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Abstract

We give new improvements to the Chudnovsky-Chudnovsky method
that provides upper bounds on the bilinear complexity of multiplication in
extensions of finite fields through interpolation on algebraic curves. Our
approach features three independent key ingredients:

• We allow asymmetry in the interpolation procedure. This allows to
prove, via the usual cardinality argument, the existence of auxiliary
divisors needed for the bounds, up to optimal degree.

• We give an alternative proof for the existence of these auxiliary di-
visors, which is constructive, and works also in the symmetric case,
although it requires the curves to have sufficiently many points.

• We allow the method to deal not only with extensions of finite fields,
but more generally with monogenous algebras over finite fields. This
leads to sharper bounds, and is designed also to combine well with
base field descent arguments in case the curves do not have suffi-
ciently many points.

As a main application of these techniques, we fix errors in, improve, and
generalize, previous works of Shparlinski-Tsfasman-Vladut, Ballet, and
Cenk-Özbudak. Besides, generalities on interpolation systems, as well as
on symmetric and asymmetric bilinear complexity, are also discussed.
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Introduction

The bilinear complexity µ(A/K) of a finite-dimensional algebra A over a field
K measures the essential minimal number of two-variable multiplications in K
needed to perform a multiplication in A, and considering other operations, such
as multiplication by a constant, as having no cost. More intrinsically, it can be
defined as the rank of the tensor in

A⊗A∨ ⊗A∨ (1)

naturally deduced from the multiplication map in A.
The study of µ(A/K), and the effective derivation of multiplication algo-

rithms, are of both theoretical and practical importance. Pioneering works in
this field are Karatsuba’s algorithm [20] for integer and polynomial multiplica-
tion, and Strassen’s algorithm [29] for matrix multiplication.

There are (at least) two ways in which these questions could be addressed
from an algebraic geometry point of view. These two approaches are seemingly
unrelated, although, to the author’s knowledge, possible links between the two
have never been seriously studied (nor will they be here). The first one is to
consider tensors of rank 1 as defining points of a certain Segre variety, and ten-
sors of higher rank, points of its successive secant varieties. This leads to deep
and beautiful problems, but we will not be interested in this approach here. The
second one is through the theory of interpolation. Karatsuba’s algorithm may
be interpreted as follows: evaluate the polynomials at various points of the affine
line, multiply these values locally, and interpolate the results to reconstruct the
product polynomial. Replacing the affine line with algebraic curves of higher
genus allowed Chudnovsky and Chudnovsky in [15] to first prove that the bi-
linear complexity of multiplication in certain extensions of finite fields grows at
most linearly with the degree. For example, letting µq(n) = µ(Fqn/Fq), they
showed

lim sup
n→∞

1

n
µq(n) ≤ 2

(
1 +

1√
q − 3

)
(2)

for q ≥ 25 a square.

Several improvements and variants of the Chudnovsky-Chudnovsky algo-
rithm were then proposed by various authors in order to give sharper or more
general asymptotic, as well as non-asymptotic, upper bounds. Roughly speak-
ing, they all rely on the following three ingredients:

1) A “generic” interpolation process which explains how to derive these upper
bounds from the existence, postulated a priori, of certain geometric objects.
These objects are:

2) Algebraic curves having “good” parameters, meaning, most of the time, that
they have sufficiently many points of various degrees, and controlled genus.

3) Divisors on these curves, such that certain evaluation maps associated to
them are injective or surjective. Often this can be reformulated as requiring

2



the existence of systems of simultaneously zero-dimensional or non-special
divisors of a certain form and appropriate degree.

These three points are important. However remark that a well-designed algo-
rithm in 1) should make the existence of the objects 2) and 3) it needs easier
to check. In this paper we will give new contributions to 1), and also to 3), and
then proceed to the some direct, and hopefully already significant, applications
(further applications could be given, but they require combination with quite
different methods, so they will be treated elsewhere).

Our main technical results are Theorems 3.5 and 5.2 below.

Theorem 3.5 is our main contribution to 1). There we present a generaliza-
tion of the Chudnovsky-Chudnovsky algorithm that has two new features:

• We allow interpolation at arbitrary closed subschemes of the curve in a
uniform way. The original method of Chudnovsky-Chudnovsky used only
points of degree 1, with multiplicity 1. Variants introduced by Ballet-
Rolland and Arnaud allowed interpolation at points of higher degree, or
with higher multiplicity. These improvements were combined and further
generalized by Cenk-Özbudak in [12]. However, somehow, Cenk-Özbudak
still deal with degree m and multiplicity l separately since they use two
parameters, µq(m) and M̂q(l), for them. Here we introduce a new quantity,

µq(m, l), (3)

the bilinear complexity of the algebra Fqm [t]/(tl) over Fq, to deal with
both at the same time. This leads ultimately to improved bounds and
is especially useful when combined, for example, with descent arguments,
such as the ones used in [4]. Another indication of the naturality of our
approach is that these µq(m, l) can be made to appear on both sides of
our inequalities. This means, not only do we have upper bounds in terms
of these µq(m, l), but at the same time we can also derive upper bounds
on them.

• We allow asymmetry when lifting the elements to be multiplied, even if the
multiplication law is commutative (as is permitted by the very definition
of bilinear complexity). This has dramatic consequences for applications
since it makes the existence of the divisors mentioned in 3) above much
easier to prove. Technically speaking, classical “symmetric” variants of the
Chudnovsy-Chudnovsky algorithm (starting from the original) suppose
given two effective divisors G and G′ and ask for the existence of an
auxiliary divisor D such that:

– D −G′ is non-special
– 2D −G is zero-dimensional.

(4)

In our asymmetric version, we ask for two divisors D1, D2 such that:

– D1 −G′ and D2 −G′ are non-special
– D1 +D2 −G is zero-dimensional.

(5)
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As explained below, this small change allows us at once to fill a gap in
the proof of bounds claimed by Shparlinski-Tsfasman-Vladut ([27]) and
Ballet ([1][2]).

Then Theorem 5.2 combines Theorem 3.5 with general existence results for
divisors as asked above, leading to bounds that depend only on the number
of points of the curve, in a somehow optimal way. To be more precise, while
all divisors of negative degree are zero-dimensional (and likewise all divisors of
degree more than 2g − 1 are non-special), for the bounds on the complexity to
be as sharp as possible, one needs the divisors involved to be of degree as near
to g − 1 as possible.

Shparlinski-Tsfasman-Vladut, and later also Ballet, claimed they were able
to solve system (4) up to degree g− 1 (or at least, asymptotically in [27], while
exactly in [1]). For this they use a cardinality argument. They consider the
map that sends the linear equivalence class [D] to the class [2D − G], and
from this, deduce that the number of linear equivalence classes of D such that
2D−G is not zero-dimensional is not more than the number of effective divisors
of the corresponding degree. However this inference is incorrect, because the
map [D] 7→ [2D − G] is not injective. Taking this non-injectivity into account
multiplies their bound by the 2-torsion order of the class group, which ruins the
argument.

This error was first mentioned in a preprint of Cascudo-Cramer-Xing, al-
though this discussion was removed from the final version of their paper. How-
ever it can still be found in Cascudo’s PhD dissertation [9], Chap. 12.

On the other hand, our new asymmetric system (5) is much easier to solve.
Indeed, the divisors D1 and D2 can then be constructed one at a time, there
is no multiplication-by-2 map in the class group involved, and the cardinality
argument works smoothly. This allows us, under very mild assumptions, to
solve system (5) up to degree exactly g − 1, which is optimal, and ultimately,
to complete the proof of the bounds claimed in [1][2][27] (except for one, where
there is another error, discussed in the text). These repaired bounds now form
our Corollary 5.4 and Theorems 6.3 and 6.4. For example, (2) can now be
replaced safely with the new estimate (first claimed in [27])

lim sup
n→∞

1

n
µq(n) ≤ 2

(
1 +

1√
q − 2

)
(6)

for q ≥ 9 a square.

A small drawback of this cardinality argument, already mentioned in [27], is
its non-constructiveness. Also, for some applications, it might appear unsatis-
factory to get only asymmetric multiplication algorithms for an algebra in which
the multiplication law is commutative. So we propose an alternative method,
more constructive, that solves system (5), as well as the original symmetric sys-
tem (4), also up to degree exactly g − 1, although only under more restrictive
assumptions. This alternative construction, that relies on the theory of Weier-
strass gap and order sequences, is a straightforward adaptation of a method
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previously developed by the author in another context ([24]). In doing so we
are also led to stress the distinction between the usual bilinear complexity, and
a more restricted notion of symmetric bilinear complexity. For example, our
symmetric variant of (6) yields

lim sup
n→∞

1

n
µsym
q (n) ≤ 2

(
1 +

1√
q − 2

)
(7)

for q ≥ 49 a square (note the stronger restriction on q).

Besides these two main Theorems 3.5 and 5.2 and their applications in Corol-
lary 5.4 and Theorems 6.3 and 6.4, other topics of possible interest discussed
in this paper include a fairly general presentation of interpolation systems in
Section 2, as well as a study of low degree (or low genus) examples in Section 4
that clarifies and improves statements of [12].

Before we finish this Introduction, we would like to mention the very close
links that exist between this domain and other areas of mathematics and theoret-
ical computer science. One first such area is coding theory, and more precisely
the theory of intersecting codes. The link between multiplication algorithms
and intersecting codes was first stressed in [7] and [21]. More important, in
[33], Xing studied intersecting codes arising from algebraic curves, and he gave
a criterion for their existence, that reduces essentially to the second part of
system (4). Hence here also the 2-torsion in the class group is an obstruction
to get optimal parameters (see [23] for elaborations on this). This problem was
essentially solved, or more properly, bypassed by the author in [24] with the
method discussed above (although the analog problem for t-torsion, t ≥ 3, is
still open).

