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Quantum chaos: an introduction via chains of spins-1/2

Aviva Gubin and Lea F. Santos
Department of Physics, Yeshiva University, 245 Lexington Ave, New York, NY 10016, USA

The purpose of this work is to serve as an introduction to quantum chaos. We avoid the usual path of dealing
with ensembles of random matrices and instead consider clean one-dimensional systems of spins-1/2. Quan-
tum systems whose classical counterparts are chaotic have properties that differ from those of quantum systems
whose classical counterparts are regular. One of the main signatures of what became known as quantum chaos
is a spectrum showing repulsion of the energy levels, as commonly observed in ensembles of random matrices.
Here, however, we show how quantum chaos may develop in more realistic systems of spins-1/2, which are
devoid of random elements and involve only two-body interactions. Spin-1/2 chains are prototype quantum
many-body systems. They are used to study subjects as diverse as quantum computing, quantum phase transi-
tion, and quantum transport. Nonetheless, they are simple enough to be accessible to undergraduate students.
Our analysis goes beyond the statistics of eigenvalues and exploits also how the structure of the eigenstates may
indicate chaos. We make available online all computer codesused to obtain the data for the figures of this work.
This should allow students and professors to easily reproduce our results and to further explore new questions.

I. INTRODUCTION

Classical chaos is related to the extreme sensitivity of the
dynamics of a system to its initial conditions. In a chaotic
classical system, the phase-space trajectories of two parti-
cles with very close initial conditions diverge exponentially
in time. The rate of this separation is characterized by the so-
called Lyapunov exponent [1]. In the quantum world, how-
ever, the notion of trajectory loses its meaning. Still, since
classical physics is but a limit of quantum physics, it is natu-
ral to search for quantum signatures of classical chaos [2, 3].

The energy levels of a quantum system whose classical
counterpart is chaotic are highly correlated and they repel
each other. This is reflected in various quantities associated
with the eigenvalues of the system, such as the distribution
of the spacings between neighboring levels, the level number
variance, and the spectral rigidity [4]. The energy levels of
a quantum system whose classical counterpart is regular (in-
tegrable), on the other hand, can cross; they are uncorrelated
and randomly distributed. Level repulsion is therefore oneof
the main features of what became known as quantum chaos.
But in addition to the analysis of the eigenvalues, quantum
chaos is reflected also in the structure of the eigenstates [5, 6].
Chaotic eigenstates are highly delocalized and their compo-
nents are random variables.

Already in the 1980s, it was realized that the fluctuation
properties of the spectrum of chaotic quantum systems match
those of random matrices [7, 8]. Random matrices are matri-
ces filled with random elements whose only constraint is to
satisfy some particular symmetries of the system they are try-
ing to model. Starting with Wigner’s efforts to understand the
statistics of the energy levels of highly excited nuclei [9], ran-
dom matrix theory [10] was soon employed in the analysis of
the spectrum of other quantum many-body systems, such as
atoms, molecules, and quantum dots, as well as various other
systems, ranging from the quantum Sinai billiard to sequence
of prime numbers [4, 7, 8, 11–13].

Real systems, however, are not described by random ma-
trices. Random matrices imply long-range and many-body
interactions, whereas real systems have few-body (most com-

monly only two-body) interactions. Real systems are better
described by sparse matrices where only the elements cor-
responding to two-body interactions are nonzero, as in two-
body random ensembles (TBREs) [14, 15]. The elements of
TBREs are random variables, which is justified as a way to
describe imperfections and noise. However, even though im-
perfections and noise permeate real systems, they are becom-
ing more and more controllable, which makes pertinent the
question of whether systems devoid of randomness may still
develop chaos.

In this work, we study clean one-dimensional systems of
spins-1/2, where random elements are nonexistent. The sys-
tems involve only two-body interactions taking place between
nearest-neighbors and in certain cases also between next-
nearest-neighbors. Chains of spins-1/2 are accessible systems
and may be used to expose students to a multitude of subjects.
In addition to the crossover from integrability to chaos, they
may be used, for example, to introduce current topics of re-
search such as the metal-insulator transition, quantum phase
transition, entanglement, spintronic and methods of quantum
control. They have been considered as models for quantum
computers, magnetic compounds and have recently been sim-
ulated in optical lattices [16].

The paper is organized as follows. Section II provides a
detailed description of the Hamiltonian of a spin-1/2 chain.
Section III explains how to compute two quantities capable
of capturing the crossover from regular to chaotic motion, the
level spacing distribution and the number of principal com-
ponents. Section IV discusses how remaining symmetries of
the system may hinder the signatures of chaos even when the
system is chaotic. Concluding remarks are given in Sec. V.

