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Nullity of Measurement-induced Nonlocality
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Measurement-induced nonlocality (MiN) is a new measure of nonlocality introduced by Luo and
Fu [Phys. Rev. Lett. 106, 120401(2011)]. In this letter, we study MiN further and obtain necessary
and sufficient conditions for a state to have nullity of measurement-induced nonlocality and for a
state to be classical-quantum, in terms of commutativity, for both finite- and infinite-dimensional
systems. These results reveal that MiN and quantum discord are raised from noncommutativity
rather than entanglement. MiN is the most essential nonlocality among MiN, quantum discord and
entanglement. The set of states with zero MiN is a proper subset of the set of zero discordant states,
and both of them are zero-measure sets. Thus, there exist not only quantum nonlocality without
entanglement but also quantum nonlocality without quantum discord.

PACS numbers: 03.65.Db, 03.65.Ud, 03.67.Mn.

Quantum nonlocality, whereby particles of spatially
separated quantum systems can instantaneously influ-
ence one another irrespective of the distance between
them, is one of the most elusive features in quantum the-
ory [1–3]. Different manifestations of it, such as quantum
entanglement [4, 5], quantum discord (QD) [6, 7] and
measurement-induced nonlocality (MiN) [8], have been
studied. It is the key to our understanding of quantum
physics, and, in particular, it is essential for the pow-
erful applications of quantum information and quantum
computation. Entanglement lies at the heart of quantum
information theory [4, 5]. QD can be used in quantum
computation [9, 10]. It is indicated in [8] that MiN may
also be applied in quantum cryptography, general quan-
tum dense coding [11, 12], remote state control [13, 14],
etc.. The quantifying of nonlocality, for instance, en-
tanglement measure (such as entanglement of formation
[15, 16], concurrence [15, 16], Schmidt number entan-
glement measure [17], etc) and computation of quantum
discord [9, 18–22], has been discussed intensively.
Measurement-induced nonlocality was firstly proposed

by Luo and Fu [8], which can be viewed as a kind of non-
classical correlation from a geometric perspective based
on the local von Neumann measurements from which one
of the reduced states is left invariant. Let ρ be a bipartite
state acting on the associated state space HA⊗HB with
dimHA ⊗HB < +∞, ρA/B = TrB/A(ρ) be the reduced
states of ρ. The MiN of ρ, denoted by N(ρ), is defined
in [8] by

N(ρ) = max
ΠA

‖ρ−ΠA(ρ)‖22, (1)

where ‖ · ‖2 is the Hilbert-Schmidt norm (that is ‖A‖2 =

[Tr(A†A)]
1

2 ), and the max is taken over all local von Neu-
mann measurement ΠA = {ΠA

k } with
∑

k Π
A
k ρAΠ

A
k =

ρA, Π
A(ρ) =

∑

k(Π
A
k ⊗ IB)ρ(Π

A
k ⊗ IB). MiN is different

from, and in some sense dual to, the geometric measure
of quantum discord(GMQD) [8]

DG(ρ) := min
ΠA

‖ρ−ΠA(ρ)‖22

where ΠA runs over all local von Neumann measure-

ments (GMQD is originally introduced in [9] asDG(ρ) :=
minχ ‖ρ − χ‖22 with χ runs over all zero QD states and
proved in [22] that the two definitions coincide). We re-
call that the quantum discord, which can be viewed as a
measure of the minimal loss of correlation in the sense of
quantum mutual information, is defined in [6] by

D(ρ) = min
ΠA

{I(ρ)− I(ρ|ΠA)}, (2)

where the min is taken over all local von Neumann mea-
surements ΠA. I(ρ) = S(ρA) + S(ρB) − S(ρ) is inter-
preted as the quantum mutual information, where S(ρ) =
−Tr(ρ log ρ) is the von Neumann entropy, I(ρ|ΠA)} :=
S(ρB) − S(ρ|ΠA), S(ρ|ΠA) :=

∑

k pkS(ρk), and ρk =
1
pk

(ΠA
k ⊗ IB)ρ(Π

A
k ⊗ IB) with pk = Tr[(ΠA

k ⊗ IB)ρ(Π
A
k ⊗

IB)], k = 1, 2, . . . , dimHA. Throughout this paper, all
logarithms are taken to base 2. QD is nonnegative [6, 21].
It is known that a state has zero QD if and only if it is
a classical-quantum(CQ) state. Recall that a state ρ is
said to be a CQ state if it has the form of

