k) and gn(k)
In this section we introduce Auslander-type conditions Gn(k) and gn(k) and study

their properties. Let us start with the following observation.

3.1 Lemma Let C ∈ Fm with m ≥ 0.
(1) ΩC ∈ Fm+1 if and only if grade E1C ≥ m.
(2) E(C,Fm) ⊆ Fm if and only if E(C,P1) ⊆ Fm if and only if s.grade E1C ≥ m.

Proof (1) We have Tr C ∈ Wop
m for C ∈ Fm. Since we have an exact sequence

0 → E1C → Tr C
f→ Ω Tr ΩC → 0 such that f ∗ is an isomorphism by 2.4(5), Ei E1C =

Ei+2 Tr ΩC holds for any 0 ≤ i < m. Thus the assertion follows.
(2) See [AR3; 1.1].

3.1.1 Immediately we have the following result.
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Lemma Assume Ωn(mod Λ) ⊆ Fm with n,m ≥ 0. Then for the following (1)⇔(2)⇐
(3)⇔(4) holds.

(1) grade En+1C ≥ m holds for any C ∈ mod Λ.
(2) Ωn+1(mod Λ) ⊆ Fm+1.
(3) s.grade En+1C ≥ m holds for any C ∈ mod Λ.
(4) E(Ωn(mod Λ), Ωn(mod Λ)) ⊆ Fm.

Proof We only have to check (3)⇔(4). This is shown by applying 3.1 as follows:
(3)⇒ E(Ωn(mod Λ),Fm) ⊆ Fm ⇒(4)⇒ E(Ωn(mod Λ),P1) ⊆ Fm ⇒(3).

3.2 Proposition Let 0 = l0 < l1 < l2 < l3 < · · · be a (finite or infinite) sequence of
integers. Then for the following (1)⇔(2)⇐(3)⇔(4)⇔(5) holds.

(1) grade Eli+1C ≥ i holds for any C ∈ mod Λ and i.
(2) Ωli+1(mod Λ) ⊆ Fi+1 holds for any i.
(3) s.grade Eli+1C ≥ i holds for any C ∈ mod Λ and i.
(4) E(Ωli(mod Λ), Ωli(mod Λ)) ⊆ Fi holds for any i.
(5) fd Ii−1(Λ

op) ≤ li holds for any i.

Proof (1)⇔(2)⇐(3)⇔(4) Since Ωli(mod Λ) ⊆ Ωli−1+1(mod Λ) holds by li ≥ li−1+1,
we can inductively show the assertions by 3.1.1.

(3)⇔(5) By 2.4(7).

3.2.1 Question Put li := inf{l | Ωl+1(mod Λ) ⊆ Fi+1}. How does the sequence (li)i

behave? Is there an example satisfying li = li+1? This equality case was excluded in 3.2.

3.3 Definition Let n, k ≥ 0. We say that Λ is Gn(k) if s.grade Ei+kC ≥ i holds for
any C ∈ mod Λ and 1 ≤ i ≤ n. By 2.4(7), Λ is Gn(k) if and only if fd Ii(Λ

op) ≤ i + k
holds for any 0 ≤ i < n. Thus Gn(0) is the n-Gorenstein condition, and Gn(1)op is the
quasi n-Gorenstein condition in [Hu2] (see 4.2, 4.3 below).

Similarly, we say that Λ is gn(k) if grade Ei+kC ≥ i holds for any C ∈ mod Λ and
1 ≤ i ≤ n. We say that Λ is Gn(k)op (resp. gn(k)op) if Λop is Gn(k) (resp. gn(k)).

We have the following obvious relations for any n ≥ n′ and k ≤ k′:

Gn(k)⇒Gn′(k
′)

⇓ ⇓
gn(k)⇒ gn′(k

′)

3.4 Theorem The conditions (1) and (2) below are equivalent for any n, k ≥ 0. If
k > 0, then (1)–(5) are equivalent.

(1) Λ is gn(k).

(2) For any monomorphism A
f→ B with A,B ∈ Ωk+1(mod Λ), Ei Eif is a monomor-

phism for any 0 ≤ i < n.
(3) Ωi+k(mod Λ) ⊆ Fi+1 holds for any 1 ≤ i ≤ n.
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(4) For any C ∈ mod Λ and 0 ≤ i ≤ n, there exists an exact sequence 0 → Y →
X → Ωk−1C → 0 with X ∈ Wi+1 and Y ∈ Pi+1.

(5) For any C ∈ mod Λ and 0 ≤ i ≤ n, there exists an exact sequence 0 → ΩkC →
Y ′ → X ′ → 0 with X ′ ∈ Wi+1 and Y ′ ∈ Pi+1.