II. SPIN-1/2 CHAIN

We study a one-dimensional spin-1/2 system (spin-1/2
chain) described by the Hamiltonian

H = Hz +HNN, (1)
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where

Hz =

L
∑

n=1

ωnS
z
n =

(

L
∑

n=1

ωSz
n

)

+ ǫdS
z
d ,

HNN =

L−1
∑

n=1

[

Jxy
(

Sx
nS

x
n+1 + Sy

nS
y
n+1

)

+ JzS
z
nS

z
n+1

]

.

Above, ~ is set equal to 1,L is the number of sites, and
Sx,y,z
n = σx,y,z

n /2 are the spin operators at siten, σx,y,z
n being

the Pauli matrices. The termHz gives the Zeeman splitting of
each spinn, as determined by a static magnetic field in the
z direction. A spin up in thez direction is indicated as| ↑〉
or with the vector

(

1
0

)

and a spin down| ↓〉 with
(

0
1

)

. An
up-spin on siten has energy+ωn/2, while a down-spin has
energy−ωn/2. A spin up corresponds then to an excitation.
All sites are assumed to have the same energy splittingω, ex-
cept a single sited, whose energy splittingω + ǫd is caused
by a magnetic field slightly larger than the others. This siteis
referred to as defect.

The second term,HNN, is known as the XXZ Hamilto-
nian. It describes the couplings between nearest-neighbor
(NN) spins;Jxy is the strength of the flip-flop termSx

nS
x
n+1+

Sy
nS

y
n+1 andJz the strength of the Ising interactionSz

nS
z
n+1.

The flip-flop term exchanges the position of neighboring up
and down spins according to

Jxy(S
x
nS

x
n+1 + Sy

nS
y
n+1)| ↑n↓n+1〉 = (Jxy/2)| ↓n↑n+1〉

or, equivalently, it moves the excitations through the chain.
Notice that we have assumed open boundary conditions, as
indicated by the sum inHNN which goes fromn = 1 to site
L − 1. This means that an excitation in site 1 (orL) can only
move to site 2 (or to siteL− 1). The scenario of a ring where
an excitation on siteL can also move to site 1 corresponds to
closed boundary conditions and is mentioned briefly in Sec. V.

The Ising interaction implies that pairs of parallel spins
have higher energy than pairs of anti-parallel spins, that is

JzS
z
nS

z
n+1| ↑n↑n+1〉 = +(Jz/4)| ↑n↑n+1〉, (2)

whereas

JzS
z
nS

z
n+1| ↑n↓n+1〉 = −(Jz/4)| ↑n↓n+1〉. (3)

For the chain described byH (1), the total spin in thez di-
rection,Sz =

∑L
n=1 S

z
n, is conserved,i.e. [H,Sz] = 0. This

is a symmetry of the system. It means that the total number of
excitations is fixed; the Hamiltonian cannot create or annihi-
late excitations, it can only move them through the chain.

In order to write the Hamiltonian in the matrix form and
then diagonalize it to find its eigenvalues and eigenstates,we
need first to choose a basis. The most natural choice is the
one we have used so far to describe the terms ofH , that is
arrays of up and down spins in thez-direction. We refer to
it as the site-basis. In this basis,Hz and the Ising interaction
contribute to the diagonal elements of the matrix, whereas the
flip-flop term leads to the off-diagonal elements.

In the absence of disorder, the system is said to be clean.
A clean spin-1/2 chain with NN exchange only (the XXZ

model) is integrable and can be solved with the Bethe Ansatz
method [17]. The addition of disorder [18], even if just one
defect in the middle of the chain [19], as considered here, may
lead to the onset of quantum chaos. The source of chaos is the
interplay between the Ising interaction and the defect.

To bring the system to chaotic regime, we setJxy = 1 (ar-
bitrary unit), chooseJz = ǫ = 0.5 (arbitrary unit), and place
the defect on sited = ⌊L/2⌋. This choice is based on the fol-
lowing factors. (i) The strength of the Ising interaction cannot
be much larger thanJxy, because this would localize the ex-
citations by limiting the number of effectively coupled states.
For instance, basis vectors with several pairs of parallel spins
would have energy much higher than states with few pairs of
parallel spins [cf. Eqs.(2), (3)] andJxy would not be able to
effectively couple them. Chaos cannot occur in a localized
system. (ii) The defect cannot be placed on the edges of the
chain, because in this case the system is still integrable [20].
(iii) The defect should not be too large, because it would sim-
ply break the chain in two, that is an excitation on the left of
the defect would not have enough energy to overcome it and
then reach the right side of the chain, and vice versa.

