Nullity of Measurement-induced Nonlocality

Yu Guo ${ }^{1,2}$ and Jinchuan Hou ${ }^{1}$
${ }^{1}$ Department of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China and
${ }^{2}$ Department of Mathematics, Shanxi Datong University, Datong, 037009, China

Abstract

Measurement-induced nonlocality (MiN) is a new measure of nonlocality introduced by Luo and Fu [Phys. Rev. Lett. 106, 120401(2011)]. In this letter, we study MiN further and obtain necessary and sufficient conditions for a state to have nullity of measurement-induced nonlocality and for a state to be classical-quantum, in terms of commutativity, for both finite- and infinite-dimensional systems. These results reveal that MiN and quantum discord are raised from noncommutativity rather than entanglement. MiN is the most essential nonlocality among MiN, quantum discord and entanglement. The set of states with zero MiN is a proper subset of the set of zero discordant states, and both of them are zero-measure sets. Thus, there exist not only quantum nonlocality without entanglement but also quantum nonlocality without quantum discord.

PACS numbers: 03.65.Db, 03.65.Ud, 03.67.Mn.

Quantum nonlocality, whereby particles of spatially separated quantum systems can instantaneously influence one another irrespective of the distance between them, is one of the most elusive features in quantum theory [1-3]. Different manifestations of it, such as quantum entanglement [4, 5], quantum discord (QD) [6, 7] and measurement-induced nonlocality (MiN) [8], have been studied. It is the key to our understanding of quantum physics, and, in particular, it is essential for the powerful applications of quantum information and quantum computation. Entanglement lies at the heart of quantum information theory [4, 5]. QD can be used in quantum computation [9, 10]. It is indicated in [8] that MiN may also be applied in quantum cryptography, general quantum dense coding [11, 12], remote state control [13, 14], etc.. The quantifying of nonlocality, for instance, entanglement measure (such as entanglement of formation [15, 16], concurrence 15, 16], Schmidt number entanglement measure [17], etc) and computation of quantum discord [9, 18-22], has been discussed intensively.

Measurement-induced nonlocality was firstly proposed by Luo and Fu [8], which can be viewed as a kind of nonclassical correlation from a geometric perspective based on the local von Neumann measurements from which one of the reduced states is left invariant. Let ρ be a bipartite state acting on the associated state space $H_{A} \otimes H_{B}$ with $\operatorname{dim} H_{A} \otimes H_{B}<+\infty, \rho_{A / B}=\operatorname{Tr}_{B / A}(\rho)$ be the reduced states of ρ. The MiN of ρ, denoted by $N(\rho)$, is defined in [8] by

$$
\begin{equation*}
N(\rho)=\max _{\Pi^{A}}\left\|\rho-\Pi^{A}(\rho)\right\|_{2}^{2} \tag{1}
\end{equation*}
$$

where $\|\cdot\|_{2}$ is the Hilbert-Schmidt norm (that is $\|A\|_{2}=$ $\left[\operatorname{Tr}\left(A^{\dagger} A\right)\right]^{\frac{1}{2}}$), and the max is taken over all local von Neumann measurement $\Pi^{A}=\left\{\Pi_{k}^{A}\right\}$ with $\sum_{k} \Pi_{k}^{A} \rho_{A} \Pi_{k}^{A}=$ $\rho_{A}, \Pi^{A}(\rho)=\sum_{k}\left(\Pi_{k}^{A} \otimes I_{B}\right) \rho\left(\Pi_{k}^{A} \otimes I_{B}\right)$. MiN is different from, and in some sense dual to, the geometric measure of quantum discord (GMQD) [8]

$$
D_{G}(\rho):=\min _{\Pi^{A}}\left\|\rho-\Pi^{A}(\rho)\right\|_{2}^{2}
$$

where Π^{A} runs over all local von Neumann measure-
ments (GMQD is originally introduced in [9] as $D_{G}(\rho):=$ $\min _{\chi}\|\rho-\chi\|_{2}^{2}$ with χ runs over all zero QD states and proved in [22] that the two definitions coincide). We recall that the quantum discord, which can be viewed as a measure of the minimal loss of correlation in the sense of quantum mutual information, is defined in [6] by

$$
\begin{equation*}
D(\rho)=\min _{\Pi^{A}}\left\{I(\rho)-I\left(\rho \mid \Pi^{A}\right)\right\} \tag{2}
\end{equation*}
$$

