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We quantify the potential for testing MOdified Newtonian Dynamics (MOND) with LISA
Pathfinder (LPF), should a saddle point flyby be incorporated into the mission. We forecast the
expected signal to noise ratio (SNR) for a variety of instrument noise models and trajectories past
the saddle. For standard theoretical parameters the SNR reaches middle to high double figures even
with modest assumptions about instrument performance and saddle approach. Obvious concerns,
like systematics arising from LPF self-gravity, or the Newtonian background, are examined and
shown not to be a problem. We also investigate the impact of a negative observational result upon
the free-function determining the theory. We demonstrate that, if Newton’s gravitational constant
is constrained not be re-normalized by more than a few percent, only very contrived MONDian
free-functions would survive a negative result. Finally we scan the structure of all proposed rela-
tivistic MONDian theories. We conclude that only the Einstein-Aether formulation would survive
a negative result.

I. INTRODUCTION

Einstein’s theory of General Relativity (GR) and the
ΛCDM standard model are two cornerstones of modern
cosmology. They posit that the gravitational effects of
large scale structures in the universe (such as galaxies
and clusters of galaxies) cannot be explained by lumi-
nous, baryonic matter alone, but rather that an addi-
tional cold (pressureless) and dark (non-luminous) mat-
ter component is needed. However, in the absence of
direct observational evidence for dark matter, it remains
nothing but a useful calculational device. For as long as
this is true, it is scientifically healthy to explore alter-
native explanations for the anomalous gravitational dy-
namics, namely by modifying the theory of gravity itself.
MOdified Newtonian Dynamics (or MOND [1]) is one

such scheme valid in the non-relativistic regime. It was
first proposed to explain observed dynamical properties
of galaxies without invoking dark matter. More recently
it has been incorporated into relativistic theories [2–6],
following from the ground breaking proposal of “TeVeS”
by Bekenstein [7]. Relativistic extensions are needed for
reasons beyond logical completeness: they are required
to explain, for example, phenomenology associated with
lensing and cosmology [8], where dark matter is also usu-
ally employed. When the whole picture is assembled the
conflict between MOND and dark matter leaves consid-
erable scope for doubt over the interpretation of new as-
trophysical and cosmological data. A fair comparison
requires re-evaluating, within each approach, the whole
set of assumptions underlying the new observations. For
this reason the debate would benefit from a direct probe,
in the form of a laboratory or Solar System experiment.
This has been proposed in various forms, namely in plan-
etary data [9] appealing to the exterior field effect [10].
The fact that MOND predicts anomalously strong tidal

stresses in the vicinity of saddle points of the Newtonian
potential has been advocated as one such decisive direct
test [11]. The forthcoming LISA Pathfinder mission [12]
presents the perfect opportunity for its realization, as a

preliminary feasibility study has demonstrated [13, 14].
The purpose of this paper is to provide a detailed quanti-
tative evaluation of the power of a MONDian saddle test
using LPF, predicated upon a scenario where a mission
extension is granted. The extension would involve redi-
recting the spacecraft from Lagrange point L1 to a saddle
of the Earth-Moon-Sun system [14] once its nominal mis-
sion at L1 is completed. In establishing the scientific case
our efforts in this paper are twofold.
In the first part of the paper we propose some basic

data analysis tools and evaluate their expected perfor-
mance. These tools are an adaptation of the “noise-
matched filters” employed in gravitational wave detec-
tion [15]. Their implementation benefits from a major
simplification: for a saddle test we do know the tem-
plate’s starting point in the time. A number of pitfalls
and potential systematics found in detection of gravita-
tional waves are therefore expected to be absent. The
filter’s optimal signal to noise ratio (SNR) allows us to
quantify with a single number the predicted outcome for
any experiment. Assuming a “standard” MONDian the-
ory, the unknowns reduce to the instrument performance
(the noise properties) and the trajectory past the saddle
(its impact parameter). For each of these we can con-
dense the expected outcome of a LPF test in a single
number: the forecast SNR assuming MOND is correct.
Our central results are in Section III, particularly in

Figs. 4 and 7, where the optimal SNR is plotted against
noise level and saddle impact parameter. In a cataclysmic
scenario for instrument performance and saddle approach
we’d still achieved SNR ≈ 5. For less pessimistic assump-
tions, high double figures are easily reached. We examine
the effect of the spacecraft speed as it flies past the saddle,
showing that just about any typical speed will turn out
to be optimal. This is due to a remarkable coincidence,
spelled out in Section IV and in the concluding section
of this paper. In Section IV we also show that possible
systematic errors, such as self-gravity or the Newtonian
background, are in fact harmless.
In the second part of this paper, and complementing

http://arxiv.org/abs/1107.1075v1


2

the work just described, we spell out the generality of
the conclusions in the first part, and examine the implica-
tions of a negative observational result. Just how compre-
hensively would the failure to detect the predicted high
SNRs rule out the MONDian paradigm as a whole? As
explained in Section II the large menagerie of proposed
relativistic MONDian theories practically all reduce to
the same non-relativistic limit as TeVeS, and virtually
all theories fall into 3 categories. One then is left with
a free-function, µ and the question is, how much leeway
does it provide for evading a negative result? In Section V
we review previously proposed free functions, rewriting
them under a unified notation. We then lay down condi-
tions for what should be permissible free functions at its
most basic level. Briefly we require that: (I) The theory
shouldn’t renormalize Newton’s gravitational constant by
more than a few percent in the Newtonian regime; (II)
The theory should predict the usual MONDian effects
when the Newtonian acceleration drops below acceler-
ation scale a0. These constraints were implemented in
TeVeS and set the standard for a viable theory with use-
ful astronomical implications. We show that all natu-

ral functions satisfying these conditions result in similar

SNRs for an LPF saddle test, as long as the impact pa-

rameter is smaller than 400 km.

In Section VI we quantify how contrived the free func-
tion µ would have to be, for the theory to survive a neg-
ative result. We find that only a µ turning from 1 (New-
tonian regime) into an intermediate power-law, µ ∝ zn,
and only then into the MONDian µ ∝ z, would be vi-
able. The intermediate n would have to be very different
from 1 even with undemanding requirements on impact
parameter and noise. Thus, only very contrived µ would
bypass a negative result. Although this conclusion is de-
rived for TeVeS we show that it is very general. Indeed
the Einstein-Aether formulation seems to be the only rel-
ativistic realization of MOND to survive a saddle test.

We conclude that a LPF test has both the power to
detect MOND with a high SNR should it be true, and to
comprehensively rule it out, should a negative result be
obtained.

II. MONDIAN THEORIES

One can find in the literature a large number of rela-
tivistic MONDian theories. It is important to note that
their complexity and differences arise from the require-
ment that they should explain relativistic phenomena
(such as lensing and structure formation) without ap-
pealing to dark matter. However, in the non-relativistic
regime, almost all of them reduce to the non-relativistic
limit of TeVeS, which will be the focus of this paper.
There are exceptions, however, and we spell them out
here. In general the large profusion of relativistic MON-
Dian theories reduces to only 3 types of non-relativistic
limits, which we’ll label type I, II and III.