III. QUANTUM CHAOS

Different quantities exist to identify the crossover from the
regular to the chaotic regime in quantum systems. We con-
sider the level spacing distribution, which is associated with
the eigenvalues, and the number of principal components,
which measures the complexity of the eigenstates.

A. Level spacing distribution

The distribution of spacingss of neighboring energy levels
[4, 10–12] is the most frequently used quantity to study short-
range fluctuations in the spectrum. Quantum levels of regular
systems are not prohibited from crossing and the distribution
is Poissonian,

PP (s) = exp(−s). (4)

In chaotic systems, crossings are avoided; there is level repul-
sion and the level spacing distribution is given by the Wigner-
Dyson distribution, as predicted by random matrix theory. The
form of the Wigner-Dyson distribution depends on the sym-
metry properties of the Hamiltonian. Systems with time rever-
sal invariance are described by Gaussian orthogonal ensem-
bles (GOEs). A GOE corresponds to an ensemble of real sym-
metric matrices, whose elementsHij are independent random
numbers from a Gaussian distribution. The average of the ele-
ments and the variance satisfy〈Hij〉 = 0 and〈H2

ij〉 = 1+δij.
The level spacing distribution of a GOE is given by

PWD(s) = (πs/2) exp(−πs2/4). (5)

The same distribution is achieved for model (1) in the chaotic
limit. However, our system differs from GOEs in two ways, it
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has only two-body interactions and does not contain random
elements.

In order to obtain the level spacing distribution, we need
first to separate the eigenvalues according to their symme-
try sectors. If we mix eigenvalues from different symme-
try sectors, we may not achieve a Wigner-Dyson distribu-
tion even if the system is chaotic. This is because eigenval-
ues from different subspaces are independent and therefore
have no reason to repel each other. The conservation ofSz in
H (1) implies that the Hamiltonian is separated into uncou-
pled blocks, each corresponding to a subspace with a partic-
ular number of spins pointing up. In the studies below, we
focus on the subspace that hasL/3 up-spins and dimension
dim = L!/[(L/3)!(L− L/3)!].

The second essential step before computing the histogram
of neighboring level spacings is to unfold the spectrum. The
procedure consists of locally rescaling the energies, so that
the local density of states of the renormalized eigenvaluesis
1. There are different methods to achieving this. Here we
describe a pedagogical one.

First, we make sure that our spectrum{E1, E2, . . . , Edim}
is ordered in increasing values of energy. We then discard
some levels from the edges of the spectrum, where the fluctu-
ations are large. Let us remove at least 10% of the eigenval-
ues, approximately half of them from very low energies and
half from very high energies. The lowest energy that we will
consider isEl = E⌊dim/20⌋. Next, we divide the eigenval-
ues in groups of 11, the last eigenvalue of one group always
reappearing as first element of the next group. We then have
q = ⌊90%× dim/10⌋ sets of energy levels corresponding to

Set1 : {El, El+1 . . . El+10}

Set2 : {El+10, El+11 . . . El+20}

. . .

Setq : {El+10(q−1), El+10(q−1)+1 . . . El+10q}

For each seti, with i = 1, 2, . . . , q, we compute the mean
level spacingDi according to

Di = [El+10i − El+10(i−1)]/10.

Each eigenvalueEl+10(i−1)+j , with j = 0, 1, . . .10, is renor-
malized asel+10(i−1)+j = El+10(i−1)+j/Di. The mean level
spacing of each new set of energiese’s is therefore 1. Since
the density of states is the number of states in an interval of
energy, that is the reciprocal of the mean level spacing, the
renormalized energies ensures also that the local density of
states is unity.

In hand of the unfolded spacings of neighboring levels, the
histogram can now be computed. Notice that to compare it
with the theoretical curves, the distribution needs to be nor-
malized, so that its total area is equal to 1.

Figure 1 shows the level spacing distribution for the cases
where the defect is placed on site 1 (left panel) and on site
⌊L/2⌋ (right panel). The first corresponds to an integrable
model and the distribution is Poissonian, while the second is
a chaotic system, so the distribution is Wigner-Dyson.
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FIG. 1: (Color online.) Level spacing distribution forH (1) with
L = 15, 5 spins up,ω = 0, ǫ = 0.5, Jxy = 1, andJz = 0.5
(arbitrary unit); bin size = 0.1. Left panel: defect on sited = 1; right
panel: defect on sited = 7. Dashed lines: theoretical curves.

