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Estimating Failure Probabilities
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Abstract

In risk management often the probability must be estimated that a random vector falls
into an extreme failure set. In the framework of bivariate extreme value theory, we construct
an estimator for such failure probabilities and analyze its asymptotic properties under natu-
ral conditions. It turns out that the estimation error is mainly determined by the accuracy
of the statistical analysis of the marginal distributions. Moreover, we establish confidence in-
tervals and briefly discuss generalizations to higher dimensions and issues arising in practical
applications as well.
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1 Introduction

Suppose an insurance company has contracts in two related lines of business with all customers
of an insurance portfolio (e.g., fire insurance and business interruption insurance for industrial
customers). On top of quota reinsurances for both lines of business (possibly with different quotas)
the remaining total loss from each incidence is covered by an excess of loss reinsurance (CAT-XL)
that pays for the part of the total loss which exceeds a given high retention level R. If X and
Y denote the original losses from a fire in both lines of business and 1 − αX and 1 − αY the
corresponding quotas, then a claim occurs in the XL-reinsurance if αXX + αY Y exceeds R. For
the purpose of risk management the reinsurer might be interested in the probability that the
insurance company will file a claim in case of a fire. If the retention level is high, then such the
claim probability cannot be estimated using simple empirical estimates, because in the past the
retention has rarely (or never) been exceeded.

In this paper a more general setting is considered. We are interested in estimating the probability
that a pair of random variables (X,Y ) will take on a value in some given “extreme” set. Similar
problems arise naturally in many fields. For example, a coastal dike may fail if the vector build
from the still water level and the wave heights lie in a certain failure set D (cf. Coles and Tawn,
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1994, Bruun and Tawn, 1998, and de Haan and de Ronde, 1998). A financial option (like a down-
and-out-put) may become worthless if the price vector of underlyings enters such a “failure set”.
Finally, (part of) the principal of a catastrophe bond gets lost for the investors if a vector of triggers
becomes too extreme.

As there are insufficiently many observations available in the extreme failure set D to use standard
statistical methods, extreme value theory is needed to estimate the failure probability P{(X,Y ) ∈
D}. The basic idea of multivariate extreme value theory is to assume that the suitably standard-
ized componentwise maxima of the observed random variables converge to a non-degenerate limit
distribution. It can be shown that this assumption is equivalent to the convergence of suitably
standardized quantile functions of both marginal distributions and a condition on the dependence
structure in extreme regions.

To be more precise, denote the marginal distribution functions of X and Y by F1 and F2, re-
spectively, and let Ui(t) := F←i (1− 1/t) with H← denoting the generalized inverse of a monotone
function H. We assume that there exist real constants γi, positive functions ai and real functions
bi such that for x > 0 and i ∈ {1, 2}

lim
t→∞

Ui(tx)− bi(t)

ai(t)
=
xγi − 1

γi
. (1.1)

For γi = 0 read the right-hand side as log x. Note that the right-hand side is the U -function
of the generalized Pareto distribution (GPD) with distribution function 1 − (1 + γix)

−1/γi for
1 + γix > 0, that is to be interpreted as the standard exponential distribution function for γi = 0.
The parameter γi is the so-called extreme value index of the ith marginal. If it is positive, then
the support of Fi is unbounded from above and 1 − Fi(t) roughly decays like the power function
with exponent 1/γi, while for γi < 0 the right endpoint x∗i := F←i (1) of the support is finite and
1− Fi(x) roughly behaves like a multiple of (x∗i − x)

−1/γi as x ↑ x∗i .

The aforementioned extremal dependence condition can be given in terms of the standardized
random variables 1−F1(X) and 1−F2(Y ), that are uniformly distributed on [0, 1] if the marginal
distributions are continuous. More precisely, we assume the existence of a measure ν such that for
ν-continuous Borel sets B ⊂ [0,∞)2 bounded away from the origin

lim
t→∞

tP{(X,Y ) ∈ U(tB)} = ν(B). (1.2)

Here and in what follows, for functions h1, h2 which are defined on subsets of the reals, we define
a function h on a subset of R2 by h(x1, x2) := (h1(x1), h2(x2)). The so-called exponent measure
ν describes the asymptotic dependence structure between extreme observations X and Y . Its
homogeneity property

ν(tB) = t−1ν(B), (1.3)

which holds for all Borel sets B ⊂ [0,∞)2 and all t > 0, will be pivotal for the construction of
our estimator of the failure probability. (Seen from a different angle, we assume an approximate
scaling law for the joint distribution of U←(X,Y ); cf. Anderson (1994).) Further details about the
extreme value assumptions can be found in de Haan and Ferreira (2006), Sections 1.2 and 6.1, or
Beirlant et al. (2004), Chapters 2 and 8.

We are interested in the situation that at most a few observations lie in the extreme failure set D
which implies that in our mathematical framework the failure set D = Dn must depend on the
sample size n such that the failure probability

pn := P{(X,Y ) ∈ Dn}
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tends to 0. To motivate an estimator of pn based on independent copies (Xi, Yi), 1 ≤ i ≤ n, of
(X,Y ) first note that from (1.2) we obtain the approximation

n

k
P
{k

n
U←(X,Y ) ∈ B

}

≈ ν(B) (1.4)

for any sequence k = kn → ∞ such that k/n → 0. To estimate pn using this approximation, we
must replace U← and ν with suitable estimators.

According to (1.1), we may approximate Ui((n/k)x) for sufficiently large n by

Tn,i(x) := ai(n/k)
xγi − 1

γi
+ bi(n/k) (1.5)

and estimate it by

T̂n,i(x) := âi(n/k)
xγ̂i − 1

γ̂i
+ b̂i(n/k), (1.6)

where âi(n/k), b̂i(n/k) and γ̂i are suitable estimators for ai(n/k), bi(n/k) and γi, respectively.
Likewise, the generalized inverse functions (k/n)U←i (x) can be estimated by

T̂←n,i(x) :=
(

1 + γ̂i
x− b̂i(n/k)

âi(n/k)

)1/γ̂i
. (1.7)

Here and in the sequel, (1 + γy)1/γ is defined as ey if γ = 0. For 1 + γy < 0 (or 1 + γy = 0 and
γ < 0) the term (1 + γy)1/γ is not well defined. If γ is positive and y < −1/γ, then it may be
interpreted as 0, while for γ < 0 and y > −1/γ it may be defined to be ∞. However, we will see
that the precise definition of (1 + γy)1/γ for very small and for negative values of 1 + γy is not
important in the present setting (provided it is taken a non-decreasing function of y), because the
sets on which T̂←n,i, i ∈ {1, 2}, are not well defined are asymptotically negligible.

If, in (1.4), we substitute T̂←n (x1, x2) :=
(

T̂←n,1(x1), T̂
←
n,2(x2)

)

for the marginal transformation
(k/n)U← and replace the probability in the left-hand side of (1.4) by its empirical counterpart,
we arrive at the following estimator of ν

ν̂n(B) :=
1

k

n
∑

i=1

εT̂←n (Xi,Yi)
(B). (1.8)

Now, again interpreting convergence (1.2) (for t = en) as an approximation, we may estimate the
failure probability as follows:

pn = P{(X,Y ) ∈ Dn}

= P
{

(X,Y ) ∈ U(en · e
−1
n U←(Dn))

}

≈
1

en
ν
(

e−1n U←(Dn)
)

(1.9)

≈
1

en
ν
( n

ken
T̂←n (Dn)

)

≈
1

en
ν̂n

( n

ken
T̂←n (Dn)

)

=: p̂n. (1.10)
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The basic idea of this estimator is to blow up the failure set, after a standardization of the marginals,
such that it contains sufficiently many observations to allow the estimation of its probability by
an empirical probability. Here the constants k and en, that control by how much the transformed
failure set is inflated, can be chosen by the statistician. This must be done appropriately to balance
two contrary effects. On the one hand, ken must not be too small, such that the inflated standard-
ized failure set n/(ken)T̂

←
n (Dn) contains sufficiently many marginally transformed observations

T̂←n (Xi, Yi), and thus the empirical probability (1.8) is an accurate estimate of its expectation. On
the other hand, the set e−1n U←(Dn) must be sufficiently extreme to justify approximation (1.9).
In Section 3 we discuss a heuristic tool to ensure this balance.

The main goal of the present paper is to establish the asymptotic normality of the estimator p̂n
under conditions on the underlying distribution and the failure set which are easy to interpret and
relatively simple to verify. In what follows we outline how to achieve this objective.

Recall that, in our asymptotic framework, the failure set Dn must become more extreme in the
sense that it moves in the north-east direction as the sample size n increases to ensure that it
contains at most a few observations. To make both coordinates comparable, we standardize the
marginals using U← and assume that U←(Dn) is essentially an increasing multiple of a fixed set S.
That way we ensure that none of the coordinates dominates the other. More precisely, we assume
that for different sample sizes the failure sets are obtained from one fixed set S ⊂ [0,∞)2 in that
there exist constants dn > 0 tending to ∞ such that

Dn = U(dnS) ∩R
2 = {(U1(dnx), U2(dny)) | (x, y) ∈ S} ∩R

2. (1.11)

Note that from the analog to (1.9) where en is replaced with dn one obtains dn ≈ ν(S)/pn (see
Lemma 4.9 for a precise proof of the assertion pndn → ν(S)). Hence the model constants dn
determine at which rate the failure probabilities tend to 0.