• Type I In these theories the non-relativistic dy-
namics results from the joint action of the usual
Newtonian potential ΦN (derived from the metric
via g00 ≈ −(1 + 2ΦN)) and a “fifth force” field,
φ, responsible for MONDian effects. The total po-
tential acting on non-relativistic particles is their
sum:

Φ = ΦN + φ . (1)

Whilst the Newtonian potential satisfies the usual
Poisson equation:

∇2ΦN = 4πGρ (2)

the field φ is ruled by a non-linear Poisson equation:

∇ · (µ(z)∇φ) = κGρ, (3)

where, for convenience, we pick the argument of the
free function function µ as:

z =
κ

4π

|∇φ|
a0

(4)

where κ is a dimensionless constant and a0 is the
usual MOND acceleration. In Section V we will
say more on admissible functions µ, but in general
we require that µ → 1 when z ≫ 1 and µ ∼ z for
z ≪ 1. (We use letter z instead of y to prevent a
common source of confusion in the literature; see
Section VA.)

• Type II In these theories we also have Φ = ΦN+φ,
but now the field φ is ruled by a driven linear Pois-
son equation, whose source depends on the New-
tonian potential. In order to facilitate comparison
with Type I theories (as explained below) we write
the equation for φ in these theories as:

∇2φ =
κ

4π
∇ · (ν(v)∇ΦN ) (5)

where the argument of free function ν is given by

v =
( κ

4π

)2 |∇ΦN |
a0

(6)

and we require that ν → 1 when v ≫ 1 and ν ∼
1/

√
v for v ≪ 1.

• Type III This was the original non-relativistic
MONDian proposal, derived from a non-relativistic
action principle (the so-called AQUAL [16]). Cru-
cially, here non-relativistic particles are sensitive to
a single field Φ which satisfies a non-linear Poisson
equation:

∇ · (µ̃(x)∇Φ) = 4πGρ . (7)

Again, µ̃ is a free function with a suitably chosen
argument:

x =
|∇Φ|
a0

(8)

so that µ̃ → 1 when x ≫ 1 and µ̃ ∼ x for x ≪ 1.
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Virtually all relativistic MONDian theories proposed
in the literature fall into these categories. TeVeS, the
pioneering relativistic MONDian theory [7], has type I
limit, but Sanders’ stratified theory [2] is also type I. Mil-
grom’s bimetric theory [5, 6] can be either type I or type
II, depending on details. Einstein-Aether theories [3, 4]
are unique in that they have a non-relativistic limit of
type III. Often authors have attended to different con-
siderations and constraints, so the parameter κ has been
taken to be different. However, as we’ll point out below,
had the same considerations been employed, the value of
κ would have to be comparable.
There are significant differences between the non-

relativistic limits listed above. The most radical distinc-
tion bundles together type I and II theories in opposition
to the single relativistic theory leading to a type III limit.
Because in type I and II theories non-relativistic parti-
cles are sensitive to two fields, the gravitational constant
is effectively renormalized. In the the Newtonian regime
(non-relativistic limit, high total Newtonian force), we
have µ ≈ 1 or ν ≈ 1, and so φ mimics the Newtonian
potential:

φ ≈ κ

4π
ΦN , (9)

i.e. φ doesn’t vanish but rather shadows ΦN multiplied
by κ/4π. This “renormalizes” the gravitational constant:

GRen ≈ G
(

1 +
κ

4π

)

, (10)

and GRen is the gravitational constant measured, say,
by the Cavendish experiment. Nevertheless cosmology
(for example, Friedmann’s equations) is sensitive to the
“bare” G. Constraints arising from Big Bang nucleosyn-
thesis therefore require κ to be of the order of ∼ 0.01 or
smaller. Structure formation considerations may fix fur-
ther the value of κ (see [8] and references therein). The
conclusion is that in the non-relativistic regime the field
φ must be suppressed when aN = |∇ΦN | is very large.
However, astrophysical applications of type I and II

theories require that when aN < a0 the total Φ must
have MONDian behaviour. This requires simultaneously

that φ be in the MONDian regime and that φ be the
dominant contribution. But this means that we must
switch on MONDian behavior in φ at Newtonian accel-
erations aN much higher than a0. Only thus may the
relative importance of φ start increasing with decreasing
aN so that when aN drops below a0 it has caught up
with ΦN . Assuming the free function turns from 1 to a
single power-law (and ignoring the MONDian magnetic
field where appropriate) we have Fφ/FN ∝ 1/

√
FN once

MONDian behavior in φ has been triggered. Given (9)
we should therefore trigger MONDian behavior in φ for:

aN < atrigN ≈
(

4π

κ

)2

a0 , (11)

(with atrigN ∼ 10−5 ms−2 for typical κ) or equivalently

|∇φ| < atrigφ =
4π

κ
a0 (12)

FIG. 1: Log plot of ratio between the MONDian and New-
tonian forces, Fφ/FN , against z = (k/4π)|Fφ|/a0 (bottom
axis) and FN/a0 (top axis). So that FN ∼ Fφ when Fφ ∼ a0

(and so z = κ/4π; also FN ∼ a0) and at the same time
have Fφ/FN ∼ κ/4π ≪ 1 in the Newtonian regime (z ≫ 1,
FN → ∞), we must trigger MONDian behaviour in φ at ac-
celerations much larger than a0 (when z ∼ 1).

also much larger than a0. This point is illustrated in
Fig. 1.

These considerations apply equally to type I and II
theories. We have parametrized the free-function ν for
type II theories in a way (at odds with the literature)
which allows comparison of “like with like”, in this re-
spect, with type I theories. Thus, for the same κ both
types of theory renormalize the gravitational constant
by the same amount. They also then predict φ ∼ ΦN for
aN ∼ a0, should their functions µ or ν trigger MONDian
behavior at z ∼ 1 and v ∼ 1, for type I and II theories,
respectively.

These considerations explain the large size of the bub-
bles around the saddle inside which type I and II theories
display anomalously large tidal stresses. These bubbles
are large (of the order r0 ≈ 380 km for the Earth-Sun
saddle) because they represent the region where the field
φ has started to behave in a MONDian fashion. This
is given by the region where aN < atrigN and not where
aN < a0, as might be naively expected (and indeed it

can be easily computed that aN ∼ atrigN around r0). It
is important to stress that in a LPF saddle test we are
probing the regime where φ has gone fully MONDian but
hasn’t yet dominated ΦN , something that happens at to-
tal Newtonian forces in the range a0 < aN < atrigN . In
spite of the dominance of ΦN the MONDian signal in φ
can be detected because, as we shall see, it has a distinc-
tive spatial variation, whereas the Newtonian tidal stress
is just a DC component. The experiment is sensitive to
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FIG. 2: The transverse MOND stress signal Syy along the
lines y = 25, 100 and 400 km (top to bottom), for the Sun-
Earth saddle, taking the effect of the Moon into account. The
different lines represent different lunar phases: new Moon
(thick, black, solid), full Moon (thick, black, dashed) and with
the Moon appears 18◦ away from the Sun towards positive y
(thin, black, solid). We also show, for the y = 25 km case,
the Newtonian stresses (grey) rescaled by κ/4π (see text for
discussion).

the time Fourier transform of the signal with a sensitiv-
ity that peaks at the MOND frequency (and is very poor
for a DC component due to 1/f noise). In contrast, in
type III theories MONDian effects are only triggered for
aN ∼ a0 ∼ 10−10 m s−2, resulting in very small bubbles
(a few meters across).

