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THE HESSENBERG MATRIX AND THE RIEMANN MAPPING

C. ESCRIBANO, A. GIRALDO, M. A. SASTRE, AND E. TORRANO

Abstract. We show in this paper that, if µ is a regular measure whose support
is a Jordan arc or a connected finite union of Jordan arcs in the complex plane
C, then the limits of the elements of the diagonals of the Hessenberg matrix D

of µ, whenever those limits exist, determine the coefficients of the Laurent series
expansion of the Riemann mapping φ(z) which maps conformally the exterior of
the unit disk onto the exterior of the support of the measure µ. Moreover, in the
case of an arc of the unit circle, we use this result to show how to approximate the
Riemann mapping of the support of µ from the entries of the Hessenberg matrix
D.

1. Introduction

In this paper, we consider regular Borel measures µ defined on subsets of the
complex plane that are Jordan arcs, or connected finite union of Jordan arcs, and
we show how the entries of the Hessenberg matrix D associated with µ determines
the Riemann mapping that takes the complement of the closed unit disk D to the
complement of the support of µ. In particular, the support of µ is determined by
the Hessenberg matrix associated with µ.

The Riemann mapping theorem says, in its most common statement (see, for
example, [1]), that given a simply connected domain Ω ( C and given z0 ∈ Ω there
is a unique analytic function φ : D −→ Ω (D the open unit disk), such that φ(0) = z0
and φ′(z0) > 0, which defines a one-to-one mapping of D onto Ω. However, we will
use an equivalent formulation for domains containing ∞ which can be found, for
example, in [26, 20, 16]. In this case, the Riemann mapping theorem states that, for
every Γ ⊂ C compact, which is not a point, such that C∞ \Γ is simply connected,
there is a unique conformal mapping φ : C∞ \ D → C∞ \Γ, such that φ(∞) = ∞
and φ′(∞) > 0, where φ′(∞) = cap(Γ) is the capacity of Γ. Moreover, if Γ is a
simple Jordan curve, φ(z) is continuous in the unit circle T.

There exists a well-known link between the Riemann mapping and the Green
function, which has been described in the literature on potential theory (see, for
example, [9]). If we denote by Φ(z) the inverse of φ(z) as defined in the previous
paragraph, then the Green function for a compact set K with cap(K) > 0, gK(z,∞),
can be obtained from the Riemann conformal mapping Φ(z) which takes C∞ \Pc(K)
onto the exterior of D, where Pc(K) is the polynomial convex hull of K. Moreover,

if Φ(z) =

∞∑

k=−1

c−kz
−k, c1 > 0, in a neighborhood of ∞, then

gK(z,∞) =

{
log |Φ(z)| if z ∈ C∞ \Pc(K)
0 otherwise.
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In particular, c1 =
1

cap(K)
.

In the real case, the Hessenberg matrix agrees with the tridiagonal Jacobi matrix.
Rakhmanov’s theorem [21, 22] states that, if the support of a Borel measure is [−1, 1]
and µ′ > 0 almost everywhere in [−1, 1], and

J =




b0 a1 0 . . .
a1 b1 a2 . . .
0 a2 b2 . . .
0 0 a3 . . .
...

...
...

. . .




is the Jacobi matrix associated with µ, then an → 1

2
and bn → 0.

Note that in this case, the Riemann mapping of the interval [−1, 1] is

φ(z) =
1

2

(
z +

1

z

)
=

1

2
z + 0 +

1

2

1

z

Moreover, under the conditions of Rakhmanov’s theorem, if supp(µ) = [a, b], then

the above limits are an → b− a

4
and bn → a+ b

2
. In this case, the Riemann mapping

is

φ(z) =
b− a

4
z +

a+ b

2
+

b− a

4

1

z
.

Conversely, P. Nevai established in [19] that, if an → a > 0 and bn → b, then the
support is [−2a + b, b + 2a] ∪ e (where e is at most a denumerable set of isolated
points). Moreover, Nevai proved the equivalence between the existence of those
limits and the ratio asymptotic of orthonormal polynomials.

