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Quantum chaos: an introduction via chains of spins-1/2
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The purpose of this work is to serve as an introduction to tiarchaos. We avoid the usual path of dealing
with ensembles of random matrices and instead considen dee-dimensional systems of spins-1/2. Quan-
tum systems whose classical counterparts are chaotic hagergies that differ from those of quantum systems
whose classical counterparts are regular. One of the mgiraires of what became known as quantum chaos
is a spectrum showing repulsion of the energy levels, as aomnobserved in ensembles of random matrices.
Here, however, we show how quantum chaos may develop in meatistic systems of spins-1/2, which are
devoid of random elements and involve only two-body intBoas. Spin-1/2 chains are prototype quantum
many-body systems. They are used to study subjects ase&li@snrguantum computing, quantum phase transi-
tion, and quantum transport. Nonetheless, they are sinmgagh to be accessible to undergraduate students.
Our analysis goes beyond the statistics of eigenvaluesxgidits also how the structure of the eigenstates may
indicate chaos. We make available online all computer caded to obtain the data for the figures of this work.
This should allow students and professors to easily rem®dur results and to further explore new questions.

I. INTRODUCTION monly only two-body) interactions. Real systems are better
described by sparse matrices where only the elements cor-
: : L esponding to two-body interactions are nonzero, as in two-
Classical chaos is related to the extreme sensitivity of th ody random ensembles (TBRES)|[14] 15]. The elements of

dynamics of a system to its initial conditions. In a chaoticTBRES are random variables. which is iustified as a wav to
classical system, the phase-space trajectories of twaé- part ' J Y

cles with very close initial conditions diverge exponeliyia describe imperfections and noise. However, even though im-

in time. The rate of this separation is characterized by the s perfections and noise permeate real systems, they are becom

called Lyapunov exponerttl[1]. In the quantum world how-Ng more and more controllable, which makes pertinent the
ever, the notion of trajectory I'oses its meaning. Stilllcein question of whether systems devoid of randomness may stil

classical physics is but a limit of quantum physics, it isuaat develop chaos.

ral to search for quantum signatures of classical cHa¢g[2, 3 N this work, we study clean one-dimensional systems of
The energy levels of a quantum system whose classic sip|ns-1/2, where random elements are nonexistent. The sys-

4 : ) ms involve only two-body interactions taking place betwe
counterpart is chaotic are highly correlated and they repe . . :
o > ; . ' hearest-neighbors and in certain cases also between next-
each other. This is reflected in various quantities assetiat . . X :
; . .. nearest-neighbors. Chains of spins-1/2 are accessiliEnsys
with the eigenvalues of the system, such as the distribution : ;
: . . and may be used to expose students to a multitude of subjects.
of the spacings between neighboring levels, the level numb

variance, and the spectral rigidify [4]. The energy levels cﬁn addition to the crossover from integrability to chaosgth

. . . may be used, for example, to introduce current topics of re-
a quantum system whose classical counterpart is regular (in

) search such as the metal-insulator transition, quantureepha
tegrable), on the other hand, can cross; they are unCCHrdEIattransition entanglement, spintronic and methods of nt
and randomly distributed. Level repulsion is therefore ohe ! 9  SP qua

. control. They have been considered as models for quantum
the main features of what became known as quantum chaos. . :

: - ) : computers, magnetic compounds and have recently been sim-
But in addition to the analysis of the eigenvalues, quantunblated in optical lattices [16]
chaos is reflected also in the structure of the eigensfdtés. [5 P :

Chaotic eigenstates are highly delocalized and their compo 1he paper is organized as follows. Section I provides a
nents are random variables. detailed description of the Hamiltonian of a spin-1/2 chain

Already in the 1980s, it was realized that the fluctuationsecnon lll explains how to compute two quantities capable

) . f capturing the crossover from regular to chaotic motibe, t
properties of the spec.tr:g of chaotic quantum systems matﬁ vel spacing distribution and the number of principal com-
thosg of rar!dom matrices 7, 8]. Random matrices are matr"onents. Section IV discusses how remaining symmetries of
ces filled with random elements whose only constraint is t

satisfy some particular symmetries of the system they g#e tr he system may hinder the signatures of chaos even when the
. i i . ) system is chaotic. Concluding remarks are given in Sec. V.