Even though these considerations place type I and II
under the same umbrella with regards to a saddle test,
they have a significant difference. A well known tech-
nicality is that type I and III theories have a curl term
(sometimes dubbed a “magnetic field”) whereas type II
theories don’t. The magnetic field is known to soften the
anomalous tidal stresses around the saddle points, as ex-
plained in [11]. Thus one may expect that type II theories
have a quantitatively stronger saddle signal than type I
(once their κ are adjusted to produce the same physical
properties).

In this paper we focus on Type I MONDian theories,
but in the conclusions explain why our results are qual-
itatively applicable to Type II theories too (indeed the
SNR forecast here are higher for type II theories [17]).
Type III theories are the only ones to fall through the
LISA Pathfinder net.

III. THE SIGNAL TO NOISE EXPECTED

FROM A SADDLE FLYBY

The quantitative predictions for type I theories have
been extensively studied using both analytical methods
resorting to simplifying assumptions [11] and numeri-
cal techniques [13] including all the complications of the
problem, such as the perturbing effect of the Moon and
planets. Figure 2 has been borrowed from [13] to illus-
trate the expected tidal stress along lines missing the
saddle at 25, 100 and 400 km. As in [13], we adopted
a coordinate system with x aligned along the Sun-Earth
axis and centered at the saddle and considered trajecto-
ries parallel to x (y = b lines, where b is the impact pa-
rameter), but other trajectories are easy to implement.
Due to a number of practical issues [14], only transverse
tidal stresses can be measured, say the Syy component.
Predictions are cast in the form of tidal stresses be-

cause this is what is directly measured by the instrument.
LPF measures the relative distance between the masses,
but this is converted into a relative acceleration (or its
Fourier transform in time). Up to a factor dependent on
the proof mass separation, the measurement is therefore
one of tidal stress along the direction linking the two
masses (with further masses, other tidal stress compo-
nents would become accessible). In line with this state-
ment, noise evaluations and forecasts are expressed in
terms of tidal stress or relative accelerations; one should
use the inter-mass separation to convert between the two.
It is of paramount importance to note that field φ pro-

duces both a MONDian effect and a Newtonian pattern,
associated with a rescaling of G in the Newtonian limit.
The properly MONDian stress is therefore:

Sij = − ∂2φ

∂xi∂xj
+

κ

4π

∂2ΦN

∂xi∂xj
(13)

i.e. we must subtract from φ its component included in
the Newtonian background, which is ΦN rescaled by κ/4π
(see [13] for more details). In performing this exercise
it is essential that φ and ΦN have been solved to the
same degree of accuracy. In Section IVC we will discuss
the impact of an imperfect subtraction of the Newtonian
component.
The data analysis task in hand is therefore to detect

a “wave form” of this type with the instrument aboard
LPF. As a first hack at the problem, we evaluate the
performance of noise matched filters. Matched filter-
ing is a well-known data analysis technique used for effi-
ciently digging a signal with a known shape out of noisy
data [15, 18]. The technique is extensively used in the
search for gravitational waves. The idea is to correlate a
time series x(t) with an optimized template designed to
provide maximal signal to noise ratio (SNR), given the
signal shape h(t) and the noise properties of the instru-
ment. Generally we have x(t) = h(t− ta)+n(t), where ta
is the signal “arrival time” and n(t) is a noise realization.
We want to correlate x(t) and an optimal template q(t),
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yet to be defined, according to:

c(τ) =

∫ ∞

−∞

x(t)q(t + τ)dt , (14)

where τ ia a lag parameter, giving us essential leverage
if we don’t know ta a priori. The average of c over noise
realizations is the expected signal, S, and its variance is
the square of the noise in the correlator, N2; the forecast
signal to noise ratio is therefore ρ = S/N . A straight-
forward calculation (under general assumptions, namely
the Gaussianity of the noise—more on this later) shows
that ρ is maximized by choosing a template with Fourier
transform:

q̃(f) =

∫ ∞

−∞

q(t)e2πiftdt =
h̃(f)e2πif(τ−ta)

Sh(f)
(15)

and setting the lag τ to the arrival time, τ = ta. Here
Sh(f) is the power spectral density (PSD) of the noise,
conventionally defined from

〈ñ(f)ñ⋆(f ′)〉 = 1

2
Sh(f)δ(f − f ′) , (16)

(the factor of 1/2 hails from the tradition of taking one-
sided Fourier transforms of the noise auto-correlation—
-i.e. with f > 0 only). The maximal SNR, realized by
the optimal template, is then:

ρ = ρopt = 2







∫ ∞

0

df

∣

∣

∣
h̃(f)

∣

∣

∣

2

Sh(f)







1/2

. (17)

Notice that the optimal template, q(t), defined by (15)
is not the signal, h(t), but rather a filtered version with
a pass where the noise is low and a cut where the noise
in high. Also, the optimal SNR given by (17) is not
the energy in the signal but an integrated signal power
weighted down by the noise PSD.
These techniques are run of the mill in gravitational

wave detection, where the arrival time of a signal is often
not known1. For example, for a chirping signal, even if we
have a fair idea of the shape of the signal, we can’t know
when a binary coalescence is to take place. We therefore
have to shift the template Fourier transforms, h̃(f), by
all possible phases, until the maximal SNR is obtained,
should there be indeed a signal. This adds an extra pa-
rameter to the fit and may also be the source of spurious
detections. It affects the management of 1/f noise and
increases the false alarm rates (as effectively we have a
number of trials equal to the total observation time di-
vided by the duration of the template). This problem is

1 There are exceptions, for example if the signal comes from a

supernova or any other source for which there is an extrinsic

method, typically in the optical domain, for flagging the source

of gravity waves.
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FIG. 3: The amplitude spectral density (ASD) of the MOND
tidal stress signal for a trajectory with b = 50 km and
v = 1.5 km s−1, compared to the ASD of the basic noise
model described in the text, assuming a baseline of 1.5 ×
10−14 s−2/

√
Hz. This scenario generates a SNR of 28.