Another such area is cryptography with the theory of linear secret shar-
ing systems with multiplication property, in particular within the framework of
secure multi-party computation ([16]). In one direction, to optimize the param-
eters of these systems, multiplication algorithms with low bilinear complexity
are sometimes required. In the other direction, secure multi-party computa-
tion schemes based on algebraic curves were introduced by Chen and Cramer
in [14], and the design of these schemes also involves a system similar to (4).
And again, the 2-torsion in the class group is an obstruction to get optimal
parameters ([9][11]). It would be interesting to check how the tools introduced
in the present work could be put to use in this context.

Conventions. In this text we make free use of the language of modern alge-
braic geometry: schemes, sheaves, and cohomology. Admittedly, the only place
where this is necessary is at the end of Section 2, while designing interpolation
systems from higher dimensional algebraic varieties, and this point is quite sec-
ondary in our presentation. From Section 3 on, we deal only with curves, and
everything could be equally well expressed in the language of function fields in
one indeterminate. We made the choice to stick to the geometric point of view,
but, keeping in mind that application oriented readers might be more famil-
iar with the function field terminology, we tried to keep the level of exposition
accessible so that translation from one language to the other would remain easy.
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1 Tensor rank and bilinear complexity

Definition 1.1. LetK be a field, and E0, . . . , Es be finite-dimensionalK-vector
spaces. A non-zero element t ∈ E0⊗· · ·⊗Es is said to be an elementary tensor,
or a tensor of rank 1, if it can be written in the form t = e0 ⊗ · · · ⊗ es for some
ei ∈ Ei. More generally, the rank of an arbitrary t ∈ E0 ⊗ · · · ⊗Es is defined as
the minimal length of a decomposition of t as a sum of elementary tensors.

Definition 1.2. If
α : E1 × · · · × Es −→ E0 (8)

is an s-linear map, the s-linear complexity of α is defined as the tensor rank of
the element

α̃ ∈ E0 ⊗ E∨
1 ⊗ · · · ⊗ E∨

s (9)

naturally deduced from α.

For s = 1, these notions are very well understood (they reduce essentially to
the rank of a matrix). However, starting from s = 2, they can be surprisingly
difficult to handle.

Definition 1.3. Let A be a finite-dimensional K-algebra. We denote by

µ(A/K) (10)

the bilinear complexity of the multiplication map

mA : A×A −→ A (11)

considered as a K-bilinear map.

More concretely, µ(A/K) is the smallest integer n such that there exist linear
forms φ1, . . . , φn and ψ1, . . . , ψn : A −→ K, and elements w1, . . . , wn ∈ A, such
that for all x, y ∈ A one has

xy = φ1(x)ψ1(y)w1 + · · · + φn(x)ψn(y)wn. (12)

Indeed, such an expression is the same thing as a decomposition

m̃A =

n∑

i=1

wi ⊗ φi ⊗ ψi ∈ A⊗A∨ ⊗A∨ (13)

for the multiplication tensor of A.
Remark that here, the notion of algebra is taken in its broadest sense. How-

ever, in Proposition 2.4, and then from Section 3 on, we will only consider
algebras that are associative, commutative, and with unity.

Definition 1.4. We call multiplication algorithm of length n for A/K a col-
lection of φi, ψi, wi that satisfy (12). Such an algorithm is said symmetric if
φi = ψi for all i (this can happen only if A is commutative).
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The study of µ(A/K), and the effective derivation of multiplication algo-
rithms, are of both theoretical and practical importance. Pioneering works in
this field are Karatsuba’s algorithm [20] for integer and polynomial multiplica-
tion, and Strassen’s algorithm [29] for matrix multiplication.

In practical terms, focusing on the bilinear complexity of the multiplication
in A means according importance only to the number of two-variable multi-
plications in K needed to perform a multiplication in A, and considering other
operations, such as multiplication by a constant, as having no cost. This is a rea-
sonable assumption although its relevance clearly depends on the computation
model.

When A is commutative, it is sometimes convenient to favour the study
of symmetric multiplication algorithms. Thus, as µ(A/K) is defined as the
minimal length of a (possibly asymmetric) multiplication algorithm for A/K,
we also introduce the following:

Definition 1.5. If A is a finite-dimensional commutative K-algebra, we define
its symmetric bilinear complexity

µsym(A/K) (14)

as the minimal length of a symmetric multiplication algorithm for A/K.
Equivalently, it is the minimal length of a decomposition of the multiplication

tensor m̃A as a sum of symmetric elementary tensors, that is, of tensors of the
form w ⊗ φ⊗ φ ∈ A⊗A∨ ⊗A∨.

Here we gather a few elementary properties of these notions. Lemma 1.6
shows that symmetric bilinear complexity is well defined, and compares it
with its non-symmetric counterpart. Lemma 1.9 gives basic lower bounds for
µ(A/K), and Lemma 1.10 deals with some functorial properties. Certainly
most things here are already classical and can be found from other sources. The
reader is especially refered to the foundational work [30] (and to the additional
material in [7][17][21][32]), or to textbooks such as [8][19], for historical details
and further results of this type.

Lemma 1.6. Let A be a finite-dimensional commutative K-algebra. Then A
admits a symmetric multiplication algorithm, hence µsym(A/K) < ∞ is well
defined. More precisely, it satisfies

µsym(A/K) ≤ d(d+ 1)

2
(15)

where d = dimA. If charK 6= 2, then also

µsym(A/K) ≤ 2µ(A/K). (16)

In the other direction, we always have

µ(A/K) ≤ µsym(A/K). (17)
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Proof. Let e1, . . . , ed be a basis of A, and let e∨1 , . . . , e
∨
d be the dual basis. First

remark that the multiplication tensor of A can always be decomposed as m̃A =∑
i,j(eiej)⊗ e∨i ⊗ e∨j , and since A is commutative this can be rearranged as:

m̃A =
∑

1≤i≤d
(e 2
i )⊗ e∨i ⊗ e∨i +

∑

1≤i<j≤d
(eiej)⊗ (e∨i ⊗ e∨j + e∨j ⊗ e∨i ). (18)

The first sum is already composed of symmetric tensors, and the second sum
can also be put in such a form since

e∨i ⊗ e∨j + e∨j ⊗ e∨i = (e∨i + e∨j )⊗ (e∨i + e∨j )− e∨i ⊗ e∨i − e∨j ⊗ e∨j . (19)

We plug this into the previous equality and then regroup the similar terms to
find:

m̃A =
∑

1≤i≤d
(2e 2

i − eis)⊗ e∨i ⊗ e∨i +
∑

1≤i<j≤d
(eiej)⊗ (e∨i + e∨j )⊗ (e∨i + e∨j ) (20)

where s =
∑n

j=1 ej . This gives (15).

Now suppose charK 6= 2, and let wi, φi, ψi define a multiplication algorithm
of length n = µ(A/K) for A. We can then write

m̃A =

n∑

i=1

wi ⊗ φi ⊗ ψi =

n∑

i=1

wi ⊗ ψi ⊗ φi

=
1

2

n∑

i=1

wi ⊗ (φi ⊗ ψi + ψi ⊗ φi)

=
1

4

n∑

i=1

wi ⊗ (φi + ψi)⊗ (φi + ψi) − wi ⊗ (φi − ψi)⊗ (φi − ψi),

(21)

hence (16).

Last, (17) is trivial.

Remark 1.7. Let K = F2. We can interpret (19) as giving a decomposition of

the rank two symmetric matrix

(
0 1
1 0

)
as a sum of three rank 1 symmetric

matrices: (
0 1
1 0

)
=

(
1 1
1 1

)
+

(
1 0
0 0

)
+

(
0 0
0 1

)
. (22)

For K = F2 it is easily seen that this decomposition is minimal.
As a consequence, if A is the 2-dimensional commutative (but non-associative

and without unity) F2-algebra with basis e1, e2 and multiplication defined by
e1e2 = e2e1 = e1 and e 2

1 = e 2
2 = 0, then

µ(A/K) = 2 < µsym(A/K) = 3. (23)

This gives an example of strict inequality in (17).
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Definition 1.8. Given a multiplication algorithm as in (12), one associates to
it two linear codes Cφ and Cψ ⊂ Kn, namely the images of the evaluation maps

φ : A −→ Kn

x 7→ (φ1(x), . . . , φn(x))
and

ψ : A −→ Kn

y 7→ (ψ1(y), . . . , ψn(y))
(24)

respectively.

Lemma 1.9. Let A be a finite-dimensional K-algebra.

(i) If A admits a unit element,

µ(A/K) ≥ dimK A. (25)

(ii) If A has no zero-divisor,

µ(A/K) ≥ 2 dimK A− 1. (26)

Proof. Consider a multiplication algorithm as in (12). If A admits a unit el-
ement, then w1, . . . , wn span A, hence the first inequality. For the second in-
equality, remark that if A has no zero-divisor, then:

• the maps φ and ψ must be injective, hence the codes Cφ and Cψ have
dimension k = dimK A,

• these two codes must be mutually intersecting, that is, any non-zero c ∈ Cφ
and c′ ∈ Cψ must have non-disjoint supports.

By the first point, if k > ⌈n/2⌉, one could find a non-zero c ∈ Cφ vanishing on
the first ⌈n/2⌉ coordinates, and a non-zero c′ ∈ Cψ vanishing on the last ⌈n/2⌉.
These c, c′ would then contradict the second point. Hence k ≤ ⌈n/2⌉, which
gives precisely (26).

The link between multiplication algorithms and intersecting codes was first
stressed in [7] and [21]. For more on this last topic, see for example [24] and the
references therein. Another coding-theoretical view on some bilinear complexity
problems has also been proposed, through the notion of supercode, in [27].