3.4.1 Remark By 2.4(3), the sequence in (4) gives a right Wi+1-approximation of
Ωk−1C, and the sequence in (5) gives a left Pi+1-approximation of ΩkC.

3.4.2 Lemma Assume that n ≥ 1 and C ∈ Wn−1 satisfies grade EnC ≥ n−1. Then
there exists an exact sequence 0 → Y → X → C → 0 with Y ∈ Pn and X ∈ Wn.

Proof Let 0 → ΩnC → Pn−1 → · · · → P0 → C → 0 be a projective resolution of
C. Take the following commutative diagram, where the lower sequence is a projective
resolution of EnC:

0←−EnC←−(ΩnC)∗←−P ∗
n−1←−· · ·←− P ∗

1 ←−P ∗
0

‖ ↑ ↑ ↑
0←−EnC←− Q0 ←− Q1 ←−· · ·←−Qn−1

Taking the mapping cone of the above commutative diagram, we get an exact sequence
0 ← (ΩnC)∗ ← P ∗

n−1 ⊕ Q0 ← · · · ← P ∗
0 ⊕ Qn−1. Since grade EnC ≥ n − 1, we have

an exact sequence 0 → Q∗
0 → Q∗

1 → · · · → Q∗
n−1. So the last column in the following

commutative diagram of exact sequences is the desired exact sequence:

0 0 0 0

↓ ↓ ↓ ↓
0 −→ Q∗

0 −→· · ·−→ Q∗
n−2 −→ Q∗

n−1 −→Y −→0

↓ ↓ ↓ ↓ ↓
0−→ΩnC−→Pn−1 ⊕Q∗

0−→· · ·−→P1 ⊕Q∗
n−2−→P0 ⊕Q∗

n−1−→X−→0

‖ ↓ ↓ ↓ ↓
0−→ΩnC−→ Pn−1 −→· · ·−→ P1 −→ P0 −→C−→0

↓ ↓ ↓ ↓
0 0 0 0

3.4.3 Proof of 3.4 (1)⇒(2) For any A ∈ Ωk+1(mod Λ), we have A = Ωk+1A′ with
A′ ∈ mod Λ. So Ei EiA = Ei Ei+k+1A

′ = 0 holds for any 0 < i < n by (1). Thus Ei Eif
is monic. Let us consider f ∗∗. If k > 0, then Ωk+1(mod Λ) ⊆ F2 holds by 3.1.1(1)⇒(2).
Thus A and B are reflexive, and f ∗∗ ' f is monic. Let k = 0. Take an injection a : B →
P with P projective in mod Λ, and consider an exact sequence 0 → A

fa→ P → C → 0

with C = Cok(fa). Then we have an exact sequence P ∗ (fa)∗−→ A∗ → E1C → 0. Then
f ∗∗a∗∗ = (fa)∗∗ is monic by grade E1C ≥ 1. Thus f ∗∗ is also monic.
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(2)⇒(1) For any C ∈ mod Λ, there exists an exact sequence 0 → Ωk+1C
f→ Pk →

ΩkC → 0 in mod Λ with Pk projective. Then we have an exact sequence P ∗
k

f∗→
(Ωk+1C)∗ → Ek+1C → 0. Since f ∗∗ is monic by (2), we obtain grade Ek+1C ≥ 1 by

taking ( )∗. On the other hand, since Ei EiΩ
k+1C

EiEif−→ Ei EiPk = 0 is monic for any
0 < i < n, we obtain 0 = Ei EiΩ

k+1C = Ei Ei+k+1C. Thus grade Ei+k+1C ≥ i + 1 holds
for any C ∈ mod Λ and 0 ≤ i < n.

(1)⇔(3) Put li := i + k − 1 in 3.2.
(5)⇒(3) By (5), for any C ∈ mod Λ and 0 ≤ i ≤ n, there exists an exact sequence

0 → ΩkC → Y ′ → X ′ → 0 in mod Λ with X ′ ∈ Wi+1 and Y ′ ∈ Pi+1. Taking i-th
syzygies, we have an exact sequence 0 → Ωi+kC → ΩiY ′ → ΩiX ′ → 0 with projective
ΩiY ′. Thus we have Ωi+kC = Ωi+1X ′ ∈ Ωi+1Wi+1 = Fi+1 by 2.4(1).

(4)⇒(5) For any C ∈ mod Λ, by (4) there exists an exact sequence 0 → Y → X →
Ωk−1C → 0 in mod Λ with X ∈ Wi+1 and Y ∈ Pi+1. On the other hand, there exists an
exact sequence 0 → ΩkC → Pk−1 → Ωk−1C → 0 with Pk−1 projective. Applying 2.1, we
have the desired sequence.