Generalizations of Rakhmanov’s theorem to orthogonal polynomials, and to or-
thogonal matrix polynomials on the unit circle, have been given in [18] and [28].
The case of orthogonal polynomials on an arc of circumference has been studied in
[3].

As a final introductory motivating fact, we consider the Hessenberg matrix D
associated with a measure µ on T,

D =




d1,1 d1,2 d1,3 . . .
d2,1 d2,2 d2,3 . . .
0 d3,2 d3,3 . . .
0 0 d4,3 . . .
...

...
...

. . .




.

Then, if µ is of Szegő class [12], then limn→∞ dn+1,n = 1 and limn→∞ dn−k,n = 0, for
all k ∈ N. On the other hand, φ(z) = z.

In this paper we show a theorem relating the limits of the elements of the diagonals
of the Hessenberg matrix of a measure µ, with the coefficients of the Laurent series
expansion of the Riemann mapping of the support of µ. Specifically, we show that, if
µ is a regular measure whose support is a Jordan arc or a connected union of Jordan
arcs in the complex plane C, then the limits of the values at the diagonals of the
Hessenberg matrix D of µ, whenever those limits exist, determine the coefficients
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of the series expansion of the Riemann mapping φ(z) which applies conformally the
exterior of the unit disk onto the exterior of the support of the measure.

There exist some previous results relating the properties of D and the support of
µ. For example, if the Hessenberg matrix D defines a subnormal operator [15] in
ℓ2, then the closure of the convex hull of its numerical range agrees with the convex
hull of its spectrum. On the other hand, the spectrum of the matrix D contains
the spectrum of its minimal normal extension N = men(D) which is precisely the
support of the measure [7].

The organization of the paper is as follows: In Section 2 we prove the main
theorem relating the limits of the elements of the diagonals of the Hessenberg matrix
of a measure µ, with the coefficients of the Laurent series expansion of the Riemann
mapping of the support of µ. In Section 3 we show that the Riemann mapping of the
support of µ can be approximated from the entries of the Hessenberg matrix D. The
last Section is devoted to several heuristic examples to illustrate the approximation
results given in previous section.

For general information on the theory of orthogonal polynomials, we recommend
the books [5, 26] by T. S. Chihara and G. Szegő, respectively, and the survey [14]
by L. Golinskii and V. Totik.

2. The Diagonals Theorem

Let µ be a Borel probability measure in the complex plane, with support supp(µ),
containing infinitely many points. Let P be the space of polynomials. The associated
inner product is given by the expression

〈Q(z), R(z)〉µ =

∫

supp(µ)

Q(z)R(z)dµ(z),

forQ,R ∈ P. Then there exists a unique orthonormal polynomials sequence (ONPS)
{Pn(z)}∞n=0 associated to the measure µ [5, 10, 26].

In the space P2(µ), closure of the polynomials space P in L2
µ(Ω), we consider the

multiplication by z operator. Let D = (dij)
∞
i,j=1 be the infinite upper Hessenberg

matrix of this operator in the basis of ONPS {Pn(z)}∞n=0, hence

(1) zPn(z) =

n+1∑

k=0

dk+1,n+1Pk(z), n ≥ 0,

with P0(z) = 1.
It is a well-known fact that the monic polynomials are the characteristic polyno-

mials of the finite sections of D.
In order to state our main result, we will require the measure µ to be regular with

support a connected finite union of Jordan arcs, and we will also need to consider
an auxiliary Toeplitz matrix. We next recall the definitions of all these notions.

A Jordan arc in C is any subset of C homeomorphic to the closed interval [0, 1]
on the real line.

A measure µ is regular if lim
n→∞

1
n

√
γn

= cap(supp(µ)), the capacity of the support

of µ, where the γn are the leading coefficients of the orthonormal polynomials, i.e.,
Pn(z) = γnz

n + · · · .
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An infinite matrix T = (ai,j)
∞
i,j=1 is a Toeplitz matrix if each descending diagonal

from left to right is constant, i.e, there exists (ai)i∈Z such that

T =




a0 a−1 a−2 . . .
a1 a0 a−1 . . .
a2 a1 a0 . . .
a3 a2 a1 . . .
...