Lemma 1.10. (i) If A is a finite-dimensional K-algebra and L an extension
field of K, and if we let AL = A⊗K L considered as an L-algebra, then

µ(AL/L) ≤ µ(A/K). (27)

(ii) If A is a finite-dimensional L-algebra, where L is an extension field of K,
then A can also be considered as a K-algebra, and

µ(A/K) ≤ µ(A/L)µ(L/K). (28)
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(iii) If A and B are two finite-dimensional K-algebras,

µ(A× B/K) ≤ µ(A/K) + µ(B/K). (29)

(iv) If A and B are two finite-dimensional K-algebras,

µ(A⊗K B/K) ≤ µ(A/K)µ(B/K). (30)

Moreover, when the algebras are commutative, then (27)(28)(29)(30) also
hold with µsym in place of µ.

Proof. To prove (i), remark that if linear forms φ1, . . . , φn and ψ1, . . . , ψn :
A −→ K and elements w1, . . . , wn ∈ A define a multiplication algorithm for
A/K, then the φi and ψi lift to linear forms AL −→ L, and the wi can be seen
as elements of AL, and as such they define a multiplication algorithm for AL/L
of the same length n.

To prove (ii) we use an analogue of the concatenation procedure in coding
theory. Formally, suppose we are given:

• a multiplication algorithm of length m for L/K, defined by linear forms
α1 . . . , αm and β1 . . . , βm : L −→ K and elements l1, . . . , lm ∈ L,

• a multiplication algorithm of length n for A/L, defined by linear forms
λ1 . . . , λn and ρ1 . . . , ρn : A −→ L and elements a1, . . . , an ∈ A.

Then, letting N = mn, the two collections of N linear forms φi,j = αi ◦ λj and
ψi,j = βi ◦ ρj : A −→ K, and the N elements wi,j = liaj ∈ A, for 1 ≤ i ≤ m
and 1 ≤ j ≤ n, define a multiplication algorithm of length N for A/K. Indeed,
for all x, y ∈ A,

xy =
∑

1≤j≤n
λj(x)ρj(y)aj =

∑

1≤j≤n


 ∑

1≤i≤m
αi(λj(x))βi(ρj(y))li


 aj. (31)

To make the connection with concatenation in coding theory clearer, remark
that Cφ is then the concatenated code Cα ◦ Cλ, and likewise Cψ = Cβ ◦ Cρ.

The proof of (iii) proceeds analogously using the notion of direct sum of
multiplication algorithms. Suppose we are given:

• a multiplication algorithm of length m for A/K, defined by linear forms
φ1 . . . , φm and ψ1 . . . , ψm : A −→ K and elements a1, . . . , am ∈ A,

• a multiplication algorithm of length n for B/K, defined by linear forms
λ1 . . . , λn and ρ1 . . . , ρn : B −→ K and elements b1, . . . , bn ∈ B.

Identify A with the subspace A×{0} and B with the subspace {0}×B in A×B.
Then for any x = (r, s) and y = (u, v) in A× B we have

xy = ru + sv =
∑

1≤i≤m
φi(r)ψi(u)ai +

∑

1≤j≤n
λj(s)ρj(v)bj (32)
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hence this defines a multiplication algorithm of length m+ n for A× B.

For (iv) we skip the details since everything works the same: suppose given
φi, ψi, ai and λj , ρj , bj as in the proof of (iii), then the φi ⊗ λj , ψi ⊗ ρj , ai ⊗ bj
give a multiplication algorithm of length N = mn for A⊗ B.

For the last assertion, remark that if we start with symmetric algorithms,
then the constructions given above lead also to symmetric algorithms.

Question 1.11. It would be interesting to have criteria for equality in this
Lemma 1.10. For the inequalities in parts (i) and (ii) (and hence also for part
(iv)), there are non-trivial examples in which equality holds, and others in which
the inequality is strict (see below, or [32]). A general rule does not seem obvious.
Turning to (iii), the author does not know any example were the inequality is
strict. In fact, the now folklore direct sum conjecture (see [17][30][32]) suggests
there should always be equality:

µ(A× B/K)
?
= µ(A/K) + µ(B/K). (33)

Proofs are known only for some very specific classes of algebras. The general
case is still open.

Remark 1.12. We would like to indicate a few possible generalizations of the
notions developed so forth.

First, we worked over a field, but it is also possible to work over a ring, or
even over a more general base. This could be of interest, for instance, if one
is given a family of tensors that vary with some parameters, and one requests
elementary decompositions for them that vary accordingly.

In another direction, one could also extend the notion of symmetry. Given
a group G acting on some tensor space, we can ask whether every G-invariant
tensor admits a decomposition as a sum of G-invariant elementary tensors (and
if so, what is the minimal length of such a decomposition). For G = S2 acting
on A⊗A∨ ⊗A∨ by permuting the last two factors, we saw in Lemma 1.6 that
this is true (although the minimal symmetric decomposition might be longer
than the non-symmetric one). However for more general group actions this is
not always possible. The elegant counterexample that follows is due to Cascudo
([10]):

Consider the trilinear map

F4 × F4 × F4 −→ F4

(x, y, z) 7→ xyz
(34)

over F2. It defines a tensor in F4 ⊗ F
∨
4 ⊗F

∨
4 ⊗ F

∨
4 , and since F4 is commutative,

this tensor is S3-invariant, where S3 acts by permuting the last three factors.
Suppose this tensor admits an S3-invariant elementary decomposition. This
means one can find elements w1, . . . , wn ∈ F4, and linear forms φ1, . . . , φn :
F4 → F2, such that for all x, y, z ∈ F4, one has xyz =

∑n
i=1 φi(x)φi(y)φi(z)wi.

11



But then for all x, y ∈ F4 one finds

x2y =

n∑

i=1

φi(x)
2φi(y)wi

xy2 =
n∑

i=1

φi(x)φi(y)
2wi

(35)

and the two quantities on the right are equal because all α ∈ F2 satisfy α2 = α.
This is a contradiction since there are x, y ∈ F4 with x2y 6= xy2.

2 Interpolation systems

If B is a K-algebra and if E1, E2 ⊂ B are two linear subspaces, we denote by
E1E2 the linear span of the products e1e2 in B, for e1 ∈ E1 and e2 ∈ E2.

Definition 2.1. Let A and A′ be two finite-dimensional K-algebras. By an
interpolation system for A′ by A we mean the following data:

• a K-algebra B (of possibly infinite dimension) equipped with two K-
algebra morphisms f : B −→ A and f ′ : B −→ A′

• two linear subspaces E1, E2 ⊂ B
satisfying the following conditions:

(i) the restriction f |E1E2 : E1E2 −→ A is injective

(ii) the restrictions f ′|E1 : E1 −→ A′ and f ′|E2 : E2 −→ A′ are surjective.

This can be summarized with the following diagram:

E1E2� _

��

B

||yy
yy

yy
yy

y

""
EE

EE
EE

EE
E E1, E2

��
��

A A′

Such an interpolation system is said symmetric if E1 = E2.

Proposition 2.2. Let A and A′ be two finite-dimensional K-algebras. Suppose
there exists an interpolation system for A′ by A. Then

µ(A′/K) ≤ µ(A/K). (36)

Moreover, if A and A′ are commutative and the interpolation system is sym-
metric, then also µsym(A′/K) ≤ µsym(A/K).

Proof. Let φ1, . . . , φn, ψ1, . . . , ψn : A −→ K, and w1, . . . , wn ∈ A define a
multiplication algorithm for A/K, where n = µ(A/K).

Suppose we are given an interpolation system for A′ by A. Thanks to prop-
erties (i) and (ii) above, we can choose:
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• a retraction ρ : A −→ E1E2 of f |E1E2

• sections σ1 : A′ −→ E1 of f ′|E1 and σ2 : A′ −→ E2 of f ′|E2 .

Then, for 1 ≤ i ≤ n, we let:

• φ′i = φi ◦ f |E1 ◦ σ1 : A′ −→ K

• ψ′
i = ψi ◦ f |E2 ◦ σ2 : A′ −→ K

• w′
i = f ′(ρ(wi)) ∈ K.

Then φ′1, . . . , φ
′
n, ψ

′
1, . . . , ψ

′
n, and w′

1, . . . , w
′
n ∈ A define a multiplication al-

gorithm for A′/K. Indeed, for any x′, y′ ∈ A′, if we let x = f(σ1(x
′)) and

y = f(σ2(y
′)), then:

∑
φ′i(x

′)ψ′
i(y

′)w′
i =

∑
φi(x)ψi(y)f

′(ρ(wi))

= f ′(ρ(
∑

φi(x)ψi(y)wi))

= f ′(ρ(xy))

= f ′(ρ(f(σ1(x
′))f(σ2(y

′))))

= f ′(ρ(f(σ1(x
′)σ2(y

′))))

= f ′(σ1(x
′)σ2(y

′))

= f ′(σ1(x
′))f ′(σ2(y

′))

= x′y′.

(37)

Thus µ(A′/K) ≤ n, as claimed.
For the last assertion, supposing E1 = E2, remark that if we start with a

symmetric algorithm for A/K and if we choose σ1 = σ2, then the construction
gives a symmetric algorithm for A′/K.

Corollary 2.3. If A is a finite-dimensional K-algebra, and if A′ is a subalgebra
of A, or a quotient algebra of A, then

µ(A′/K) ≤ µ(A/K). (38)

If A is commutative, then also µsym(A′/K) ≤ µsym(A/K).

Proof. If A′ is a subalgebra of A, define an interpolation system by taking
E1 = E2 = B = A′, f the natural inclusion, and f ′ = idA′ .

If A′ is a quotient algebra of A, take E1 = E2 = B = A, f = idA, and f ′

the natural projection.

More interesting interpolation systems arise from algebraic geometry as fol-
lows.

Proposition 2.4. Let X be an algebraic variety, or more generally an arbitrary
scheme over K, and let Σ and Σ′ be two closed subschemes of X that are finite
over K. Suppose there are two invertible sheaves L1 and L2 on X such that:

13



(i) the natural restriction map

Γ(X,L1 ⊗ L2) −→ Γ(Σ,L1 ⊗ L2) (39)

is injective

(ii) the natural restriction maps

Γ(X,L1) −→ Γ(Σ′,L1) Γ(X,L2) −→ Γ(Σ′,L2) (40)

are surjective.