B. Number of principal components

Delocalization measures [5, 6], such as the number of prin-
cipal components (NPC), determine how much spread the
eigenstates are in a particular basis. For an eigenstate|ψi〉

written in the basis vectors|ξk〉 as|ψi〉 =
∑dim

k=1 cik|ξk〉, NPC
is defined as

NPCi ≡
1

∑dim
k=1 |cik|

4
. (6)

This quantity gives the number of basis vectors that contribute
to each eigenstate. It is small when the state is localized and
large when the state is delocalized.

For GOEs, the eigenstates are simply random vectors,i.e.
the amplitudescik are independent random variables. These
states are completely delocalized. Complete delocalization
does not mean, however, that NPC=dim. Because the weights
|cik|

2 fluctuate, the average over the ensemble gives NPC
∼ dim/3 [5, 6].

In our case, since model (1) has only two-body interactions,
NPC does not reachdim/3. Moreover, the largest values ap-
pear only in the middle of the spectrum of the system in the
chaotic regime. This is because the level density of systems
with two-body interactions has a Gaussian shape. This indi-
cates that the highest concentration of states appears in the
middle of the spectrum. It is there that strong mixing of states
can happen leading to widely spread eigenstates.

The values of NPC are also intimately related to the basis
used. The basis considered depends on the question one is
after. In studies of spatial localization, for example, thesite-
basis is an appropriate one. In order to separate regular from
chaotic behavior, on the other hand, a more appropriate ba-
sis corresponds to the eigenstates of the integrable limit of the
model. This basis is referred to as the mean-field basis [6]. In
our model, there are different integrable limits. We chose to
consider the case whereǫd 6= 0 andJz = 0, because the pres-
ence of the defect ensures the breaking of possible remain-
ing symmetries (see Sec. IV). The crossover to chaos is then
caused by the addition of Ising interaction.

Suppose that|ξ〉 represents the mean-field basis and|φ〉 the
site-basis. If we obtain the eigenstates|ψ〉 in the site-basis,
|ψi〉 =

∑dim
j=1 aij |φj〉, and we know the relation between the

two bases,|ξk〉 =
∑dim

j=1 bkj |φj〉, we may rewrite the eigen-
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states in the mean-field basis as

|ψi〉 =

dim
∑

k=1





dim
∑

j=1

aijb
∗
kj



 |ξk〉 =

dim
∑

k=1

cik|ξk〉. (7)

Figure 2 depicts NPC of the eigenstates in both the site-
basis (top panels) and the mean-field basis (bottom panels)
for the cases where the defect is placed on site 1 (left panels)
and on site⌊L/2⌋ (right panels). For the regular system (left
panels), NPC shows large fluctuations, whereas in the chaotic
regime (right panels), NPC becomes a smooth function of en-
ergy. The onset of chaos leads to the uniformization of the
eigenstates; in the middle of the spectrum they approach ran-
dom vectors. Thus, chaotic eigenstates close in energy have
similar structures and consequently similar values of NPC.

 

FIG. 2: (Color online.) Number of principal components for the
eigenstates ofH (1) vs energy;L = 18, 6 spins up,ω = 0, ǫ = 0.5,
Jxy = 1, andJz = 0.5 (arbitrary unit). Top panels: site-basis;
bottom panels: mean-field basis. Left panels: defect on sited = 1;
right panels: defect on sited = 9.

These results have important consequences for the problem
of thermalization in isolated quantum systems, a subject that
has received much attention recently, especially due the pos-
sibility of testing the theory with experiments in optical lat-
tices [21]. Basically, thermalization in the sense of agreement
with the predictions from statistical mechanics is expected to
happen only when eigenstates close in energy show the same
level of complexity, that is when they become chaotic [22].

IV. SYMMETRIES

The onset of chaos may happen also in a clean spin-1/2
chain if we add further couplings, for example between next-
nearest-neighbors (NNNs) [22–24]. The Hamiltonian now be-
comes

H = HNN + αHNNN, (8)

where

HNNN =

L−2
∑

n=1

[

J ′
xy

(

Sx
nS

x
n+2 + Sy

nS
y
n+2

)

+ J ′
zS

z
nS

z
n+2

]

.