The crucial idea in the analysis of the asymptotic behavior of p̂n is to approximate the estimator
by the empirical measure of a random transformation Hn(S) of the set S (with Hn defined in
(1.12) below) under the following analog to ν̂n (defined in (1.8)) with the fitted GPDs replaced by
the “true” ones:

νn(B) :=
1

k

n
∑

i=1

εT←n (Xi,Yi)(B).

Since the GPD approximation of the marginals is accurate only in the upper tail (and to avoid
the aforementioned problem with the definition of T←n ), we must first show that asymptotically it
does not matter if we replace S with a suitably defined subset S∗n that is bounded away from the
coordinate axes. For this set, we may use the approximation

p̂n ≈
1

en
νn

(dn
en
Hn(S

∗
n)
)

.

where the random transformation Hn of the marginals is defined by

Hn(x) :=
en
dn
T←n ◦ T̂n ◦ (T̂

(c)
n )← ◦ U(dnx) (1.12)

with

c = cn :=
k

n
en (1.13)
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and
T̂ (c)
n (x, y) = T̂n(cnx, cny). (1.14)

Check that by (1.1) one hasHn(x) ≈ (en/dn)(T
(c)
n )←◦U(dnx) ≈ (en/dn)(T

(c)
n )←◦Tn((k/n)dnx) ≈ x

(cf. Lemma 4.1). Using the homogeneity of ν, we will thus break the estimation error into several
parts as follows:

p̂n − pn = p̂n −
1

en
νn

(dn
en
Hn(S

∗
n)
)

+
1

en

(

νn(B)− Eνn(B)
)

|B=(dn/en)Hn(S∗n)

+
1

en

(

Eνn(B)− ν(B)
)

|B=(dn/en)Hn(S∗n)

+
1

dn

(

ν(Hn(S
∗
n))− ν(S

∗
n)
)

+
1

dn

(

ν(S∗n)− ν(S)
)

+ ν(dnS)− pn

=: I + II + III + IV + V + V I. (1.15)

It will turn out that, under suitable conditions, part IV dominates all the other terms. Its asymp-
totic behavior is largely determined by the asymptotics of the marginal estimators if ν is sufficiently
smooth.

Under very weak conditions on the set S, we will show that the terms I and V are negligible, if
S∗n is defined suitably. If dn/en is bounded and bounded away from 0, then using methods from
empirical process theory the second term can be shown to be asymptotically negligible. Part VI is
a bias term which is negligible if dn is sufficiently large (depending on the rate of convergence in
(1.2)). Similarly, the term III, that equals

(

(n/k)P{T←n (X,Y ) ∈ B} − ν(B)
)

/dn for B = Hn(S
∗
n),

describes a bias term which is asymptotically negligible if both the approximation (1.4) and the
marginal approximation U((n/k)B) ≈ Tn(B) are sufficiently accurate.

An estimator similar to p̂n has been suggested and analyzed by de Haan and Sinha (1999). There,
however, instead of en the authors used an estimator of the unknown constant dn, that was made
identifiable by fixing some point on the boundary of S. We feel the need for a new approach to the
estimation problem for the following reasons. First the model used by de Haan and Sinha, namely

Dn := {(s, t) | f(s/xn, t/yn) ≥ 1}

for some function f and sequences of normalizing constants xn and yn, seems quite restrictive and
unnatural, because it allows the failure set to tend towards the “north-east” only by a linear scaling
of both marginals which does not fit well to extreme value theory if the extreme value indices are
not positive. Furthermore, several of the conditions in de Haan and Sinha (1999) seem ad hoc and
are certainly difficult to interpret and to verify. Finally, the shape of the failure set is restricted;
e.g. the case q(∞) = 0 (in our notation; cf. condition (Q2) below) is ruled out by condition (2.9)
of that paper.

An alternative to our genuinely multivariate estimator can be constructed by the so-called struc-
tural variable approach if the failure set is of the form Dn = {(s, t) | h(s, t) ≥ c} for some known
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function h. Then one may apply techniques from univariate extreme value theory to the pseudo-
observations h(Xi, Yi), 1 ≤ i ≤ n (cf. Coles (2001), §8.2.4 and page 156, or Bruun and Tawn
(1998)). However, even for this class of failure sets, an analysis of the dependence structure be-
tween the two components of the observed vectors is of independent interest, and it seems more
natural to use the same approach for model fitting and for the estimation of quantities like failure
probabilities. Moreover, often one wants to estimate the failure probability for several different
sets (e.g., to find the cheapest construction to ensure a certain level of safety); in this case it is
both more efficient and more natural to use estimators in a unified framework as considered in the
present paper.

In the multivariate approach, Coles and Tawn (1994) and Bruun and Tawn (1998) used parametric
models for the dependence structure in the closely related problem to estimate a parameter defining
a failure set such that the corresponding failure probability equals a given value. However, usually
there is no physical reason for such parametric models. By using them nevertheless one trades a
modeling error, that is difficult to assess, for an estimation error, which can be quantified at least
asymptotically (see Theorem 2.1 below). Indeed, Davison (1994) suggested in the discussion to
Coles and Tawn (1994) that for sufficiently large sample sizes a nonparametric approach may be
advisable.

Finally, we would like to mention that the assumptions used in the present paper rule out that the
exponent measure ν concentrates on the coordinate axes (i.e., here X and Y are assumed asymp-
totically dependent in the sense of multivariate extreme value theory). In the case of asymptotic
independent coordinates X and Y , consistency of an analogous estimator for the failure probability
was proved by Draisma et al. (2004), while its asymptotic normality was established by Müller
(2008).

The paper is organized as follows: In Section 2 we first introduce and discuss in detail the framework
in which we then prove asymptotic normality of our estimator of the failure probability. Moreover,
we propose a consistent estimator of the limiting variance and derive an asymptotic confidence
interval. In Section 3 we apply the theory to the motivating example given at the beginning. In
this context, we also discuss the roles of k and en and propose a heuristic approach for choosing
those numbers. All proofs are collected in Section 4.

2 Main results

We will make the following assumptions about the marginal distributions and the estimators of
the marginal parameters:

(M1) There exist constants x0i < F←i (1) such that Fi is continuous and strictly increasing on
[x0i , F

←
i (1)] ∩ R for i ∈ {1, 2}.

(M2) For all i ∈ {1, 2}, there exist normalizing functions ai > 0, bi ∈ R and Ai 6= 0 and constants
ρi < 0 such that for all x > 0

lim
t→∞

Ui(tx)−bi(t)
ai(t)

− xγi−1
γi

Ai(t)
= ψ̄γi,ρi(x) :=

{

xγi+ρi

γi+ρi
, γi + ρi 6= 0

log x, γi + ρi = 0

6



(M3)

k1/2
( âi(n/k)

ai(n/k)
− 1,

b̂i(n/k)− bi(n/k)

ai(n/k)
, γ̂i − γi

)

1≤i≤2
−→ (αi, βi,Γi)1≤i≤2

weakly.

Condition (M1) is not essential, but it is assumed to simplify the proofs and the formulation of
some technical results.

(M2) is the usual second order condition with the additional restriction that the second order
parameters ρi are negative. Again, one may drop the latter assumption at the cost of additional
technical complications. According to Corollary 2.3.7 of de Haan and Ferreira (2006) we may and
will assume that the normalizing constants are chosen such that the following uniform version
holds: For all ε, δ > 0 there exists t0 such that

∣

∣

∣

∣

∣

Ui(tx)−bi(t)
ai(t)

− xγi−1
γi

Ai(t)
− ψ̄γi,ρi(x)

∣

∣

∣

∣

∣

≤ δxγi+ρi max(xε, x−ε) =: δxγi+ρi±ε (2.1)

provided t, tx > t0. In fact, the main results hold under the following weaker assumption:

∣

∣

∣

Ui(tx)− bi(t)

ai(t)
−
xγi − 1

γi

∣

∣

∣
= O

(

Ai(t)x
γi+ρi±ε

)

(2.2)

as t → ∞ uniformly for x ≥ t0/t. Note that, under condition (M2), Ai is regularly varying with
index ρi.

Condition (M3) gives a lower bound on the rate at which the marginal estimators converge. Notice
that some of the limiting random variables may be equal to 0 almost surely. In particular, this
will usually be the case, if the ith marginal estimators use ki largest order statistics and k = o(ki).
However, typically at least some of the limiting random variables are non-degenerate and jointly
normal distributed. In the sequel, we will choose versions such that the convergence in (M3) holds
in probability.

The failure set Dn has to satisfy the following conditions.

(Q1) There exists a set

S =
{

(x, y) ⊂ [0,∞)2 | y ≥ q(x) ∀x ∈ [0,∞)
}

⊂ [0,∞)2

and constants dn > 0 tending to ∞ such that

Dn = U(dnS) ∩R
2 = {(U1(dnx), U2(dny)) | (x, y) ∈ S} ∩R

2.

Here q : [0,∞) → [0,∞] is some function that is monotonically decreasing and continuous from
the right with q(0) > 0.

(Q2)

x(1−γ1)/2| log x| = O(q(x)) as x ↓ xl := inf{x ≥ 0 | q(x) <∞}

y(1−γ2)/2| log y| = O(q←(y)) as y ↓ q(∞) := lim
x→∞

q(x).

In particular, condition (Q1) ensures that one may define the generalized inverse function in the
usual way:

q←(v) := inf{x > 0 | q(x) ≤ v}
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with the convention inf ∅ =∞. The conditions (Q2) are always fulfilled if γ1 ≤ 1 or xl > 0, resp.,
if γ2 ≤ 1 or q(∞) > 0.