absent in the context of our test, where ta is known since
we do know where the saddle is and therefore where the
signal is meant to start in the time-ordered series. A
natural truncation in integration time T is also present,
simplifying 1/f dealings.
It has been estimated2 that the saddle can be pin

pointed to about a kilometer and the spacecraft loca-
tion determined to about 10 km even with most basic
tracking methods3. The effect this has on SNRs is neg-
ligible, indeed the SNR grids we are about to present
have this sort of resolution. Thus, we can simply set
ta = 0 with an appropriate choice of conventions and set
to zero the time lag τ in the correlator c, to achieve opti-
mal results. For all practical purposes the starting time
is indeed known. To the same degree of approximation,
we also know the spacecraft trajectory and velocity with
respect to the saddle.
Given a spacecraft trajectory, the conversion of tidal

stresses (such as those depicted in Fig. 2) into a template
in time, h(t), is then trivial. For a setup such as the one
described above we have h(t) = Syy(vt, b, 0), where v is
the velocity of the spacecraft, and t = 0 corresponds to
the point of closest saddle approach. In a more general
setup, for an approximately constant velocity v, a closest
approach vector b, and with the masses aligned along
unit vector n, we have

h(t) = ninjSij(b+ vt) . (18)

2 These uncertainties are of a practical nature and should not be

confused with theoretical uncertainties. It can be estimated that

the MOND saddle cannot be shifted with respect to the New-

tonian saddle by more than a meter, and this is just an upper

bound.
3 S. Kemble, private communication; to be published.
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FIG. 4: Signal to Noise ratio contours, for various impact
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spacecraft velocity at 1.5km s−1. Calamitous assumptions
would still lead to SNR of 5. More optimistic ones (b around
50km, noise half way up the scale) would lead to SNRs easily
around 50.

This template should be Fourier transformed and, given a
noise model, used to produce an optimal template, using
a noise matched filter. Its SNR can then be evaluated.
To gain some intuition on the nature of the signal in

Figure 3 we plot the amplitude spectral density (ASD)
of the signal, which is the square root of the PSD:

P (f) =
2

T

∣

∣

∣

∣

∣

∫ +T/2

−T/2

dt h(t) e−2πift

∣

∣

∣

∣

∣

2

(19)

where f is the frequency, t is the time and T is the in-
tegration period (here taken conservatively to be T =
2 × 104 s). This can be directly compared to the noise
ASD, the form usually quoted by experimentalists. As
a simplified LPF noise model (see [14]), we assume that
the noise is white in the frequency range between 1 and
10 mHz, i.e. we assume a constant baseline with ASD
around 1.5×10−14 s−2/

√
Hz. For lower frequencies we as-

sume 1/f noise and for higher frequencies that the noise
degrades as f2. With these assumptions the noise and
signal ASDs are plotted in Figure 3, for typical param-
eters. As we can see, there’s signal to noise of order 10
over a couple of decades, making it not surprising that the
integrated SNR is in double figures (in this case around
28).
We can now run through the parameter space of the ex-

periment and evaluate SNRs. For example, let’s assume
v = 1.5 km s−1 and explore impact parameters up to 600
km. Let’s also consider the effect of changing the base
line ASD of our noise model. The result is plotted in Fig-
ure 4. We see that we’d need to miss the saddle by more
than 300 km to enter single figures in SNR, with typical
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FIG. 5: Plot of SNR against satellite velocity for an im-
pact parameter of 50 km and a baseline noise of 1.5 ×
10−14 s−2/

√
Hz. We note a broad peak around v = 2 km s−1.

Higher speeds shift the signal to higher temporal frequencies;
however the rough speeds of all trajectories in the Earth-Moon
system are already optimal, given the noise properties of the
instrument.

noise levels. For b around 50 km a SNR of the order 30-40
is not unrealistic. Recent work has placed a figure on the
impact parameter around b = 10 − 50 km within reach.
In combination with the expectations for the noise, this
makes the test very promising indeed. However we should
now look at this preliminary analysis in more detail.

IV. FURTHER DISCUSSION

In this Section we refine and discuss further the basic
results presented in the previous Section. There is con-
siderable uncertainty regarding the details of the flyby
trajectory, namely its speed. In Section IVA we show
that the effect of the speed is minimal, within the range of
speeds expected from any trajectory in the Moon-Earth
system. In Section IVB we present improved, more re-
alistic noise models, repeating the analysis with a best
and worst case scenario for instrument performance as
understood at the time of writing. We also outline work
in progress, improving on noise matched filters and on
estimates of false alarm rates. Finally in Section IVC we
discuss issues related to the background tidal stresses,
namely the the Newtonian background and the space-
craft self-gravity.

A. The impact of the spacecraft velocity

What is the effect of the spacecraft velocity on the
SNRs presented in the previous Section? The question
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is relevant as it can assist the strategy in designing flyby
trajectories. Here we show that in practice all that mat-
ters is the trajectory location (impact parameter and pos-
sibly angle). Within the range of realistic speeds, the
SNRs do not vary substantially. The good news is that
due to a remarkable coincidence, these speeds are already
near optimal.
As Eq. (18) shows, the spacecraft velocity is the con-

version factor between the spatial scale of the tidal stress
and the time scale at which the instrument measures
them. Of course, in detail, this has an effect on expected
SNRs. Higher/lower speeds mean a faster/slower scan-
ning of these spatial features, and thus a shift of the tem-
plate h̃(f) to higher/lower frequencies, whilst keeping the
noise ASD fixed. Therefore the SNR has to change. This
is shown in Fig. 5, for b = 50 km and a baseline noise of
1.5× 10−14 s−2/

√
Hz.

We see that the SNR has a peak at v = 2 km s−1.
However this peak is very broad with respect to the type
of variations that might be expected from different tra-
jectories leading from L1 to the saddle [14]. For the rough
range v = 1.5 − 2.5 km s−1 the SNR varies in the range
27-28, approximately. For v = 1 − 3 km s−1 (which is
pushing it, in terms of real orbits) the variations would
be in the approximate range 25-28. The message is clear:
get as close to the saddle as possible, never mind the
speed. The speed will never be very far off the optimal.
This result can be understood qualitatively. As a crude

estimate, anything moving in the Earth-Moon system has
a typical speed of the order of 1 km s−1. The MONDian
tidal stress for the Earth-Sun saddle displays variations
on a length scale of the order of 100 km. Therefore the
MONDian signal will always be felt by LPF on a time
scale of minutes, i.e. in the mHz range. This is just
where the instrument noise is lowest, a remarkable co-
incidence considering that the instrument was built to
these specifications for entirely different reasons (astro-
physically motivated gravitational wave templates have
these time scales). And yet the typical speeds and length
scales of the problem combine to make the instrument al-
ready optimal for a MONDian saddle test.

B. Improved noise models

A number of improvements to the noise model used in
the previous Section are possible. These are the subject
of a paper in preparation [19]. Obviously there isn’t a
frequency region with white noise. Instead, the noise is
likely to be higher than modeled in Section III at high
frequencies but lower than expected at low frequencies.
The turnover between the two regimes is smooth, as de-
picted in Figure 6, where we superimposed the simplified
noise model used in Section III with the more realistic
estimates for ASD for a best and worst case scenario. It
has been argued that the worst case scenario might be
too pessimistic and the best case scenario too optimistic,
so we should take these two models as extremes.
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FIG. 6: This figure replots Fig. 3, adding on the best and
worst case scenarios for more realistic noise models, as at
the time of writing. We have assumed a trajectory with the
geometry described in the main text, with impact parameter
of b = 50 km and velocity v = 1.5 km s−1. We have also
plotted the contribution of φ to the Newtonian background.