Write Σ = SpecA and Σ′ = SpecA′, where A = Γ(Σ,OΣ) and A′ = Γ(Σ′,OΣ′).
Then

µ(A′/K) ≤ µ(A/K). (41)

Moreover, if L1 = L2, then also µsym(A′/K) ≤ µsym(A/K).
A sufficient criterion for the conditions (i) and (ii) above to hold, hence

also for the conclusion (41), can be expressed in terms of vanishing of certain
cohomology groups as follows:

(i’) h0(X, I(L1 ⊗ L2)) = 0

(ii’) h1(X, I ′L1) = h1(X, I ′L2) = 0

where I and I ′ are the sheaves of ideals on X defining Σ and Σ′, respectively.
In fact, (i) and (i’) are equivalent, while (ii’) only implies (ii) a priori.

Proof. Remark first that Σ and Σ′ are finite over K, hence affine, and the rings
A and A′ are Artinian, and as such they can be written as a finite direct product
of local rings. Thus any invertible module over A or A′, or equivalently any
invertible sheaf over Σ or Σ′, is free. In particular, we can choose trivializations

Γ(Σ,L1) ≃ Γ(Σ,L2) ≃ A Γ(Σ′,L1) ≃ Γ(Σ′,L2) ≃ A′ (42)

and from these, deduce, for any integers i1, i2, trivializations

Γ(Σ,L⊗i1
1 ⊗ L⊗i2

2 ) = Γ(Σ,L1)
⊗i1 ⊗ Γ(Σ,L2)

⊗i2 ≃ A (43)

Γ(Σ′,L⊗i1
1 ⊗ L⊗i2

2 ) = Γ(Σ′,L1)
⊗i1 ⊗ Γ(Σ′,L2)

⊗i2 ≃ A′. (44)

Consider now the bigraded algebra

B =
⊕

i1,i2≥0

Γ(X,L⊗i1
1 ⊗ L⊗i2

2 ). (45)

It comes equipped with two morphisms of bigraded algebras

B −→
⊕

i1,i2≥0

Γ(Σ,L⊗i1
1 ⊗ L⊗i2

2 ) B −→
⊕

i1,i2≥0

Γ(Σ′,L⊗i1
1 ⊗ L⊗i2

2 ) (46)
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defined by the natural restriction maps, and composing with (43) and (44) we
get

f : B −→ A f ′ : B −→ A′. (47)

Since (43) and (44) were defined in a compatible way from (42) as i1, i2 vary,
we see that f and f ′ are not merely morphisms of vector spaces, they are in
fact morphisms of algebras. Now we take

E1 = B1,0 = Γ(X,L1) E2 = B0,1 = Γ(X,L2) (48)

so
E1E2 ⊂ B1,1 = Γ(X,L1 ⊗ L2) (49)

and conditions (i) and (ii) in our hypotheses imply conditions (i) and (ii) in
the definition of interpolation systems. We can now conclude thanks to Propo-
sition 2.2.

To show that (i) and (i′) are equivalent, and that (ii′) implies (ii), use the
long exact sequence in cohomology associated with the short exact sequence

0 −→ JL −→ L −→ L|V (J ) −→ 0 (50)

with J = I or I ′, and L = L1, L2, or L1 ⊗ L2.

Remark that conditions (i) and (ii), or (i′) and (ii′), in Proposition 2.4, are
very similar to conditions used to estimate the parameters (dimension, distance)
of AG codes. Thus, borrowing techniques from this field, one could hope to get
good interpolation systems from classes of varieties on which one knows how to
construct good codes, for example, algebraic surfaces, or toric varieties.

However up to now, the geometric objects that are best understood from this
point of view, especially regarding asymptotic properties, are algebraic curves.
Thus interpolation systems constructed from algebraic curves will be studied in
the next section.

3 The extended Chudnovsky-Chudnovsky algo-

rithm

From now on, K will be a finite field, sayK = Fq. We will only consider algebras
that are associative, commutative, and with unity.

In fact we will be particularly interested in the following family of Fq-
algebras, and their bilinear complexities:

Definition 3.1. For any integers m, l ≥ 1 we consider the Fq-algebra of poly-
nomials in one indeterminate with coefficients in Fqm , truncated at order l:

Aq(m, l) = Fqm [t]/(tl) (51)

of dimension
dimFq Aq(m, l) = ml, (52)
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and we denote by
µq(m, l) = µ(Aq(m, l)/Fq) (53)

its bilinear complexity over Fq.

Of special significance are the following two cases: when l = 1,

µq(m, 1) = µq(m) (54)

is the bilinear complexity of multiplication in Fqm over Fq; and when m = 1,

µq(1, l) = M̂q(l) (55)

is the quantity used in the estimates of [12].

Lemma 3.2. With the notations above,

µq(m, l) ≤ µq(m)M̂qm(l). (56)

Proof. Direct consequence of Lemma 1.10 (ii).

Remark 3.3. As will be shown later, there are examples where this inequality
is strict.

We now introduce another class of Fq-algebras, before studying how they
relate to the Aq(m, l):

• We say that a finite-dimensional Fq-algebra A is monogenous if it can
be written as a quotient of the ring of polynomials in one indeterminate
over Fq, say: A ≃ Fq[t]/(P (t)). These are precisely the algebras whose
bilinear complexity was first studied in [17][32].

Moreover we say that A is local if it has only one maximal ideal. Thus,
by the Chinese remainder theorem, a monogenous local Fq-algebra is nec-
essarily of the form

A ≃ Fq[t]/Q(t)l (57)

for some irreducible polynomial Q over Fq and some integer l ≥ 1.

• More generally, letX be an algebraic curve over Fq (the situation discussed
just above corresponds to the case X = P

1). By a thickened point in X we
mean any closed subscheme of X supported on a closed point (of arbitrary
degree). For example, if Q is a closed point in X , we denote by IQ the
sheaf of ideals defining it, and for any integer l ≥ 1 we let Q[l] be the
closed subscheme of X defined by the sheaf of ideals (IQ)l. Then Q[l] is a
thickened point supported on Q. Conversely, any thickened point in X is
of this form. Indeed, by convention a curve X is always supposed smooth,
hence the local ring OX,Q of X at Q is principal, and every ideal in this
ring is of the form (t lQ), where tQ is a local parameter at Q.

We remark that such a thickened point is necessarily affine, and we let

AQ[l] = Γ(Q[l],OQ[l]) = Γ(X,OX/(IQ)l) = OX,Q/t
l
Q (58)

be its ring of regular functions.
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Lemma 3.4. Any monogenous local Fq-algebra, and more generally the ring
of functions of any thickened point on a curve over Fq, is isomorphic to some
Aq(m, l). More precisely:

• Let Q be an irreducible polynomial over Fq, of degree degQ = m, and let
l ≥ 1 be an integer. Then, as Fq-algebras,

Fq[t]/Q(t)l ≃ Aq(m, l). (59)

• More generally, let X be a curve over Fq and Q a closed point in X, of
degree degQ = m, and let l ≥ 1 be an integer. Then, as Fq-algebras,

AQ[l] ≃ Aq(m, l). (60)

As a consequence, all these algebras have the same bilinear complexity µq(m, l).

Proof. This is a special case of Cohen’s structure theorem for complete local
rings in equal characteristic (see e.g. [6] AC IX.30, §3, Th. 2). But for ease of
the reader we recall how this works concretely in our specific situation.

Write AQ[l] = OX,Q/t
l
Q, where OX,Q is the local ring of X at Q, and tQ a

local parameter. We will construct an isomorphism

(OX,Q/tQ)[t]/t
l ∼−→ OX,Q/t

l
Q (61)

hence proving the Lemma, since OX,Q/tQ ≃ Fqm .
To do so, first choose any α generating OX,Q/tQ over Fq, with minimal

polynomial Fα, and invoke Hensel’s lemma to lift α to α̃ root of Fα in OX,Q/t
l
Q.

Sending α to α̃ then defines a morphism of Fq-algebras

OX,Q/tQ −→ OX,Q/t
l
Q (62)

section of the natural projection OX,Q/t
l
Q −→ OX,Q/tQ, and to conclude, we

extend (62) to (61) by sending t to tQ.

If X is an algebraic curve over Fq, and D a divisor on X , we denote by

L(D) = Γ(X,OX(D)) (63)

its Riemann-Roch space, and by

l(D) = dimL(D) (64)

the dimension (over Fq) of the latter. We also choose a canonical divisor KX

on X and we let
i(D) = l(KX −D) (65)

be the index of specialty of D. Recall that the Riemann-Roch theorem can then
be stated as

l(D)− i(D) = degD + 1− g (66)

where g is the genus of X .
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Theorem 3.5. Let X be a curve of genus g over Fq, and let m, l ≥ 1 be two
integers. Suppose that X admits a closed point Q of degree degQ = m. Let G
be an effective divisor on X, and write

G = u1P1 + · · ·+ unPn (67)

where the Pi are pairwise distinct closed points, of degree degPi = di. Suppose
there exist two divisors D1, D2 on X such that:

(i) The natural evaluation map

L(D1 +D2) −→
n∏

i=1

OX(D1 +D2)|P [ui]

i

(68)

is injective.

(ii) The natural evaluation maps

L(D1) −→ OX(D1)|Q[l] L(D2) −→ OX(D2)|Q[l] (69)

are surjective.

Then

µq(m, l) ≤
n∑

i=1

µq(di, ui). (70)

In fact we also have µq(m, l) ≤ µ(
∏n
i=1 Aq(di, ui)/Fq). Moreover, if D1 = D2,

all these inequalities also hold for the symmetric bilinear complexity µsym.
Sufficient numerical criteria for the hypotheses above to hold can be given as

follows. A sufficient condition for the existence of Q of degree m on X is that
2g + 1 ≤ q(m−1)/2(q1/2 − 1), while sufficient conditions for (i) and (ii) are:

(i’) The divisor D1 +D2 −G is zero-dimensional:

l(D1 +D2 −G) = 0. (71)

(ii’) The divisors D1 − lQ and D2 − lQ are non-special:

i(D1 − lQ) = i(D2 − lQ) = 0. (72)

More precisely, (i) and (i’) are equivalent, while (ii’) only implies (ii) a priori.