...
...

. . .




.

Given a Toeplitz matrix T , the Laurent series whose coefficients are the entries ai
defines a function known as the symbol of T .

We are now in a position to state and prove the main result of the paper.

Theorem 1 (The diagonals theorem). Let D = (dij)
∞
i,j=1 be the Hessenberg matrix

associated with a measure µ with compact support on the complex plane. Assume

that:

(1) The measure µ is regular with support supp(µ) a Jordan arc or a connected

finite union of Jordan arcs Γ such that C∞ \Γ is a simply connected set of

the Riemann sphere C∞.

(2) There exists a Hessenberg-Toeplitz matrix T with its rows in ℓ1, such that

D − T defines a compact operator in ℓ2.

Then, the symbol of T agrees with the Riemann mapping φ : C∞ \D → C∞ \Γ.
Proof. Suppose that

T =




d0 d−1 d−2 . . .
d1 d0 d−1 . . .
0 d1 d0 . . .
0 0 d1 . . .
...

...
...

. . .




.

Hence the symbol of T is

d(z) = d1z + d0 + d−1
1

z
+ d−2

1

z2
+ · · · =

∞∑

k=−1

d−kz
−k.

On the other hand, by the Riemann mapping theorem [20, 16], given Γ ⊂ C
compact, since C∞ \Γ is simply connected, there is a unique conformal mapping
φ : C∞ \ D → C∞ \Γ, with the expression

φ(z) = c1z + c0 + c−1
1

z
+ c−2

1

z2
+ · · · =

∞∑

k=−1

c−kz
−k,

such that c1 > 0, with c1 = cap(Γ) the capacity of Γ.
Therefore, in order to prove the theorem it suffices to show that d(z) satisfies the

properties that determine the Riemann mapping.
We will follow the next steps:

(1) The symbol d(z) is continuous in C∞ \D, analytic in C∞ \D, except at ∞,
and d(T) = Γ.

(2) d(z) is univalent in C∞ \ D.
(3) The first coefficient of d(z) is the capacity of Γ, i. e. d1 = cap(Γ).
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(1) We show first that d(z) = d1z+
∞∑

k=0

d−kz
−k is continuous in C∞ \D and analytic

in C∞ \D.
We have, on the one hand, that the function given by the first summand d1z is

analytic in C∞, except at ∞. On the other hand, consider d̃(z) =

∞∑

k=0

d−kz
−k. If

|z| ≥ 1, then
∞∑

k=0

|d−kz
−k| ≤

∞∑

k=0

|d−k| = M < ∞,

because the rows of T are in ℓ1. Therefore, d̃(z) is continuous in C∞ \D and analytic
in C∞ \D except at ∞.

Consider D − T which, by hypothesis, defines a compact operator in ℓ2. Then
all its diagonals converge to zero [2] and hence, for every k ∈ {−1, 0, 1, 2, . . .}, the
limits limn→∞ dn−k,n exist and limn→∞ dn−k,n = d−k.

Since the essential spectrum (see, for example, [7] for a definition) is invariant via
compact perturbations [6], we have that σess(D) = σess(T ).

Since supp(µ) = Γ is a compact set with empty interior and C∞ \Γ is connected,
we can apply Merguelyan’s theorem [11, p.97] to deduce that every continuous func-
tion in Γ can be uniformly approximated by polynomials.

Since the set of continuous functions with compact support is dense in L2
µ(Γ), then

L2
µ(Γ) = P 2

µ(Γ). Therefore, D defines a normal operator in ℓ2, hence σ(D) = Γ, see
[7] p. 41.

Since the support has no isolated points (for being a connected union of Jordan
arcs) and

σ(D) \ σess(D) = {λ | λ isolated eigenvalue with finite multiplicity} = ∅,
then σ(D) = σess(D).

Finally, since (d1, d0, d−1, . . .) ∈ ℓ1, then [4] σess(T ) = d(T). Therefore,

d(T) = σess(T ) = σess(D) = σ(D) = Γ.