where the min is taken over all local von Neumann measurements Π^{A}. $I(\rho)=S\left(\rho_{A}\right)+S\left(\rho_{B}\right)-S(\rho)$ is interpreted as the quantum mutual information, where $S(\rho)=$ $-\operatorname{Tr}(\rho \log \rho)$ is the von Neumann entropy, $\left.I\left(\rho \mid \Pi^{A}\right)\right\}:=$ $S\left(\rho_{B}\right)-S\left(\rho \mid \Pi^{A}\right), S\left(\rho \mid \Pi^{A}\right):=\sum_{k} p_{k} S\left(\rho_{k}\right)$, and $\rho_{k}=$ $\frac{1}{p_{k}}\left(\Pi_{k}^{A} \otimes I_{B}\right) \rho\left(\Pi_{k}^{A} \otimes I_{B}\right)$ with $p_{k}=\operatorname{Tr}\left[\left(\Pi_{k}^{A} \otimes I_{B}\right) \rho\left(\Pi_{k}^{A} \otimes\right.\right.$ $\left.\left.I_{B}\right)\right], k=1,2, \ldots, \operatorname{dim} H_{A}$. Throughout this paper, all logarithms are taken to base 2. QD is nonnegative 66, 21]. It is known that a state has zero QD if and only if it is a classical-quantum (CQ) state. Recall that a state ρ is said to be a CQ state if it has the form of

$$
\begin{equation*}
\rho=\sum_{i} p_{i}|i\rangle\langle i| \otimes \rho_{i}^{B}, \tag{3}
\end{equation*}
$$

for some orthonormal basis $\{|i\rangle\}$ of H_{A}, where ρ_{i}^{B} s are states of the subsystem $\mathrm{B}, p_{i} \geq 0, \sum_{i} p_{i}=1$. Some conditions for nullity of quantum discord may be found in [9, 19, 21].

Mathematically, quantumness is always associated with noncommutativity while classical mechanics displays commutativity in some sense [23-25]. With this idea in mind, we describe quantum nonlocality mathematically. In this letter, we consider the two-mode system labeled by $\mathrm{A}+\mathrm{B}$ which is described by a complex Hilbert space $H=H_{A} \otimes H_{B}$ with $\operatorname{dim} H_{A} \otimes H_{B} \leq+\infty$. We denote by $\mathcal{S}\left(H_{A} \otimes H_{B}\right)$ the set of all states acting on $H_{A} \otimes H_{B}$. The aim of this letter is twofold: (i) Analyzing the condition for quantum states having zero MiN in terms of commutativity mathematically; (ii) Comparing nullity of MiN with that of QD mathematically, which helps us understand better these different kinds of quantum correlations.

Firstly, with the same spirit as that of the finitedimensional case, we can generalize $\mathrm{MiN}, \mathrm{QD}$ and CQ states to infinite-dimensional bipartite systems straightforward.

Measurement-induced nonlocality- Let $\operatorname{dim} H_{A} \otimes H_{B}=$ $+\infty, \rho \in \mathcal{S}\left(H_{A} \otimes H_{B}\right)$. Let $\Pi^{A}=\left\{\Pi_{k}^{A}=|k\rangle\langle k|\right\}$ be a set of mutually orthogonal rank-one projections that sum up to the identity of H_{A}. Similar to the finite-dimensional case, we call such $\Pi^{A}=\left\{\Pi_{k}^{A}\right\}$ a local von Neumann measurement. Note that $\sum_{k}\left(\Pi_{k}^{A} \otimes I_{B}\right)^{\dagger}\left(\Pi_{k}^{A} \otimes I_{B}\right)=$ $\sum_{k} \Pi_{k}^{A} \otimes I_{B}=I_{A B}$, here the series converges under the strong operator topology [26]. We define the MiN of ρ by

$$
\begin{equation*}
N(\rho):=\sup _{\Pi^{A}}\left\|\rho-\Pi^{A}(\rho)\right\|_{2}^{2} \tag{4}
\end{equation*}
$$