Proof. Use Proposition 2.4 with Σ = P
[u1]
1 ∪ · · · ∪ P [un]

n , Σ′ = Q[l], and L1 =
OX(D1) and L2 = OX(D2). Combined with Lemma 3.4 this gives

µq(m, l) ≤ µ(

n∏

i=1

Aq(di, ui)/Fq) (73)

as claimed. One can then apply Lemma 1.10 (iii) to get (70) (whether we lose
in passing from (73) to (70) depends on the direct sum conjecture (33)).

As for the numerical sufficient condition stated here for the existence of Q,
it can be found in [28] Cor. V.2.10.c.

18



Remark 3.6. For applications it might be useful to make things more explicit,
so we describe in more concrete terms how the various geometric data in Theo-
rem 3.5 lead to an interpolation system as in Definition 2.1. The key point is to
describe the evaluation maps, which can be done in relatively elementary terms
when X is a curve. For example we describe the composite map

L(D1) −→ OX(D1)|Q[l]
∼−→ Aq(m, l). (74)

As a first step, we choose a local parameter tQ at Q. Then t
vQ(D1)
Q is a local

generator for OX(D1) at Q, and we use this local generator to define a trivial-
ization OX(D1)|Q[l] ≃ OX |Q[l] = OX,Q/(tQ)

l as asked in (42). Thus we get a
map

L(D1) −→ OX,Q/t
l
Q

f 7→ (t
−vQ(D1)
Q f) mod t lQ

(75)

and we compose this with the isomorphism OX,Q/t
l
Q

∼−→ (OX,Q/tQ)[t]/t
l ≃

Aq(m, l) given in Lemma 3.4 (and explicited in its proof) to conclude.
The other maps L(D2) −→ Aq(m, l) and L(D1 + D2) −→ ∏n

i=1 Aq(di, ui)
are described in the same way.

A nice property of these evaluation maps, as is best seen from (75), is that
they do not need the points at which we evaluate to be disjoint from the support
of the divisor (although this is not a crucial point of the construction, since this
situation can also be avoided thanks to the srong approximation theorem).

Remark 3.7. This Theorem 3.5 encompasses essentially all presently known
variants of the Chudnovsky-Chudnovsky interpolation method as special cases.
For example, restricting to l = 1 and D1 = D2, and using Lemma 3.2, gives
Th. 3.1 of [12] (if one further restricts to all di = ui = 1, this gives the original
version of Chudnovsky-Chudnovsky [15]). Thus one can say that Theorem 3.5
improves the method of [12] in at least two points:

• Allowing asymmetry (D1 6= D2) makes conditions (i) and (ii), or (i′) and
(ii′), easier to satisfy than their counterparts in [12]; in turn this allows
more flexibility in the choice of the curve X and the divisor G.

• The use of µq(d, u) in the right-hand side of (70), instead of µq(d)M̂qd(u)
as in [12], leads to stronger estimates. Of course, for this to be useful, one
needs upper bounds on these µq(d, u) that are better than the one given in
Lemma 3.2. But a nice feature of (70) is that this same quantity µq(m, l)
also appears in the left-hand side, so we can try to get these upper bounds
from Theorem 3.5 itself, in a sort of recursive procedure.

These points will be illustrated in the following three sections.

4 Genus 0 or 1

The main motivation for this section is the following:
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Question 4.1. What is the actual value of µq(m, l) for small q,m, l? Or at
least, find upper bounds that are better than the one given in Lemma 3.2.

Answering this question can lead to improved bounds also for high values of
the parameters. For example, suppose that in Theorem 3.5 we take l = 1 and
the divisor G consists of:

• N1 points of degree 1, of which l1 with multiplicity 2 and the remaining
N1 − l1 with multiplicity 1

• N2 points of degree 2, of which l2 with multiplicity 2 and the remaining
N2 − l2 with multiplicity 1

• N4 points of degree 4, of which l4 with multiplicity 2 and the remaining
N4 − l4 with multiplicity 1.

Then (70) gives

µq(m) ≤ N1+2l1+3N2+(µq(2, 2)−3)l2+µq(4)N4+(µq(4, 2)−µq(4))l4. (76)

Provided µq(2, 2) < 9 or µq(4, 2) < 3µq(4), this improves the bound in Prop. 3.1
of [4]. Such bounds on µq(2, 2) or µq(4, 2) will be given in Examples 4.4 and 4.5
and Lemma 4.6 below.

Proposition 4.2. Let m, l ≥ 1 be two integers with

ml ≤ q

2
+ 1. (77)

Then
µq(m, l) ≤ µsym

q (m, l) ≤ 2ml− 1. (78)

More generally let G be an effective divisor on P
1, and write

G = u1P1 + · · ·+ unPn (79)

where the Pi are pairwise distinct closed points, of degree degPi = di. Suppose

degG =

n∑

i=1

diui ≥ 2ml − 1. (80)

Then

µq(m, l) ≤
n∑

i=1

µq(di, ui) (81)

and likewise µsym

q (m, l) ≤ ∑n
i=1 µ

sym

q (di, ui).

Proof. Remark that the first assertion is a particular case of the second, because
if n = 2ml − 1 ≤ q + 1, we can find n distinct points of degree 1 on P

1 and
let G be their sum. Recall also that P

1 admits points of any degree, and that
any divisor of degree −1 on P

1 is both zero-dimensional and non-special. So, to
conclude, let D be any divisor of degree ml − 1 on P

1, and apply Theorem 3.5
with D1 = D2 = D.

20



Recall that an elliptic curve is a curve X of genus 1 with a chosen point
P∞ of degree 1. The set X(Fq) then admits a structure of abelian group with
identity element P∞. Also, given such an elliptic curve, there is a map

σ : Div(X) −→ X(Fq) (82)

uniquely defined by the condition that each divisor D of degree d is linearly
equivalent to the divisor σ(D)+(d−1)P∞. This map σ is a group morphism, it
passes to linear equivalence, and induces an isomorphism of the degree 0 class
group Cl0(X) with X(Fq). We now generalize a result of Shokrollahi ([26]) and
Chaumine ([13]):

Proposition 4.3. Let X be an elliptic curve over Fq, with all notations as
above. Let m, l ≥ 1 be two integers. Suppose that X admits a closed point Q of
degree degQ = m. Let G be an effective divisor on X, and write

G = u1P1 + · · ·+ unPn (83)

where the Pi are pairwise distinct closed points, of degree degPi = di, so degG =∑n
i=1 diui. Then

µq(m, l) ≤
n∑

i=1

µq(di, ui) (84)

provided one of the following conditions is satisfied:

a) X admits at least three points of degree 1, and degG ≥ 2ml

b) X admits only two points of degree 1, and degG = 2ml, with σ(G) 6= P∞

c) X admits only two points of degree 1, and degG ≥ 2ml+ 1

d) X admits only one point of degree 1, and degG ≥ 2ml+ 3.

Proof. Recall that a divisor of degree 0 on X is both zero-dimensional and
non-special, unless it is linearly equivalent to zero.

Suppose first that X(Fq) has order at least 3 (case a). Since σ identifies
Cl0(X) with X(Fq), this implies that there are two divisors Z and Z ′ of degree
0 on X that are not linearly equivalent nor linearly equivalent to zero. Let
D1 = lQ+Z, and let D2 = lQ+Z or lQ+Z ′, depending on whether D1+D2−
G = 2lQ+2Z −G or 2lQ+Z +Z ′ −G is not linearly equivalent to zero. With
this choice, conditions (i′) and (ii′) in Theorem 3.5 are then satisfied, and the
conclusion follows.

If X(Fq) has order 2, there exists a divisor Z of degree 0 on X not linearly
equivalent to zero. We take D1 = D2 = lQ + Z so condition (ii′) is satisfied.
But then Cl0(X) is of 2-torsion, so σ(D1 +D2 −G) = σ(G), and condition (i′)
is satisfied in case b by our hypothesis. In case c, it is also, for degree reasons.

If X(Fq) has order 1 (case d), we take D1 = D2 = (ml + 1)P∞. Then
conditions (i′) and (ii′) are satisfied for degree reasons.
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Remark that except perhaps in case a, we always took D1 = D2 in the proof,
which leads to similar estimates for the symmetric bilinear complexity µsym.

Example 4.4. Proposition 4.2 gives

µq(2, 2) ≤ 7 for q ≥ 7 (85)

and Proposition 4.3 gives

µq(2, 2) ≤ 8 for q = 4 or 5. (86)

Indeed, recall that the number of points of degree 1 on an elliptic curve X
over Fq can be written as |X(Fq)| = q + 1 − t for some integer t, the trace
of X , satisfying |t| ≤ 2

√
q. Conversely, Honda-Tate theory gives additional

sufficient and necessary conditions on t for a curve having this number of points
to exist ([31], Th. 4.1). The trace t then also determines the number of points
on X of any degree. For example, we have |X(Fq2)| = (q + 1)2 − t2, hence

X has 1
2 (|X(Fq2)| − |X(Fq)|) = (q+1−t)(q+t)

2 points of degree 2 (and likewise,
((q+1)2−t2)(q2−2q+t2)

4 points of degree 4, we will use it in the next example).
Using this machinery, we see that for q = 4 or 5 there exists an elliptic

curve over Fq with eight points of degree 1 (and at least one point of degree 2),
so in Proposition 4.3 we can take as G all these points of degree 1, each with
multiplicity 1.

Unfortunately it seems difficult to improve the bound µq(2, 2) ≤ 9 for q = 2
or 3, at least with this generic method. Whether this is the exact value is yet
unsettled.