(1)⇒(4) We proceed by induction on i. Assume that i ≥ 0 and we have an exact
sequence 0 → Yi−1 → Xi−1 → Ωk−1C → 0 with Yi−1 ∈ Pi and Xi−1 ∈ Wi. Since
Ei+1Xi−1 ' Ei+1Ω

k−1C ' Ei+kC holds, we obtain grade Ei+1Xi−1 ≥ i by (1). Applying
3.4.2 to Xi−1, we have an exact sequence 0 → Y ′ → X → Xi−1 → 0 with Y ′ ∈ Pi+1 and
X ∈ Wi+1. Taking the following pull-back diagram, the middle row is the desired exact
sequence:

0 0

↑ ↑
0−−−−→Yi−1−−−−→Xi−1−−−−→Ωk−1C−−−−→0

↑ ↑ ‖
0−−−−→ Y −−−−→ X −−−−→Ωk−1C−−−−→0

↑ ↑
Y ′ = Y ′

↑ ↑
0 0

3.5 Theorem The conditions (1) and (2) below are equivalent for any n, k ≥ 0. If
k > 0, then (1)–(3) are equivalent.

(1) Λ is Gn(k).

(2) For any exact sequence 0 → A
f→ B → C → 0 with C ∈ Ωk(mod Λ), Ei Eif is a

monomorphism for any 0 ≤ i < n.
(3) E(Ωi+k(mod Λ), Ωi+k(mod Λ)) ⊆ Fi+1 holds for any 0 ≤ i < n.
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Proof (1)⇒(2) Let C = ΩkC ′ with C ′ ∈ mod Λ and g := Eif . We have an exact

sequence Ei+kC
′ → EiB

g→ EiA → Ei+k+1C
′. Thus we have exact sequences Ei Cok g →

Ei EiA
a→ Ei Im g and Ei−1 Ker g → Ei Im g

b→ Ei EiB. Since Ei Cok g = 0 = Ei−1 Ker g
holds by (1), Eig = ab is monic.

(2)⇒(1) For any C ∈ mod Λ, fix i (0 ≤ i < n) and a Λop-submodule D of Ei+k+1C.
Take an exact sequence Q

a→ D → 0 in mod Λop with Q projective and a′ the composition
Q

a→ D ↪→ Ei+k+1C. We lift a′ to b : Q → (Ωi+k+1C)∗. Take the following push-out

diagram, where b′ is the composition Ωi+k+1C
σ
Ωi+k+1C−→ (Ωi+k+1C)∗∗ b∗−→ Q∗ and Pi+k is a

projective module in mod Λ:

0−−−−→Ωi+k+1C−−−−→Pi+k−−−−→Ωi+kC−−−−→0

↓b′ ↓ ‖
0−−−−→ Q∗ c−−−−→ X d−−−−→Ωi+kC−−−−→0

We then have the following commutative diagram with exact rows:

0←−−−−Ei+k+1C←−−−−(Ωi+k+1C)∗←−−−−P ∗
i+k←−−−−(Ωi+kC)∗←−−−−0

∪ ↑b ↑ ‖
0←−−−− D a←−−−− Q c∗←−−−− X∗ d∗←−−−−(Ωi+kC)∗←−−−−0

Let i = 0. Since c∗∗ is monic by (2), we obtain D∗ = 0. Thus s.grade E1+kC ≥ 1.
Fix i (0 < i < n) and assume that Λ is Gi(k). By 3.2, E(Ωi+k(mod Λ), Ωi+k(mod Λ)) ⊆

Fi holds. In particular, X in the first diagram is contained in Fi. Take the following
commutative diagram with exact rows, where the upper sequence is still exact by taking
( )∗:

0−−−−→ X −−−−→ Q0 −−−−→· · ·−−−−→Qi−1−−−−→ Y −−−−→0

↓d ↓ ↓ ↓g

0−−−−→Ωi+kC−−−−→Pi+k−1−−−−→· · ·−−−−→ Pk −−−−→ΩkC−−−−→0

We can assume that g is epic by adding a projective direct summand to Y and Qi−1.

Thus we obtain an exact sequence 0 → Z
h→ Y

g→ ΩkC → 0 such that Ωig = d. Since
CokEih ' Ker Ei+1g ' Ker E1d ' Cok c∗ ' D and EiY = 0 hold, we obtain D ' EiZ.
Since Ei Eih is monic by (2), we have EiD = 0. Thus s.grade Ei+k+1C ≥ i + 1 holds, and
Λ is Gi+1(k). Inductively, we obtain (1).

(1)⇔(3) Put li := i + k − 1 in 3.2.

4 The conditions Gn(k) and gn(k) for k = 0, 1
In this section we concentrate on the conditions Gn(k) and gn(k) for the case k = 0, 1.

