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ABSTRACT

Studies of some bright, super-Eddington transient pulsarsshow a negative correlation between the energy of the cyclotron resonance
scattering feature (CRSF) and the bolometric luminosity. For Her X-1, using repeatedRXTE observations during 1996–2005, the
inverse dependence was found: the energy of the cyclotron line increases as the luminosity increases. The X-ray flux measured by
theRXTE/ASM (2–10 keV) has been assumed to represent the luminosity -more precisely: the maximum X-ray flux reached during
the respective 35 dMain-On. Here, we question whether the ASM flux is really an accurate measure of the bolometric luminosity
of the source. We redetermined the energy of the cyclotron line and performed spectral fits using the combined data from the PCA
(3.5–60 keV) and HEXTE (20–75 keV) instruments onRXTE of the same 35 d cycles as used in the original work to determine the
bolometric flux from those spectra. We confirm the result of the original analysis that the cyclotron line energy changes by ∼7% for a
change in flux by a factor of two.
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1. Introduction

Her X-1 is one of the most observed and well-studied accreting
binary X-ray pulsars. Since the first observation made byUhuru,
the 35 d periodicity of the source is well known. The X-ray light
curve shows twoon-states (high X-ray flux) and twooff-states
(low X-ray flux), with a Main-On (∼ 7 orbital periods) and a
Short-On(∼ 5 orbital cycles), separated by twooff-states (∼ 4÷5
orbital cycles each). The maximum X-ray flux of theMain-on is
higher than the maximum X-ray flux of theShort-Onby a factor
of three to four.

The modulation of the X-ray flux is believed to be caused
by the periodic obscuration of the X-ray source by the pre-
cessing disk, which is believed to be inclined and warped
(Gerend & Boynton 1976). The onset of the flux, theturn-on(of-
ten identified with 35 d phase 0.0), is believed to occur when the
outer rim of the disk opens up the view to the X-ray emitting re-
gions near the polar caps on the surface of the neutron star, while
the flux decrease towards the end of theon-states is associated
with the inner parts of the disk covering these regions from the
observer.

Her X-1 is also the first X-ray pulsar for which a cyclotron
line was discovered (Trümper et al. 1978). The discovery ofthis
line-like feature played a key-role in the measurement of the
magnetic fields, providing the first direct measurement of the B-
field of a neutron star. The energy of the cyclotron line is related
to the magnetic field by the formula B12 = (1+z) Ecyc/11.6 keV,
where B12 is the magnetic field strength in units of 1012 gauss,z
is the gravitational redshift and Ecyc is the energy of the cyclotron
line. This feature is now referred to as a cyclotron resonantscat-
tering feature (CRSF) and seems to be quite common in accret-
ing X-ray pulsars (Coburn et al. 2002). The cyclotron line isan
absorption feature produced by the resonant scattering of pho-
tons on electrons. In the∼ 1012 gauss magnetic field, the elec-
trons are in quantized energy states (with respect to their move-
ment perpendicular to the magnetic field), the so-called Landau
levels. The energy levels are nearly equidistantly spaced and

photons with energies equal ton times the fundamental Landau
energy could take part in this scattering.

In a few transient pulsars such as V0332+53 and 4U
0115+63, a negative correlation between the CRSF and the bolo-
metric luminosity of the source has been observed: the energy of
the cyclotron line decreases as the X-ray luminosity increases
(Mihara et al. 1998; Mowlavi et al. 2006; Nakajima et al. 2006;
Tsygankov et al. 2006). Her X-1, however, shows the opposite
behavior. Repeated measurements of the cyclotron line energy
with different instruments such asRXTE and INTEGRAL in
the X-ray spectrum of Her X-1 have revealed apositivecorrela-
tion between the (pulse phase-averaged) cyclotron line energy
Ecyc and the X-ray flux (Staubert et al. 2007), more precisely
with themaximum X-ray fluxobserved during theMain-On of
the respective 35 d cycle, as measured byRXTE/ASM in the 2–
10 keV range, which is assumed to be characteristic of the cur-
rent accretion state and luminosity of the source. It has, however,
been questioned whether the 2–10 keV flux can really be taken
as representative of the bolometric luminosity.