Moreover, we need some conditions on the extremal dependence between X and Y . Recall that
asymptotically the extremal dependence is described by the exponent measure ν defined in (1.2).
In view of (1.1), one may replace the standardization by U with a standardization using Tn. To
bound the bias terms III and VI in (1.15), we must specify the rate of the resulting convergence
towards ν:

(D1) There exist an exponent measure ν on [0,∞)2 and a function A0(t) > 0 converging to 0 as
t tends to ∞ such that

tnP
{((

1 + γ1
X − b1(tn)

a1(tn)

)1/γ1
,
(

1 + γ2
Y − b2(tn)

a2(tn)

)1/γ2)

∈ B
}

− ν(B) = O(A0(tn))

uniformly for all sets B ∈ Btn,M for tn = n/k and for tn = dn and arbitrary M > 0.

Here, Btn,M consists of all sets of the form
{

(H̃
(n,i)
ϑi,χi,ξi

(xi))i∈{1,2} | (x1, x2) ∈ C
}

with C = S ∩
[u,∞) × [v,∞) or C = [xl, u) × [q(u−),∞) or C = [q←(v),∞) × [q(∞), v) for some u, v > 0
and some ϑi, χi, ξi ∈ [−M,M ] if tn = n/k, and Btn,M comprises all sets of the form

{

((1 +

γi(Ui(dnxi) − bi(dn))/ai(dn))
1/γi)i∈{1,2} | (x1, x2) ∈ C

}

with C = [xl, u) × [q(u−),∞) or C =
[q←(v),∞) × [q(∞), v) for some u, v > 0 if tn = dn. Here, for i ∈ {1, 2},

H̃
(n,i)
ϑi,χi,ξi

(x) :=

[

1 + γi

(c
−(γi−k−1/2ϑi)
n − 1

γi − k−1/2ϑi
(1 + k−1/2ξi) + c−(γi+k

−1/2χi)
n

Ui(dnx)− bi(n/k)

ai(n/k)

)

]1/γi

.

(2.3)

(D2) The exponent measure has a strictly positive, continuous Lebesgue density η.

Alternatively, the dependence may be described by the pertaining spectral measure Φ on [0, π/2]
defined by

Φ([0, ϑ]) = ν
{

(x, y) ∈ [0,∞)2
∣

∣

∣
x2 + y2 > 1, arctan

y

x
≤ ϑ

}

, ϑ ∈ [0, π/2].

Condition (D2) is equivalent to the assumption that Φ has a continuous Lebesgue density ϕ
that is strictly positive on [0, π/2]. In particular, this assumption rules out that X and Y are
asymptotically independent (in the sense of multivariate extreme value theory), because then the
spectral measure is concentrated on {0, π/2}. The relationship between η and ϕ is given by

η(x, y) = (x2 + y2)−3/2ϕ
(

arctan
y

x

)

, x, y > 0. (2.4)

In (D1) the rectangles can also be replaced with the subsets S∩
(

(0, u)×(0,∞)
)

, resp. S∩
(

(0,∞)×
(0, v)

)

. If is easy to see that condition (D1) is met if (X,Y ) has a density f which satisfies the
following approximation

sup
(x,y)∈(0,∞)2,x∨y≥1

1

w(x, y)

∣

∣

∣
ta1(t)a2(t)x

γ1−1yγ2−1f
(

a1(t)
xγ1 − 1

γ1
+ b1(t), a2(t)

xγ2 − 1

γ1
+ b2(t)

)

− η(x, y)
∣

∣

∣
= O(A0(t))
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for some weight function w which is Lebesgue-integrable on {(x, y) ∈ (0,∞)2, x ∨ y ≥ 1}. This
sufficient condition applies e.g. to the bivariate Cauchy distribution restricted to (0,∞)2 and to
densities of the form f(x, y) = 1/(1 + xα + yβ) with α, β > 1 such that β > α/(α − 1).

Finally, we impose the following conditions on the sequences dn, en and k = kn:

(S1) k → ∞, n = O(en) (so that k = O(cn) with cn = enk/n → ∞), dn ≍ en (i.e. 0 <
lim inf dn/en ≤ lim supn→∞ dn/en <∞), dnk/n→∞, and wn(γi) = o(k1/2) for i ∈ {1, 2} with

wn(γi) :=







log(enk/n), γi > 0
1
2 log

2(enk/n), γi = 0
(

dnk/n
)−γi , γi < 0.

(S2) Ai(n/k) = o(k−1/2wn(γi)) for i ∈ {1, 2} and A0(n/k) = o
(

k−1/2 max(wn(γ1), wn(γ2))
)

(S3) k1/2 = O(cn ∨ c
γi
n ) if γi ≥ 0 for i ∈ {1, 2},

k1/2 = o(c1−γ1n ) if γ1 < 0 and xl = 0, and
k1/2 = o(c1−γ2n ) if γ2 < 0 and q(∞) = 0.

Recall that dn is a constant determined by the model, that describes the rate at which the prob-
ability pn to be estimated tends to 0, while en is chosen by the statistician such that the inflated
failure set contains sufficiently many observations. It seems natural to choose en of the same order
as dn, because this way one compensates for the shrinkage of Dn. More precisely, dn ≍ en if and
only if the expected number of transformed observations in the inflated transformed failure set is
of the same order as k, which can easily be checked in practical applications. To see this, note
that by (1.4), (1.3) and (1.11) this expected number equals

nP
{

T̂←n (X,Y ) ∈
n

ken
T̂←n (Dn)

}

≈ nP
{k

n
U←(X,Y ) ∈

1

en
U ← (Dn)

}

≈ kν
(dn
en
S
)

= k
en
dn
ν(S).

We would like to emphasize, though, that this condition can be substantially weakened at the price
that one needs different conditions for different combinations of signs of γ1 and γ2.

The first condition of (S1) ensures that the expected number of marginally standardized observa-
tions in the inflated standardized failure region tends to ∞, whereas the second condition means
that the expected number of observations in the failure region remains bounded as n → ∞. The
last condition of (S1) is needed to ensure consistency of the estimator in the sense that p̂n/pn → 1.
Note that it can only be satisfied if min(γ1, γ2) > −1/2. This restriction on the extreme value
indices usually arises if one wants to prove asymptotic normality for estimators of tail probabilities;
cf., e.g., de Haan and Ferreira (2006), Remark 4.4.3, or Drees et al. (2006), Remark 2.2.

From (S2) it follows that the bias is asymptotically negligible, while (S3) will imply that the part
of the set S near the axes (corresponding to observations where one of the coordinates is much
larger than the other) does not play an important role asymptotically. Similarly as above, these
conditions may also be substantially weakened at the price of much more complicated conditions.

Under these conditions we establish an asymptotic approximation of the estimator p̂n.

Theorem 2.1. If the conditions (M1)–(M3), (D1), (D2), (Q1), (Q2) and (S1)–(S3) are fulfilled,
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then

k1/2dn(p̂n − pn)

= wn(γ1)











−Γ1

γ1

∫∞
q(∞) q

←(v)η(q←(v), v) dv, γ1 > 0
(

α1

γ1
− β1 −

Γ1

γ2
1

) ∫∞
q(∞)(q

←(v))1−γ1η(q←(v), v) dv, γ1 < 0

−Γ1

∫∞
q(∞) q

←(v)η(q←(v), v) dv, γ1 = 0

+ wn(γ2)











−Γ2

γ2

∫∞
xl
q(u)η(u, q(u)) du, γ2 > 0

(

α2

γ2
− β2 −

Γ2

γ2
2

) ∫∞
xl

(q(u))1−γ2η(u, q(u)) du, γ2 < 0

−Γ2

∫∞
xl
q(u)η(u, q(u)) du, γ2 = 0

+ oP
(

wn(γ1) ∨ wn(γ2)
)

(2.5)

Since pndn → ν(S), Theorem 2.1 remains true when the left-hand side of (2.5) is replaced with
k1/2ν(S)(p̂n/pn − 1).

The weights wn(γ1) and wn(γ2) on the right-hand side of (2.5) may be different, and then they
converge to ∞ at different rates. More precisely, wn(γ) is a non-increasing function of γ, and it
is strictly decreasing on (−∞, 0]. Therefore, the smaller of both marginal extreme value indices
γ1 and γ2 determines the rate of convergence of p̂n towards pn. If at least one of the indices is
non-positive and the indices are not equal, then the summand corresponding to the larger index is
negligible. (In that case, it may happen that one cannot prove asymptotic normality using Theorem
2.1, because the limiting random variables αi, βi and Γi pertaining to the smaller extreme value
index are equal to 0; cf. the above discussion of condition (M3).)

If both extreme value indices are positive, then both main terms on the right-hand side of (2.5)
are of the same order. In that case, (k1/2dn/ log cn)(p̂n−pn) converge to a limit distribution which
typically will be non-degenerate if at least one of the limiting random variables Γ1 and Γ2 in (M3)
is non-degenerate. If they are jointly normal, then we may derive the asymptotic normality of the
estimator for the failure probability pn.

Theorem 2.1 can be used to construct asymptotic confidence intervals. To this end, it is advisable
to reformulate the assertion as a convergence result on k1/2en(p̂n − pn), because dn is unknown.
Then one needs consistent estimators for the variance of the random variables occurring on the
right-hand side of (2.5) which usually are asymptotically normal, and consistent estimators for
en/dn times the integral there.