Let us start with giving a quick proof of the following remarkable ‘left-right symmetry’,
where (1) is well-known in [FGR; 3.7], (2) is in [HN; 4.7][Hu3; 2,4] and (3) is in [AR3][HN;
4.1].
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4.1 Theorem (1) Gn(0) ⇔ Gn(0)op. (2) gn(1) ⇔ gn(1)op. (3) gn(0) ⇔ Gn(1)op.

Proof We shall proceed by using induction on n. The case n = 0 is obvious. Now
assume that n ≥ 1 and the assertions hold for n− 1. Thus we can assume that gn−1(1)op

holds for each case, so Ωi(mod Λop) = Fop
i holds for any 1 ≤ i ≤ n by 2.4(1)(4) and 3.4.

Thus Ti+1D ∈ Wi holds for any D ∈ mod Λop and 1 ≤ i ≤ n.
(1) We will show the ‘only if’ part. Take D ⊆ EnC for C ∈ mod Λop. We have an

exact sequence 0 → D → TnC
f→ D′ → 0 such that f ∗ is an isomorphism by 2.4(5).

Since TnC ∈ Wn−1 holds, we have EiD ⊆ Ei+1D
′ for any 0 ≤ i < n. Since grade EiD > i

holds for any 0 ≤ i < n by Gn(0), we have grade D ≥ n by 2.4(6).
(2) We will show the ‘only if’ part. Put D := En+1C for C ∈ mod Λop. We have

an exact sequence 0 → D → Tn+1C
f→ Ω Tn+2C → 0 such that f ∗ is an isomorphism

by 2.4(5). Since Tn+1C ∈ Wn holds, we have EiD ' Ei+1Ω Tn+2C ' Ei+2 Tn+2C for any
0 ≤ i < n. Since grade EiD > i holds for any 0 ≤ i < n by gn(1), we have grade D ≥ n
by 2.4(6).

(3) We will show the ‘only if’ part. Take D ⊆ En+1C for C ∈ mod Λop. We have an

exact sequence 0 → D → Tn+1C
f→ D′ → 0 such that f ∗ is an isomorphism by 2.4(5).

Since Tn+1C ∈ Wn holds, we have EiD ' Ei+1D
′ for any 0 ≤ i < n. Since grade EiD > i

holds for any 0 ≤ i < n by gn(0), we have grade D ≥ n holds by 2.4(6).
We will show the ‘if’ part. Put D := EnC for C ∈ mod Λ. We have an exact sequence

0 → D → TnC
f→ Ω Tn+1C → 0 such that f ∗ is an isomorphism by 2.4(5). Since

TnC ∈ Wop
n−1 holds, we have EiD ⊆ Ei+1Ω Tn+1C ' Ei+2 Tn+1C for any 0 ≤ i < n. Since

grade EiD > i holds for any 0 ≤ i < n by Gn(1)op, we have grade D ≥ n by 2.4(6).

4.1.1 Question It is natural to ask for the existence of a common generalization
of the conditions Gn(k) and gn(k) satisfying certain ‘left-right symmetry’. For example,
is there some natural condition Gn(k, l) for each triple (n, k, l) of non-negative integers
with the following properties?

(i) Gn(k, 0) = Gn(k), and Gn(k, 1) = gn(k).
(ii) Gn(k, l) ⇔ Gn(l, k)op.
(iii) Gn(k, l) ⇒ Gn′(k

′, l′) if n ≥ n′, k ≤ k′ and l ≤ l′.

4.2 Theorem (cf. [FGR; 3.7]) The following conditions are equivalent.
(1) Λ is Gn(0), i.e. n-Gorenstein.
(2) Ei Ei preserves monomorphisms in mod Λ for any 0 ≤ i < n.
(3) fd Ii(Λ) ≤ i holds for any 0 ≤ i < n.
(i)op Opposite side version of (i) (1 ≤ i ≤ 3).

4.3 Theorem (cf. [AB][Ho1; 2.1][HN; 4.7][Hu2; 3.3][Hu3; 2.4]) The following condi-
tions are equivalent.

(1) Λ is gn(1).
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(2) For any monomorphism A
f→ B with A,B ∈ Ω2(mod Λ), Ei Eif is a monomor-

phism for any 0 ≤ i < n.
(3) Ωi(mod Λ) = Fi holds for any 1 ≤ i ≤ n + 1.
(4) For any C ∈ mod Λ and 0 ≤ i ≤ n, there exists an exact sequence 0 → Y →

X → C → 0 with X ∈ Wi+1 and Y ∈ Pi+1.
(5) For any C ∈ mod Λ and 0 ≤ i ≤ n, there exists an exact sequence 0 → ΩC →

Y → X → 0 with X ∈ Wi+1 and Y ∈ Pi+1.
(i)op Opposite side version of (i) (1 ≤ i ≤ 5).