where the supremum is taken over all local von Neumann measurement $\Pi^{A}=\left\{\Pi_{k}^{A}\right\}$ that satisfying $\sum_{k} \Pi_{k}^{A} \rho_{A} \Pi_{k}^{A}=$ $\rho_{A},\|\cdot\|_{2}$ denotes the Hilbert-Schmidt norm: $\|A\|_{2}=$ $\left[\operatorname{Tr}\left(A^{\dagger} A\right)\right]^{\frac{1}{2}}$. The following properties are straightforward. (i) $N(\rho)=0$ for any product state $\rho=\rho_{A} \otimes \rho_{B}$. (ii) $N(\rho)$ is locally unitary invariant, namely, $N[(U \otimes$ $\left.V) \rho\left(U^{\dagger} \otimes V^{\dagger}\right)\right]=N(\rho)$ for any unitary operators U and V acting on H_{A} and H_{B}, respectively. (iii) $N(\rho)>0$ whenever ρ is entangled since $\Pi^{A}(\rho)$ is always a classicalquantum state and thus is separable. (iv) $0 \leq N(\rho)<4$. The MiN of a pure state is easily calculated. Let $|\psi\rangle \in$ $H_{A} \otimes H_{B}$ and $|\psi\rangle=\sum_{k} \lambda_{k}|k\rangle\left|k^{\prime}\right\rangle$ be its Schmidt decomposition. For the finite-dimensional case, Luo showed in [8] that $N(|\psi\rangle)=1-\sum_{k} \lambda_{k}^{4}$. It is also true for infinitedimensional case. Similarly, one can define MiN with respect to the second subsystem B, and the corresponding properties are valid. It is easily seen that these two MiNs are asymmetric, namely, the MiN with respect to subsystem A is not equal to the one with respect to subsystem B generally. In this paper we consider the former one.

The quantum discord for infinite-dimensional systems was firstly discussed in [21]. For readers' convenience, we list it below again.

Quantum discord- Let $\operatorname{dim} H_{A} \otimes H_{B}=+\infty, \rho \in$ $\mathcal{S}\left(H_{A} \otimes H_{B}\right)$. Let

$$
I(\rho)=S\left(\rho_{A}\right)+S\left(\rho_{B}\right)-S(\rho)
$$

denote the quantum mutual information of ρ, where $S(\rho)=-\operatorname{Tr}(\rho \log \rho)$ denotes the von Neumann entropy of the state ρ (remark here that $S(\rho)$ maybe $+\infty$). Let $\Pi^{A}=\left\{\Pi_{k}^{A}=|k\rangle\langle k|\right\}$ be a local von Neumann measurement. We perform Π^{A} on ρ, the outcome $\Pi^{A}(\rho)=$ $\sum_{k} p_{k} \rho_{k}$, where $\rho_{k}=\frac{1}{p_{k}}\left(\Pi_{k}^{A} \otimes I_{B}\right) \rho\left(\Pi_{k}^{A} \otimes I_{B}\right)$ with probability $p_{k}=\operatorname{Tr}\left[\left(\Pi_{k}^{A} \otimes I_{B}\right) \rho\left(\Pi_{k}^{A} \otimes I_{B}\right)\right]$. Define $I\left(\rho \mid \Pi^{A}\right):=$ $S\left(\rho_{B}\right)-S\left(\rho \mid \Pi^{A}\right)$ and $S\left(\rho \mid \Pi^{A}\right):=\sum_{k} p_{k} S\left(\rho_{k}\right)$. The difference

$$
\begin{equation*}
D(\rho):=I(\rho)-\sup _{\Pi^{A}} I\left(\rho \mid \Pi^{A}\right) \tag{5}
\end{equation*}
$$

is defined to be the quantum discord of ρ, where the sup is taken over all local von Neumann measurement.

It is proved in 21] that $D(\rho) \geq 0$ for any state $\rho \in$ $\mathcal{S}\left(H_{A} \otimes H_{B}\right)$ (remark that it holds since the von Neumann entropy is strongly subadditive for both finite- and infinite-dimensional cases, see [21] for detail). One can check that QD can also be calculated by

$$
\begin{equation*}
D(\rho)=I(\rho)-\sup _{\Pi^{A}} I\left[\Pi^{A}(\rho)\right] . \tag{6}
\end{equation*}
$$

Namely, QD is defined as the infimum of the difference of mutual information of the pre-state ρ and that of the post-state $\Pi^{A}(\rho)$ with Π^{A} runs over all local von Neumann measurements.

For finite-dimensional systems, the CQ states attracted much attention since they can be used for quantum broadcasting [27]. We extend it to the infinitedimensional case via the same scenario.