(2) We have shown that d(z) is analytic in C∞ \D. Moreover, since d(z) is contin-
uous in C∞ \D, the set of limit points of d(z) as |z| → 1 agrees with d(T) = Γ
which is bounded, without interior points and does not disconnect C∞. There-
fore d(z) satisfies the hypothesis of Theorem 1.1 in [20] and we can conclude that
d : C∞ \D −→ C∞ \Γ is univalent, and being also analytic, is conformal in C∞ \D.
(3) We finally show that d1 = cap(Γ).

The elements dn+1,n of the subdiagonal of the matrix D agree with the quotients
γn/γn+1. Since lim

n→∞
dn+1,n = d1, then

d1 = lim
n→∞

dn+1,n = lim
n→∞

γn
γn+1

= lim
n→∞

1
n

√
γn

.

On the other hand, since µ is regular, then [25]

lim
n→∞

1
n

√
γn

= cap(supp(µ)).
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Therefore, d1 = cap(supp(µ)) = cap(Γ). �

Remark 1. Note that if Γ is rectifiable then the rows of T are in ℓ1.

Remark 2. As noted in the introduction, if Γ is the segment [−1, 1] in C, the
Riemann mapping φ(z) which applies the exterior of the closed unit disk onto the
exterior of Γ is

φ(z) =
1

2

(
z +

1

z

)
.

On the other hand, by Rakhmanov’s theorem [21, 22], if µ is a Borel measure in
[−1, 1] such that µ′ > 0 almost everywhere in [−1, 1], and

J =




b0 a1 0 . . .
a1 b1 a2 . . .
0 a2 b2 . . .
0 0 a3 . . .
...

...
...

. . .




is the Jacobi matrix associated with µ, then an → 1

2
and bn → 0. In this case there

exists

T =




0
1

2
0 . . .

1

2
0

1

2
. . .

0
1

2
0 . . .

0 0
1

2
. . .

...
...

...
. . .




such that J − T defines a compact operator in ℓ2 and its rows are in ℓ1 as in the
hypothesis of Theorem 1. Note that these limits agree (as predicted by Theorem 1)
with the coefficients of the Riemann mapping φ(z).

As an illustration of Theorem 1 we consider the following example.

Example 1 (Arc of circle). We consider Γ an arc of the unit circle T. In this
case [13] (see also [23, 24]), there exists a regular measure for which the diagonals of
the Hessenberg matrix stabilize from the second element on. The monic orthogonal

polynomials associated to this measure satisfy Ψ0(0) = 1 and Ψn(0) =
1

a
(a > 1), if

n ≥ 1, and the corresponding Hessenberg matrix is the following unitary matrix D



−1

a
−(a2 − 1)1/2

a2
−(a2 − 1)2/2

a3
−(a2 − 1)3/2

a4
−(a2 − 1)4/2

a5
· · ·

(a2 − 1)1/2

a
− 1

a2
−(a2 − 1)1/2

a3
−(a2 − 1)2/2

a4
−(a2 − 1)3/2

a5
· · ·

0
(a2 − 1)1/2

a
− 1

a2
−(a2 − 1)1/2

a3
−(a2 − 1)2/2

a4
· · ·

0 0
(a2 − 1)1/2

a
− 1

a2
(a2 − 1)1/2

a3
· · ·

...
...

...
...

...
. . .




.
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Hence we know the limits of the diagonals and then the Toeplitz matrix T is

T =




− 1

a2
−(a2 − 1)1/2

a3
−(a2 − 1)2/2

a4
· · ·

(a2 − 1)1/2

a
− 1

a2
−(a2 − 1)1/2

a3
· · ·

0
(a2 − 1)1/2

a
− 1

a2
· · ·

...
...

...
. . .




.

Note that the first row is a geometric series of ratio

√
a2 − 1

a
< 1 (because a > 1).

Hence the rows of T are in ℓ1.
On the other hand,

D − T =




−a− 1

a2
−(a2 − 1)1/2(a− 1)

a3
−(a2 − 1)(a− 1)

a4
. . .

0 0 0 . . .
0 0 0 . . .
...

...
...

. . .




.