Example 4.5. Proposition 4.2 gives

µq(4, 2) ≤ 15 for q ≥ 16 (87)

and Proposition 4.3 gives

µq(4, 2) ≤ 16 for q = 9, 11, or 13 (88)

µ8(4, 2) ≤ 17 µ7(4, 2) ≤ 18 µ5(4, 2) ≤ 19 (89)

µ4(4, 2) ≤ 20 µ3(4, 2) ≤ 23 µ2(4, 2) ≤ 26. (90)

The proof of these bounds follows the same lines as in the previous example.
For q = 9, 11, or 13, there is an elliptic curve over Fq with 16 points of

degree 1 (and at least one point of degree 4), so in Proposition 4.3 we can take
as G all these points of degree 1, each with multiplicity 1.

For q = 8 we can choose the trace t = −5, and G consists of 14 points of
degree 1 and 1 point of degree 2, all with multiplicity 1.

For q = 7 we choose t = −5, and G consists of 12 points of degree 1 and 2
points of degree 2, all with multiplicity 1.
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For q = 5 we choose t = −4, and G consists of 10 points of degree 1 and 3
points of degree 2, all with multiplicity 1.

For q = 4 we choose t = −3, and G consists of 8 points of degree 1 and 4
points of degree 2, all with multiplicity 1.

For q = 3 we choose t = −2, and G consists of 2 points of degree 1 with
multiplicity 1, 4 points of degree 1 with multiplicity 2, and 3 points of degree 2
with multiplicity 1.

For q = 2 we choose t = −1, and G consists of 4 points of degree 1 with
multiplicity 3, and 2 points of degree 2 with multiplicity 1.

Remark that all these bounds already improve the one given by Lemma 3.2
(at least given the best upper bounds on µq(4) known up to now). However, for
small q it is possible to do even better as follows.

Lemma 4.6. Suppose m is not prime, and write m = de for some integers
d, e ≥ 2. Then

µq(m, l) ≤ µq(d)µqd(e, l) (91)

(and likewise µsym

q (m, l) ≤ µsym

q (d)µsym

qd
(e, l)). In particular:

µ3(4, 2) ≤ µ3(2)µ9(2, 2) ≤ 21, µ2(4, 2) ≤ µ2(2)µ4(2, 2) ≤ 24. (92)

Proof. Direct consequence of Lemma 1.10 (ii), noting that Aq(m, l) can be
considered as an algebra over Fqd , and as such can be identified with Aqd(e, l).

We do not claim these new upper bounds to be optimal. Any further im-
provement (as well as lower bounds, on the other side) would be of interest.

Example 4.7. In [12], section 5, Cenk and Özbudak give upper bounds on
µ2(163) and µ3(97). However there is an error in their proof of the first, and
the second would need a slight extra justification.

The origin of the error is in their Th. 3.6., which, as stated, is false. Condi-
tion (1) in this Th. 3.6. asks for the existence of a divisor of degree n + g − 1
(instead of g − 1 as in their Th. 3.2. or Cor. 3.5.) in order for their evaluation
map EvQ to be surjective. However this condition is not sufficient, as illustrated
as follows.

To give an upper bound on µ2(163), the authors of [12] introduce the elliptic
curve y2 + y = x3 + x+ 1 over F2, which has only one point of degree 1, which
means that its class group Cl0 is trivial. They take a point Q of degree 163
on this curve, and a non-special divisor D of degree 163 disjoint from Q. They
need their map EvQ : L(D) −→ OQ/Q to be surjective (which the proof of their
Th. 3.6. claims). However, this map fits in the long exact sequence

0 −→ L(D −Q) −→ L(D) −→ OQ/Q −→ . . . (93)

and since D − Q has degree 0, and the curve has trivial class group, we have
D −Q ∼ 0 and l(D −Q) = 1. This means that EvQ is non-injective, and since
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L(D) and OQ/Q have the same dimension (namely 163), EvQ is non-surjective
as well.

To fix this error, we can use our Proposition 4.3 instead. We use the same
curve as in [12], but since this curve has only one point of degree 1, we are in
case d of the Proposition, and the divisor G has to be modified accordingly:
we take the only point of degree 1 with multiplicity 5, and then we take all 2
points of degree 2, all 4 points of degree 3, all 5 points of degree 4, all 8 points of
degree 5, all 8 points of degree 6, all 25 points of degree 8, all with multiplicity
1. Then G has degree

degG = 1 · 1 · 5+2 · 2+4 · 3+5 · 4+8 · 5+8 · 6+25 · 8 = 329 = 2 · 163+3 (94)

and Proposition 4.3 (d) gives

µ2(163) ≤ µ2(1, 5) + 2µ2(2)+4µ2(3) + 5µ2(4)+

+ 8µ2(5) + 8µ2(6) + 25µ2(8) ≤ 910.
(95)

See [12], Table 1, for the numerical details. Remark they give the upper bound
µ2(7) ≤ 22, with the quotient 22/7 being the highest among similar estimates
up to degree 8. This is why we didn’t use points of degree 7 in our G, and
explains why our upper bound 910 is better than the upper bound 916 in [12],
despite our G having higher degree. This said, perhaps further optimizations of
this sort are possible.

Concerning the upper bound µ3(97) ≤ 426, Cenk and Özbudak use the curve
y2 = x3 + x2 + 2x + 1 over F3. This curve has 3 points of degree 1, hence its
Cl0 is non-trivial, so the error in Condition (1) of their Th. 3.6. is not harmful.
However for their upper bound to be fully justified they also need to explain
why their application φ is injective, which they do not. But here again we can
use Proposition 4.3 (case a) instead, with the same curve and the same divisor
G as theirs. This gives the same bound µ3(97) ≤ 426, without needing any
extra justification.

5 Fixing some bounds of Ballet

For any curve X over Fq, we denote by Bd(X/Fq) the number of closed points
of degree d on X , so that, for all n,

|X(Fqn)| =
∑

d|n
dBd(X/Fq). (96)

We now want to apply Theorem 3.5 with curves of higher genus, as well
as give easy verifiable criteria for the existence of divisors D1, D2 satisfying
conditions (i) and (ii), or (i′) and (ii′), in this Theorem. For example, we can
do so as these conditions be satisfied for degree reasons:

Proposition 5.1. Let X be a curve of genus g over Fq, and let m, l ≥ 1 be two
integers.
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Suppose that X admits a closed point Q of degree degQ = m (a sufficient
condition for this is 2g + 1 ≤ q(m−1)/2(q1/2 − 1)).

Suppose also that X admits a non-special divisor S, of degree g + e− 1, for
an integer e as small as possible (hence e ≤ g by Riemann-Roch).

Consider now a collection of integers nd,u ≥ 0 (for d, u ≥ 1), such that
almost all of them are zero, and that for any d,

nd =
∑

u

nd,u ≤ Bd(X/Fq). (97)

Then, provided ∑

d,u

nd,udu ≥ 2ml+ 2e+ 2g − 1 (98)

we have
µq(m, l) ≤

∑

d,u

nd,uµq(d, u) (99)

and likewise
µsym

q (m, l) ≤
∑

d,u

nd,uµ
sym

q (d, u). (100)

Proof. For 1 ≤ j ≤ nd,u choose a point Pd,u,j of degree d in X , such that
Pd,u,j 6= Pd,u′,j′ if (u, j) 6= (u′, j′). This is possible by (97). Let then G =∑
d,u

∑
1≤j≤nd,u

uPd,u,j, so that degG =
∑
d,u nd,udu. Let alsoD = D1 = D2 =

S+ lQ, so D− lQ is non-special, and 2D−G has negative degree by (98). Hence
conditions (i′) and (ii′) in Theorem 3.5 are satisfied and we can conclude.

In order to use this Proposition one needs good upper bounds on e. For
results of this type, see for example [3] or [5]. In many cases it is possible to
take e = 0. However under some mild hypothesis on q or X , it is possible to
do substantially better, namely we can gain an additional constant g in (98).
For this to be possible, one needs to replace the degree argument in the proof
of the Proposition with a finer method ensuring that conditions (i′) and (ii′)
are still satisfied for some divisors D1, D2 of appropriate degree. Having allowed
asymmetry in our interpolation system will make this easier. In fact we will give
two different methods achieving this. The first one will show the existence of
D1, D2 using a cardinality argument. The second one will be more constructive,
and works also in a symmetric setting, although only under more restrictive
conditions.

Theorem 5.2. Let X be a curve of genus g over Fq, and let m, l ≥ 1 be two
integers.

Suppose that X admits a closed point Q of degree degQ = m (a sufficient
condition for this is 2g + 1 ≤ q(m−1)/2(q1/2 − 1)).

Consider now a collection of integers nd,u ≥ 0 (for d, u ≥ 1), such that
almost all of them are zero, and that for any d,

nd =
∑

u

nd,u ≤ Bd(X/Fq). (101)
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Suppose also ∑

d,u

nd,udu ≥ 2ml+ g − 1. (102)

Then:

a) If q > 5, we have
µq(m, l) ≤

∑

d,u

nd,uµq(d, u). (103)

b) If |X(Fq)| > 2g, we have

µq(m, l) ≤
∑

d,u

nd,uµq(d, u). (104)

Moreover, suppose X and Q are given explicitly, that 2g+1 points of degree
1 on X are given explicitly, and, for any d, that nd points of degree d on
X are given explicitly. Suppose also that for each d, u such that nd,u > 0,
we are given explicitly a multiplication algorithm of length ld,u for Aq(d, u).
Then, after at most 3g2 computations of Riemann-Roch spaces on X, we
can construct explicitly a multiplication algorithm of length

∑
d,u nd,uld,u for

Aq(m, l).

c) If |X(Fq)| > 5g, we have

µsym

q (m, l) ≤
∑

d,u

nd,uµ
sym

q (d, u). (105)

Moreover, suppose X and Q are given explicitly, that 5g+1 points of degree
1 on X are given explicitly, and, for any d, that nd points of degree d on X
are given explicitly. Suppose also that for each d, u such that nd,u > 0, we
are given explicitly a symmetric multiplication algorithm of length ld,u for
Aq(d, u). Then, after at most 5g2 computations of Riemann-Roch spaces on
X, we can construct explicitly a symmetric multiplication algorithm of length∑

d,u nd,uld,u for Aq(m, l).