Classical-quantum state- Similar to Eq.(3), for $\rho \in$ $\mathcal{S}\left(H_{A} \otimes H_{B}\right), \operatorname{dim} H_{A} \otimes H_{B}=+\infty$, if ρ has the following form

$$
\begin{equation*}
\rho=\sum_{k} p_{k}|k\rangle\langle k| \otimes \rho_{k}^{B}, \tag{7}
\end{equation*}
$$

where $\{|k\rangle\}$ is an orthonormal set of $H_{A}, \rho_{k}^{B} \mathrm{~S}$ are states of the subsystem $\mathrm{B}, p_{k} \geq 0$ and $\sum_{k} p_{k}=1$, then we call ρ a classical-quantum (briefly, CQ) state. It is clear that every CQ state has zero QD.

Let

$$
\begin{aligned}
& \mathcal{S}_{N}^{0}=\left\{\rho \in \mathcal{S}\left(H_{A} \otimes H_{B}\right): N(\rho)=0\right\}, \\
& \mathcal{S}_{C}=\left\{\rho \in \mathcal{S}\left(H_{A} \otimes H_{B}\right): \rho \text { is } \mathrm{CQ}\right\}, \\
& \mathcal{S}_{D}^{0}=\left\{\rho \in \mathcal{S}\left(H_{A} \otimes H_{B}\right): D(\rho)=0\right\}
\end{aligned}
$$

and $\mathcal{S}_{s e p}$ be the set of all separable states acting on $H_{A} \otimes$ H_{B}. Then

$$
\begin{equation*}
\mathcal{S}_{N}^{0} \subseteq \mathcal{S}_{C} \subseteq \mathcal{S}_{D}^{0} \subseteq \mathcal{S}_{s e p} \tag{8}
\end{equation*}
$$

It is known that, for the finite-dimensional case, \mathcal{S}_{D}^{0} is a zero-measure set [28] (that is, each point of this set can be approximated by a sequence of states that not belong to this set with respect to the trace norm), and, for the infinite-dimensional case, $\mathcal{S}_{\text {sep }}$ is a zero-measure set [29]. Thus \mathcal{S}_{N}^{0} is a zero-measure set in both finiteand infinite-dimensional cases. (Consequently \mathcal{S}_{D}^{0} is also a zero-measure set in infinite-dimensional cases, which answers a question raised in 21].)

Let $\operatorname{dim} H_{A} \otimes H_{B} \leq+\infty$, and $\{|k\rangle\},\left\{\left|i^{\prime}\right\rangle\right\}$ be any orthonormal bases of H_{A}, H_{B}, respectively. Denote $F_{i j}=\left|i^{\prime}\right\rangle\left\langle j^{\prime}\right|$. Then, for any $\rho \in \mathcal{S}\left(H_{A} \otimes H_{B}\right)$, we can write ρ as

$$
\begin{equation*}
\rho=\sum_{i, j} A_{i j} \otimes F_{i j} \tag{9}
\end{equation*}
$$

where $A_{i j}$ s are trace-class operators acting on H_{A} and the series converges in the trace norm [30]. It is proved in [31] that, for any density matrix $\rho \in \mathcal{S}\left(H_{A} \otimes H_{B}\right)$ with $\operatorname{dim} H_{A} \otimes H_{B}<+\infty$, if $\rho=\sum_{i j} A_{i j} \otimes F_{i j}$ with $A_{i j} \mathrm{~s}$ are mutually commuting normal matrices, then ρ
is separable. We will prove below that such state ρ is not only a separable state but also a CQ state. In fact, we show that ρ is a CQ state if and only if it has the above form. Moreover, this result is also valid for the infinite-dimensional cases.

Theorem 1. Let $\operatorname{dim} H_{A} \otimes H_{B} \leq+\infty, \rho \in \mathcal{S}\left(H_{A} \otimes\right.$ $\left.H_{B}\right)$. Write $\rho=\sum_{i j} A_{i j} \otimes F_{i j}$ as in Eq.(9) with respect to some given bases of H_{A} and H_{B}. Then ρ is a $C Q$ state if and only if $A_{i j} s$ are mutually commuting normal operators acting on H_{A}.