ing to model. Starting with Wigner's efforts to understahd t

statistics of the energy levels of highly excited nudlej j@h-

dom matrix theory![10] was soon employed in the analysis of
the spectrum of other quantum many-body systems, such as
atoms, molecules, and quantum dots, as well as various other
systems, ranging from the quantum Sinai billiard to seqaenc
of prime numbers [4, 7] 8, 11-113]. We study a one-dimensional spin-1/2 system (spin-1/2

Real systems, however, are not described by random m&hain) described by the Hamiltonian
trices. Random matrices imply long-range and many-body
interactions, whereas real systems have few-body (most com H = H, + Hyn, (1)

1. SPIN-1/2 CHAIN
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where model) is integrable and can be solved with the Bethe Ansatz
. . method [17]. The addition of dﬂiﬁordw], even if just one
_ z _ 2 2 defect in the middle of the chain [19], as considered herg, ma
H: = nz_:l WniS = (; an> +€aSi, lead to the onset of quantum chaos. The source of chaos is the

1 interplay between the Ising interaction and the defect.
_ T gz v Qy 2 gz To bring the system to chaotic regime, we ggj = 1 (ar-

Hyn = Z [y (S + S28n40) + T25:570] - bitrary unit), choose/, = ¢ = 0.5 (arbitrary unit%and place
the defect on sitd = | L/2]. This choice is based on the fol-
Above, i is set equal to 1L is the number of sites, and lowing factors. (i) The strength of the Ising interactiomnat
Sivz = gn¥? /2 are the spin operators at siteo;»¥* being  be much larger thad,,,, because this would localize the ex-
the Pauli matrices. The terfd, gives the Zeeman splitting of citations by limiting the number of effectively coupledtss
each spine, as determined by a static magnetic field in theFor instance, basis vectors with several pairs of pargielss
z direction. A spin up in the: direction is indicated a5 1)  would have energy much higher than states with few pairs of
or with the vector(é) and a spin down |) with ((IJ) An  parallel spins [cf. Eq€.(2)[3)] and,, would not be able to
up-spin on sitex has energyrw,, /2, while a down-spin has effectively couple them. Chaos cannot occur in a localized
energy—w, /2. A spin up corresponds then to an excitation.system. (ii) The defect cannot be placed on the edges of the
All sites are assumed to have the same energy splitiirex- ~ chain, because in this case the system is still integr [2
cept a single site, whose energy splitting + ¢, is caused (iii) The defect should not be too large, because it would sim
by a magnetic field slightly larger than the others. Thisisite ply break the chain in two, that is an excitation on the left of
referred to as defect. the defect would not have enough energy to overcome it and

The second termHyy, is known as the XXZ Hamilto- then reach the right side of the chain, and vice versa.
nian. It describes the couplings between nearest-neighbor
(NN) spins;.J,., is the strength of the flip-flop tersi? S, | +
SySy . . andJ. the strength of the Ising interactic#} S, , ;. I1l. QUANTUM CHAOS

The flip-flop term exchanges the position of neighboring up
and down spins according to

n=1

Different quantities exist to identify the crossover frome t
T (SEST. 4 §ugY — (] /2 r(_agular to the chaot_lc regime in quantum systems. We con-
oSS + S| Tadnar) = oy /Dl dnTosr) sider the level spacing distribution, which is associatétth w
or, equivalently, it moves the excitations through the ohai the eigenvalues, and the number of principal components,
Notice that we have assumed open boundary conditions, aghich measures the complexity of the eigenstates.
indicated by the sum ii/yn which goes fromm = 1 to site
L — 1. This means that an excitation in site 1 {@rcan only
move to site 2 (or to sité — 1). The scenario of a ring where A. Level spacing distribution
an excitation on sitd, can also move to site 1 corresponds to
closed boundary conditions and is mentioned briefly in Sec. V- 1he gistribution of spacingsof neighboring energy levels
The_lsmg interaction |m|f_JI|es that_ pairs of pgrallel Spins |4, [19L12] is the most frequently used quantity to study shor
have higher energy than pairs of anti-parallel spins, #1ati  ange fluctuations in the spectrum. Quantum levels of regula
z Q2 _ 4 2 systems are not prohibited from crossing and the distobuti
JZS Sn+1| TnTn+1> +(JZ/ )| TnTn+1>v ( ) is P0|sson|an,
whereas