ρ =
∑

i

pi|i〉〈i| ⊗ ρBi , (3)

for some orthonormal basis {|i〉} of HA, where ρ
B
i s are

states of the subsystem B, pi ≥ 0,
∑

i pi = 1. Some
conditions for nullity of quantum discord may be found
in [9, 19, 21].
Mathematically, quantumness is always associated

with noncommutativity while classical mechanics dis-
plays commutativity in some sense [23–25]. With this
idea in mind, we describe quantum nonlocality mathe-
matically. In this letter, we consider the two-mode sys-
tem labeled by A+B which is described by a complex
Hilbert space H = HA ⊗HB with dimHA ⊗HB ≤ +∞.
We denote by S(HA ⊗HB) the set of all states acting on
HA ⊗HB. The aim of this letter is twofold: (i) Analyz-
ing the condition for quantum states having zero MiN in
terms of commutativity mathematically; (ii) Comparing
nullity of MiN with that of QD mathematically, which
helps us understand better these different kinds of quan-
tum correlations.
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Firstly, with the same spirit as that of the finite-
dimensional case, we can generalize MiN, QD and CQ
states to infinite-dimensional bipartite systems straight-
forward.
Measurement-induced nonlocality- Let dimHA⊗HB =

+∞, ρ ∈ S(HA⊗HB). Let Π
A = {ΠA

k = |k〉〈k|} be a set
of mutually orthogonal rank-one projections that sum up
to the identity of HA. Similar to the finite-dimensional
case, we call such ΠA = {ΠA

k } a local von Neumann
measurement. Note that

∑

k(Π
A
k ⊗ IB)

†(ΠA
k ⊗ IB) =

∑

k Π
A
k ⊗ IB = IAB , here the series converges under the

strong operator topology [26]. We define the MiN of ρ
by

N(ρ) := sup
ΠA

‖ρ−ΠA(ρ)‖22, (4)

where the supremum is taken over all local von Neumann
measurement ΠA = {ΠA

k } that satisfying
∑

k Π
A
k ρAΠ

A
k =

ρA, ‖ · ‖2 denotes the Hilbert-Schmidt norm: ‖A‖2 =

[Tr(A†A)]
1

2 . The following properties are straightfor-
ward. (i) N(ρ) = 0 for any product state ρ = ρA ⊗ ρB.
(ii) N(ρ) is locally unitary invariant, namely, N [(U ⊗
V )ρ(U † ⊗ V †)] = N(ρ) for any unitary operators U and
V acting on HA and HB, respectively. (iii) N(ρ) > 0
whenever ρ is entangled since ΠA(ρ) is always a classical-
quantum state and thus is separable. (iv) 0 ≤ N(ρ) < 4.
The MiN of a pure state is easily calculated. Let |ψ〉 ∈
HA ⊗HB and |ψ〉 = ∑

k λk|k〉|k′〉 be its Schmidt decom-
position. For the finite-dimensional case, Luo showed in
[8] that N(|ψ〉) = 1 −∑

k λ
4
k. It is also true for infinite-

dimensional case. Similarly, one can define MiN with
respect to the second subsystem B, and the correspond-
ing properties are valid. It is easily seen that these two
MiNs are asymmetric, namely, the MiN with respect to
subsystem A is not equal to the one with respect to sub-
system B generally. In this paper we consider the former
one.
The quantum discord for infinite-dimensional systems

was firstly discussed in [21]. For readers’ convenience, we
list it below again.
Quantum discord- Let dimHA ⊗ HB = +∞, ρ ∈

S(HA ⊗HB). Let

I(ρ) = S(ρA) + S(ρB)− S(ρ)

denote the quantum mutual information of ρ, where
S(ρ) = −Tr(ρ log ρ) denotes the von Neumann entropy
of the state ρ (remark here that S(ρ) maybe +∞). Let
ΠA = {ΠA

k = |k〉〈k|} be a local von Neumann mea-
surement. We perform ΠA on ρ, the outcome ΠA(ρ) =
∑

k pkρk, where ρk = 1
pk

(ΠA
k ⊗IB)ρ(ΠA

k ⊗IB) with prob-

ability pk = Tr[(ΠA
k ⊗IB)ρ(ΠA

k ⊗IB)]. Define I(ρ|ΠA) :=
S(ρB)− S(ρ|ΠA) and S(ρ|ΠA) :=

∑

k pkS(ρk). The dif-
ference

D(ρ) := I(ρ)− sup
ΠA

I(ρ|ΠA) (5)

is defined to be the quantum discord of ρ, where the
sup is taken over all local von Neumann measurement.