4.4 Theorem (cf. [Ho1; 2.4][AR3][IST; 2.1][HN; 4.1][Hu2; 3.6]) The following con-
ditions (1)–(7) are equivalent. If Λ is an artin algebra, then (8) is also equivalent.

(1) Λ is Gn(1).

(2) For any exact sequence 0 → A
f→ B → C → 0 with C ∈ Ω(mod Λ), Ei Eif is a

monomorphism for any 0 ≤ i < n.
(3) E(Ωi+1(mod Λ), Ωi+1(mod Λ)) ⊆ Fi+1 holds for any 0 ≤ i < n.
(4) Ωi(mod Λ) is closed under extensions for any 1 ≤ i ≤ n.
(4′) add Ωi(mod Λ) is closed under extensions for any 1 ≤ i ≤ n.
(5) fd Ii(Λ

op) ≤ i + 1 holds for any 0 ≤ i < n.
(6) Λ is gn(0)op.

(7) For any monomorphism A
f→ B with A,B ∈ Ω(mod Λop), Ei Eif is a monomor-

phism for any 0 ≤ i < n.
(8) For any C ∈ mod Λ and 1 ≤ i ≤ n, there exist exact sequences 0 → Y → X →

C → 0 and 0 → C → Y ′ → X ′ → 0 with X,X ′ ∈ Ωi(mod Λ) and Y, Y ′ ∈ Ii+1.

4.5 Question (1) Is it possible to characterize n-Gorenstein rings in terms of the
categories Ωi(mod Λ) (like 4.3(3), 4.4(4)) or the existence of approximation sequences
(like 4.3(4)(5), 4.4(8))?

(2) When does the equivalence with 4.4(8) hold for noetherian rings? When is the
category Ωi(mod Λ) contravariantly finite for a noetherian ring Λ? In this case, we have
a sequence in 4.4(8) by Wakamatsu’s Lemma 2.3.1.

4.6 Proof of 4.2–4.4 4.2, 4.3 and (1)⇔(2)⇔(3)⇔(5)⇔(6)⇔(7) in 4.4 follow im-
mediately from 3.2, 3.4, 3.5 and 4.1. We now show the other implications in 4.4.

(3)⇒(4)⇒(4′) Easy.
(4′)⇒(3) Assume Ωi(mod Λ) = Fi for some i ≤ n. Then add Ωi(mod Λ) = Fi

holds, and we have E(Ωi(mod Λ), Ωi(mod Λ)) ⊆ Fi by (4′). By 3.1.1(4)⇒(2), we have
Ωi+1(mod Λ) = Fi+1. Thus we have (3) inductively.

(8)⇒(4′) Let 0 → A → B → C → 0 be an exact sequence with A,C ∈ add Ωi(mod Λ).

Take an exact sequence 0 → Y → X
f→ B → 0 with X ∈ Ωi(mod Λ) and Y ∈ Ii+1.

Since we have an exact sequence 0 = Ext1
Λ(C, Y ) → Ext1

Λ(B, Y ) → Ext1
Λ(A, Y ) = 0, we

have that f splits. Thus B ∈ add Ωi(mod Λ) holds.

11

http://www.paper.edu.cn  



(4)+(5)⇒(8) For any C ∈ mod Λ, take the following commutative diagram whose
upper sequence is the minimal injective resolution of C and vertical sequences are minimal
projective resolutions:

0 0 0
↑ ↑ ↑

0−→C−→I0−→ I1 −→ I2 −→· · ·−→ Ii

↑ ↑ ↑
P1,0−→P2,0−→· · ·−→ Pi,0

↑ ↑
P2,1−→· · ·−→ Pi,1

↑
...
↑

Pi,i−1

Then we obtain the following commutative diagram of exact sequences:

0 0 0 0 0
↑ ↑ ↑ ↑ ↑

0−→X−→
i−1⊕

j=0

Pj+1,j −→· · ·−→ Pi−1,0 ⊕ Pi,1 −→ Pi,0 −→Ω−i−1C−→0

↑ ↑ ↑ ↑ ↑

0−→Y −→I0 ⊕
i−1⊕

j=0

Pj+1,j−→· · ·−→Ii−2 ⊕ Pi−1,0 ⊕ Pi,1−→Ii−1 ⊕ Pi,0−→ Ii −→0

↑ ↑ ↑ ↑ ↑
0−→C−→ I0 −→· · ·−→ Ii−2 −→ Ii−1 −→ Ω−iC −→0

↑ ↑ ↑ ↑ ↑
0 0 0 0 0

where Ω−i−1C = Cok(Ii−1 → Ii) and Ω−iC = Cok(Ii−2 → Ii−1). Since id(Il ⊕⊕i−l−1
j=0 Pj+l+1,j) ≤ i − l for any 0 ≤ l ≤ i − 1 holds by (5), we have Y ∈ Ii+1. Thus we

get one of the desired sequences 0 → C → Y → X → 0.
Now we take exact sequences 0 → ΩC → P → C → 0 with projective P and