JZSZSZ+1| Tn\l/n+1> = _(JZ/4)| Tn¢n+1>- (3)
_ ) o ) In chaotic systems, crossings are avoided; there is lepal+e

For the chain described by (), the total spinin the di-  sjon and the level spacing distribution is given by the Wigne
rection,S* = 25:1 S;, is conserved,e. [H, S*] = 0. This  Dyson distribution, as predicted by random matrix theotye T
is a symmetry of the system. It means that the total number oform of the Wigner-Dyson distribution depends on the sym-
excitations is fixed; the Hamiltonian cannot create or airnih metry properties of the Hamiltonian. Systems with time reve
late excitations, it can only move them through the chain.  sal invariance are described by Gaussian orthogonal ensem-

In order to write the Hamiltonian in the matrix form and bles (GOEs). A GOE corresponds to an ensemble of real sym-
then diagonalize it to find its eigenvalues and eigenstates, metric matrices, whose elemetfs; are independentrandom
need first to choose a basis. The most natural choice is theumbers from a Gaussian distribution. The average of the ele
one we have used so far to describe the term& pthat is  ments and the variance satisfl;;) =0 and(H3j> = 1+6;;.
arrays of up and down spins in thedirection. We refer to  The level spacing distribution of a GOE is given by
it as the site-basis. In this basid, and the Ising interaction
contribute to the diagonal elements of the matrix, whereas t Pwp(s) = (1s/2) exp(—7s®/4). (5)
flip-flop term leads to the off-diagonal elements.

In the absence of disorder, the system is said to be cleaiThe same distribution is achieved for modél (1) in the clraoti
A clean spin-1/2 chain with NN exchange only (the XXZ limit. However, our system differs from GOEs in two ways, it

Pp(s) = exp(—s). (4)



has only two-body interactions and does not contain random
elements.

In order to obtain the level spacing distribution, we need
first to separate the eigenvalues according to their symme-
try sectors. If we mix eigenvalues from different symme-
try sectors, we may not achieve a Wigner-Dyson distribu-
tion even if the system is chaotic. This is because eigenval-
ues from different subspaces are independent and therefore
have no reason to repel each other. The conservatiéfi6f  FIG. 1: (Color online.) Level spacing distribution fdf (@) with
H (@) implies that the Hamiltonian is separated into uncou-L. = 15, 5 spins upw = 0, € = 0.5, J,, = 1, andJ. = 0.5
pled blocks, each corresponding to a subspace with a parti¢arbitrary unit); bin size = 0.1. Left panel: defect on site- 1, right
ular number of spins pointing up. In the studies below, wepanel: defect on sité = 7. Dashed lines: theoretical curves.
focus on the subspace that h&g3 up-spins and dimension
dim = LY/[(L/3)(L — L/3)Y]. o

The second essential step before computing the histogram B. Number of principal components
of neighboring level spacings is to unfold the spectrum. The
procedure consists of locally rescaling the energies, ab th  Delocalization measured |5, 6], such as the number of prin-
the local density of states of the renormalized eigenvakies cipal components (NPC), determine how much spread the
1. There are different methods to achieving this. Here weeigenstates are in a particular basis. For an eigengtate

describe a pedagogical one. written in the basis vectot;,) as|;) = S0 ¢ |€x), NPC
First, we make sure that our spectrdifl;, Fs, ..., Egim } is defined as

is ordered in increasing values of energy. We then discard 1

some levels from the edges of the spectrum, where the fluctu- NPC = —/——. (6)

ations are large. Let us remove at least 10% of the eigenval- >y leanl*

ues, approximately half of them from very low energies and o ) )
half from very high energies. The lowest energy that we will This quantity gives the number of basis vectors that couteib
consider iSE; = E|gim/20,- Next, we divide the eigenval- © each eigenstate. It is small when the state is localizeld an

ues in groups of 11, the last eigenvalue of one group alwaytrge when the state is delocalized.

reappearing as first element of the next group. We then have For GOEs, the eigenstates are simply random vecters,

g = |90% x dim/10] sets of energy levels corresponding to the amplitudeg:;;, are indepenc_ient random variables. 'I_'he_se
states are completely delocalized. Complete delocatdizati