It is proved in [21] that D(ρ) ≥ 0 for any state ρ ∈
S(HA ⊗ HB) (remark that it holds since the von Neu-
mann entropy is strongly subadditive for both finite- and
infinite-dimensional cases, see [21] for detail). One can
check that QD can also be calculated by

D(ρ) = I(ρ)− sup
ΠA

I[ΠA(ρ)]. (6)

Namely, QD is defined as the infimum of the difference
of mutual information of the pre-state ρ and that of the
post-state ΠA(ρ) with ΠA runs over all local von Neu-
mann measurements.
For finite-dimensional systems, the CQ states at-

tracted much attention since they can be used for quan-
tum broadcasting [27]. We extend it to the infinite-
dimensional case via the same scenario.
Classical-quantum state- Similar to Eq.(3), for ρ ∈

S(HA⊗HB), dimHA⊗HB = +∞, if ρ has the following
form

ρ =
∑

k

pk|k〉〈k| ⊗ ρBk , (7)

where {|k〉} is an orthonormal set of HA, ρ
B
k s are states

of the subsystem B, pk ≥ 0 and
∑

k pk = 1, then we call
ρ a classical-quantum (briefly, CQ) state. It is clear that
every CQ state has zero QD.
Let

S0
N = {ρ ∈ S(HA ⊗HB) : N(ρ) = 0},

SC = {ρ ∈ S(HA ⊗HB) : ρ is CQ},
S0
D = {ρ ∈ S(HA ⊗HB) : D(ρ) = 0}

and Ssep be the set of all separable states acting on HA⊗
HB. Then

S0
N ⊆ SC ⊆ S0

D ⊆ Ssep. (8)

It is known that, for the finite-dimensional case, S0
D is

a zero-measure set [28] (that is, each point of this set
can be approximated by a sequence of states that not
belong to this set with respect to the trace norm), and,
for the infinite-dimensional case, Ssep is a zero-measure
set [29]. Thus S0

N is a zero-measure set in both finite-
and infinite-dimensional cases. (Consequently S0

D is also
a zero-measure set in infinite-dimensional cases, which
answers a question raised in [21].)
Let dimHA ⊗ HB ≤ +∞, and {|k〉}, {|i′〉} be any

orthonormal bases of HA, HB, respectively. Denote
Fij = |i′〉〈j′|. Then, for any ρ ∈ S(HA ⊗ HB), we can
write ρ as

ρ =
∑

i,j

Aij ⊗ Fij (9)

where Aijs are trace-class operators acting on HA and
the series converges in the trace norm[30]. It is proved
in [31] that, for any density matrix ρ ∈ S(HA ⊗ HB)
with dimHA ⊗ HB < +∞, if ρ =

∑

ij Aij ⊗ Fij with
Aijs are mutually commuting normal matrices, then ρ
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is separable. We will prove below that such state ρ is
not only a separable state but also a CQ state. In fact,
we show that ρ is a CQ state if and only if it has the
above form. Moreover, this result is also valid for the
infinite-dimensional cases.
Theorem 1. Let dimHA ⊗ HB ≤ +∞, ρ ∈ S(HA ⊗

HB). Write ρ =
∑

ij Aij ⊗ Fij as in Eq.(9) with respect
to some given bases of HA and HB. Then ρ is a CQ
state if and only if Aijs are mutually commuting normal
operators acting on HA.
Proof. The ‘if’ part. Assume that Aijs are mutually

commuting normal operators; then Aijs are simultane-
ously diagonalizable. Thus there exist diagonal operators
Dijs and a unitary operator U acting on HA such that
(U † ⊗ IB)ρ(U ⊗ IB) =

∑

i,j Dij ⊗ Fij . With no loss of

generality, we may assume ρ =
∑

i,j Dij ⊗ Fij . It turns

out that ρ can then be rewritten as ρ =
∑

i Ẽii ⊗ Bii,

where Ẽiis are rank-one orthogonal projections. Now it
is obvious that Bii ≥ 0 since ρ ≥ 0, i = 1, 2, . . . . Hence,
ρ is a classical-quantum state.
The ‘only if’ part. If ρ is a CQ state, then ρ =

∑

k pk|k〉〈k| ⊗ ρBk , pk ≥ 0,
∑

k pk = 1 for some orthonor-
mal set {|k〉} of HA. Write ρ =

∑

i,j Aij ⊗ Fij as in

Eq.(9). If ΠA is the von Neumann measurement induced
from {|k〉〈k|}, then it follows from ΠA(ρ) =