Proof. For 1 ≤ j ≤ nd,u choose a point Pd,u,j of degree d in X , such that
Pd,u,j 6= Pd,u′,j′ if (u, j) 6= (u′, j′). This is possible by (97) (moreover, in cases b
and c, these Pd,u,j are chosen among the nd points of degree d given explicitly).
Let then G =

∑
d,u

∑
1≤j≤nd,u

uPd,u,j, so that degG =
∑

d,u nd,udu.

Proof of case a. We suppose q > 5, and we can also suppose g ≥ 2, otherwise
the conclusion follows from the results of the previous section. Let h = |Cl0(X)|
be the class number of X . Then we also have h = |Cli(X)| for any integer i,
where Cli(X) is the set of linear equivalence classes of divisors of degree i on
X . Let also

Clieff(X) ⊂ Cli(X) (106)

be the set of linear equivalence classes of effective divisors of degree i on X , or
equivalently, the set of linear equivalence classes of divisors D of degree i on X
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such that l(D) > 0. We then recall from [22] eq. (6), that if Ai is the number
of effective divisors on X , then

Ag−1 + 2

g−2∑

i=0

q(g−i−1)/2Ai ≤
h

(q1/2 − 1)2
(107)

hence for any i ≤ g − 1

|Clieff(X)| ≤ Ai ≤
h

(q1/2 − 1)2
<
h

2
(108)

(see also [1], Lemma 2.1, and [5], Th. 3.3). We now let

t = ml + g − 1 (109)

and we claim that we can find divisors D1, D2 of degree t such that:

(i′) D1 +D2 −G is zero-dimensional

(ii′1) D1 − lQ is non-special

(ii′2) D2 − lQ is non-special.

Indeed, (ii′1) means that the linear equivalence class [D1−lQ] is not in Clg−1
eff (X),

or equivalently,
[D1] 6∈ Clg−1

eff (X) + [lQ]. (110)

But since translation by [lQ] puts Clg−1(X) in bijection with Clt(X), applying
(108) shows the translate Clg−1

eff (X) + [lQ] cannot cover all Clt(X), hence we
can find D1 as wished. Now, this D1 being fixed, (i′) and (ii′2) together mean

[D2] 6∈ (Cl2t−degG
eff (X) + [G−D1]) ∪ (Clg−1

eff (X) + [lQ]), (111)

where 2t−degG ≤ g−1 by (102). But again (108) shows that the union of these
translates has cardinality less than h/2 + h/2, and we can find D2 as wished.
All this done we can now apply Theorem 3.5 and conclude.

Proof of case b. Suppose we are given a set S = {P0, P1, . . . , P2g} of 2g + 1
points of degree 1 on X . As in case a, all we need is to construct divisors D1, D2

of degree t satisfying (i′), (ii′1), (ii
′
2), and apply Theorem 3.5 to conclude. From

[24], Lemma 10, we recall the following:

If A is a divisor on X with degA ≤ g − 2 and l(A) = 0, there are
at most g points P ∈ X(Fq) such that l(A+ P ) > 0.

(112)

For −1 ≤ i ≤ g − 1 we construct a divisor Yi on X of degree ml + i such that
l(Yi − lQ) = 0 iteratively as follows:

• Start with Y−1 = (ml − 1)P0, so l(Y−1 − lQ) = 0 for degree reasons.
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• Suppose up to some i < g − 1 we have found Yi such that l(Yi − lQ) = 0
as wished. Then by (112) there exists P ∈ S such that l(Yi+P − lQ) = 0.
We put Yi+1 = Yi + P .

• This ends when i = g − 1.

We can then put D1 = Yg−1, so that (ii′1) is satisfied.
Now for −1 ≤ i ≤ g− 1 we construct a divisor Zi on X of degree ml+ i such

that l(Zi − lQ) = 0 and l(D1 + Zi −G) = 0 iteratively as follows:

• Start with Z−1 = (ml−1)P0, so l(Z−1− lQ) = 0 and l(D1+Z−1−G) = 0
for degree reasons (via hypothesis (102) for the second).

• Suppose up to some i < g − 1 we have found Zi such that l(Zi − lQ) = 0
and l(D1 + Zi −G) = 0 as wished. We claim there is a point P ∈ S such
that l(Zi+P − lQ) = 0 and l(D1 +Zi+P −G) = 0. Indeed by (112) the
first can fail at most g times, and likewise the second can fail at most g
times. We then put Zi+1 = Zi + P .

• This ends when i = g − 1.

We can then put D2 = Zg−1, so that (i′) and (ii′2) are satisfied, and we’re done.

Proof of case c. Suppose we are given a set T = {P0, P1, . . . , P5g} of 5g + 1
points of degree 1 on X . From [24], Lemma 12, we recall the following:

If A is a divisor on X with degA ≤ g − 3 and l(A) = 0, there are
at most 4g points P ∈ X(Fq) such that l(A+ 2P ) > 0.

(113)

Then for −1 ≤ i ≤ g − 1 we construct a divisor Ti on X of degree ml + i such
that l(Ti − lQ) = 0 and l(2Ti −G) = 0 iteratively as follows:

• Start with T−1 = (ml− 1)P0, so l(T−1 − lQ) = 0 and l(2T−1 −G) = 0 for
degree reasons (via hypothesis (102) for the second).

• Suppose up to some i < g − 1 we have found Ti such that l(Ti − lQ) = 0
and l(2Ti −G) = 0 as wished. We claim there is a point P ∈ T such that
l(Ti+P − lQ) = 0 and l(2Ti+2P −G) = 0. Indeed by (112) the first can
fail at most g times, and by (113) the second can fail at most 4g times.
We then put Ti+1 = Ti + P .

• This ends when i = g − 1.

We can then put D1 = D2 = Tg−1 and conclude by Theorem 3.5 again.

Remark 5.3. As explained in the Introduction, this Theorem 5.2 fixes an error
in an article of Ballet. More precisely, if we take l = 1, and we choose all nd,u
equal to zero except for n1,1, then case a of Theorem 5.2 gives statement (1) in
Th. 2.1 of [1] as a special case; and likewise if we choose all nd,u equal to zero
except for n1,1 and n2,1, we get its statement (2).
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Remark that our proof of case a is structurally the same as Ballet’s. The
only difference is that we allowed the asymmetry D1 6= D2, so D1 and D2

could be constructed one at a time, and in establishing (110) and (111) we only
had to consider translations [D] 7→ [D] − [A] which put Cl∗(X) in bijection
with Cl∗−degA(X). On the other hand Ballet had to consider a map of the
form [D] 7→ 2[D] − [G] which might be non-injective. The error in Ballet’s [1],
Prop. 2.1, is that he did not take the possible kernel of this multiplication-by-2
map (that is, the 2-torsion in the class group) into account. As explained in the
Introduction, this error was in fact borrowed from [27], and was first spotted by
Cascudo-Cramer-Xing (see [9], Chapter 12).

Remark also that case c of Theorem 5.2 gives another way of fixing this
error, while keeping symmetry. A drawback is that the condition X(Fq) > 5g
in case c might be too strong for some applications.

So, for applications, case a is often more suitable, and indeed it allows us to
fix the proof of further bounds of Ballet that were jeopardized by the error in
his Th. 2.1:

Corollary 5.4. Let p be a prime number and q = pr a power of p, with q > 5.
Then for all integer n ≥ 1 we have

1

n
µq(n) ≤





3
(
1 + 2

p−2

)
if r = 1

2
(
1 + 2√

q−2

)
if r = 2

3
(
1 + p

q−2

)
if r ≥ 3 odd.

(114)

Proof. Use Theorem 5.2, instead of Th. 2.1 of [1], in the proof of the corre-
sponding cases of Th. 3.1 of [1] and Th. 2.1 and 2.2 of [2].

Remark 5.5. There is a case of Th. 3.1 of [1] that we didn’t include in our

Corollary. Namely, Th. 3.1 of [1] claims that the bound 1
nµq(n) ≤ 2

(
1 + 2√

q−2

)

holds for all r even, not only for r = 2. The reason for this omission is that there
is another error in the proof of this Th. 3.1 of Ballet, apart from the oversight
of the 2-torsion already mentioned.

Indeed in his proof Ballet considers two consecutive prime numbers l1 and
l2 determined by n and he claims that he can apply his Prop. 3.1.(2) to this l2.
However this Prop. 3.1.(2) only states that there exists a prime number l for
which its conclusion holds, not that it holds for all prime numbers. Looking
more closely at the proof, we see it works for primes l for which certain points
split completely in a certain morphism of curves, which in turn can be translated
as the primes l lying in a certain arithmetic progression. However there is no
reason that l2 should be in this arithmetic progression, except in the case r = 2
where it is trivial.

On the other hand, it is easy to see that this bound, and even a slightly
stronger one, holds at least asymptotically (if not for all n), as will be seen with
our fix of the Shparlinski-Tsfasman-Vladut bound below.
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To end this section, we want to show how the condition q > 5 in Theo-
rem 5.2.a can be relaxed, at the cost of only weakening condition (102) by a
small absolute constant, independent of g. For this we will use a generalization
of (108), that might also be seen as a variant of [5], Th. 3.3 and Cor. 3.4.

Lemma 5.6. Let X be a curve of genus g ≥ 2 over Fq, of class number h, and
for any integer i let Ai be the number of effective divisors of degree i on X.
Define an integer e as follows:

• If X(Fq) = ∅,

e =





6 if q = 2

2 if q = 3

1 if q = 4, 5

0 if q > 5.

(115)

• If X(Fq) 6= ∅,

e =





3 if q = 2

1 if q = 3, 4, 5

0 if q > 5.