In Figure 7 we plot the SNR as a function of impact pa-
rameter with v = 1.5 km s−1, assuming the two extreme
scenarios. As we can see, in the best case scenario we’d
need to miss the saddle by more than 650 km for the SNR
to drop below 5. In the worst case noise scenario, how-
ever, that figure would shrink to about 250 km. For the
currently expected b ∼ 50 km the SNR would be in the
range 13− 44. In spite of the uncertainties, all scenarios
lead to optimistic prospects (and even overkill) regarding
a detection. We stress that we will know what the noise
is, in situ and while on L1. Our forecasts are useful, but
we should highlight that they’d become concrete, fixed
numbers once the mission goes ahead.

We should add that even if the noise ASD is known,
further issues complicate the simple data analysis proce-
dures presented in the previous Section. Most notably
the real noise is non-Gaussian and non-stationary. This
may increase the probability of a “false alarm”, to use the
jargon of gravitational wave detection. Putting a realistic
figure to the probability of a false detection requires hav-
ing the instrument switched on before and after a saddle
flyby, characterizing the noise in situ, and evaluating the
false alarm rates with real noise. No prior modeling can
be a substitute for this. Nonetheless more realistic simu-
lations of the instrument response and noise are possible.
We are currently working on these.

The issue of false alarm rates is obviously central
should there be detection. But even just planning the ex-
periment, it raises important questions, e.g.: given these
rates, is it better to sacrifice b at the expense of multi-
ple flybys, or should we put all our efforts into a single
flyby with a b as low as possible? Should the noise be
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FIG. 7: The SNR for the improved noise models (best and
worst case scenario) assuming v = 1.5 km s−1 for a variety of
impact parameters b.

approximately Gaussian and stationary, the probability
of a false detection is simply [15]:

F = Nerfc(ρ) (20)

where ρ is the optimal SNR, and N is the number of
trials. In gravitational wave detection N = O/T , where
O is the total observation time and T the useful dura-
tion of the filtered template. The factor N can be very
large, so that even substantial SNRs (say 8 or 9) can
produce non-negligible rates F . In gravitational wave
detection this nuisance can be mitigated by coincident
observations. We stress that no such problem is present

here. We do know where the saddle is for all practical
purposes, so N = 1, removing the extra factor enhancing
the false alarm rate.
The high SNRs we’ve obtained at low b suggest that

it would not be advisable to sacrifice b for the sake of
multiple flybys, in order to reduce false alarm rate. This
statement should be further scrutinized using real noise.
But even if it’s true there is an important sociological el-
ement. The reliability of any scientific claim rests on re-
producibility. Should there be a positive detection, more
than one flyby would go some way towards establishing
the case for reproducibility.

C. The Newtonian background and self-gravity

We finish this section by examining two possible sys-
tematics that could plague a saddle test: the Newtonian
background and the spacecraft self-gravity. These are
natural concerns, but their impact is negligible. In estab-
lishing this fact it is important not to confuse force and
tidal stress. It is also essential to examine the Fourier
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FIG. 8: ASD plot of the MONDian and Newtonian signal
(multiplied by κ/4π), as compared to the noise ASD. We con-
sider the effect of subtracting the Newtonian component in φ.
This only affects very small and very large frequencies.

components of the stress signal and distinguish a DC
component from a signal peaking at frequencies to which
the experiment is sensitive.

The MONDian saddle signal has a spatial scale r0 ≈
380 km. In this region, apart from an inner bubble a
few meters across, the Newtonian force is always much
larger than the MOND force and also the MONDian ac-
celeration a0 ≈ 10−10 m s−2. We recall the discussion
in Section II, where we noted that LPF would probe the
regime a0 < aN < atrigN , with atrigN ≈ 10−5 m s−2. In-
deed around r0 ∼ 400 km, the Newtonian acceleration
is aN ∼ atrigN . The Newtonian tidal stress is therefore
dominant in this regime (with an intensity of the order
A ∼ 10−11 s−2), but, crucially, it is approximately a DC
component [11, 13]. This is to be contrasted with the dis-
tinctively varying MONDian signal (see Fig. 2) which, as
we’ve shown, translates into a signal peaking at frequen-
cies where the noise is low. A DC component, on the
other hand, is well buried in the 1/f noise. It is true
that in detail the Newtonian tidal stress is not exactly
constant on the scale of r0. But we do know what it is,
to the same accuracy as we know the saddle location and
trajectory, and can subtract it off. Furthermore its spec-
tral shape away from its DC component is very different
from that predicted by the MOND signal, as shown in
Fig. 8. The Newtonian background amounts to the sub-
traction of a known component.

A related matter was flagged in Section III, and re-
lates to subtracting off from φ its effect on the renor-
malization of the gravitational constant. Some of φ con-
tributes to the Newtonian background and should not be
included in the MONDian predictions (cf. Eqn. (13); see
also [13]). In Figure 9 we plotted the power spectrum
of the non-DC component of the Newtonian tidal stress
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FIG. 9: This plot illustrates the systematic effects that might
result from an incorrect Newtonian subtraction. We consider
the transverse tidal stresses felt in trajectories with impact
parameters b = 100, 500, 1000 km. We then subtract the DC
constant Newtonian tidal stress contributions from φ (top)
and its full contribution (bottom). As we can see an imperfect
subtraction produces a spurious ramp in the stress.

produced by φ. The impact of not subtracting the com-
ponent of φ contributing to the Newtonian measurement
can be appreciated in Figure 9. This figure also gives us
an idea of the level of impact an imperfect Newtonian
subtraction might have. We considered the transverse
tidal stresses felt in trajectories with impact parameters
b = 100, 500, 1000 km. In the top we subtracted only the
DC component, in the bottom we subtracted the full con-
tribution of φ to the Newtonian tidal stresses. As we can
see an imperfect subtraction would produce a spurious
ramp in the stresses.

Another issue is LPF’s self-gravity. The mission re-
quirement is that the differential acceleration of the two

LPF test masses should be balanced at the level of
a ∼ 10−9 m s−2, but actual performance may beat the
nominal requirement by a factor of 10. Yet again this is
a DC component and does not affect the measurement
in tidal stresses with the distinctive temporal variations
we have posited. There are of course time-varying uncer-
tainties in the self-gravity balancing but these are much
smaller. They are mainly due to thermoelastic effects,
and are on the level of 3 × 10−16 m s−2/

√
Hz at least

down to 1mHz.
An issue related to this concerns the position of the

saddle. Naively one might think that with a self-gravity
of the order of 10−9 m s−2 the position of the saddle
would be perturbed by the spacecraft. The two test
masses could even generate distinct saddle points due
to their gravity. This concern ignores the fact that with
realistic impact parameters we are not testing the regime
aN ∼ a0, but the regime a0 < aN < atrigN with much
larger Newtonian accelerations. For instance for an im-
pact parameter of 40 Km we have aN ∼ 10−6 ms−2.
Around b ∼ r0 the Newtonian acceleration is aN ∼
atrigN ≈ 10−5 m s−2. We’d need to approach the sad-
dle much closer than about 400 meters before self-gravity
becomes an issue and the spacecraft itself had to be in-
cluded in the computation of the location of the saddle.