∑

k(|k〉〈k| ⊗
IB)(

∑

k pk|k〉〈k|⊗ρBk )(|k〉〈k|⊗ IB) = ρ that
∑

k(|k〉〈k|⊗
IB)(

∑

i,j Aij ⊗ Fij)(|k〉〈k| ⊗ IB) =
∑

i,j Aij ⊗ Fij . This

leads to
∑

k |k〉〈k|Aij |k〉〈k| =
∑

k〈k|Aij |k〉|k〉〈k| = Aij

for any i, j, that is, every Aij is a diagonal operator with
respect to the same orthonormal base {|k〉}. Therefore,
Aijs are mutually commuting normal operators acting on
HA. �

Theorem 1 implies that CQ stems from noncommu-
tativity not from entanglement. We can also find this
kind of noncommutativity from another perspective: For
finite-dimensional case, it is proved in [28] that if ρ ∈
SC(= S0

D) then [ρ, ρA ⊗ IB ] = 0. It is easy to check that
this is also valid for infinite-dimensional systems as well:
Proposition 1. Let dimHA⊗HB ≤ +∞, ρ ∈ S(HA⊗

HB). Then

ρ ∈ SC ⇒ [ρ, ρA ⊗ IB] = 0. (10)

That is, if ρ =
∑

ij Aij ⊗ Fij as in Eq.(9) with respect
to some given bases of HA and HB and ρ is a CQ state,
then ρA =

∑

iAii commutes with Aij for any i and j.
So noncommutativity signals quantumness of the state.
The converse is not true since for any state with maxi-
mal marginal state we have Eq.(10) holds in the finite-
dimensional case [28]. One can check that it is not true
for infinite-dimensional case, either.
Let us now begin to discuss the nullity of MiN. The

following is the main result of this letter.
Theorem 2. Let dimHA⊗HB ≤ +∞, {|k〉} and {|i′〉}

be orthonormal bases of HA and HB, respectively, and
ρ ∈ S(HA ⊗HB). Write ρ =

∑

i,j Aij ⊗ Fij ∈ S(HA ⊗
HB) as in Eq.(9) with respect to the given bases. Then

N(ρ) = 0 if and only if Aijs are mutually commuting
normal operators and each eigenspace of ρA contained in
some eigenspace of Aij for all i and j.
Proof. By the definition of N(ρ), it is clear that the

condition N(ρ) = 0 is equivalent to the condition that
ΠA(ρ) = ρ holds for any local von Neumann measure-
ment that makes ρA invariant.
The ‘if’ part. If each eigenspace of ρA is a one-

dimensional space, then ρA =
∑

i pi|i〉〈i| for some or-
thonormal base {|i〉} and {pi} with pi > 0, pi 6= pj if
i 6= j. Obviously, for any local von Neumann measure-
ment ΠA = {ΠA

k },
∑

k Π
A
k ρAΠ

A
k = ρA implies that, for

each k, |k〉 = |i〉 for some i. Thus ΠA is introduced in
fact by {|i〉}. Now it is clear that ΠA(ρ) = ρ as every Aij

commutes with ρA. Denote by E(λA) = Ker(λA − ρA)
the eigenspace of ρA with respect to the eigenvalue λA

(here, Ker(X) denotes the kernel of the operator X).
If dimKer(λA − ρA) ≥ 2 for some nonzero eigenvalue
λA of ρA, then the restricted operator of ρA on E(λA),
denoted by ρA|E(λA), satisfying ρA|E(λA) = λAIE(λA),

where IE(λA) denotes the identity operator on E(λA).
As Aijs are mutually commuting normal operators and
each eigenspace of ρA contained in some eigenspace of
Aij for all i and j, Cij = Aij |E(λA) = λ(ij)IE(λA) for

some eigenvalue λ(ij) of Aij for any i and j. This leads
to

∑

k Π
A
k AijΠ

A
k = Aij for any local von Neumann mea-

surement ΠA = {ΠA
k } that doesn’t disturb ρA locally, so

we have ΠA(ρ) = ρ.
The ‘only if’ part. If ΠA(ρ) = ρ for any local von Neu-

mann measurement ΠA that leave ρA invariant, then ΠA

satisfying
∑

k Π
A
k AijΠ

A
k = Aij for any i, j. This forces

that Aijs are mutually commuting normal operators.
We show that each eigenspace of ρA contained in some
eigenspace of Aij for all i and j. Or else, we may assume

with no loss of generality that dimKer(λ(i0j0)−Ai0j0) = 1
and dimKer(λA − ρA) = 2 for some nonzero eigenvalue
λ(i0j0) of Ai0j0 and nonzero eigenvalue λA of ρA. It
turns out that there must exist a orthonormal basis of
Ker(λA − ρA), denoted by {|e1〉, |e2〉}, such that the
ΠA