For α sufficiently large (α & 0.2 whenL = 15), there are
various scenarios where chaos may develop: (i) in the absence
of Ising interactions,Jz = Jz′ = 0; (ii) in the absence of flip-
flop term between NNNs,J ′

xy = 0; (iii) in the absence of Ising
interaction between NNNs,J ′

z = 0, and (iv) in the presence
of all four terms.

Depending on the parameters ofH (8), however, we may
not obtain a Wigner-Dyson distribution even if the system is
chaotic. This happens if not all symmetries of the system are
taken into account [24, 25]. We have already mentioned con-
servation of total spin in thez direction. In the absence of
defect, other symmetries ofH (8) include [26]:
• Parity. Parity may be understood by imagining a mirror

in one edge of the chain. For the eigenstates written in the
site-basis, the probability of each basis vector is equal tothat
of its reflection. For example, suppose we haveL = 4 and
one excitation. The eigenstates are given by|ψi〉 = ai1| ↑↓↓↓
〉+ai2| ↓↑↓↓〉+ai3| ↓↓↑↓〉+ai4| ↓↓↓↑〉. The amplitudes will
either beai1 = ai4 andai2 = ai3 in the case of even parity,
or ai1 = −ai4 andai2 = −ai3 in the case of odd parity. The
level spacing distribution needs to be independently obtained
for each parity sector.
• Spin reversal. If the chain has an even number of sites

andL/2 up-spins, thenSz = 0. Here, pairs of equivalent
basis vectors correspond to those which become equal if we
rotate all the spins from one vector by 180o. For example,
state| ↑↓↓↑〉 pairs with state| ↓↑↑↓〉.
• Total spin. If the system is isotropic,i.e. Jxy = Jz and

J ′
xy = J ′

z, total spin,S2 = (
∑L

n=1
~Sn)

2, is conserved.
Notice that in the case of closed boundary conditions, there

is also momentum conservation. The more symmetries the
system has, the smaller the subspaces, which is not good for
statistics. This explains why in panels (b), (c), (d), and (e)
of Fig. 3 we deal with open boundary conditions, avoid the
Sz = 0 subspace, and chooseJz 6= Jxy. In doing so, the only
symmetries we need to take into account when studying the
clean systems areSz and parity.
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FIG. 3: (Color online.) Level spacing distribution forH (8) with
α = 0.5. Panel (a):L = 14, 7 spins up,Jxy = J

′

xy = Jz = J
′

z = 1;
all eigenvalues of the subspaceSz = 0 are considered. Panels (b),
(c), (d) and (e):L = 15, 5 spins up,Jxy = 1. The eigenvalues are
separated according to the parity of the corresponding eigenstates;
P (s) is the average of the distributions of the two parity sectors.
Panel (b):J ′

xy = 1, Jz = J
′

z = 0.5. Panel (c):J ′

xy = 1, Jz =
J
′

z = 0. Panel (d):J ′

xy = 0, Jz = J
′

z = 0.5. Panel (e):J ′

xy = 1,
Jz = 0.5, J ′

z = 0. Arbitrary unit and bin size = 0.1.
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The top panels of Fig. 3 compare the level spacing distri-
bution of two chaotic spin-1/2 chains from category (iv). The
one on the left panel contains the three symmetries itemized
above which are not taken into account, soP (s) becomes a
misleading Poisson distribution. The one on the right panel
has only parity and this symmetry is taken into account, so
P (s) becomes a clear Wigner-Dyson.

The bottom panels show the level spacing distribution for
chaotic spin-1/2 chains from the categories (i), (ii), and (iii)
above. Parity is properly taken into account, leading to the
expected Wigner-Dyson distributions.

V. CONCLUSION

We provided a detailed procedure to verify whether a one-
dimensional system of spins-1/2 is in the chaotic regime. Two
quantities were considered: the level spacing distribution, ob-
tained with the eigenvalues, and the number of principal com-
ponents of the eigenstates. A simple recipe to unfold the spec-
trum and the importance of taking into account the symmetries

of the system before making the histogram were discussed.
The number of principal components were computed in two
different bases and an expression to change the basis in which
the eigenstates are written was given.

Spin-1/2 chains are excellent models to introduce under-
graduate students to basic concepts of linear algebra and quan-
tum mechanics, from matrix diagonalization to the time evo-
lution of the wave functions. They serve also as a starting
point to explore various topics of current research in physical,
biological and computer science. To motivate further studies
and to facilitate the understanding of the present paper, the
computer programs used to obtain the data for Figs. 1, 2, and
3 are available online in [27]. There, the reader will also find
suggestions for exercises.
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