We will outline how to estimate the term (en/dn)
∫∞
xl
q(u)η(u, q(u)) du, that is needed in the case

γ ≥ 0. To avoid the estimation of the density η of ν, we approximate the integral by the ν-measure
of a shrinking set as follows. Because η is continuous, for small ℓn one has

en
dn

∫ ∞

xl

q(u)η(u, q(u)) du ≈
en
dn

∫ ∞

xl

1

2ℓn

∫ (1+ℓn)q(u)

(1−ℓn)q(u)
η(u, v) dv du =

1

2ℓn
(ν(S−n,2)− ν(S

+
n,2))

with

S±n,2 :=
{dn
en

(u, (1 ± ℓn)v) | (u, v) ∈ S
}

.

Now one can proceed similarly as in (1.9) (using (1.4) and (1.11)) to construct an estimator of
(en/dn)

∫∞
xl
q(u)η(u, q(u)) du:
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Corollary 2.2. Let

Ŝ±n,2 :=
{

(u, (1± ℓn)v) | (u, v) ∈
n

ken
T̂←n (Dn)

}

for some sequence ℓn ↓ 0 such that k−1/2(wn(γ1), wn(γ2)) = o(ℓn). Suppose that all conditions
of Theorem 2.1 are fulfilled and, in addition, that an analog to condition (D1) holds where cn is
replaced with cn/(1± ℓn). Then

În,2 :=
ν̂n(Ŝ

−
n,2)− ν̂n(Ŝ

+
n,2)

2ℓn
=
en
dn

∫ ∞

xl

q(u)η(u, q(u)) du(1 + oP (1)).

In a completely analogous way one can estimate (en/dn)
∫∞
q(∞) q

←(v)η(q←(v), v) dv by În,1 :=

(ν̂n(Ŝ
−
n,1)− ν̂n(Ŝ

+
n,1))/(2ℓn) with

Ŝ±n,1 :=
{

((1± ℓn)u, v) | (u, v) ∈
n

ken
T̂←n (Dn)

}

.

Now suppose that both extreme value indices γi are positive and that we estimate them by the Hill
estimator, i.e., γ̂1 = k−11

∑k1
i=1 log(Xn−i+1:n/Xn−k1:n) with Xn−i+1:n denoting the ith largest order

statistic among X1, . . . ,Xn, and likewise γ̂2 = k−12

∑k2
i=1 log(Yn−i+1:n/Yn−k2:n). It is well known

that k
1/2
i (γ̂i − γi)→ N(0,γi) if condition (M2) holds and k

1/2
i Ai(n/ki)→ 0. In particular, Γi = 0 if

k = o(ki). However, if ki/k → κi ∈ (0,∞) for both i = 1 and i = 2, then the joint distribution of
Γ1 and Γ2 is needed for the construction of confidence intervals.

In the case k1 = k2 = k, de Haan and Resnick (1993) derived a representation of Γi in terms of
a Gaussian process under slightly different conditions than used in the present paper. One may
mimic their approach to show that under our conditions, (Γi/γi)i∈{1,2} has the same distribution as
(( ∫∞

1 t−1Wi(t/κi) dt−Wi(1/κi)
)

/κi
)

i∈{1,2}
where (W1,W2) is a bivariate centered Gaussian process

with covariance function given by Cov(W1(s),W1(t)) = ν
(

(s∨t,∞)×(0,∞)
)

, Cov(W2(s),W2(t)) =
ν
(

(0,∞)× (s ∨ t,∞)
)

and Cov(W1(s),W2(t)) = ν
(

(s,∞)× (t,∞)
)

. Direct calculations show that
thus (Γi/γi)i∈{1,2} is a centered Gaussian vector with marginal variances 1/κi and covariance
ν
(

(κ2,∞) × (κ1,∞)
)

. Hence, with z1−α/2 denoting the standard normal (1 − α/2)-quantile and

σ̂2 := Î2n,1/κ1 + Î2n,2/κ2 + 2ν̂n
(

(κ2,∞)× (κ1,∞)
)

În,1În,2,
[

p̂n − k
−1/2e−1n log cnσ̂z1−α/2, p̂n + k−1/2e−1n log cnσ̂z1−α/2

]

(2.6)

is a two-sided confidence interval for pn with asymptotic confidence level 1 − α. (This formula is
also applicable if one of the κi equals ∞.)

As an alternative to the above approach, one may estimate the density of the spectral measure Φ
(cf. Cai et al., 2011) and construct both an estimator for the integrals and for the joint distribution
of the limiting random variables on the right-hand side of (2.5) from it.

We conclude this section by indicating how to generalize the main result to R
d-valued vectors

Xi = (Xi,1, . . . ,Xi,2) of arbitrary dimension d ≥ 2, albeit a detailed discussion is beyond the scope
of this paper. An inspection of the proof of Lemma 4.3 reveals that the generalized inverse q← of
the function q is used to describe the boundary of the set S as a function of the second coordinate.
If d > 2 (and hence the generalized inverse is not defined), then an analogous description is needed
for all coordinates, i.e. we need d different representations of the set S of the form

S =
{

x ∈ [0,∞)d | xi ≥ qi(x−i)
}

, 1 ≤ i ≤ d, (2.7)
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where x−i ∈ [0,∞)d−1 denotes the vector x with ith coordinate removed and qi are suitable [0,∞]-
valued functions that are decreasing in each argument. Then one may proceed as in the case d = 2
by separately examining the influence of the transformation of each marginal on the ν-measure
of the (suitably restricted) set S. Under suitable integrability conditions on the functions qi and
obvious generalizations of the conditions (M1)–(M3), (D1), (D2) and (S1)–(S3), it can be shown
that

k1/2dn(p̂n − pn) (2.8)

=

d
∑

i=1

wn(γi)











−Γi
γi

∫

qi(v)η(q̃i(v))1(0,∞)(qi(v))λλ
d−1(dv), γi > 0

(

αi
γi
− β−

Γi

γ2i

) ∫

(qi(v))
1−γ1η(q̃i(v))1(0,∞)(qi(v))λλ

d−1(dv), γi < 0

−Γi
∫

qi(v)η(q̃i(v))1(0,∞)(qi(v))λλ
d−1(dv), γi = 0

+ oP (wn(γi))

Here λλd−1 denotes the Lebesgue measure on [0,∞)d−1 and q̃i(v) is the vector in [0,∞)d whose ith
coordinate equals qi(v) and the other d− 1 coordinates are those of v.

If the boundary ∂S of the set S is sufficiently smooth, then the integrals on the right-hand side
of (2.8) can be represented more naturally as integrals w.r.t. certain differential forms (see, e.g.,
Schreiber, 1977, for an informal introduction to differential forms). More precisely, assume that
there exists a set D ⊂ [0,∞)d−1 and a continuously differentiable function q : D → [0,∞), such
that ∂S = {(u, q(u)) | u ∈ D} and the map Ψ : D → [0,∞)d,Ψ(u) = (u, q(u)) has a Jacobian
which is invertible everywhere. Then the right-hand side of (2.8) equals

d
∑

i=1

wn(γi)











−Γi
γi

∫

Ψ pri · η dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxd, γi > 0
(

αi
γi
− β−

Γi

γ2i

) ∫

Ψ(pri)
1−γi · η dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxd, γi < 0

−Γi
∫

Ψ pri · η dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxd, γi = 0

+oP (wn(γi))

with pri denoting the projection to the ith coordinate. This representation reflects most clearly
the fact that the ith term results from the change of the boundary surface of S by the marginal
transformation Hn,i. It is worth mentioning that such a representation can be derived for more
general differentiable manifolds ∂S.

3 Analysis of insurance claims

In this section, we discuss issues arising in practical applications. In particular, we will see that,
though in the asymptotic setting the constants k and en, that are chosen by the statistician, play
different roles, from a different perspective essentially only the product ken matters.

As an example, we consider a well-known data set of claims to Danish fire insurances. The data
set contains losses to building(s), losses to contents and losses to profits (caused by the same fire)
observed in the period 01/1980 - 12/2002, discounted to 07/1985. The claims are recorded only if
the sum of all components exceeds 1 million Danish Kroner (DKK). Note that due to this recording
method, there is an artificial negative dependence between the components, since if one component
is smaller than 1 million DKK, the sum of the others must be accordingly larger. To avoid this
effect, we therefore consider only those claims for which at least one component exceeds 1 million
DKK, which leads to a sample of 3976 claims. Moreover, we focus on the losses to buildings,
denoted by Xi as a multiple of one million DKK, and the losses to contents Yi. A more detailed
description of the data can be found in Müller (2008) and Drees and Müller (2008).
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As described in the introduction, we assume that a quota reinsurance pays (1 − αX)Xi for each
loss Xi to the building and (1−αY )Yi for each loss Yi of content, while an XL-reinsurance pays if
the remaining costs αXXi+αY Yi exceed a retention level R. We want to estimate the probability
pn := P (Dn) with Dn := {αXXi +αY Yi > R} that a fire results in a claim to the XL-reinsurance.
(More precisely, we estimate the conditional probability given that max(Xi, Yi) > 1.)

Müller (2008), Section 5.1.2, fitted the following GPD’s to the marginal distributions using the
Hill estimators based on the k1 = 900 and k2 = 600 largest observations:

F̂i(x) := 1−
(

1 + γ̂i
x− µi
σi

)−1/γi
, i = 1, 2, (3.1)

with parameters γ̂1 = 0.57, σ̂1 = 0.54, µ̂1 = 0.91, γ̂2 = 0.72, σ̂2 = 0.47 and µ̂2 = 0.15. (These
approximations are sufficient accurate for x satisfying 1 − Fi(x) ≤ ki/n.) Moreover, he showed
that both components of the claim vector are apparently asymptotically dependent.