Proof. The 'if' part. Assume that $A_{i j}$ s are mutually commuting normal operators; then $A_{i j} \mathrm{~s}$ are simultaneously diagonalizable. Thus there exist diagonal operators $D_{i j} \mathrm{~s}$ and a unitary operator U acting on H_{A} such that $\left(U^{\dagger} \otimes I_{B}\right) \rho\left(U \otimes I_{B}\right)=\sum_{i, j} D_{i j} \otimes F_{i j}$. With no loss of generality, we may assume $\rho=\sum_{i, j} D_{i j} \otimes F_{i j}$. It turns out that ρ can then be rewritten as $\rho=\sum_{i} \tilde{E_{i i}} \otimes B_{i i}$, where $\tilde{E_{i i}}$ s are rank-one orthogonal projections. Now it is obvious that $B_{i i} \geq 0$ since $\rho \geq 0, i=1,2, \ldots$ Hence, ρ is a classical-quantum state.

The 'only if' part. If ρ is a CQ state, then $\rho=$ $\sum_{k} p_{k}|k\rangle\langle k| \otimes \rho_{k}^{B}, p_{k} \geq 0, \sum_{k} p_{k}=1$ for some orthonormal set $\{|k\rangle\}$ of H_{A}. Write $\rho=\sum_{i, j} A_{i j} \otimes F_{i j}$ as in Eq.(9). If Π^{A} is the von Neumann measurement induced from $\{|k\rangle\langle k|\}$, then it follows from $\Pi^{A}(\rho)=\sum_{k}(|k\rangle\langle k| \otimes$ $\left.I_{B}\right)\left(\sum_{k} p_{k}|k\rangle\langle k| \otimes \rho_{k}^{B}\right)\left(|k\rangle\langle k| \otimes I_{B}\right)=\rho$ that $\sum_{k}(|k\rangle\langle k| \otimes$ $\left.I_{B}\right)\left(\sum_{i, j} A_{i j} \otimes F_{i j}\right)\left(|k\rangle\langle k| \otimes I_{B}\right)=\sum_{i, j} A_{i j} \otimes F_{i j}$. This leads to $\sum_{k}|k\rangle\langle k| A_{i j}|k\rangle\langle k|=\sum_{k}\langle k| A_{i j}|k\rangle|k\rangle\langle k|=A_{i j}$ for any i, j, that is, every $A_{i j}$ is a diagonal operator with respect to the same orthonormal base $\{|k\rangle\}$. Therefore, $A_{i j} \mathrm{~s}$ are mutually commuting normal operators acting on H_{A}.

Theorem 1 implies that CQ stems from noncommutativity not from entanglement. We can also find this kind of noncommutativity from another perspective: For finite-dimensional case, it is proved in 28] that if $\rho \in$ $\mathcal{S}_{C}\left(=\mathcal{S}_{D}^{0}\right)$ then $\left[\rho, \rho_{A} \otimes I_{B}\right]=0$. It is easy to check that this is also valid for infinite-dimensional systems as well:

Proposition 1. Let $\operatorname{dim} H_{A} \otimes H_{B} \leq+\infty, \rho \in \mathcal{S}\left(H_{A} \otimes\right.$ $\left.H_{B}\right)$. Then

$$
\begin{equation*}
\rho \in \mathcal{S}_{C} \Rightarrow\left[\rho, \rho_{A} \otimes I_{B}\right]=0 \tag{10}
\end{equation*}
$$

That is, if $\rho=\sum_{i j} A_{i j} \otimes F_{i j}$ as in Eq.(9) with respect to some given bases of H_{A} and H_{B} and ρ is a CQ state, then $\rho_{A}=\sum_{i} A_{i i}$ commutes with $A_{i j}$ for any i and j. So noncommutativity signals quantumness of the state. The converse is not true since for any state with maximal marginal state we have Eq.(10) holds in the finitedimensional case [28]. One can check that it is not true for infinite-dimensional case, either.

Let us now begin to discuss the nullity of MiN. The following is the main result of this letter.

Theorem 2. Let $\operatorname{dim} H_{A} \otimes H_{B} \leq+\infty,\{|k\rangle\}$ and $\left\{\left|i^{\prime}\right\rangle\right\}$ be orthonormal bases of H_{A} and H_{B}, respectively, and $\rho \in \mathcal{S}\left(H_{A} \otimes H_{B}\right)$. Write $\rho=\sum_{i, j} A_{i j} \otimes F_{i j} \in \mathcal{S}\left(H_{A} \otimes\right.$ H_{B}) as in Eq.(9) with respect to the given bases. Then
$N(\rho)=0$ if and only if $A_{i j} s$ are mutually commuting normal operators and each eigenspace of ρ_{A} contained in some eigenspace of $A_{i j}$ for all i and j.