V. MONDIAN FREE-FUNCTIONS

In the second part of this paper we examine the gener-
ality of our predictions. So far we have focused on type
I theories with a specific fitting function µ (the one used
in [13]). But even if we restrict ourselves to type I the-
ories there is a whole free function µ(z) to play with.
Would theorists be able to wriggle out of a negative re-
sult availing themselves of this freedom? In the next 3
sections we prove that under general conditions only type
I theories with very contrived µ-functions would survive
a negative result. This conclusion also applies to type II
theories, although we won’t prove it to the same level of
detail. Type III theories turn out to be the only ones to
evade a LPF saddle test.
In this Section we start by reviewing previously pro-

posed µ, laying down a common notation. We then dis-
cuss criteria for physically permissible µ, showing that
for single power-laws they all produce SNRs of the same
order, for impact parameters smaller than 400 km.

A. Notation and previous proposals

As explained in Section II, for type I theories two po-
tentials act on non-relativistic test masses: the Newto-
nian potential ΦN and a fifth force φ. Thus, the total po-
tential is Φ = ΦN+φ, or in terms of forces, F = FN+Fφ.
We recall that both contributions satisfy Poisson type
equations:

∇2ΦN = 4πGρ (21)
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∇ · (µ∇φ) = κGρ (22)

where, as before, we write µ with argument z = κ
4π

|∇φ|
a0

.
In the Newtonian limit µ → 1, whereas MONDian be-
haviour in φ is triggered when µ → z. Note that here

z =

√

y

3
(23)

where y is the variable employed by Bekenstein in his
original paper on TeVeS [7]. Much confusion has arisen
from different notations in this respect.
We should not confuse µ(z) with the function µ̃(x)

used in type III theories (cf. Eqn. (7)) and also favoured
by astronomers. Even in type I (and also II) theories, we
can loosely define an effective µ̃(x), obtained from adding
equations (21) and (22) and comparing with Eq. (7).
This effective µ̃(x) function is frequently used in fits to
galactic phenomenology. However the two functions µ̃(x)
and µ(z) can only be easily related if the MONDian curl
term can be neglected. This proviso is often incorrectly
ignored. If the curl term is non-negligible, then type I
theories don’t properly have a µ̃(x) function, and there’s
no substitute for integrating the equations on a case by
case basis.
If the curl field can indeed be ignored in the integration

of (22), then it’s easy to relate functions µ(z) and µ̃(x)
(see, e.g. [8]). Using (21) and (22), their definitions can
then be rewritten as F = FN/µ̃ and Fφ = κ

4πµFN , so

that F = FN + Fφ implies:

µ̃ =
1

1 + κ
4πµ

. (24)

In addition we can write the argument x = F/a0 in terms
of z = (κ/4π)Fφ/a0 by deriving:

x =
4π

κ
z

(

1 +
4πµ(z)

κ

)

. (25)

Eqns. (24) and (25) provide a parametric expression for
µ̃(x). Note that Eq. (24) trivially implies that in the
Newtonian regime (µ ≈ 1) MOND has the effect of renor-
malizing G as:

GRen =
G

µ̃
≈ G

(

1 +
κ

4π

)

. (26)

a result already presented in Section II.
Several µ functions have been previously proposed.

The “toy” model used in Bekenstein’s original paper [7]
follows from the implicit expression:

z2 =
µ2(µ− 2)2

4(1− µ)
. (27)

A variation was employed in [11] to facilitate analytical
work on the 2-body problem:

z2 =
µ2

1− µ4
. (28)

In some manipulations an inversion of the latter is useful:

µ =

√√
1 + 4z4 − 1

2z2
. (29)

A proposal quite distinct from these two can be found
in [20]:

µ(z) =
z

1− 4πα
κ z

(30)

with the case α = 1 first suggested in [21]. To bridge our
notation with the µs(s) used in [20] we should use the
dictionary (obtained from direct comparison of (21) and
(22) and their counterparts in [20]):

µ =
κ

4π
µs (31)

s =
4π

κ
z (32)

and then set κ = 4π (see equation (5) in [20]).

There is some debate over which µ̃ functions best fit
astrophysical data. Examples include [22]:

µ̃(x) =
x

1 + x
(33)

and

µ̃(x) =
x√

1 + x2
(34)

or even [20, 21]:

µ̃(x) =
2x

1 + (2 − α)x+
√

(1 − αx)2 + 4x
. (35)

With the proviso spelled out above (non-invertibility of
a µ(z) in terms of a µ̃(x) in the presence of a curl field),
function (35) can be derived from (30). Likewise (27)
and (28) lead to:

µ̃(x) ≈ 1 +
1−

√
1 + 4x

2x

=

√
1 + 4x− 1√
1 + 4x+ 1

=
2x

1 + 2x+
√
1 + 4x

(36)

where we have written three algebraically equivalent ex-
pressions to facilitate comparison with the literature.
Note that although (36) follows from (35) for α = 0, the
same doesn’t happen with their µ functions, and Beken-
stein’s proposal (27) is strictly not covered by (30). The
claim has been made [21, 23] that galactic observations
favour α = 1 (with κ = 4π, as set throughout that work).
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B. Permissible, non-fine tuned µ functions

Putting aside detailed predictions for galaxy rotation
curves (which may well have been combined with incon-
sistent approximations, e.g. regarding the curl field), the
following criteria are reasonable for physically permissi-
ble, non-fine tuned µ functions defining type I theories:

• A. The cosmologically measured G cannot dif-
fer significantly from that measured, say, by the
Cavendish experiment. That is: Gren ≈ G.

• B. When the total Newtonian acceleration aN
drops below a0 the full potential Φ must be in the
MONDian regime, that is, we need φ to be in the
MONDian regime and to dominate ΦN .

• C. Function µ should only have one scale, below
which φ is MONDian, and above which it is near
Newtonian. The detailed form of the transition is
left undefined, but µ should have a single transition
from 1 to z.