Note that Ûi := 1/(1 − F̂i) can also be interpreted as an estimator (n/k)T←n,i for different values
of k. However, the number k does not have any operational meaning if one starts with a given
approximation of the marginal tails as in (3.1). It that case it seems more natural to reformulate
our estimator p̂n, the main result (2.5) and the resulting confidence interval (2.6) in terms of Û←i .

First, note that the estimator of the failure probability

p̂n =
1

en
ν̂n
( n

ken
T̂←n (Dn)

)

=
1

ken

n
∑

i=1

εÛ←(Xi,Yi)

( n

ken
Û←(Dn)

)

depends on the constants k and en only via their product ken (if the tail estimator Û← is considered
fixed). At first glance, this seems peculiar, because in Theorem 2.1 the estimation error seemingly
depends on k and en in completely different ways. However, note that according to the discussion
following Theorem 2.1, for γ1, γ2 > 0, approximation (2.5) can be rewritten as

p̂n − pn = (ken)
−1/2 log

ken
n
N(1 + oP (1)) (3.2)

for a centered Gaussian random variable N with variance

σ̂2N =
1

en

( k

k1
I21 +

k

k2
I22 + 2ν

((k2
k
,∞
)

×
(k1
k
,∞
))

I1I2

)

=
ken
k1

( I1
en

)2
+
ken
k2

( I2
en

)2
+ 2ν

(( k2
ken

,∞
)

×
( k1
ken

,∞
)) I1

en

I2
en

)

,

where I1 := (en/dn)
∫∞
q(∞) q

←(v)η
(

q←(v), v
)

dv and I2 := (en/dn)
∫∞
xl
q(u)η

(

u, q(u)
)

du. Thus Ii/en
does not depend on en, and the distribution of the approximating Gaussian random variable on
the right-hand side of (3.2) depends on k and en only via their product.

Moreover, also the estimators

În,1
en

=
ν̂n(Ŝ

−
n,1)− ν̂n(Ŝ

+
n,1)

2ℓnen

=
1

2ℓn
·

1

ken

n
∑

i=1

εÛ←(Xi,Yi)

({

((1− ℓn)u, v) | (u, v) ∈
n

ken
Û←(Dn)

}

\

{

((1 + ℓn)u, v) | (u, v) ∈
n

ken
Û←(Dn)

})
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and likewise În,2/en depend on the product ken only. Finally, the covariance term ν
(

k2/(ken),∞)×
(k1/(ken),∞)

)

= k2en/(λk1k2)ν
(

(k/(λk1),∞) × (k/(λk2),∞)
)

can be estimated

k2en
λk1k2

ν̂n

(( k

λk1
,∞
)

×
( k

λk2
,∞
))

=
ken
λk1k2

n
∑

i=1

εÛ←(Xi,Yi)

(( n

λk1
,∞
)

×
( n

λk2
,∞
))

.

Here the choice λ ∈ (0, 1] ensures that Û← is used only on the range where it is a sufficiently
accurate estimator of the true function U .

To sum up, all estimates only depend on ken, but not on the numbers k and en separately. This
product should be chosen as large as possible under the constraints that both marginal approxi-
mations of U←i by Û←i and the approximation of the joint distribution of the standardized vector
(cf. (1.2)) are reliable. To ensure the former constraint, for the vast majority of the observations
(Xi, Yi), the indicator of the set {Û←(Xi, Yi) ∈ n/(ken)Û

←(Dn)} should not depend on the par-
ticular values of Û←1 (Xi) or Û←2 (Yi) if these are smaller than n/k1 or n/k2 (either because the
other component of the vector is so large that the observations lie in the failure set anyway, or
because the other component is so small so that the indicator is 0 even if the maximal value
n/ki is attained). To be more concrete, for the failure set Dn := {(x, y) | α1x + α2y > R}
introduced above, ken should be smaller than mini=1,2 kiÛ

←
i (R/αi), because otherwise for sure

Û←(x, y) ∈ (n/ken)Û
←(Dn) for some values (x, y) for which Û←(x, y) is not a reliable estimate of

U←(x, y).

However, the above crude upper bound ken is not sufficient to ensure that p̂n is a reliable estimate
of pn, because the dependence structure must be accurately described by the exponent measure ν,
too. We propose in analogy to the well-known Hill plot, to plot p̂n versus ken and then to choose
ken in a range where this curve seems stable. In Figure 1 such a graph is shown for the Danish
fire insurance data and the failure set Dn = {(x, y) | x + 0.5y > 100} for values of ken ranging
from 104 to 5 · 105. Note that the aforementioned crude upper bound on ken is about 1.7 · 106, but
the curve of probability estimates shows a clear downward trend for ken > 2 · 105, which is most
likely due to a deviation of the dependence structure from its limit. On the other hand, for values
smaller than 5 · 104 the curve is very unstable, too, because the random error is still too large as
just a few observations fall into the inflated failure set (e.g., about 25 if ken ≈ 3 · 104). This lower
bound on ken reflects the condition in the asymptotic framework that n is of smaller order than
knen (see condition (S1)). In view of this plot, the choice ken = 2 · 105 seems reasonable.

In addition, Figure 1 shows a two-sided confidence interval with nominal size 0.95 again as a
function of ken. Here we have chosen ℓn = 0.1 and λ = 1 in the estimator of the variance σ2N
described above; other values of λ between 1/2 and 1 yield essentially the same estimates, while
smaller values of ℓn lead to larger fluctuations in the confidence bounds, that however are still of
a similar size.

For ken = 2 · 105 one obtains a point estimate for pn of about 8.8 · 10−4 and a confidence interval
[2.2 ·10−4 , 1.54 ·10−3 ]. At first glance, this confidence interval seems rather wide. However, one has
to be aware of the fact that we estimate the probability of a very rare event which has occurred
only twice in the observational period of more than 20 years. Indeed the empirical probability
of the event is about 5 · 10−4, and the Clopper-Pearson confidence interval [6 · 10−5, 1.8 · 10−3]
(again with nominal size 0.95) is even wider. It is worth mentioning that both the empirical point
estimate and the Clopper-Pearson confidence interval are exactly the same if one wants to estimate
the probability that a claim occurs to the XL-reinsurance for any retention level R between 77 and
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Figure 1: p̂n (solid blue line) and confidence intervals (black dashed line) versus ken for Danish
fire insurance claims

145 million DKK! Moreover, for retention level above 152 million DKK the point estimate would
be 0 and thus useless for purposes of risk management.

4 Proofs

First we establish an approximation of the random transformation of the marginals defined in
(1.12). Thereby we must restrict ourselves to arguments which are neither too small nor too large.

Lemma 4.1. Assume that the conditions (M1)–(M3) and (S1) are fulfilled. For i ∈ {1, 2}, let
λn,i > 0 be a decreasing and τn,i < ∞ an increasing sequence, such that the following conditions
are met:

(i) Ai(n/k)(λn,idnk/n)
ρi±ε = o

(

k−1/2wn(γi)
)

for some ε > 0

(ii) If γi > 0, then k−1/2 = o
(

(λn,idn/en)
γi
)

.

(iii) If γi < 0, then k−1/2 = o
(

(τn,idnk/n)
γi
)

and log(dn/en) = o
(

(dnk/n)
−γi
)

(iv) If γi = 0, then k−1/2 log τn,i → 0 and log(dn/en) = o(log cn)

Then, for i ∈ {1, 2},

dn
en
Hn,i(x) = T←n,i ◦ T̂n,i ◦ T̂

(c)←
n,i ◦ Ui(dnx)

=
dn
en
x

(

1 +







−k−1/2 log cn(
Γi
γi

+ oP (1)) +OP (k
−1/2(xdn/en)

−γi), γi > 0

k−1/2(dnk/n)
−γi
(

(αi/γi − βi − Γi/γ
2
i + oP (1))x

−γi + oP (1)
)

, γi < 0

−k−1/2 log2 cn(Γi/2 + oP (1)) +OP (k
−1/2 log cn log x), γi = 0

)

uniformly for x ∈ [λn,i, τn,i].
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Proof. For notational simplicity, we omit all indices and arguments of the marginal parameters and
normalizing functions and their estimators; e.g., we use â as a short form of âi(n/k). Moreover,
we drop all indices referring to the ith marginal, i.e., we write U instead of Ui, Tn instead of Tn,i
and so on.

By (2.2), for all 0 < ε < |ρ|,

∆1(x) :=
U(dnx)− b

a
−

(xdnk/n)
γ − 1

γ
= O

(

A(n/k)(xdnk/n)
γ+ρ±ε

)

= o
(

k−1/2wn(γ)(xdnk/n)
γ
)

(4.1)
uniformly for all x ≥ λn, where in the last step we have used condition (i). Now one can conclude
that U(dnx) ∈ T̂n((0,∞)) for all x ∈ [λn, τn] with probability tending to 1. For example, if γ > 0,
then we have to show that U(dnx) > b̂− â/γ̂ for all x ≥ λn or, equivalently, (using (M3)) that

∆1(dnλn)
(!)
>
b̂− b

a
−

â

aγ̂
−

(λndnk/n)
γ − 1

γ
= −

1

γ

(dnk

n
λn

)γ
+O(k−1/2)

which follows immediately from (4.1), (S1) and (ii).