0 → ΩC → Y ′ → X ′ → 0 with X ′ ∈ Ωi(mod Λ) and Y ′ ∈ Ii+1. Since Ωi(mod Λ) is
closed under extensions by (4), we have the desired sequence 0 → Y ′ → X ′′ → C → 0
by applying the dual of 2.1.
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4.7 Corollary (1) If Λ is gn(1), then Pi+1 is a covariantly finite subcategory of mod Λ
for any 0 ≤ i ≤ n.

(2)[Hu2; 3.6] If an artin algebra Λ is gn(0), then Pi+1 is a functorially finite subcat-
egory of mod Λ for any 0 ≤ i ≤ n.

Proof (1) For any C ∈ mod Λ, let C ′ be a maximal factor module of C such that
any homomorphism from C to Pi+1 factors through C ′. We can take an exact sequence
0 → C ′ → Y → C ′′ → 0 with Y ∈ Pi+1. Take the sequence 0 → Y ′ → X ′ → C ′′ → 0
with X ′ ∈ Wi+1 and Y ′ ∈ Pi+1 by 4.3(4). Applying 2.1, we have an exact sequence

0 → C ′ f→ Y ′′ → X ′ → 0 with Y ′′ ∈ Pi+1. Then f is a left Pi+1-approximation of C ′,

and so the composition C → C ′ f→ Y ′′ gives a left Pi+1-approximation of C.
(2) Pi+1 is covariantly finite by (1). Since Iop

i+1 is covariantly finite by 4.4(8), Pi+1 is
contravariantly finite.

4.8 Theorem Assume that an artin algebra Λ is Gn(1). For any i ≥ 0 and n + 1 ≥
j ≥ 1 satisfying i + j ≤ n + 2, (Xi,j−1,Yi,j) forms a functorially finite cotorsion pair.

Proof Since Xi,j−1 and Yi,j are closed under direct summands, we only have to show
that (Xi,j−1,Yi,j) satisfies the conditions 2.3(3)(4) by 2.3.3. Ext1Λ(Wi,Pi) = 0 by 2.4(3),
and Ext1

Λ(Fj−1, Ij) = 0 by Fj−1 ⊆ Ωj−1(mod Λ), so Ext1
Λ(Xi,j−1,Yi,j) = 0 holds. For any

C ∈ mod Λ, we can take an exact sequence 0 → I → Ωj−1C ′ → C → 0 with I ∈ Ij and
C ′ ∈ mod Λ by 4.4(8). By 4.3(4), we can take an exact sequence 0 → P → X → C ′ → 0
with X ∈ Wi+j−1 and P ∈ Pi+j−1. Taking (j−1)-th syzygies, we have an exact sequence
0 → P ′ → X ′ → Ωj−1C ′ → 0 with X ′ ∈ Xi,j−1 and P ′ ∈ Pi. Consider the following
pull-back diagram:

0 0

↑ ↑
0−−−−→ I −−−−→Ωj−1C ′−−−−→C−−−−→0

↑ ↑ ‖
0−−−−→Y −−−−→ X ′ −−−−→C−−−−→0

↑ ↑
P ′ = P ′

↑ ↑
0 0

Since the middle row 0 → Y → X ′ → C → 0 satisfies Y ∈ Yi,j and X ′ ∈ Xi,j−1, the
condition 2.3(3) holds.

Moreover, take an exact sequence 0 → C → I → Ω−C → 0 with injective I and
0 → Y0 → X0 → Ω−C → 0 with X0 ∈ Xi,j−1 and Y0 ∈ Yi,j. Applying the proof of 2.1
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and using E(I1,Yi,j) ⊆ Yi,j, we have an exact sequence 0 → C → Y1 → X1 → 0 with
X1 ∈ Xi,j−1 and Y1 ∈ Yi,j. Thus the condition 2.3(4) holds.

4.9 Our main theorem 1.3 is a special case of the following result.

Corollary Let Λ be an artin algebra which is G∞(1) and G∞(1)op. Then (Xi,j−1,Yi,j)
(i ≥ 0, j ≥ 1) and (Yi,j,DX op

j,i−1) (i ≥ 1, j ≥ 0) form functorially finite cotorsion pairs.

Proof This is immediate from 4.8 and the fact that Yi,j = DYop
j,i .