In this paper, we attempt to answer this question by re-
analysing theRXTE observations of the same 35 d cycles as
used in the original analysis of Staubert et al. (2007). Using data
from both instruments (PCA and HEXTE), we re-determine the
cyclotron line energy and measure the 3.5–60keV bolometric
X-ray flux by performing spectral analyses of elevenMain-Ons
between 1996 and 2005. We show that the 2–10 keV flux is a
good measure of the bolometric flux and that the positive cor-
relation between the phase-averaged cyclotron line energyEcyc
and themaximum 35 d flux, or the luminosity, is confirmed.

2. Observations

Her X-1 has been repeatedly observed byRXTE since 1996. We
analyzed observations of eleven 35 dMain-Onsfor which there
was photon statistics of sufficient high quality to allow a spectral
analysis. Those cycles were those of numbers (nos.) 257, 269,
303, 304, 307, 308, 320, 323, 324, 343 and 351. For the defini-
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Table 1. Details ofRXTE observations of Her X-1 used for the
spectral analysis.

Observation 35 d Main-On Center
month/year cycle number1 MJD
July 96 257 50029.75
September 97 269 50707.06
December 00 303 51897.69
January 01 304 51933.67
May 01 307 52035.48
June 01 308 52071.16
August 02 320 52492.96
November 02 323 52599.32
December 02 324 52634.01
October 04 343 53300.95
July 05 351 53577.35

1 Cycle numbering according to Staubert et al. (2009)

tion of cycle counting we refer to Staubert et al. (2009) (cycle
no. 313 was not included, despite the high quality statistics, be-
cause no ASM observations were available). We cover a period
of ten years of observation from July 1996 (no. 257) to July 2005
(no. 351), see Table 1. Here we used data from bothRXTE in-
struments: PCA in the energy range 3.5–60keV, and HEXTE in
the energy range 20–75 keV.

3. Spectral analysis

For the spectral analysis, we used XSPEC1 (12.6.0) and gener-
ated spectra for all observedMain-Ons, summing all available
data. For each spectrum (one for eachMain-On), two quantities
were determined: the central energy Ecyc of the cyclotron ab-
sorption feature and the integrated flux in the range 3.5–60keV
(in units of erg cm−2 s−1). As the spectral function, we used the
highecut1 model (based on a power-law continuum with an ex-
ponential cut-off) and a multiplicativeGaussianabsorption line
for the cyclotron resonant scattering feature (CRSF), in the same
way as e.g. Coburn et al. (2002) and Staubert et al. (2007). Data
from bothRXTE instruments were used: PCA (PCU2 only) in
the energy range 3.5–60keV, and HEXTE in the energy range
20–75keV. Cold material absorption was taken into account in
each fit. All values were consistent to within two standard de-
viations with the mean value ofNH = 1.08 × 1022 cm−2. We
note that in the original analysis PCA data were used only up
to 25 keV to define the continuum at the lower energies. New
response matrices are now available2 that allow us to use the
PCA up to∼50 keV, but we found that the PCA can indeed be
used up to 60 keV, thereby contributing information about the
cyclotron line around 40 keV. This choice is confirmed by the
agreement between the PCA and HEXTE spectra in the over-
lapping region of the two instruments (40–60keV). This is also
confirmed in the analysis by Rothschild et al. (2011) of RXTE
observations of Cen A in which PCA data were successfully
used up to 60 keV. In the new spectral fits, we also added sys-
tematic uncertainties of 0.5% (which are recommended for use
with the new response matrices2), while in the original analysis
by Staubert et al. (2007) 1% uncertainty was added.

1 http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec
2 http://www.universe.nasa.gov/xrays/programs/rxte/pca/doc/rmf/
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Fig. 1. Example of a spectral fit to anRXTE observation of
Her X-1 in July 1996 (cycle no. 257). The observation is cen-
tered at MJD 52599.36 and the integration time is 31 ks for PCA
and 10 ks for each of the two HEXTE clusters. Black: PCA, red:
HEXTE-A, and green: HEXTE-B, respectively;top: count rate
spectra;middle: residuals with respect to a fit of a continuum
model;bottom: residuals with respect to a fit which includes a
cyclotron line.