Setl: {E), By ... Eipio} does not mean, however, that NRZm. Because the weights

’ lcir|? fluctuate, the average over the ensemble gives NPC
Set2 : {El+107 Eiiq .. .El+20} ~ dim/3 [B’ ]
e In our case, since modél (1) has only two-body interactions,
Setq : {Ei110(g-1)> Eit10(g-1)+1 - - - 14104} NPC does not reactim /3. Moreover, the largest values ap-

pear only in the middle of the spectrum of the system in the
For each set, with i = 1,2,...,q, we compute the mean chaotic regime. This is because the level density of systems

level spacingD; according to with two-body interactions has a Gaussian shape. This indi-
cates that the highest concentration of states appear®in th
D; = [Eis10i — Ers106-1))/10. middle of the spectrum. Itis there that strong mixing ofesat
can happen leading to widely spread eigenstates.
Each eigenvalug)  1o(;_1.j, with j = 0,1,...10, is renor- The values of NPC are also intimately related to the basis

malized 8%, 10(;—1)+; = Fit100 1)+-/D» The mean level used. The basis considered depends on the question one is
1— J 11— 7 (A

spacing of each new set of energigsis therefore 1. Since 2fter. In studies of spatial localization, for example, site-
the density of states is the number of states in an interval gfaSiS iS an appropriate one. In order to separate regular fro
energy, that is the reciprocal of the mean level spacing, th&haotic behavior, on the other hand, a more appropriate ba-

renormalized energies ensures also that the local derfsity §'S €Orreésponds to the eigenstates of the integrable lirtiieo
states is unity. model. This basis is referred to as the mean-field basist6]. |

: : : our model, there are different integrable limits. We chase t
In hand of the unfolded spacings of neighboring levels, the onsider the case wherg 2 0 and.J, — 0, because the pres-

histogram can now be computed. Notice that to compare i ) ; .
g b P ence of the defect ensures the breaking of possible remain-

with the theoretical curves, the distribution needs to be no . . ;
malized, so that its total area is equal to 1. ing symmetries (see Sec. IV). The crossover to chaos is then

caused by the addition of Ising interaction.

Figure[1 shows the level spacing distribution for the cases : .

. : —~ Suppose thgt) represents the mean-field basis &ndthe
where the defect is pIaced_ on site 1 (left panel) qnd on SIt(%ite-basis. If we obtain the eigenstatés in the site-basis,
| L/2] (right panel). The first corresponds to an integrable i .
model and the distribution is Poissonian, while the secend i ¥i) = 2251 @ij|¢;), and we know the relation between the

a chaotic system, so the distribution is Wigner-Dyson. two bases|¢,) = 2‘7“:"} bij|®;), we may rewrite the eigen-
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states in the mean-field basis as For « sufficiently large & = 0.2 when L = 15), there are
various scenarios where chaos may develop: (i) in the absenc

of Ising interactions/z = Jz' = 0; (ii) in the absence of flip-

i) =D D aibiy | 1) = cirlés).  (7)  flopterm between NNNsIZ,, = 0; (iii) in the absence of Ising

k=1 \j=1 k=1 interaction between NNNsJ. = 0, and (iv) in the presence

_ ) ) ) ~of all four terms.

basis (top panels) and the mean-field basis (bottom panelght obtain a Wigner-Dyson distribution even if the system is
for the cases where the defect is placed on site 1 (left panelghaotic. This happens if not all symmetries of the system are

and on site| L /2 (right panels). For the regular system (left taken into account [24. 25]. We have already mentioned con-
panels), NPC shows large fluctuations, whereas in the ¢haotkeryation of total spin in the direction. In the absence of

regime (right panels), NPC becomes a smooth function of engefect, other symmetries &f (8) include [26]:
ergy. The onset of chaos leads to the uniformization of the Parity. Parity may be understood by imagining a mirror
eigenstates; in the middle of the spectrum they approach rafy, one edge of the chain. For the eigenstates written in the

dom vectors. Thus, chaotic eigenstates close in energy hawge pasis, the probability of each basis vector is equttias
similar structures and consequently similar values of NPC. ¢ its reflection. For example, suppose we hdve- 4 and

one excitation. The eigenstates are giveriby = a;1| Tl
)+ i L) + ags] LML) + agal L1LT). The amplitudes will
either bea;; = a;4 anda;2 = a;3 in the case of even parity,
ora;; = —a;4 anda;z = —ays3 in the case of odd parity. The
level spacing distribution needs to be independently abthi
for each parity sector.