4.10 Denote by W∞ :=
⋂

n≥1Wn = {C ∈ mod Λ | Exti
Λ(C, Λ) = 0 for any i ≥ 1}.

As an application of 1.3, we have the following

Corollary Let Λ be an ∞-Gorenstein artin algebra. Then W1 ⊇ W2 ⊇ · · · ⊇ W∞ is
a chain of contravariantly finite subcategories of mod Λ.

Proof By 1.3, we have that Wi is contravariantly finite for any i ≥ 1. By [AR1;
6.12] and [AR2; 5.5(b)], W∞ is contravariantly finite.

5 Finitistic dimension and the (l, n)-condition
In this final section, we give some results on finitistic dimension and left-right sym-

metry of the (l, n)-condition.

5.1 Recall that the finitistic dimension of Λ, denoted by fin.dim Λ, is defined as
sup{pd X | X ∈ mod Λ and pd X < ∞}.

Lemma Assume that Λ is gn+1(k) with n ≥ 0 and k > 0. If fin.dim Λ = n, then id
Λ ≤ n + k.

Proof Let C ∈ mod Λ. By 3.4, there exists an exact sequence 0 → Y → X →
Ωk−1C → 0 with X ∈ Wn+2 and pd Y ≤ n + 1. Then pd Y ≤ n because fin.dimΛ = n.
So En+k+1C ' En+2Ω

k−1C ' En+1Y = 0 and hence id Λ ≤ n + k.

5.2 Theorem If Λ is g∞(k) with k ≥ 0, then fin.dim Λ ≤ id Λ ≤ fin.dim Λ + k.

Proof It is well known that fin.dim Λ ≤ id Λ. So it suffices to prove id Λ ≤
fin.dim Λ + k. The case k > 0 follows easily from 5.1. Now suppose k = 0. Then Λ is
g∞(0), and so fd Ii(Λ) ≤ i + 1 for any i ≥ 0 by [HN; 4.1] (see 4.4 above). It follows from
[Hu3; 2.15] that fin.dim Λ = id Λ.

5.3 Corollary (1) If Λ is G∞(0), then fin.dim Λ = id Λ and fin.dim Λop = id Λop.
(2) If Λ is G∞(1), then fin.dim Λ ≤ id Λ ≤ fin.dim Λ + 1 and fin.dim Λop = id Λop.

Proof (1) follows from the symmetry of G∞(0) and 5.2.
(2) Because Λ is G∞(1) if and only if Λ is g∞(0)op by [AR3; 0.1] and [HN; 4.1] (see

4.4 above), our conclusion follows from 5.2 and its dual.

5.4 Recall that we say that Λ satisfies the (l, n)-condition (or Λop satisfies the (l, n)op-
condition) if s.grade ElC ≥ n holds for any C ∈ mod Λop (see 2.4(7)). Similarly, we say
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that Λ satisfies the weak (l, n)-condition (or Λop satisfies the weak (l, n)op-condition) if
grade ElC ≥ n holds for any C ∈ mod Λop. For example, Λ is Gn(k) if and only if Λ
satisfies the (k + i, i)op-condition for any 1 ≤ i ≤ n, and Λ is gn(k) if and only if Λ
satisfies the weak (k + i, i)op-condition for any 1 ≤ i ≤ n.

Lemma (1) (k, l) + weak (l, n) ⇒ (k, n).
(2) weak (k, l) + weak (l, n) ⇒ weak (k, n).
(3) (k, l) + weak (l, n)op ⇒ (k, n).
(4) weak (k, l) + weak (l, n)op ⇒ weak (k, n).

Proof Using [Iy1; 2.3(2)], we can show all assertions in a manner similar to the
proof of [Iy1; 2.3(3)].

5.5 We call l ∈ N a dominant number of Λ if fd Ii(Λ) < fd Il(Λ) holds for any i < l
[Iy1]. The following result generalizes a theorem in [Iy1; 1.1].

Theorem Any dominant number l of Λ satisfies fd Il(Λ) ≥ l.

Proof Put m := fd Il(Λ) and assume m < l. Since l is a dominant number of Λ, Λ
satisfies the (m, l) and (m+1, l+1)-condition. Since Λ satisfies the (m,m+1)-condition
by m < l, Λ satisfies the (m, l+1)-condition by the dual of 5.4(1). This is in contradiction
to m = fd Il(Λ).

5.6 The following result is an analog of 5.4(2) and 4.1.

Theorem Let k, l, n ≥ 0. Assume k ≥ n− 1.
(1) If s.grade E1Fk ≥ l and s.grade E1Fop

l ≥ n, then s.grade E1Fk ≥ n.
(2) If grade E1Fk ≥ l − 1 and grade E1Fop

l ≥ n− 1, then grade E1Fk ≥ n− 1.