For this spectral re-analysis, only data ofRXTE PCU2 were
used to ensure maximum uniformity in the data set, analyzed
in a uniform way. Fig. 1 shows an example of a spectral fit
to data of July 1996 (cycle no. 257). The observation is cen-
tered at MJD 52599.36 and the total integration time is 31 ks for
PCA/PCU2 and 10 ks for each of the two HEXTE clusters.

The bolometric flux for the individual spectra was found by
integrating the fit function (over the 3.5–60keV range), using
the XSPEC routineflux1. The X-ray flux of Her X-1 varies as
a function of phase of the 35 d modulation because of variable
absorption by the accretion disk.

The sampling of the variousMain-Onsin groups of pointed
observations was rather different, and the fluxes determined from
the spectra are mean values of the observations, which happened
to be made at different phases of the 35 d modulation.These
fluxes cannot directly be compared to themaximum X-ray flux
of the respectiveMain-On. To find the comparable bolometric
fluxes in the 3.5–60keV range that represent themaximum flux
for the particular cycle, it was necessary to scale the fluxesfound
in the individual spectra to themaximum flux. The scaling factor
is the ratio of themaximum fluxto the mean flux of the complete
light curve, that is of the same data used to generate the spectra.
To find themaximum flux, all observedRXTE/PCA light curves
were fitted by a function representing a template of the mean
35 d Main-On modulation, the shape of which was taken from
an overlay of many 35 d light curves observed byRXTE/ASM
(see e.g. Klochkov et al. 2006). For this procedure, we are only
interested in the overall 35 d modulation, that is without eclipses
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Fig. 2. Left : Ecyc from the spectral re-analysis versus Ecyc from the original analysis (Staubert et al. 2007).Right: Scaled maximum
3.5–60keV flux (in units of 10−9 erg cm−2 s−1) from the spectral re-analysis versus the maximum 2–10 keV ASM flux (in units of
cts s−1) from the original analysis. The Pearson correlation coefficients are 0.95 (left) and 0.82 (right).

Table 2. Phase-averaged cyclotron line energies Ecyc andmaximum fluxesreproduced from Staubert et al. (2007) (1) and from the
spectral re-analysis of this work (2).

35 d cycle Ecyc(1) [keV] max. flux (2–10 keV) Ecyc(2) [keV] max. flux (3.5–60 keV)2

number1 ASM [cts s−1] [10−9 erg cm−2 s−1]
(Staubert et al. (2007)) (Staubert et al. (2007)) (this work) (this work)

257 41.12± 0.55 7.37± 0.34 40.61± 0.34 7.99± 0.45
269 40.62± 0.49 7.49± 0.73 40.45± 0.41 8.02± 0.46
303 40.07± 0.31 6.04± 0.47 39.81± 0.24 7.27± 0.41
304 39.05± 0.55 5.72± 0.34 38.72± 0.31 7.14± 0.40
307 39.93± 0.63 7.15± 0.50 39.78± 0.49 8.26± 0.47
308 39.73± 0.52 6.93± 0.20 40.04± 0.33 8.18± 0.46
320 40.01± 0.29 7.19± 0.26 39.94± 0.29 9.55± 0.36
323 40.51± 0.13 7.64± 0.30 40.16± 0.11 9.37± 0.44
324 40.60± 0.41 7.55± 0.34 40.37± 0.35 9.16± 0.52
343 38.51± 0.51 4.50± 0.24 38.26± 0.43 7.05± 0.40
351 38.95± 0.52 5.12± 0.37 39.28± 0.60 6.61± 0.38

1 Note that for 35 d cycle numbers 303 and larger the corresponding numbers in Staubert et al. (2007) are larger by 1. This reflects the observation
that there must have been an extra cycle during the longanomalous lowbefore cycle 303. However, using the numbers as given here allows to use
them in an ephemeris for a rough prediction of the 35 d turn-ons using a mean period of 35.88 d. We do not doubt the physical reality of the extra
cycle found by Staubert et al. (2007).
2 The flux in Col. 5 represents the 35 dmaximum fluxin the 3.5–60 keV range (see text).

and dips, which was described by the analytical function:

f (t) = A0

(

1−
A1

1+ exp (B1(t −C1))

)

1
1+ exp (B2(t −C2))