Items A and B have already been discussed in Section II.
Item B is the most basic requirement for the theory to
be of astrophysical use, regardless of the details. Item C
has been spelled out because it will be broken in the next
Section, to illustrate just how contrived µ would have to
be to evade a negative saddle result.
As explained in Section II, these requirements imply

that φ must enter the MONDian regime at a much higher
acceleration than a0, leading to an intermediate regime
a0 < aN < atrigN where φ is fully MONDian but still sub-
dominant to ΦN . This implies that for any µ satisfying
these constraints, when aN ∼ a0 (i.e. for astrophysical
applications) we must necessarily have

Fφ ≈
√

FNa0 . (37)

This statement is independent of κ and only relies on the

fact that µ ≈ z = κ
4π

|Fφ|
a0

in the MONDian regime. If

the curl term can be ignored we therefore have zFφ =
κ
4πFN , and thus (37) follows. Recalling x = F/a0 we
must conclude that:

µ̃(x) ≈ FN

F
≈ 1 +

1−
√
1 + 4x

2x
. (38)

It has been argued that this function does not meet astro-
physical requirements. Whether the astrophysical data is
reliable enough for this conclusion is debatable. Further-
more there are other considerations. It has been claimed
that (35) with α ≈ 1 is favoured by observations. How-
ever it is easy to see that (with κ = 4π, as proposed) the
suggested µ diverges at z = 1/α and then asymptotically
approaches µ = −1/α as z → ∞. This has the dramatic
implication that

Gren = G

(

1− 1

α

)

. (39)

Thus, for the observationally favoured value α = 1 we
have the strange conclusion that Gren = 0, i.e. there
wouldn’t be any gravity at all in the Newtonian limit
(or conversely the G used in cosmology would have to
be infinite), an obvious contradiction with experiment.
It is not clear how the overall chi squared of galaxy fits
would react when the full set of implications of the var-
ious models are taken into account. The conclusion is
that some µ on offer in the literature fail the most ba-
sic requirements of a physically admissible µ. The “toy”
model (27) is therefore less of a toy than some supposed
improvements.

C. SNRs and µ dependence

If we take the whole class of µ satisfying requirements
I, II and III we conclude that they have the same atrigN
and consequently the same r0. Fiddling with µ therefore
doesn’t change the spatial scale of the effect for type I
theories (and also in type II, but not type III theories).
The predictions for h(t) for r < r0 are also model inde-
pendent, since they rely on µ ≈ z, for z < 1. However
the predictions referring to regions with r > r0 depend
on the exact form of the transient from µ ≈ z to µ ≈ 1,
because they depend on δµ, not µ. For example,

µ =
z

1 + z
≈ 1− 1

z
(40)

has a very different fall off from

µ =
z√

1 + z2
≈ 1− 1

2z2
(41)

a point recognized in [11]. Missing the saddle by a lot
more than 400 km would therefore leave us at the mercy
of model dependence, and µ functions satisfying A, B, C
could be found bypassing a negative result, e.g.

µ =
z

(1 + zβ)
1

β

≈ 1− 1

βzβ
(42)

with a large β. However, for trajectories hitting the re-
gion r < r0 (i.e. for b < 380 km) the peak of the signal
is actually model independent, and therefore the SNRs
predicted aren’t expected to depend on the details of the
theory.
As an extreme illustration of the model (in)dependence

of our SNR predictions we have excised the signal out-
side the MOND bubble from our templates, imposing an
exponential fall off. Fig. 10 is the resulting counterpart
to Fig. 4. We see that for b < 400 km our conclusions
remain substantially the same. For b > 400 km the SNRs
drop much more sharply. This is the worst that can be
expected.
Impact parameters around 50 km are now considered

within easy reach. In order to bypass a negative result we
would therefore have to shrink the bubble size, defined
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FIG. 10: Signal to Noise ratio contours, for various impact
parameters up to 600km and base noise ASD, using the same
templates as in Fig. 4 but with an exponential fall off in the
model-dependent region r > r0. As we can see, for impact
parameters b > 400 km the SNR drops more sharply, but
nothing changes very much for b < 400 km.

by scale r0. This requires breaking condition C and con-
sider contrived µ functions with two scales, which we now
proceed to do in order to appreciate the full implication
of a negative result.

VI. A NULL RESULT AND DESIGNER µ
FUNCTIONS

It is often difficult to falsify a theory containing free pa-
rameters: all that can be readily done is to constrain its
parameters. However the constraints may be such that
the theory becomes contrived beyond “reasonable”. In
what follows we imagine a scenario where no anomalies
are found with respect to the Newtonian expectation, for
b < 400 km. Obviously all the theories considered so far
would be ruled out, to a degree of significance of the same
order as their expected SNR. The issue would then be-
come to determine which “designer” functions µ predict a
SNR of order 1, thereby surviving a “no anomaly” result.
The more contrived the required µ, the more blatantly
one should throw in the towel.
In proposing a designer µ we shall impose that it sat-

isfies requirements A and B to the same extent as the
functions we’ve been considering. The theory should
still be of astrophysical use and not conflict with ob-
servations on very general grounds. However, we drop
requirement C, allowing the function to have two inde-
pendent scales (notice that atrigN is not independent for
the models considered so far). Specifically, we endow µ
with an intermediate power n 6= 1 linking the Newtonian
regime, where µ ≈ 1, and the astrophysically relevant

FIG. 11: Log plot of ratio between the MONDian and New-
tonian forces, Fφ/FN , against z = (k/4π)|Fφ|/a0 (bottom
axis) and FN/a0 (top axis). So that FN ∼ Fφ when Fφ ∼ a0

(and so z = κ/4π; also FN ∼ a0) and at the same time
have Fφ/FN ∼ κ/4π ≪ 1 in the Newtonian regime (z ≫ 1,
FN → ∞), we must trigger MONDian behaviour in φ at
accelerations much larger than a0. However, by allowing a
sharper intermediate power-law in µ, the trigger acceleration
atrig

N may be smaller (in this illustration by a factor of 10).

MONDian regime, where µ ≈ z.
Requirement B demands that µ ≈ z for z < κ/4π,

as before, so that Fφ ≈ FN when FN ≈ a0, and Fφ ≈√
FNa0 for aN < a0. Requirement A imposes µ → 1

for large z, so that Gren is the same as for the single
power-law µ considered before (cf. Eqn. (26)). If we are
to shrink the size of the MOND bubble so as to accom-
modate a negative outcome from a saddle test, then we
need a sharper power, n > 1, bridging these two regimes.
Thus Fφ/FN could increase faster, with decreasing aN ,
from its small value κ/4π in the Newtonian regime, to 1

at aN = a0. This would reduce atrigN and thus r0. The
point is illustrated in Fig. (11), where we have replotted
Fig. 1 (made for a µ with a single power-law; recall the
argument in Section II).
These considerations fully specify the function µ, up

to details on the transition regions. We should have:

µ ≈ z for z <
k

4π
(43)

µ ≈
( z

ztrig

)n

for
k

4π
< z < ztrig (44)

µ ≈ 1 for z > ztrig (45)

where the point where non-Newtonian behaviour in φ is
triggered can be interchangeably pinpointed by:

ztrig =
( κ

4π

)1− 1

n

(46)
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FIG. 12: The size of the MOND bubble as a function of the
intermediate power n. It is easy to collapse to bubble by
an order of magnitude (say to around 20 km) with n ∼ 2.
However, to make the bubble much smaller (say, on the order
of a few kilometers), very dramatic intermediate powers would
be required.

atrigφ = a0

( κ

4π

)− 1

n

(47)

atrigN = a0

( κ

4π

)−1− 1

n

. (48)