Proof. By the definition of $N(\rho)$, it is clear that the condition $N(\rho)=0$ is equivalent to the condition that $\Pi^{A}(\rho)=\rho$ holds for any local von Neumann measurement that makes ρ_{A} invariant.

The 'if' part. If each eigenspace of ρ_{A} is a onedimensional space, then $\rho_{A}=\sum_{i} p_{i}|i\rangle\langle i|$ for some orthonormal base $\{|i\rangle\}$ and $\left\{p_{i}\right\}$ with $p_{i}>0, p_{i} \neq p_{j}$ if $i \neq j$. Obviously, for any local von Neumann measurement $\Pi^{A}=\left\{\Pi_{k}^{A}\right\}, \sum_{k} \Pi_{k}^{A} \rho_{A} \Pi_{k}^{A}=\rho_{A}$ implies that, for each $k,|k\rangle=|i\rangle$ for some i. Thus Π^{A} is introduced in fact by $\{|i\rangle\}$. Now it is clear that $\Pi^{A}(\rho)=\rho$ as every $A_{i j}$ commutes with ρ_{A}. Denote by $E\left(\lambda^{A}\right)=\operatorname{Ker}\left(\lambda^{A}-\rho_{A}\right)$ the eigenspace of ρ_{A} with respect to the eigenvalue λ^{A} (here, $\operatorname{Ker}(X)$ denotes the kernel of the operator X). If $\operatorname{dim} \operatorname{Ker}\left(\lambda^{A}-\rho_{A}\right) \geq 2$ for some nonzero eigenvalue λ^{A} of ρ_{A}, then the restricted operator of ρ_{A} on $E\left(\lambda^{A}\right)$, denoted by $\left.\rho_{A}\right|_{E\left(\lambda^{A}\right)}$, satisfying $\left.\rho_{A}\right|_{E\left(\lambda^{A}\right)}=\lambda^{A} I_{E\left(\lambda^{A}\right)}$, where $I_{E\left(\lambda^{A}\right)}$ denotes the identity operator on $E\left(\lambda^{A}\right)$. As $A_{i j} \mathrm{~s}$ are mutually commuting normal operators and each eigenspace of ρ_{A} contained in some eigenspace of $A_{i j}$ for all i and $j, C_{i j}=\left.A_{i j}\right|_{E\left(\lambda^{A}\right)}=\lambda^{(i j)} I_{E\left(\lambda^{A}\right)}$ for some eigenvalue $\lambda^{(i j)}$ of $A_{i j}$ for any i and j. This leads to $\sum_{k} \Pi_{k}^{A} A_{i j} \Pi_{k}^{A}=A_{i j}$ for any local von Neumann measurement $\Pi^{A}=\left\{\Pi_{k}^{A}\right\}$ that doesn't disturb ρ_{A} locally, so we have $\Pi^{A}(\rho)=\rho$.

The 'only if' part. If $\Pi^{A}(\rho)=\rho$ for any local von Neumann measurement Π^{A} that leave ρ_{A} invariant, then Π^{A} satisfying $\sum_{k} \Pi_{k}^{A} A_{i j} \Pi_{k}^{A}=A_{i j}$ for any i, j. This forces that $A_{i j} \mathrm{~S}$ are mutually commuting normal operators. We show that each eigenspace of ρ_{A} contained in some eigenspace of $A_{i j}$ for all i and j. Or else, we may assume with no loss of generality that $\operatorname{dim} \operatorname{Ker}\left(\lambda^{\left(i_{0} j_{0}\right)}-A_{i_{0} j_{0}}\right)=1$ and $\operatorname{dim} \operatorname{Ker}\left(\lambda^{A}-\rho_{A}\right)=2$ for some nonzero eigenvalue $\lambda^{\left(i_{0} j_{0}\right)}$ of $A_{i_{0} j_{0}}$ and nonzero eigenvalue λ^{A} of ρ_{A}. It turns out that there must exist a orthonormal basis of $\operatorname{Ker}\left(\lambda^{A}-\rho_{A}\right)$, denoted by $\left\{\left|e_{1}\right\rangle,\left|e_{2}\right\rangle\right\}$, such that the Π_{α}^{A} induced from $\left\{\left|e_{1}\right\rangle,\left|e_{2}\right\rangle\right\}$ makes $A_{i_{0} j_{0}}$ variant, i.e., $\sum_{\alpha} \Pi_{\alpha}^{A} A_{i_{0} j_{0}} \Pi_{\alpha}^{A} \neq A_{i_{0} j_{0}}$. A contradiction.