It is easy to check that D − T is compact because it is Hilbert-Schmidt:
√√√√

∞∑

i,j=1

|aij|2 =

√√√√
∞∑

n=0

(
(a− 1)(a2 − 1)n/2

a2+n

)2

=
a− 1

a
< +∞.

According to Theorem 1 we have that the expression of the Riemann mapping as
a Laurent series is

φ(z) =
z
(
a−

√
a2 − 1 z

)
√
a2 − 1− az

=

√
a2 − 1

a
z − 1

a2
−

√
a2 − 1

a3z
−O

(
1

z2

)
.

Figure 1. The Riemann mapping of the arc for a = 2

3. Approximation of the Riemann mapping

When the Hessenberg matrix D can not obtained as a closed form, and it is not
possible to compute the limits of the elements of its diagonals, we may ask if it is
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still possible to compute approximations of the support of the measure µ, computing
the image of the unit circle under suitable approximations of the Riemann mapping.

Specifically, since the coefficients of the Riemann mapping are the limits of the
elements in each of the diagonals of the Hessenberg matrix, we may ask if the
functions

hn(z) = dn+1,nz + dn,n +
dn−1,n

z
+

dn−2,n

z2
+ . . .+

d1,n
zn−1

,

defined from the n-th column cn of the Hessenberg matrix, are suitable approxima-
tions of the Riemann mapping φ(z).

We show in this section that this is indeed the case.
In what follows we will denote by Θn the norm in ℓ2 the of n-th column of the

matrix D − T as a vector of ℓ2, i.e.,

Θn =

√√√√
n−1∑

k=−1

|d−k − dn−k,n|2.

Lemma 1. Suppose that D is bounded as an operator in ℓ2 and that D − T is

compact. Then

lim
n→∞

Θn = 0.

Proof. If we apply D − T to the vector en−1, we obtain the n-th column cn of the
matrix. Since D − T defines a compact operator in ℓ2 and en weakly converges to
0, then (D − T )en−1 converges strongly to 0.

Therefore, Θn = ‖(D − T )en−1‖2 → 0. �

Proposition 1. Under the hypothesis of Theorem 1, the sequence of functions

hn(z) = dn+1,nz + dn,n +
dn−1,n

z
+

dn−2,n

z2
+ . . .+

d1,n
zn−1

converges uniformly to the Riemann mapping φ(z) on any compact set K ⊂ C \D.

Proof. Consider a compact subset K ⊂ C \D and consider ε > 0.
For every z ∈ K, we have

|hn(z)− φ(z)| =

=

∣∣∣∣(d1 − dn+1,n)z + (d0 − dn,n) +
d−1 − dn−1,n

z
+ · · ·

· · ·+ d1−n − d1,n
zn−1

+
∞∑

k=n

d−k
1

z−k

∣∣∣∣∣

≤
n−1∑

k=−1

∣∣∣∣
d−k − dn−k,n

zk

∣∣∣∣+
∞∑

k=n

∣∣∣∣
d−k

zk

∣∣∣∣ ≤
n−1∑

k=−1

∣∣∣∣
d−k − dn−k,n

zk

∣∣∣∣+
∞∑

k=n

|d−k|.(2)

The second summand in the last inequality is the end of a vector in ℓ1. Therefore,

given ε > 0, there exists N0 ∈ N such that, for every n < N0,
∑∞

k=n |d−k| <
ε

2
.
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On the other hand, for the first summand, if we apply Cauchy-Schwarz inequality,
we have

n−1∑

k=−1

∣∣∣∣
d−k

zk

∣∣∣∣ ≤

√√√√
n−1∑

k=−1

|d−k − dn−k,n|2
√√√√

n−1∑

k=−1

|z|−2k = Θn

√√√√
n−1∑

k=−1

|z|−2k.

Since K is compact, there exist r, R ∈ R such that 1 < r ≤ |z| ≤ R for every z ∈ K.
Then, for every z ∈ K,

n−1∑

k=−1

|z|−2k ≤ R2 +

∞∑

k=0

r−2k = R2 +
1

r2 − 1
= C.