Hence

T←n ◦ T̂n ◦ T̂
(c)←
n ◦ U(dnx) =

[

1 +
γ

a

(

â

(

c−1n
(

1 + γ̂ U(dnx)−b̂
â

)1/γ̂)γ̂
− 1

γ̂
+ b̂− b

)

]1/γ

=: H̃(x)

if the expression in brackets is strictly positive, which will indeed follow from the calculations
below.

Now direct calculations show that

H̃(x) =

[

1 + γ
(

c−γ̂n
U(dnx)− b

a
+
c−γ̂n − 1

γ̂

( â

a
−
b̂− b

a
γ̂
))

]1/γ

. (4.2)

By assumption (M3)

∆2 :=
â

a
−
b̂− b

a
γ̂ − 1 = k−1/2(α− γβ + oP (1)). (4.3)

If γ > 0, then the Taylor expansion

c−γ̂/γn = c−1n

(

1− k−1/2
Γ

γ
log cn + oP (k

−1/2 log cn)
)

together with (4.1), (4.3) and (S1) implies

H̃(x) =

[

c−γ̂n

((dnk

n
x
)γ
− 1 + γ∆1(x) +

γ

γ̂
(1 + ∆2)

)

+ 1−
γ

γ̂
−
γ

γ̂
∆2

]1/γ

= c−γ̂/γn

dnk

n
x

[

1 +OP

(

(

|∆1(x)|+ k−1/2
)

(dnk

n
x
)−γ)

+OP

(

k−1/2cγ̂n

(dnk

n
x
)−γ)

]1/γ

=
dn
en
x
(

1− k−1/2
Γ

γ
log cn + oP (k

−1/2 log cn)
)

[

1 + oP (k
−1/2 log cn) +OP

(

k−1/2
(dn
en
x
)−γ)

]

,

from which the assertion follows readily.
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If γ < 0, then similar arguments prove

H̃(x) =
dn
en
x
(

1+OP (k
−1/2 log cn)

)

[

1+k−1/2
1

γ

(

α−γβ−
Γ

γ
+oP (1)

)(dnk

n
x
)−γ

+oP (k
−1/2wn(γ)))

]

,

and hence the assertion, because the assumption (iii) ensures that log cn = o(wn(γ)).

Finally, for γ = 0, the Taylor expansion

c−γ̂n = 1− γ̂ log cn +
1

2
γ̂2 log2 cn +OP (γ̂

3 log3 cn)

yields

H̃(x) = exp
[

(

1− γ̂ log cn +OP (k
−1 log2 cn)

)

(

log
(dnk

n
x
)

+∆1(x)
)

+

+
(

− log cn +
1

2
γ̂ log2 cn +OP (k

−1 log3 cn)
)

(1 + ∆2)
]

=
dnk

cnn
x exp

[

− γ̂ log cn
(

log cn + log
(dn
en
x
))

+ oP (k
−1/2 log2 cn) +

1

2
γ̂ log2 cn

]

=
dn
en
x
[

1−
1

2
(Γ + oP (1))k

−1/2 log2 cn +OP (k
−1/2 log cn log x)

]

,

which concludes the proof.

In what follows we denote by λn,1 ց xl, λn,2 ց q(∞) := limx→∞ q(x) and τn,i ↑ ∞, i ∈ {1, 2},
sequences which satisfy the conditions of Lemma 4.1. (These sequences will be specified in the
proof of Corollary 4.5.) Note that in particular constant sequences λn,i, τn,i ∈ (0,∞) satisfy the
conditions of Lemma 4.1, provided

Ai(n/k)c
ρi+ε
n = o

(

k−1/2n wn(γi)
)

for i ∈ {1, 2} and some ε > 0 (4.4)

and (S1) holds. Therefore we may and will choose

λn,1 = xl if xl := inf{x ≥ 0 | q(x) <∞} > 0,

λn,2 = q(∞) if q(∞) > 0,
(4.5)

We want to apply the approximations just established to points (x, y) on the boundary of S. To
ensure that x ∈ [λn,1, τn,1] and y ∈ [λn,2, τn,2], we consider a subset S∗n of S that is bounded away
from the coordinate axes. More precisely, we define

S∗n := S ∩
(

[u∗n,∞)× [v∗n,∞)
)

with
u∗n := λn,1 ∨ q

←(τn,2), v∗n := λn,2 ∨ q(τn,1).

The following lemma implies that the ν-measure of the set S \ S∗n is asymptotically negligible.

Lemma 4.2.

ν(S)− ν(S∗n) = O
( λn,1 − xl
q2(λn,1−)

+
q(τn,1)− q(∞)

τ2n,1
+
λn,2 − q(∞)

(q←(λn,2))2
+
q←(τn,2)− xl

τ2n,2

)

with q(x−) := limt↑x q(t).
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Proof. First note that S ⊂ [xl,∞)× [q(∞),∞) implies

ν(S)− ν
(

S ∩ ([0, u∗n)× [0,∞))
)

≤ ν
(

[xl, λn,1)× [q(λn,1−),∞)
)

+ ν
(

[xl, q
←(τn,2))× [τn,2,∞)

)

.

The spectral density ϕ is assumed continuous and hence it is bounded. From (2.4) we conclude
that for arbitrary 0 ≤ u0 ≤ u1 and v0 > 0

ν
(

[u0, u1)× [v0,∞)
)

= O
(

∫ u1

u0

∫ ∞

v0

(u2 + v2)−3/2 dv du
)

= O
(u1 − u0

v20

)

and thus

ν
(

S ∩ ([0, u∗n)× [0,∞))
)

= O
( λn,1 − xl
q2(λn,1−)

+
q←(τn,2)− xl

τ2n,2

)

.

Likewise, one can show that

ν
(

S ∩ ([0, u∗n)× [0,∞))
)

− ν(S∗n) = O
(q(τn,1)− q(∞)

τ2n,1
+
λn,2 − q(∞)

(q←(λn,2))2

)

.

A combination of these two bounds yields the assertion.

On the set S∗n we can now use the approximation from Lemma 4.1 to first examine the influence of
the transformation Hn,2 of the second coordinate on the ν-measure of S∗n. In a second step we then
similarly determine how the ν-measure of this transformed set is altered by the transformation
Hn,1 of the first coordinate. Hereby note that by to Lemma 4.1 the marginal transformations are
invertible with probability tending to 1.

Lemma 4.3. Let Hn(x, y) := (Hn,1(x),Hn,2(y)) :=
en
dn
T←n ◦ T̂n ◦ T̂

(c)←
n ◦U(dnx, dny). Suppose that

the conditions (D2) and (Q1) are met.

Then one has with qn(u) := q(u) ∨ v∗n and q̃←n (v) := q←(H←n,2(v)) ∨ u
∗
n

∣

∣

∣
ν(Hn(S

∗
n))− ν(S

∗
n)

+

∫ ∞

u∗n

(

Hn,2(qn(u))− qn(u)
)

η(u, qn(u)) du +

∫ ∞

Hn,2(v∗n)

(

Hn,1(q̃
←
n (v))− q̃←n (v)

)

η(q̃←n (v), v) dv
∣

∣

∣

= o
(

∫ ∞

u∗n

∣

∣Hn,2(qn(u))− qn(u)
∣

∣η(u, qn(u)) du +

∫ ∞

Hn,2(v∗n)

∣

∣Hn,1(q̃
←
n (v))− q̃←n (v)

∣

∣η(q̃←n (v), v) dv
)

(4.6)

with probability tending to 1.

Proof. According to the proof of Lemma 4.1, for all δ ∈ (0, 1), on the set [λn,i(1−δ), τn,i(1+δ)] the
transformation Hn,i is continuous and strictly increasing andHn,i(x) = x(1+o(1)) with probability
tending to 1.

We first quantify the influence of the transformation of the second coordinate. Note that

ν(S∗n) =

∫ ∞

u∗n

∫ ∞

qn(u)
η(u, v) dv du

ν{(x,Hn,2(y)) | (x, y) ∈ S
∗
n} =

∫ ∞

u∗n

∫ ∞

Hn,2(qn(u))
η(u, v) dv du

18



Figure 2: The light and mid grey regions show the approximation S∗n of the set S, the mid and the
dark grey regions the symmetric difference between {(x,Hn,2(y)) | (x, y) ∈ S

∗
n} and S

∗
n, where the

dark grey region is counted with a positive sign, the mid grey region with a negative sign. (Here
it is assumed that u∗n = q←(τn,2).)

and hence

ν{(x,Hn,2(y)) | (x, y) ∈ S
∗
n} − ν(S

∗
n) = −

∫ ∞

u∗n

∫ Hn,2(qn(u))

qn(u)
η(u, v) dv du. (4.7)

The inner integral equals

∫ Hn,2(qn(u))

qn(u)
η(u, v) dv (4.8)

=
(

Hn,2(qn(u))− qn(u)
)

η(u, qn(u)) +

∫ Hn,2(qn(u))/qn(u)

1

(η(u, qn(u)w)

η(u, qn(u))
− 1
)

dw η(u, qn(u))qn(u).