,

under the condition that negative functional values are setto
zero. Heref (t) is the flux as a function of timet in MJD, A0 is the
amplitudein units of (3-20 keV) PCA cts s−1 per PCU,A1=1.25,
B1=1.87, andB2=0.80 are fixed functional parameters,C1 is the
time reference in MJD, andC2=C1+8.4 d (this offset represents
the length of the standardMain-On). The time of referenceC1
was fixed to the MJD of the turn-on that had been determined
from the corresponding ASM light curve. TheamplitudeA0 is
the only free-fitting parameter. The maximum of the fitting func-
tion (on average found to be equal toA0-5.4 cts s−1) is then taken
as themaximum flux (in units of PCA cts s−1) for this cycle.
Dividing this maximum fluxby the corresponding mean flux of
the complete light curve (containing all the photons that are also
used in generating the corresponding spectrum) leads to a scal-
ing factor. Multiplying the 3.5–60keV flux found from the spec-

tra by this scaling factor then leads to themaximum bolometric
flux (in units of erg cm−2 s−1). These bolometric flux values can
now be compared to themaximum ASM fluxvalues used in the
earlier work by Staubert et al. (2007).

To test whether the above procedure in determining the
maximum bolometric fluxes could be influenced by systematic
changes of the spectral shape over the 35 d phase, we have inves-
tigated spectra of cycle no. 323 which provides a good coverage
of a completeMain-On. Systematic changes were only found in
one spectral parameter, the power-law index, with a magnitude
of ±3%, which corresponds to a negligible relative change of the
integrated flux of less than 5× 10−2%.

The uncertainties in the bolometric flux values are dominated
by the uncertainties in the scaling factors, which in turn are dom-
inated by systematic uncertainties in determining the maximum
Main-Onflux in fitting the observed light curve by the common
analytical function. These systematic uncertainties are estimated
to be 3%, the main contributions being the uncertainty in the
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Fig. 3. Left : Ecyc from the spectral re-analysis versus the scaled maximum 3.5–60keV flux (in units of 10−9 erg cm−2 s−1). Right:
Ecyc from the spectral re-analysis versus the maximum 2–10 keV ASM flux (in units of cts s−1) from the original analysis.

turn-on time and the fluctuations in the shape of the modulation
from cycle to cycle.

Table 2 compares the results of this re-analysis to those of
the original analysis by Staubert et al. (2007).

4. Results and discussion

In Fig. 2 (left), we plot the newly determined cyclotron lineen-
ergies against those from the original analysis. Overall, we find a
very good agreement between the new values for Ecyc and those
from the original analysis: considering the respective uncertain-
ties, the differences are smaller than 0.79 standard deviations for
ten of the eleven values and 2.1 standard deviations for one value
(cycle no. 323).

In Fig. 2 (right), the 3.5–60keV maximum bolometric fluxes
are plotted against the corresponding ASM fluxes of the origi-
nal analysis. There is a good linear relationship between the two
fluxes: the slope (taking the uncertainties in both variables into
account) is 0.88±0.15 (10−9 erg cm−2 s−1)/(ASM cts s−1), and
the Pearson correlation coefficient is 0.82, corresponding to a
chance probability of no correlation of P< 10−3. This demon-
strates that themaximum ASM fluxcan be taken as a good mea-
sure of themaximum bolometric X-ray flux(and luminosity) of
Her X-1 during the respective 35 d cycle. The variation in flux
from one 35 d cycle to the next is small, such that the maximum
observed flux of a particular 35 dMain-On can be considered a
good measure of the luminosity of the source during this partic-
ular cycle. This is why the maximum ASM flux was used as a
reference in the original analysis by Staubert et al. (2007).

The final correlation between the cyclotron line energy and
the X-ray flux is given in Fig. 3 in two ways: we correlate
Ecyc from the re-analysis with thescaled 3.5–60keV maximum
Main-On flux (Fig. 3, left), as well as themaximum ASM flux
(Fig. 3, right). The corresponding slopes of the linear fits to
these data (taking the uncertainties of both variables intoac-
count) and the corresponding Pearson correlation coefficientsr
are: (i) for the Main-On flux presented in Fig. 3 (left) slope=
0.62±0.19 (keV)/(10−9 erg cm−2 s−1) andr = 0.62 (P=2×10−2);
(ii) for the maximum ASM flux presented in Fig. 3 (right) slope
= 0.67±0.14 (keV)/(ASM cts s−1) andr = 0.90 (P=10−4).