On the other hand, since Θn converges to 0, there exists N1 ∈ N such that, for every

n > N1, Θn <
ε

2C
.

Taking N = max{N0, N1} we have that

|hn(z)− φ(z)| < ǫ

for every z ∈ K, for every n > N . �

Note that, in Proposition 1, the condition (d1, d0, d−1, . . . ) ∈ ℓ1 is not necessary,
since in (2) we can apply Cauchy-Schwarz inequality, and we have

∞∑

k=n

∣∣∣∣
d−k

zk

∣∣∣∣ ≤

√√√√
∞∑

k=n

|d−k|2
√√√√

∞∑

k=n

r−2k,

which is a product of the ends of two convergent series, hence it converges to 0, very
fast as n diverges to ∞. In fact, even when we have not the sequence d1, d0, d−1, . . . ,
explicitly, we can assure, since the second series is geometric, that the order of this
summand is lower than O

(
1/r(n−1)

)
.

Remark 3. To obtain a bound for

(3) |hn(z)− φ(z)| ≤
n−1∑

k=−1

∣∣∣∣
d−k − dn−k,n

zk

∣∣∣∣+
∞∑

k=n

∣∣∣∣
d−k

zk

∣∣∣∣ ,

we need to bound the two summands on the right. The second one goes to zero for
all z with |z| ≥ 1 since (d1, d0, d−1, . . . ) ∈ ℓ1

Consider the sequence {cn}∞n=1 of column vectors of the matrix D−T . Since every
cn has at most n non null elements, we can calculate its norm in ℓ1 and in ℓ2. We
denote these norms by θn and Θn:

θn = ‖cn‖1 =
n∑

k=−1

|dn−k,n − d−k|,

Θn = ‖cn‖2 =

√√√√
n∑

k=−1

|dn−k,n − d−k|2.
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Take any r ≥ 1 and consider z = reiθ. In this case, the first summand on the
right of inequality (3) can be expressed as

n−1∑

k=−1

|d−k−dn−k,n|r−k ≤ r|d1−dn+1,n|+
n−1∑

k=0

|d−k−dn−k,n| = θn+(r−1)|d1−dn+1,n|.

where |d1 − dn+1,n| converges to 0 as n → ∞. Then,

i) If θn → 0 we have that |hn(z) − φ(z)| → 0 for all z with |z| ≥ 1. The
convergence of θn will depend on the degree of compactness of D − T or, in
other words, of the Schatten-von Neumann class to which it belongs.

ii) If θn 9 0, we can apply Cauchy-Schwarz inequality and we have

n−1∑

k=−1

∣∣∣∣
d−k − dn−k,n

zk

∣∣∣∣ ≤ Θn

√√√√
∞∑

k=−1

r−2k ≤ Θn
1

r2 − 1
,

where the above is valid only when r > 1. Then, |hn(z) − φ(z)| → 0 for all
z with |z| > 1.

Corollary 1. Under the hypothesis of Theorem 1, for every ε > 0 there is a δ > 0
such that for every r ∈ (1, δ + 1) there is a natural number N , such that for all

n ≥ N we have

|hn(re
iθ)− φ(eiθ)| ≤ ε,

for every θ ∈ [0, 2π].

Proof. Consider ε > 0. Consider the compact set K = {z : 1 ≤ |z| ≤ 2}. Since the
function φ(z) is uniformly continuous in K, there exists δ > 0, such that for every
r ∈ [1, 1 + δ), we have

|φ(reiθ)− φ(eiθ)| < ε

2
,

for every θ ∈ [0, 2π].
We consider now, for every r ∈ (1, 1+ δ), the compact set Kr = {z ∈ C : |z| = r}.

By the uniform convergence of hn on compact sets of C \D, established in Proposition
1, there exists n ∈ N such that, for every n ≥ N , we have

|hn(re
iθ)− φ(reiθ)| < ε

2

for all θ ∈ [0, 2π]. Then,

|hn(re
iθ)− φ(eiθ)| ≤ |hn(re

iθ)− φ(reiθ)|+ |φ(reiθ)− φ(eiθ)| ≤ ε

for every θ ∈ [0, 2π] �

We will use this result, in the last section, to approximate the support of the
measure by equipotential curves of the function hn(re

iθ), for suitables n and r.