By the assumptions and Lemma 4.1, Hn,2(qn(u))/qn(u)→ 1 uniformly for u ∈ (u∗n,∞) as qn(u) ∈
[λn,2, τn,2] for u > u∗n. Recall that it is assumed that the spectral measure has density ϕ which
is continuous and strictly positive so that ϕ is uniformly continuous and bounded away from 0.
Thus, by (2.4),

η(u, vw)

η(u, v)
=
( u2 + v2

u2 + v2w2

)3/2ϕ
(

arctan vw
u

)

ϕ
(

arctan v
u

) → 1

as w→ 1 uniformly for u, v > 0, since

u2 + v2

u2 + v2w2
= 1 +

1− w2

(u/v)2 + w2
→ 1
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and
∣

∣

∣

ϕ
(

arctan vw
u

)

ϕ
(

arctan v
u

) − 1
∣

∣

∣
≤

∣

∣ϕ
(

arctan vw
u

)

− ϕ
(

arctan v
u

)
∣

∣

inf0≤ϑ≤π/2 ϕ(ϑ)
→ 0

as w→ 1 uniformly for u, v > 0 by the uniform continuity of ϕ and
∣

∣

∣
arctan

vw

u
− arctan

v

u

∣

∣

∣
=

v/u

1 +
(

(v/u)(1 + θ(w − 1))
)2 |w − 1| ≤ sup

z>0

z

1 + z2/4
|w − 1|

for w > 1/2 and some θ ∈ (0, 1), which holds by the mean value theorem.

Therefore,
∫ Hn,2(qn(u))/qn(u)

1

(η(u, qn(u)w)

η(u, qn(u))
− 1
)

dw = o
(

Hn,2(qn(u))/qn(u)− 1
)

which, combined with (4.7) and (4.8), yields

ν{(x,Hn,2(y)) | (x, y) ∈ S
∗
n} − ν(S

∗
n) +

∫ ∞

u∗n

(

Hn,2(qn(u))− qn(u)
)

η(u, qn(u)) du

= o
(

∫ ∞

u∗n

∣

∣Hn,2(qn(u))− qn(u)
∣

∣η(u, qn(u)) du
)

. (4.9)

One can derive an analogous approximation of the difference between ν{(x,Hn,2(y)) | (x, y) ∈ S}
and ν{(Hn,1(x),Hn,2(y)) | (x, y) ∈ S} by similar arguments if one interchanges the order of
integration:

∣

∣

∣
ν(Hn(S

∗
n))− ν{(x,Hn,2(y)) | (x, y) ∈ S

∗
n}+

∫ ∞

Hn,2(v∗n)

(

Hn,1(q̃
←
n (v)) − q̃←n (v)

)

η(q̃←n (v), v) dv
∣

∣

∣

= o
(

∫ ∞

Hn,2(v∗n)

∣

∣Hn,1(q̃
←
n (v))− q̃←n (v)

∣

∣η(q̃←n (v), v) dv
)

. (4.10)

Summing up (4.9) and (4.10), we arrive at the assertion.

In the next lemma, we calculate the limits of the integrals arising in Lemma 4.3 using the approx-
imation established in Lemma 4.1.

Lemma 4.4. Suppose that the conditions of Lemma 4.3 and, in addition, the following conditions
are fulfilled for some x0 ∈ (xl, q

←(q(∞))), y0 ∈ (q(∞), q(xl)):
∫ ∞

y0

(q←(v))1−γ1v−3 dv <∞ or λ1−γ1n,1 = o(log cn) (4.11)

∫ ∞

x0

(q(u))1−γ2u−3 du <∞ or λ1−γ2n,2 = o(log cn) (4.12)

Then the following approximations hold true:

(i)

k1/2

wn(γ2)

∫ ∞

u∗n

(

Hn,2(qn(u)) − qn(u)
)

η(u, qn(u)) du

→











−Γ2

γ2

∫∞
xl
q(u)η(u, q(u)) du, γ2 > 0

(

α2

γ2
− β2 −

Γ2

γ2
2

) ∫∞
xl

(q(u))1−γ2η(u, q(u)) du, γ2 < 0

−Γ2

∫∞
xl
q(u)η(u, q(u)) du, γ2 = 0
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Moreover,
∫ ∞

u∗n

∣

∣Hn,2(qn(u)) − qn(u)
∣

∣η(u, qn(u)) du = O(k−1/2wn(γ2)).

(ii)

k1/2

wn(γ1)

∫ ∞

Hn,2(v∗n)

(

Hn,1(q̃
←
n (v)) − q̃←n (v)

)

η(q̃←n (v), v) dv

→











−Γ1

γ1

∫∞
q(∞) q

←(v)η(q←(v), v) dv, γ1 > 0
(

α1

γ1
− β1 −

Γ1

γ2
1

) ∫∞
q(∞)(q

←(v))1−γ1η(q←(v), v) dv, γ1 < 0

−Γ1

∫∞
q(∞) q

←(v)η(q←(v), v) dv, γ1 = 0

Furthermore,

∫ ∞

Hn,2(v∗n)

∣

∣Hn,1(q̃
←
n (v)) − q̃←n (v)

∣

∣η(q̃←n (v), v) dv = O(k−1/2wn(γ1)).

Proof. ad (i): Because the spectral density ϕ is bounded, there exists a constant K > 0 such
that

η(u, q(u)) ≤ K
(

u2 + (q(u))2
)−3/2

≤ K
(

u−3 ∧ (q(u))−3
)

∀u > 0. (4.13)

Hence qn(u)η(u, qn(u)) ≤ K(q(u))−2 for u ∈ [xl, x0] and n sufficiently large and qn(u)η(u, qn(u)) ≤
Kq(x0)u

−3 for u > x0. Therefore,

lim
n→∞

∫ ∞

u∗n

qn(u)η(u, qn(u)) du =

∫ ∞

xl

q(u)η(u, q(u)) du <∞ (4.14)

by the dominated convergence theorem and u∗n ↓ xl.

Now, we distinguish three cases.

If γ2 > 0, then by Lemma 4.1 and dn ≍ en

k1/2

log cn

∫ ∞

u∗n

(

Hn,2(qn(u))− qn(u)
)

η(u, qn(u)) du = −
(Γ2

γ2
+ oP (1)

)

∫ ∞

u∗n

qn(u)η(u, qn(u)) du

+OP

( 1

log cn

∫ ∞

u∗n

(qn(u))
1−γ2η(u, qn(u)) du

)

.

Because of (4.13) and (4.12)

∫ ∞

u∗n

(qn(u))
1−γ2η(u, qn(u)) du ≤ K(q(x0))

−2−γ2(x0−xl)+K

∫ ∞

x0

(q(u)∨λn,2)
1−γ2u−3 du = o(log cn).

(4.15)
Hence, in view of (4.14), we have

∫ ∞

u∗n

(

Hn,2(qn(u))−qn(u)
)

η(u, qn(u)) du = −k−1/2 log cn
Γ2

γ2

∫ ∞

xl

q(u)η(u, q(u)) du+oP (k
−1/2 log cn).

If γ2 < 0, then the assertion follows similarly from Lemma 4.1 and (4.13).
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Finally, in the case γ2 = 0

∫ ∞

xl

qn(u)| log qn(u)|η(u, qn(u)) du ≤ K sup
x≤x0

| log q(x)|

(q(x))2
+K sup

x≥x0

q(x)| log q(x)|

∫ ∞

x0

u−3 du <∞.

(4.16)
Hence, similarly as in the first case, we may conclude the assertion from Lemma 4.1.

ad (ii): The second assertion can be proved in a very similar fashion using q(Hn,2(v
∗
n)) → q(∞)

and the fact that q̃←n (u)→ q←(u) for Lebesgue-almost all u > q(∞), because of Lemma 4.1 and the
Lebesgue-almost surely continuity of q←. For that reason, we only give the analog to the bound
(4.15) for the integral under consideration in the case γ1 > 0.

For y0 ∈ (q(∞), q(xl)) and all sufficiently large n, we have
∫ y0

Hn,2(v∗n)
(q̃←n (v))1−γ1η

(

q̃←n (v), v
)

dv ≤ K(q̃←n (y0))
−2−γ1(y0 − q(∞)) = O(1).

If γ1 ≤ 1, then
∫ ∞

y0

(q̃←n (v))1−γ1η
(

q̃←n (v), v
)

dv ≤ K(q̃←n (y0))
1−γ1

∫ ∞

y0

v−3 dv = O(1).

Finally, if γ1 > 1, then by the monotonicity of q← and the asymptotic behavior of Hn,2 we have
for all δ > 0 and sufficiently large n

∫ ∞

y0

(q̃←n (v))1−γ1η
(

q̃←n (v), v
)

dv ≤ K

∫ ∞

y0

(

(

q←(v(1 + δ)))1−γ1 ∧ λ1−γ1n,1

)

v−3 dv

= O
(

∫ ∞

y0(1+δ)
(q←(v))1−γ1v−3 dv ∧ λ1−γ1n,1

)

= o(log cn)

by condition (4.11).

The following result gives sufficient conditions such that the difference between the ν-measure of
S and of the truncated set after the marginal transformations (i.e. dn(IV + V ) in (1.15)) can be
approximated by the limiting terms in Lemma 4.4. For the sake of simplicity, we assume that
dn and en are of the same order, but it is not difficult to prove similar results under weaker
conditions on dn/en. Moreover, one can weaken the condition (S2) and the assumptions (Q2)
could be replaced with rather strong conditions on the rate at which k tends to ∞.