The correlation seen in Fig. 3 (left) is somewhat less con-
vincing than that of Fig. 3 (right) (and that in the original anal-

ysis of Staubert et al. 2007). We attribute this to the unavoid-
ably larger uncertainties associated mainly with the scaling of
the bolometric flux measured for the individual spectrum to the
flux that does describe the maximum flux of the particular 35 d
cycle. The originally usedmaximum ASM fluxesare, in con-
trast, simple direct measurements.

5. Summary

We have re-analyzed observations of Her X-1 in its Main-On
state byRXTE between 1996 and 2005 with respect to its X-ray
spectrum. Using data from both instruments (PCA and HEXTE)
we performed a spectral analysis of observations of eleven Main-
Ons and determined the cyclotron line energy Ecyc and the 3.5–
60 keV flux for each of those Main-Ons. This observed flux was
then scaled to a flux representing themaximum fluxof the par-
ticular Main-On. We conclude that themaximum ASM fluxused
in the original analysis (Staubert et al. 2007) can really betaken
as a measure of the luminosity of the source because it scales
well with the maximum 5–60keV fluxestimated through the
spectral analysis. This is evident from Fig. 2 (right) that shows
there is a good linear relationship between the bolometric 3.5–
60 keV flux with the 2–10 keV flux measured byRXTE/ASM
(both fluxes refer to themaximum 35 d Main-On flux).

The information contained in Figs. 2 and 3 (left and right)
provides an internally consistent picture. We consider thecom-
bined evidence of all the correlations shown as proof of the
correctness of the positive correlation between the cyclotron
line energy and source luminosity as suggested in Staubert et al.
(2007). A direct comparison to the original analysis can be made
by considering Fig. 3 (right): the slope of the linear best fitis de-
termined to (0.67±0.14) keV/(cts s−1), which is in good agree-
ment with the (0.66±0.10) keV/(cts s−1) found in the original
analysis. The final and confirmed result with respect to this cor-
relation can then be stated as follows:the value of the cyclotron
line energy Ecyc increases by∼7% for a change in flux of a factor
of two.

In conclusion, we briefly describe the physical significance
of the observed dependence - of either sign - of the cyclotron
line energy with source luminosity. Thenegative correlation
(decrease of Ecyc with luminosity), which has been repeatedly
observed for high luminosity transients such as V 0332+53
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and 4U 0115+63 (Mihara et al. 1998; Mowlavi et al. 2006;
Nakajima et al. 2006; Tsygankov et al. 2006), has been inter-
preted in the following way: when the mass accretion rate (and
hence the luminosity) increases, the height of the radiative shock
above the neutron star surface increases, leading to a decrease in
the effective magnetic field strength in the scattering region and
therefore to a decrease in Ecyc. This is in line with theoretical
considerations about accretion in the (locally) super-Eddington
regime (Burnard et al. 1991). In the sub-Eddington regime, how-
ever, believed to be realized in Her X-1, the deceleration ofthe
accreted material is thought to be due to Coulomb drag and col-
lective plasma effects (Nelson et al. 1993). In this case, under
an increased accretion rate the atmosphere is compressed bythe
ram pressure of the infalling material and the scattering region
moves closer to the neutron star surface. This is equivalentto an
increase in effective field strength and an increase in Ecyc, hence
to apositive correlationwith luminosity (Staubert et al. 2007).

We would also like to add that the recent analysis of
Klochkov et al. (2011) supports the physical correlation between
the cyclotron line energy and the luminosity of three sources:
4U 0115+63, V 0332+53, and Her X-1. In this analysis data
from a short time interval were used, and spectra were gener-
ated by summing up photons belonging to individual pulses in
selected ranges of pulse amplitude. In thispulse-to-pulse vari-
ability study, the variations in X-ray flux (source luminosity)
occur on timescales comparable to the duration of the individ-
ual pulses (the period of rotation of the neutron star). The pre-
viously found correlations (based on flux variations on much
longer timescales) between the cyclotron line energy and the
X-ray flux are reproduced: that is anegativecorrelation for the
super-Eddington transient sources 4U 0115+63 and V 0332+53,
and apositivecorrelation for the sub-Eddington source Her X-1.
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