Notice that atrigN is a now a truly independent parameter
of the theory (which can be traded for n). We still have
that when aN < a0 the field φ dominates ΦN as per
requirement B, but now the intermediate region, where
φ hasn’t yet dominated but is already non-Newtonian, is
in a narrower band of accelerations a0 < aN < atrigN . As
a result the MOND bubble shrinks according to

r0 ≈ 380
( κ

4π

)
n−1

n

km . (49)

In Figure 12 we have plotted this dependence. As can
be seen, it’s easy to change r0 by an order of magnitude
with n not much different from 2. To reduce r0 by more
than that, however, a very extreme intermediate power
would be required4.
Regrettably we can never make a model independent

statement on what n is needed for a SNR of order 1.
If nothing is observed then by the nature of the problem
we must be making observations in the regime b ≫ r0(n).
Therefore we are necessarily probing the transient from
µ ∝ zn to µ ∼ 1, dependent on the exact form of the
function µ. Nonetheless it is interesting to perform this

4 Notice that with this particular model the MOND bubble can

never shrink smaller than κ
4π
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FIG. 13: Contours of the power n needed to obtain SNR= 1,
for different noise levels and impact parameters up to b =
600 km. For n 6= 1 the function is “unnatural”. We see that
as soon as we plunge deep into the MOND bubble, a rather
unnatural designer µ becomes necessary to accommodate a
negative result.

exercise, assuming a specific function, say:

µ(z) =

(

z
ztrig

)n

1 +
(

z
ztrig

)n . (50)

For z ≫ ztrig this can be expanded as:

µ ≈ 1 + δµ = 1−
(

ztrig

z

)n

. (51)

Also for b ≫ r0(n) the curl field is negligible, so we can
write:

µFφ =
k

4π
FN (52)

and solve it perturbatively. Expanding as in Fφ = 0Fφ+
δFφ, we have to zero order 0Fφ = κ

4πFN . To first order
we then obtain:

δFφ ≈ − k

4π
(δµ)FN ≈

(

4π

k

a0
|FN |

)n

FN (53)

from which the tidal stresses can be inferred.

The results are condensed in Fig. 13, depicting the
value of n needed for a given b and noise level in order
for a SNR of one to be obtained (and so a negative result
be acceptable). As we can see as soon as we plunge deep
into the MOND bubble, a rather unnatural designer µ
becomes necessary to accommodate a negative result.
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VII. CONCLUSIONS

In this paper we showed how a LPF saddle flyby would
either detect MOND to a high SNR or rule it out rather
comprehensively. The former conclusion could be ex-
pected. Even though in Sections III and IV we provided
rigorous and quantitative SNR estimates, the high levels
forecast can be understood with a “back of the envelope”
calculation. The exercise highlights an uncanny coinci-
dence. The accelerometer aboard LPF has a non-white
noise profile, dipping in the region of the mHz, i.e. in the
rough time scale of minutes. The motivation for this de-
sign lies in the gravitational wave signals to be targeted
by LISA. It just so happens that the MONDian bubbles
of anomalous tidal stresses around the Earth-Sun-Moon
saddles have a length scale of the order of a hundred kilo-
meters. Anything free-falling in the Earth-Moon region
has a typical speed of the order of 1km/s. Thus, the time
scale for crossing a MONDian bubble will be of the or-
der of minutes: just where the instrument performance
is optimal. This is a remarkable coincidence. Scribbling
on the back of an envelope, using the expression for the
SNR of a noise-matched filter and the order of magnitude
of the stresses and noise, promptly reveals double figure
SNRs.
The question then arises as to how generic this conclu-

sion is, or conversely, should a negative result be found,
how thoroughly have we ruled out MOND. In Section II
we scanned the full array of MONDian theories, showing
that in the non-relativistic regime they fall into only 3
categories (which we labelled type I, II and II). Even if
we restrict ourselves to type I theories (a class containing
the vast majority of these theories, including TeVeS), we
benefit from the leverage of a free function, µ. Could
MONDologists use µ to survive a negative result?
In Sections V we examined µ functions on offer in the

literature and laid down criteria for reasonable µ based
on astrophysical usefulness, viability in the face of con-
straints, and naturalness. We found that once these
criteria are taken into account the size of the MOND
bubble, r0, is fixed. Predictions for what happens in-
side the bubble are also model independent; however the
tidal stress anomalies outside the bubble depend on the
transient from MONDian into Newtonian regime, with a
fall-off which is indeed model dependent. Therefore, for
impact parameters smaller than r0 the predicted SNRs
are robust, and do not change substantially with the
model. For the currently expected b (around 50 km, with
r0 ∼ 380 km) this is indeed the case.
Therefore the only way for MOND to wriggle out of

a negative LPF result would be to change the bubble
size r0. This can only be accomplished with “designer”
µ-functions, never previously proposed in the literature,
and paraded here with the sole purpose of illustrating
the devastating effects of a negative result. If µ is al-
lowed to have two scales and two power-laws away from
its Newtonian value of 1, then it is possible to bypass a

negative LPF result. Even for undemanding noise levels
and impact parameters the intermediate power becomes
very contrived. A negative result from a LPF test would
therefore amount to the dismissal of type I theories.

Although we didn’t present quantitative results for
type II theories, the same conclusions apply. If the free
function ν is chosen to produce the same phenomenol-
ogy as type I theories, then the MOND bubble has the
same size, and the anomalous tidal stresses are of the
same order. As explained in Section II, in both types
of theory MONDian behaviour is due to an extra field
φ, and if one attends simultaneously to GRen ≈ G and
φ ∼ ΦN for aN ≈ a0, then MONDian behavior in φ
should be triggered at the same Newtonian acceleration
aN = atrigN ≫ a0. This implies a MONDian bubble of
the same size r0. Furthermore the (also ν-independent)
effects inside the bubble are different from type I predic-
tions, but stronger. Type II theories don’t have a curl
field, a feature which softens the anomalous tidal stresses
in type I theories [11]. A detailed quantitative prediction
for type II theories is currently being investigated [17].

In contrast type III theories (or, rather, its single rela-
tivistic realization, the Einstein-Aether theory) produce
effects around saddles which are unobservable with cur-
rent technology. In these theories the non-relativistic
regime is ruled by a single field subject to a non-linear
Poisson equation. Therefore G is not renormalized and
atrig = a0, so that the MOND bubble is a few meters
across. Remarkably, solar system tests are extremely
constraining upon type III theories, due to the so-called
external field effect [9]. By contrast solar system effects
for type I and II theories are suppressed by a factor of
κ/4π. Thus saddle tests and planetary orbits seem to be
complementary in constraining MONDian theories.

We close by noting that we could, of course, detach
our considerations entirely from the MOND paradigm (as
an alternative to dark matter), and consider these the-
ories formally as a class on alternative theories of grav-
ity (see [24] for an extensive review). It is remarkable
that only three classes of theories emerge in the non-
relativistic regime, which we labelled type I, II and III in
Section II. We could then view κ and a0 as free param-
eters, converting a LPF saddle flyby into a constraint or
a detection in this space. We are currently working on
this alternative approach.
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