Theorem 2 indicates that the phenomenon of MiN is a manifestation of quantum correlations due to noncommutativity rather than due to entanglement as well. And we claim that the commutativity for a state to have zero MiN is 'stronger' than that of zero discordant state. We illustrate it with the following example.

Example. We consider a $3 \otimes 2$ system. Let

$$
\rho=\left(\begin{array}{ccc|ccc}
a & \cdot & \cdot & e & \cdot & \cdot \\
\cdot & a & \cdot & \cdot & f & \cdot \\
\cdot & \cdot & b & \cdot & \cdot & g \\
\hline \bar{e} & \cdot & \cdot & c & \cdot & \cdot \\
\cdot & \bar{f} & \cdot & \cdot & c & \cdot \\
\cdot & \cdot & \bar{g} & \cdot & \cdot & d
\end{array}\right)
$$

(Here, dots denotes the vanished matrix elements.) It is clear that ρ is a CQ state for any positive numbers a, b,
c, d and complex numbers e, f, g that make ρ be a state. However, taking $\Pi^{A}=\left\{\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right\}_{i=1}^{3}$ with

$$
\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right),\left|\psi_{3}\right\rangle=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

it is easy to see that $\sum_{k} \Pi_{k}^{A} \rho_{A} \Pi_{k}^{A}=\rho_{A}$ and $\Pi^{A}(\rho) \neq \rho$ whenever $e \neq f$. If $a+c=b+d$, one can easily conclude that $N(\rho)=0$ if and only if $a=b, c=d$ and $e=f=g$. Hence, there are many CQ states with nonzero MiN.

The above example shows that, \mathcal{S}_{N}^{0} is a proper subset of \mathcal{S}_{D}^{0}. In addition, for $0 \leq \epsilon \leq 1, \rho_{1}, \rho_{2} \in \mathcal{S}_{N}^{0}$ do not imply $\epsilon \rho_{1}+(1-\epsilon) \rho_{2} \in \mathcal{S}_{N}^{0}$ in general, so \mathcal{S}_{N}^{0} is not a convex set. Similarly, \mathcal{S}_{D}^{0} (or \mathcal{S}_{C}) is not convex, either.

Furthermore, equivalent to Theorem 2, one can check that $N(\rho)=0$ if and only if $\rho=\sum_{k} p_{k}|k\rangle\langle k| \otimes \rho_{k}^{B}$ (as in Eq.(7)) with the property that $\rho_{k}^{B}=\rho_{l}^{B}$ whenever $p_{k}=$ p_{l}. Comparing with Eq.(7), we get a more transparent picture of these two different quantum correlations.

Reviewing the proof of Theorem 2, the following is clear:

Proposition 2. Let $\operatorname{dim} H_{A} \otimes H_{B} \leq+\infty, \rho \in$ $\mathcal{S}\left(H_{A} \otimes H_{B}\right)$. Suppose that each eigenspace of ρ_{A} is of one-dimension and $\rho_{A}=\sum_{k} p_{k}|k\rangle\langle k|$ is the spectral decomposition. Then the local von Neumann measurement Π^{A} that makes ρ_{A} invariant is uniquely (up to permutation) induced from $\{|k\rangle\langle k|\}$, and vice versa.

In Ref.[8], for finite-dimensional case, the authors claim that $N(\rho)=0$ for any classical-quantum state $\rho=$ $\sum_{k} p_{k}|k\rangle\langle k| \otimes \rho_{k}^{b}$ whose marginal state $\rho^{a}=\sum_{k} p_{k}|k\rangle\langle k|$
is nondegenerate (here, a matrix A is said to be nondegenerate provided that each eigenspace of A is of onedimension). It is also valid for infinite-dimensional case:

Corollary 1. Let $\operatorname{dim} H_{A} \otimes H_{B} \leq+\infty$ and $\rho \in \mathcal{S}_{C}$. Then $N(\rho)=0$ provided that each eigenspace of ρ_{A} is of one-dimension.