(116)

Then
Ag−e−1 < h/2. (117)

Proof. We recall again from [22] eq. (6), that

Ag−1 + 2

g−1∑

i=1

qi/2Ag−i−1 ≤ h

(q1/2 − 1)2
(118)

hence, for i ≥ 1, we have Ag−i−1 ≤ h
2qi/2(q1/2−1)2

, and the case X(Fq) = ∅
follows.

On the other hand, if X(Fq) 6= ∅, then Ag−e−1 ≤ Ag−i−1 for all i ≤ e, hence

(1 + 2

e∑

i=1

qi/2)Ag−e−1 ≤ h

(q1/2 − 1)2
(119)

and the conclusion follows again.

Proposition 5.7. Let X be a curve of genus g ≥ 2 over Fq, where q ≥ 2 is any
prime power, and let m, l ≥ 1 be two integers.

Suppose that X admits a closed point Q of degree degQ = m (a sufficient
condition for this is 2g + 1 ≤ q(m−1)/2(q1/2 − 1)).

Let e be defined as in the previous Lemma (remark e ≤ 6 in any case).
Consider now a collection of integers nd,u ≥ 0 (for d, u ≥ 1), such that

almost all of them are zero, and that for any d,

nd =
∑

u

nd,u ≤ Bd(X/Fq). (120)
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Then, provided ∑

d,u

nd,udu ≥ 2ml+ 3e+ g − 1, (121)

we have
µq(m, l) ≤

∑

d,u

nd,uµq(d, u). (122)

Proof. We argue essentially as in the proof of Theorem 5.2.a, with only a few
minor changes. From the collection of integers nd,u we first construct a divisor
G, of degree degG =

∑
d,u nd,udu, as before. For any integer i we let

Clisp(X) ⊂ Cli(X) (123)

be the set of linear equivalence classes of special divisors on X , hence by
Riemann-Roch Clisp(X) = [KX ]− Cl2g−2−i

eff (X), so

|Clisp(X)| = |Cl2g−2−i
eff (X)|, (124)

and by the Lemma

|Clg+e−1
sp (X)| = |Clg−e−1

eff (X)| ≤ Ag−e−1 < h/2. (125)

Then letting
t = ml + e+ g − 1 (126)

and using (125) instead of (108), we can first find a divisor D1 of degree t such
that

[D1] 6∈ Clg+e−1
sp (X) + [lQ], (127)

ensuring (ii′1), and then a divisor D2 of degree t such that

[D2] 6∈ (Cl2t−degG
eff (X) + [G−D1]) ∪ (Clg+e−1

sp (X) + [lQ]), (128)

(remark 2t−degG ≤ g−e−1 by (121)), ensuring (i′) and (ii′2), and we conclude
as before.

Remark 5.8. Many results in this part, concerning “uniform” upper bounds,
can still be improved or generalized, in various directions:

• Lemma 5.6 can be refined, after a more careful case study of the number of
points of X . This leads to better estimates on e, hence to sharper bounds
in Proposition 5.7.

• Following Ballet’s proof, the case r = 2 in Corollary 5.4 uses modular
curves of prime genus, and then relies on Bertrand’s postulate (proved by
Chebyshev) for these primes. It is possible to refine both parts of this
argument, also leading to sharper bounds in this case.

• Theorem 5.2 (and Proposition 5.7) can also be combined with descent
arguments, such as those used in [4], to derive better bounds than the
ones in Corollary 5.4 when q is not a square.
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All these improvements or generalizations require quite long technical discus-
sions and are somehow independent of the main ideas presented in this paper,
so they will be treated elsewhere.

6 Fixing the Shparlinski-Tsfasman-Vladut asymp-

totic upper bound

The Shparlinski-Tsfasman-Vladut upper bound ([27]) concerns the asymptotic
quantities defined below. As explained earlier in the text, there was a gap in
their proof, which our methods allow to fill (with two independent arguments).

Definition 6.1. If q is a prime power, we let

mq = lim inf
n→∞

1

n
µq(n)

Mq = lim sup
n→∞

1

n
µq(n)

(129)

and their symmetric counterparts msym
q and M sym

q are defined likewise.

Definition 6.2. We let A(q) be the largest real number such that there exists
a family of curves Xs over Fq, of genus gs going to infinity, with

lim
s→∞

|Xs(Fq)|
gs

= A(q). (130)

Theorem 6.3. If A(q) > 1, then

mq ≤ 2

(
1 +

1

A(q)− 1

)
. (131)

Moreover, if A(q) > 5, then also msym

q ≤ 2
(
1 + 1

A(q)−1

)
.

Proof. Consider a family of curves Xs over Fq, of genus gs going to infinity, with

lim
s→∞

|Xs(Fq)|
gs

= A(q). (132)

Given an integer s, let

n(s) =

⌊
1

2
(|Xs(Fq)| − gs − 17)

⌋
, (133)

hence by (132)

lim
s→∞

n(s)

gs
=
A(q)− 1

2
. (134)
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Then for s large enough we have 2gs+1 ≤ q(n(s)−1)/2(q1/2−1) and we can apply
Proposition 5.7 with l = 1, and with all nd,u zero except n1,1 = 2n(s)+ 17+ gs,
to get

µq(n(s)) ≤ 2n(s) + gs + 17, (135)

which allows to conclude.
Is A(q) > 5, then |Xs(Fq)| > 5gs for s large enough, and we can use Theo-

rem 5.2.c to conclude likewise.

Theorem 6.4. If q = p2r ≥ 9 is a square, then

Mq ≤ 2

(
1 +

1√
q − 2

)
. (136)

Moreover, if q = p2r ≥ 49, then also M sym

q ≤ 2
(
1 + 1√

q−2

)
.

Proof. Consider the Shimura curves described in [27], pp. 163–166. They form
a family of curves Xs over Fq, of genus gs going to infinity, with

lim
s→∞

|Xs(Fq)|
gs

=
√
q − 1 (137)

and
lim
s→∞

gs+1

gs
= 1. (138)

Given an integer n, let s(n) be the smallest integer such that

|Xs(n)(Fq)| ≥ 2n+ gs(n) − 1, (139)

hence by (137) and (138),

gs(n) =
2n√
q − 2

+ o(n). (140)

This then gives 2gs(n) + 1 ≤ q(n−1)/2(q1/2 − 1) for n large enough, and we
can apply Theorem 5.2.a with l = 1, and with all nd,u zero except n1,1 =
2n+ gs(n) − 1, to get

µq(n) ≤ 2n+ gs(n) − 1. (141)

This holds for all n large enough, hence dividing by n and using (140) again
allows to conclude.

If q ≥ 49, then we can use Theorem 5.2.c instead, and conclude likewise.

Remark 6.5. As noted in [2], we also immediately get from Corollary 5.4 the

bounds Mp ≤ 3
(
1 + 2

p−2

)
for p prime, and Mq ≤ 3

(
1 + p

q−2

)
for q = pr, r ≥ 3

odd.
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Remark 6.6. Prop. 4.1 of [27] also discusses some constructiveness issues,
which we can improve here. Suppose that q ≥ 9 is a square, and that for some
increasing sequence of integers n, we are given explicitly a curve Xn of genus

gn =
2n√
q − 2

+ o(n), (142)

together with a point Q of degree n on Xn, and a set S of points of degree 1 on
Xn, such that

|S| ≥ 2n+ gn − 1 (143)

(this is possible, for example, with the curves in [18]). Then in the preceding
proof we can use Theorem 5.2.b instead of Theorem 5.2.a, which leads to a
polynomial time (in n) construction of a multiplication algorithm for Fqn/Fq,

of length 2n
(
1 + 1√

q−2

)
+ o(n) (moreover if q ≥ 49, we can use Theorem 5.2.c

to make the algorithm symmetric). This is better than Prop. 4.1 of [27] which,

under the same hypothesis, gives an algorithm of length 2n
(
1 + 4√

q−5

)
+ o(n).

Remark 6.7. Here we studied the asymptotics of µq(n) = µq(n, 1). We could
do the same thing for M̂q(n) = µq(1, n), or more generally for µq(m, l) when
both m and l vary.

Note that the parameters m and l appear at two places in Theorem 5.2 (or
likewise in Proposition 5.7):

• First, m appears alone when one asks that the curve X should admit a
point Q of degree m.

• Then m and l appear together through the product ml = dimAq(m, l) in
condition (102).

Since the curves in the proofs of Theorems 6.3 and 6.4 all admit at least one
point of degree 1, we see that the asymptotic estimates given there for µq(n)
also hold for M̂q(n):

lim inf
n→∞

1

n
M̂q(n) ≤ 2

(
1 +

1

A(q)− 1

)
for A(q) > 1 (144)

lim sup
n→∞

1

n
M̂q(n) ≤ 2

(
1 +

1√
q − 2

)
for q ≥ 9 a square (145)

(and likewise for their symmetric counterparts).
The same techniques also give asymptotic upper bounds for

1

ml
µq(m, l). (146)

However in order to ensure that the curves admit a point of degree m, we will
rely on the sufficient condition 2g + 1 ≤ q(m−1)/2(q1/2 − 1), and since in the
proofs we will have curves of genus g growing linearly with n = ml (see (134)
or (140)), these upper bounds will be valid only in a domain in which m grows
at least logarithmically with ml.
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Question 6.8. The condition A(q) > 5 in the last statement of Theorem 6.3
(and likewise q ≥ 49 in Theorem 6.4) might appear strange. A natural question
is whether the estimate should be valid under the condition A(q) > 1 also in
the symmetric case. In fact this condition A(q) > 5 can be relaxed very slightly,
as shown in [25]. However, to relax it further to A(q) > 1 would require much
deeper results, such as the conjectures proposed in [23] on the existence of curves
having many points but few 2-torsion in their class group.

This also leads to the following question: do msym
q = mq, or M sym

q = Mq,
or more generally µsym

q (m, l) = µq(m, l) for all q,m, l? Of course this should be
put in contrast with the example in Remark 1.7.
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