e Spin reversal. If the chain has an even number of sites
and L/2 up-spins, then5* = 0. Here, pairs of equivalent
basis vectors correspond to those which become equal if we
rotate all the spins from one vector by P80For example,
state| 1)J1) pairs with state |11]).

e Total spin. If the system is isotropid,e. J,, = J, and

I ih Q2 L g2
FIG. 2: (Color online.) Number of principal components foet JM,/\I_.JZ' tota! SPINS™ = (21 Sn)” i Conserveq:
eigenstates off () vs energyL — 18, 6 Spins Upw = 0, € = 0.5, ~ Notice that in the case of clqsed boundary cond|t|ons_, there
Joy = 1, andJ. — 0.5 (arbitrary unit). Top panels: site-basis; S also momentum conservation. The more symmetries the
bottom panels: mean-field basis. Left panels: defect ondsite1:  System has, the smaller the subspaces, which is not good for
right panels: defect on si@= 9. statistics. This explains why in panels (b), (c), (d), angd (e
of Fig.[3 we deal with open boundary conditions, avoid the

These results have important consequences for the probleﬁiz =0 sgbspace, and choo:ig_;é Jzy- In daing so, the o_nly
of thermalization in isolated quantum systems, a subjext th symmetries we nezed to tak_e into account when studying the
has received much attention recently, especially due tle poclean systems aig® and parity.
sibility of testing the theory with experiments in opticat-
tices [21]. Basically, thermalization in the sense of agreet
with the predictions from statistical mechanics is expette
happen only when eigenstates close in energy show the same
level of complexity, that is when they become chadtic [22].

dim [ dim dim

site

NPC . (x10%)

2.
NPC_(x10°)
R S N N = N L RV s

IV. SYMMETRIES

The onset of chaos may happen also in a clean spin-1/2
chain if we add further couplings, for example between next-
nearest-neighbors (NNN$) [22-124]. The Hamiltonian now be- ) ) o ,
comes FIG. 3: (Color online.) Level spacing distribution féf (8) with

a = 0.5. Panel (@)L = 14, 7 spinsupJuy = Jy,, = J. = J. = 1;
all eigenvalues of the subspasé = 0 are considered. Panels (b),
H = Hyn + o, (8) (c), (d) and (e):L = 15, 5 spins up,/., = 1. The eigenvalues are
separated according to the parity of the correspondingnstgees;
where P(s) is the average of the distributions of the two parity sectors
Lo Panel (b):J,, = 1, J. = J. = 0.5. Panel (c):J;, =1, J. =

J. = 0. Panel (d).J,, = 0, J, = J. = 0.5. Panel (e).J,, = 1,
_ ! T QT Y QY ! Qz Qz z Ty z Ty
Hnnn = Z [Jzy (S"Sn+2 + SnSnH) + JZSnSn+2] : J. = 0.5, J. = 0. Arbitrary unit and bin size = 0.1.

n=1
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The top panels of Fid.]3 compare the level spacing distriof the system before making the histogram were discussed.
bution of two chaotic spin-1/2 chains from category (iv).€Th The number of principal components were computed in two
one on the left panel contains the three symmetries itemizedifferent bases and an expression to change the basis i whic
above which are not taken into account,Bfs) becomes a the eigenstates are written was given.
misleading Poisson distribution. The one on the right panel
has 0n|y pariw and this symmetry is taken into account, so Spln—1/2 chains are excellent models to introduce under-
P(s) becomes a clear Wigner-Dyson. graduate students to basic concepts of linear algebra ard qu

The bottom panels show the level spacing distribution fotum mechanics, from matrix diagonalization to the time evo-
chaotic spin-1/2 chains from the categories (i), (ii), aiiig ( !ution of the wave functions. They serve also as a starting

above. Parity is properly taken into account, leading to thePointto explore various topics of current research in ptalsi
expected Wigner-Dyson distributions. biological and computer science. To motivate further stsdi

and to facilitate the understanding of the present paper, th
computer programs used to obtain the data for Figsl 1, 2, and

V. CONCLUSION @ are available online in [27]. There, the reader will alsal fin
suggestions for exercises.
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