Summarizing, the zero MiN states and the CQ states are characterized in terms of commutativity for both finite- and infinite-dimensional systems. We argue that MiN is the most essential nonlocality among MiN, QD and entanglement. They all originated from the supposition of the states (since for pure state ρ, it is separable if and only if $N(\rho)=D(\rho)=0)$. Nonlocality is ubiquitous: Almost all quantum states have quantum nonlocality. In other words, as a resource, we get more states valid in tasks of quantum processing based on nonlocality. Our results suggest many further studies and applications. An important issue, for example, is to discuss whether the relation $\mathcal{S}_{C}=\mathcal{S}_{D}^{0}$ holds for infinite-dimensional case as well (we conjecture that it is true). In addition, it is worthy to compare $N(\rho)$ with $D(\rho)$ and some entanglement measure (such as concurrence or entanglement of formation) for any arbitrarily given state ρ. Another interesting task is to investigate an analytical formula of $N(\rho)$ for an arbitrary state ρ for both finite- and infinitedimensional cases.

This work is partially supported by Research fund for the Doctoral Program of Higher Education of China (20101402110012), Tianyuan Funds of China (11026161) and National Natural Science Foundation of China (11171249).
[1] J.S. Bell, Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy (Cambridge University Press, Cambridge, England, 2004).
[2] T. Maudlin, Quantum Non-Locality and Relativity (Blackwell, Malden, MA, 2002), 2nd ed.
[3] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777(1935).
[4] R. Horodecki et al, Rev. Modern Phys. 81, AprilJune(2009).
[5] O. Gühne et al, Phys. Reports, 474, 1-75(2009).
[6] H. Ollivier and W.H. Zurek, Phys. Rev. Letters, 88, 017901(2001).
[7] J. Batle et al, arXiv:1103.0704 4 (2011).
[8] S.-L. Luo and S.-S. Fu, Phys. Rev. Lett. 106, 120401(2011).
[9] B. Dakić, V. Vedral, C. Brukner, Phys. Rev. Lett. 105, 190502(2010).
[10] A. Al-Qasimi and D.F.V. James, Phys. Rev. A 83, 032101(2011).
[11] K. Mattle, H. Weinfurter, P.G. Kwiat, A. Zeilinger, Phys. Rev. Lett. 76, 4656(1996).
[12] X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, Phys. Rev. Lett. 88, 047904(2002).
[13] C.H. Bennett, D.P. DiVincenzo, P.W. Shor, J.A. Smolin, B.M. Terhal, and W.K. Wootters, Phys. Rev. Lett. 87,

077902(2001).
[14] N.A. Peters et al, Phys. Rev. Lett. 94, 150502(2005).
[15] W.K. Wootters, Quant. Inf. Comput. 1, 27-44(2001).
[16] K. Chen, S. Albeverio, and S.-M. Fei, Phys. Rev. Lett. 95, 210501(2005).
[17] J. Sperling and W. Vogel, Phys. Scr. 83, 045002(2011).
[18] S.-L. Luo, Phys. Rev. A 77, 042303(2008).
[19] B. Bylicka and D. Chruściński, Phys. Rev. A 81, 062102(2010).
[20] D. Girolami and G. Adesso, arXiv: 1103.3189v1(2011).
[21] A. Datta, arXiv: $1003.5256 \mathrm{v} 1(2010)$.
[22] S.-L. Luo and S.-S. Fu, Phys. Rev. A 82, 034302(2010).
[23] C. Bastos, O. Bertolami, N.C. Dias, and J.N. Prata, J. Math. Phys. 49, 072101(2008).
[24] M.R. Douglas and N.A. Nekrasov, Rev. Mod. Phys. 73, 977(2001).
[25] J. Gamboa, M. Loewe, and J.C. Rojas, Phys. Rev. D 64, 067901(2001).
[26] J.-C. Hou, J. Phys A: Math. Theor. 43, 385201(2010).
[27] S.-L. Luo, Lett. Math. Phys. 92, 143-153(2010).
[28] A. Ferraro, L. Aolita, D. Cavalcanti, F.M. Cucchietti, and A. Acín, Phys. Rev. A 81, 052318(2010).
[29] R. Clifton and H. Halvorson, Phys. Rev. A 61, 012108(1999).
[30] Y. Guo and J.-C. Hou, Phys. Lett. A, 375, 11601162(2011).
[31] K.-C. Ha, Phys. Rev. A 82, 014102(2010).