Proof We can assume n > l.
(1) Fix C ∈ Fk and D ⊆ E1C. Then grade D ≥ l holds by our first assumption. By

2.4(5), we have an exact sequence 0 → D → Tr C
f→ D′ → 0 such that Tr C ∈ Wop

k

and f ∗ is an isomorphism. Thus D′ ∈ Wop
l by k ≥ l, and ΩlD′ ∈ Fop

l . Using 3.1(1) and
s.grade E1Fop

l ≥ n > l, we have ΩiD′ ∈ Fop
l for any i ≥ l inductively. On the other hand,

applying ( )∗ to the exact sequence above, we have an inclusion EiD ⊆ Ei+1D
′ = E1Ω

iD′

for any 0 ≤ i ≤ k. Thus our second assumption implies grade EiD ≥ n for any l ≤ i ≤ k.
Since grade D ≥ l, we obtain grade D ≥ n by 2.4(6).

(2) Fix C ∈ Fk and put D := E1C and D′ := Ω Tr ΩC. Then grade D ≥ l − 1
and ΩC ∈ Fl hold by 3.1(1). We have Tr ΩC ∈ Wop

l and Ωl−1D′ = Ωl Tr ΩC ∈ Fop
l .

Using 3.1(1) and grade E1Fop
l ≥ n − 1 > l − 1, we have ΩiD′ ∈ Fop

l for any i ≥ l − 1

inductively. By 2.4(5), we have an exact sequence 0 → D → Tr C
f→ D′ → 0 such that

Tr C ∈ Wop
k and f ∗ is an isomorphism. Applying ( )∗, we have EiD ' Ei+1D

′ ' E1Ω
iD′

for any 0 ≤ i < k. Thus our second assumption implies grade EiD ≥ n − 1 for any
l − 1 ≤ i < k. Since grade D ≥ l − 1, we obtain grade D ≥ n− 1 by 2.4(6).
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5.7 Recall that Λ is Gn(0) if and only if Λ satisfies the (i, i)op-condition for any
1 ≤ i ≤ n. It is known that Λ is Gn(0) if and only if so is Λop [FGR; 3.7] (see 4.2 above).
However, the (i, i)-condition doesn’t possess such a symmetric property in general [Hu1;

p.1460][Iy2; 2.1.1]. For example, the algebra given by the quiver • a→ • b→ • ← • modulo
the ideal ab satisfies exactly one of the (2, 2) and (2, 2)op-conditions.

As an application of 5.6, we give a sufficient condition that the (i, i)-condition implies
the (i, i)op-condition as follows.

Corollary Gn−1(1) + (n, n) ⇒ (n, n)op.

Proof The case n = 0 is trivial. Now suppose n ≥ 1. Then s.grade E1Fn−1 ≥ n− 1
and s.grade E1Fop

n−1 ≥ n. So s.grade E1Fn−1 ≥ n by 5.6(1). On the other hand,
Ωi(mod Λ) = Fi for any 1 ≤ i ≤ n by [HN; 4.7] (see 3.4 above). Thus s.grade EnC =
s.grade E1Ω

n−1C ≥ n for any C ∈ mod Λ and Λ satisfies the (n, n)op-condition.

5.7.1 Corollary (2, 2)op + (3, 3) ⇒ (3, 3)op.

Proof This is immediate from 5.7 for n = 3.

5.7.2 Example We give an example satisfying the conditions in 5.7.1. Let K be a
field and Λ a finite dimensional K-algebra given by the quiver

•
↓

• a−→ • −→ •
↓b

•
modulo the ideal ab. Then fd I0(Λ) = fd I1(Λ) = fd I0(Λ

op) = fd I1(Λ
op) = 1, and

fd I2(Λ) = fd I2(Λ
op) = 2.

5.8 Corollary The following conditions are equivalent.
(1) s.grade EiC ≥ i holds for any C ∈ mod Λ and 1 ≤ i ≤ n (i.e. Λ is Gn(0)).
(2) s.grade E1Fi−1 ≥ i holds for any 1 ≤ i ≤ n.
(i)op The opposite side version of (i) (i = 1, 2).

Proof (1)⇒(2) is trivial.
(2)⇒(1) By 3.1(1), ΩFi−1 ⊆ Fi holds for any 1 ≤ i ≤ n. This implies inductively

that Ωi(mod Λ) = Fi for any 1 ≤ i ≤ n. So the assertion follows easily.
(2)op ⇒(2) The case n = 0 is obvious. Now suppose n ≥ 1. By 5.6(1), s.grade E1Fn−1 ≥

n − 1 and s.grade E1Fop
n−1 ≥ n imply s.grade E1Fn−1 ≥ n. Thus the assertion follows

inductively.
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