Example 1 (Arc of circle revisited). Consider again the arc of circumference Γ
of Example 1, where we proved that this case satisfies the hypothesis of Theorem 1
and hence

φ(z) =
z(z

√
a2 − 1− a)

za−
√
a2 − 1

=

√
a2 − 1

a
z − 1

a2
−

√
a2 − 1

a3z
−
√
(a2 − 1)2

a4z2
− · · · .
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We also showed that, in this case, the n-th column of D − T reduces to a single
element and then

Θn = θn =
a− 1

a2

(√
1− 1

a2

)n

.

Note that, since a > 1,

√
1− 1

a2
< 1.

Then, for every z ∈ C \D,

|hn(z)− φ(z)| ≤
n−1∑

k=−1

∣∣∣∣
d−k − dn−k,n

zk

∣∣∣∣+
∞∑

k=n

∣∣∣∣
d−k

zk

∣∣∣∣

≤ θn +
∞∑

k=n

∣∣∣∣
d−k

zk

∣∣∣∣ = θn +

1

a2

(√
a2 − 1

a

)n

1−
√
a2 − 1

a

.

In particular, if a = 2,

|hn(z)− φ(z)| ≤ θn +

1

4

(√
3

2

)n

1−
√
3

2

=
1

4

(√
3

2

)n

+

1

4

(√
3

2

)n

1−
√
3

2

=
5 + 2

√
3

4

(√
3

2

)n

,

if |z| ≥ 1.
This inequality allows us to calculate the value of n necessary to obtain a desired

approximation of supp(µ). Some values can be seen in the following table:

Bound of ||hn|T − φ|T||∞ n
0.2 17
0.1 22
0.01 38
0.001 54
0.0001 70

In the following figure we show the graphical result of approximating supp(µ)
using hn(T).

Figure 2. hn(T) for n = 16, n = 21 and n = 37, respectively
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In the following figure we show the graphical result of approximating the equipo-
tential lines of φ(z):

Figure 3. hn(Sr) for some values of r ∈ (1, 1.5], for n = 16, n = 21
and n = 37, respectively

As can be seen, the difference between φ(z) and hn(z) decreases as |z| increases.

4. Numerical examples

In this section, we present some numerical experiments using the results from the
previous sections on the approximation of the Riemann mapping.

Example 2. Let Γ be a cross-like set formed by the intervals [−a, a] y [−bi, bi],
with a, b ∈ (0,∞), and let µ be the uniform measure on Γ. The Riemann mapping
deduced from ([17], pg 118), is

φ(z) =

√
a2(z2 + 1)2 + b2(z2 − 1)2

2z
.

In the particular case of a = b,

φ(z) =
a
√
2

2z

√
z4 + 1.

The Laurent series expansion of φ(z) in a neighborhood of infinity is

φ(z) =

√
a2 + b2

2
z +

−2 b2 + 2 a2

4
√
a2 + b2

1

z
+

√
a2 + b2

(
1

2
− (−2 b2 + 2 a2)2

8 (a2 + b2)2

)

2 z3
+O

(
1

z5

)
.

Note that the first coefficient

√
a2 + b2

2
agrees with the capacity of the support.

If a = b = 1, the series expansion is

φ(z) =
1

2

√
2z+

1

4

√
2

z3
− 1

16

√
2

z7
+

1

32

√
2

z11
− 5

256

√
2

z15
+

7

512

√
2

z19
− 21

2048

√
2

z23
+O

(
1

z27

)
.