α induced from {|e1〉, |e2〉} makes Ai0j0 variant, i.e.,
∑

α ΠA
αAi0j0Π

A
α 6= Ai0j0 . A contradiction. �

Theorem 2 indicates that the phenomenon of MiN is
a manifestation of quantum correlations due to noncom-
mutativity rather than due to entanglement as well. And
we claim that the commutativity for a state to have zero
MiN is ‘stronger’ than that of zero discordant state. We
illustrate it with the following example.
Example. We consider a 3⊗ 2 system. Let

ρ =















a · · e · ·
· a · · f ·
· · b · · g

ē · · c · ·
· f̄ · · c ·
· · ḡ · · d















.

(Here, dots denotes the vanished matrix elements.) It is
clear that ρ is a CQ state for any positive numbers a, b,
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c, d and complex numbers e, f , g that make ρ be a state.
However, taking ΠA = {|ψi〉〈ψi|}3i=1 with

|ψ1〉 =
1√
2





1
1
0



 , |ψ2〉 =
1√
2





1
−1
0



 , |ψ3〉 =





0
0
1



 ,

it is easy to see that
∑

k Π
A
k ρAΠ

A
k = ρA and ΠA(ρ) 6= ρ

whenever e 6= f . If a+ c = b+ d, one can easily conclude
that N(ρ) = 0 if and only if a = b, c = d and e = f = g.
Hence, there are many CQ states with nonzero MiN.
The above example shows that, S0

N is a proper subset
of S0

D. In addition, for 0 ≤ ǫ ≤ 1, ρ1, ρ2 ∈ S0
N do not

imply ǫρ1 + (1 − ǫ)ρ2 ∈ S0
N in general, so S0

N is not a
convex set. Similarly, S0

D (or SC) is not convex, either.
Furthermore, equivalent to Theorem 2, one can check

that N(ρ) = 0 if and only if ρ =
∑

k pk|k〉〈k| ⊗ ρBk (as in
Eq.(7)) with the property that ρBk = ρBl whenever pk =
pl. Comparing with Eq.(7), we get a more transparent
picture of these two different quantum correlations.
Reviewing the proof of Theorem 2, the following is

clear:
Proposition 2. Let dimHA ⊗ HB ≤ +∞, ρ ∈

S(HA ⊗ HB). Suppose that each eigenspace of ρA is of
one-dimension and ρA =

∑

k pk|k〉〈k| is the spectral de-
composition. Then the local von Neumann measurement
ΠA that makes ρA invariant is uniquely (up to permuta-
tion) induced from {|k〉〈k|}, and vice versa .
In Ref.[8], for finite-dimensional case, the authors

claim that N(ρ) =0 for any classical-quantum state ρ =
∑

k pk|k〉〈k| ⊗ ρbk whose marginal state ρa =
∑

k pk|k〉〈k|

is nondegenerate (here, a matrix A is said to be nonde-
generate provided that each eigenspace of A is of one-
dimension). It is also valid for infinite-dimensional case:
Corollary 1. Let dimHA ⊗HB ≤ +∞ and ρ ∈ SC .

Then N(ρ) = 0 provided that each eigenspace of ρA is of
one-dimension.
Summarizing, the zero MiN states and the CQ states

are characterized in terms of commutativity for both
finite- and infinite-dimensional systems. We argue that
MiN is the most essential nonlocality among MiN, QD
and entanglement. They all originated from the supposi-
tion of the states (since for pure state ρ, it is separable if
and only if N(ρ) = D(ρ) = 0). Nonlocality is ubiquitous:
Almost all quantum states have quantum nonlocality. In
other words, as a resource, we get more states valid in
tasks of quantum processing based on nonlocality. Our
results suggest many further studies and applications.
An important issue, for example, is to discuss whether
the relation SC = S0

D holds for infinite-dimensional case
as well (we conjecture that it is true). In addition, it
is worthy to compare N(ρ) with D(ρ) and some entan-
glement measure (such as concurrence or entanglement
of formation) for any arbitrarily given state ρ. Another
interesting task is to investigate an analytical formula of
N(ρ) for an arbitrary state ρ for both finite- and infinite-
dimensional cases.
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