In the following image we represent the Riemann mapping of the cross.
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Figure 4. The Riemann mapping φ(z) for a cross-like set

The 9-th section of the Hessenberg matrix of µ, obtained from the moment matrix
is




0 0 0

√
7

5
0 0 0 −

2
√
15

45
0

√
3

3
0 0 0

2
√
3

5
0 0 0 −

4
√
3
√
17

231

0

√
5
√
3

5
0 0 0

2
√
5
√
11

45
0 0 0

0 0

√
7
√
5

7
0 0 0

2
√
7
√
13

77
0 0

0 0 0
4
√
7

15
0 0 0

19
√
15

195
0

0 0 0 0
15

√
11

77
0 0 0

12
√
11

√
17

385

0 0 0 0 0
7
√
13

√
11

117
0 0 0

0 0 0 0 0 0
3
√
15

√
13

55
0 0

0 0 0 0 0 0 0
88

√
17

√
15

1989
0




In this case, a closed form for the Hessenberg matrix it is not known and it is not
easy to compute the limits of the diagonals of D. Although, it is still possible to
compute approximations of the support of the measure µ, computing the image of
the unit circle under suitable approximations of the Riemann mapping. Specifically,
since the coefficients of the Riemann mapping are the limits of the elements in
the diagonals of the Hessenberg matrix, we may consider, as approximations of the
Riemann mapping φ(z), the functions hn(z).

As opposed to the case of the arc in Example 1, we have not here an explicit
formula for Θn and θn, used there to estimate the degree of approximation obtained
using hn(z) instead of φ(z) (see Remark 1). In the following table we give a list of
values of Θn and θn:
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n Θn θn n Θn θn
4 0.1756039179 0.1771699698 52 0.1435839520e-1 0.374355145e-1
8 0.8706648269e-1 0.1081557877 56 0.1335920853e-1 0.359786966e-1
12 0.5894618764e-1 0.846332410e-1 60 0.1249073290e-1 0.346766415e-1
16 0.4475241502e-1 0.716638451e-1 64 0.1172882241e-1 0.335039558e-1
20 0.3613474685e-1 0.631649554e-1 68 0.1105494437e-1 0.324406982e-1
24 0.3032967468e-1 0.570537158e-1 72 0.1045463567e-1 0.314709643e-1
28 0.2614682972e-1 0.523932383e-1 76 0.9916442395e-2 0.305818978e-1
32 0.2298656524e-1 0.486911124e-1 80 0.9431174829e-2 0.297629768e-1
36 0.2051319544e-1 0.456605530e-1 84 0.8991373805e-2 0.290054994e-1
40 0.1852386296e-1 0.431218007e-1 88 0.8590921072e-2 0.283021988e-1
44 0.1688863030e-1 0.409557583e-1 92 0.8224750644e-2 0.276469516e-1
48 0.1552035810e-1 0.390800153e-1 96 0.7888631635e-2 0.270345579e-1

We consider values of n that are multiples of 4 because for these values of n the
approximations are worse since the matrix D − T has three of every four diagonals
nulls.

Some result of approximating supp(µ) and the Riemann mapping using this
method, are shown in the followings figures.

Figure 5. hn(T) for n = 12, n = 32, and n = 60, respectively

Figure 6. Approximations of the Riemann mapping using hn(re
iθ),

n = 12, 32, 60, r ∈ [1, 2]

As can be seen, the difference between φ(z) and hn(z) decreases as |z| increases.
In the following figures we show some close-ups of the above figures.
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Figure 7. Approximations of the Riemann mapping using hn(re
iθ),

n = 12, 32, 60, r ∈ [1, 1.1]

Example 3. In the following example we take Γ as the half part of a drop-like set
of parametric equation

z(t) =
(eit)2

1 + 2eit
, t ∈ [0, π],

and µ the uniform measure on Γ.
Although in this case we do not know if the matrix D − T defines a compact

operator, the following figures seem to indicate that the convergence of hn(T) is very
fast to Γ. In the following figure we show several approximations of the support of
µ using this method.

Figure 8. hn(T) for n = 5, n = 8 and n = 11, respectively

Example 4. For the last example we take Γ as the spiral with parametric equation

z(t) = t
eit

6
, t ∈ [0, 2π]

and we consider µ the uniform measure on Γ.
Although, in this case we do not know if the matrix D − T defines a compact

operator, the following figures seem to indicate that the convergence of hn(T) to
Γ is worse than in the previous example. In the following figure we show several
approximations of the support of µ using this method.
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Figure 9. hn(T) for n = 7 and n = 11, respectively
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