Corollary 4.5. If the conditions (M1)–(M3), (D2), (Q1), (Q2) and (S1)–(S3) are fulfilled, then

ν(Hn(S
∗
n))− ν(S)

= k−1/2wn(γ1)











−Γ1

γ1

∫∞
q(∞) q

←(v)η(q←(v), v) dv, γ1 > 0
(

α1

γ1
− β1 −

Γ1

γ2
1

) ∫∞
q(∞)(q

←(v))1−γ1η(q←(v), v) dv, γ1 < 0

−Γ1

∫∞
q(∞) q

←(v)η(q←(v), v) dv, γ1 = 0

+ k−1/2wn(γ2)











−Γ2

γ2

∫∞
xl
q(u)η(u, q(u)) du, γ2 > 0

(

α2

γ2
− β2 −

Γ2

γ2
2

) ∫∞
xl

(q(u))1−γ2η(u, q(u)) du, γ2 < 0

−Γ2

∫∞
xl
q(u)η(u, q(u)) du, γ2 = 0

+ oP
(

k−1/2(wn(γ1) ∨ wn(γ2))
)

(4.17)
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Proof. In view of the Lemmas 4.2 – 4.4, it suffices to define sequences λn,i and τn,i, i ∈ {1, 2}, such
that the conditions (i)–(iv) of Lemma 4.1 and (4.11) and (4.12) are fulfilled and

λn,1 − xl
q2(λn,1−)

+
q(τn,1)− q(∞)

τ2n,1
= o
(

k−1/2wn(γ1)
)

,
λn,2 − q(∞)

(q←(λn,2))2
+
q←(τn,2)− xl

τ2n,2
= o
(

k−1/2wn(γ2)
)

.

Note that we can check these conditions for i = 1 and i = 2 separately. We focus on the sequences
λn,1 and τn,1, since the case i = 2 can be treated analogously if xl is replaced with q(∞) and q
with q←. Again we distinguish three cases depending on the sign of γ1.

If γ1 > 0, then τn,1 must only satisfy (q(τn,1) − q(∞))/τ2n,1 = o(k−1/2 log cn), which can easily be
fulfilled by letting τn,1 tend to ∞ sufficiently fast.

The sequence λn,1 has to satisfy the conditions (i) and (ii) of Lemma 4.1, (4.11) and (λn,1 −
xl)/q

2(λn,1) = o(k−1/2 log cn). If xl > 0, then λn,1 = xl does the job, because condition (i) of
Lemma 4.1 is implied by (S2).

If xl = 0 and γ1 ≤ 1, then the integrability condition of (4.11) is trivial. Moreover, λn,1 :=
k−1/2(log cn)

1/2 → 0 obviously fulfills 4.1 (ii) and (λn,1 − xl)/q
2(λn,1) = O(λn,1) = o(k−1/2 log cn).

Condition 4.1 (i) follows from (S2) and (S3), which implies cnλn,1 →∞.

Finally, if xl = 0 and γ1 > 1, then λn,1 := (k−1/2 log cn)
1/γ1 fulfills 4.1 (ii), 4.1 (i) follows from (S2)

and (S3) as above, and (Q2) implies

λn,1 − xl
q2(λn,1)

= O
( λγ1n,1
| log λn,1|2

)

= O
(

k−1/2
log cn

| log(k−1/2 log cn)|2

)

= o(k−1/2 log cn)

by (S1). Furthermore, the integrability condition of (4.11) is fulfilled, because (Q2) implies
(v/ log v)2/(1−γ1) = O(q←(v)) as v →∞.

Next we consider the case −1/2 < γ1 < 0, when the integrability condition of (4.11) is trivial. If
xl > 0, then we can argue as above that λn,1 = xl satisfies all conditions on λn,1. If xl = 0, then
define λn,1 = c−1n ϕn for some ϕn →∞ sufficiently slowly, so that 4.1 (i) follows from (S2). Further
(λn,1 − xl)/q

2(λn,1) = O(c−1n ϕn) = o(k−1/2c−γ1n ) follows from assumption (S3).

The conditions on τn,1 read as (q(τn,1) − q(∞))/τ2n,1 = o(k−1/2c−γ1n ) and k−1/2 = o((cnτn,1)
γ1) in

this case, which are fulfilled by τn,1 = k1/2cγ1n →∞.

In the case γ1 = 0 the integrability condition of (4.11) is again trivial and λn,1 = xl if xl > 0, and

λn,1 = c−1n log cn if xl = 0 does the job. Moreover, it is easily checked that τn,1 = k1/4 satisfies
(q(τn,1)− q(∞))/τ2n,1 = o(k−1/2 log2 cn) and condition 4.1 (iv).

Observe that we have verified stronger conditions on λn,1 and τn,1 than actually necessary, if
wn(γ1) = o(wn(γ2)). A refined analysis would lead to weaker, but more complex conditions on
q and k that depend on both the values of γ1 and γ2 at the same time. (Also the proof would
become more lengthy as one had to consider 9 cases arising from different combinations of signs
of γ1 and γ2.) Moreover, note that for the above choice of λn,i one has

cnλn,i →∞, i ∈ {1, 2}, (4.18)

and
λ−γin,i = O(k1/2/ log cn) if γi > 0, i ∈ {1, 2}. (4.19)

Now we use classical empirical process theory to establish a uniform bound on νn(B) − Eνn(B)
and thus on term II in decomposition (1.15).
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Lemma 4.6. Under the conditions of Theorem 2.1, one has

νn(B)−Eνn(B)|B=(dn/en)Hn(S∗n)
= oP

(

k−1/2(wn(γ1) ∨ wn(γ2))
)

.

Proof. Note that by (4.2) one has

dn
en
Hn(x1, x2) =

(

H̃
(n,1)
ϑ1,χ1,ξ1

(x1), H̃
(n,2)
ϑ2,χ2,ξ2

(x2)
)

for (x1, x2) ∈ [u∗n,∞)× [v∗n,∞) with H̃
(n,i)
ϑi,χi,ξi

defined by (2.3) and

−ϑi = χi = k1/2(γ̂i − γi), ξi = k1/2
( âi(n/k)

ai(n/k)
− 1−

b̂i(n/k)− bi(n/k)

ai(n/k)
γ̂i

)

.

Since, according to condition (M3), these random variables are stochastically bounded, it suffices
to prove that for all M > 0

sup
max(|ϑi|,|χi|,|ξi|)≤M

∣

∣

∣
νn
(

E
(n)
(ϑi,χi,ξi)i=1,2

)

− Eνn
(

E
(n)
(ϑi,χi,ξi)i=1,2

)

∣

∣

∣
= oP

(

k−1/2(wn(γ1) ∨ wn(γ2))
)

where
E

(n)
(ϑi,χi,ξi)i=1,2

:=
{(

H̃
(n,1)
ϑ1,χ1,ξ1

(x1), H̃
(n,2)
ϑ2,χ2,ξ2

(x2)
)

| (x1, x2) ∈ S
∗
n

}

.

Letting θ := (ϑi, χi, ξi)i=1,2 and

Zn(θ) :=
k1/2

wn(γ1) ∨wn(γ2)

(

νn(E
(n)
θ )− Eνn(E

(n)
θ )
)

, θ ∈ [−M,M ]6,

we have to prove that Zn tends to 0 in probability uniformly. To this end, we establish asymptotic
equicontinuity of Zn, i.e.

lim
δ↓0

lim sup
n→∞

P
{

sup
θ,ψ∈[−M,M ]6,‖θ−ψ‖∞≤δ

|Zn(θ)− Zn(ψ)| > η
}

= 0 ∀ η > 0, (4.20)

and convergence in probability of Zn(θ) for all θ ∈ [−M,M ]6 (see van der Vaart and Wellner, 2000,
Theorem 1.5.7).

For the proof of asymptotic equicontinuity, it is crucial that the functions H̃
(n,i)
ϑi,χi,ξi

(xi) are decreas-
ing in all three parameters for all (x1, x2) ∈ [u∗n,∞)× [v∗n,∞). For ξi resp. ϑi this monotonicity is
an immediate consequence of the facts that (c−γn −1)/γ is negative and increasing in γ (for cn > 1)
and that (1+ γt)1/γ is increasing in t. Because c−γn is a decreasing function of γ, the monotonicity
in χi follows from (2.2), (4.18) and condition (i) of Lemma 4.1, which imply

Ui(dnx)− bi(n/k)

ai(n/k)
=

(xidnk/n)
γi − 1

γi
+O

(

Ai(n/k)(xidnk/n)
γi+ρi+ε

)

=
(xicndn/en)

γi − 1

γi
+ o
(

(cnxi)
γik−1/2wn(γi)

)

> 0

for sufficiently large n.
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The monotonicity of H
(n,i)
·,·,· (xi) implies that the sets E

(n)
(ϑi,χi,ξi)i=1,2

are increasing in all parameters.

Hence, for arbitrary θ, ψ ∈ [−M,M ]6

|Zn(θ)− Zn(ψ)| ≤
k1/2

wn(γ1) ∨ wn(γ2)

(

νn(E
(n)
θ∨ψ \ E

(n)
θ∧ψ) + Eνn(E

(n)
θ∨ψ \ E

(n)
θ∧ψ)

)

where θ ∨ ψ resp. θ ∧ ψ denote the coordinatewise maximum resp. minimum of θ and ψ.

To establish asymptotic equicontinuity of Zn, we cover the parameter space [−M,M ]6 with hy-
percubes Il := ×

6
i=1[liδ, (li + 1)δ], −⌈M/δ⌉ ≤ li ≤ ⌊M/δ⌋, for some small δ > 0 (depending on

the value η in (4.20)) to be specified later on. For θ, ψ ∈ [−M,M ]6 with ‖θ − ψ‖∞ ≤ δ and
l(θ) :=

(

⌊θi/δ⌋
)

1≤i≤6
, one has ‖l(θ)− l(ψ)‖ ≤ 1 and thus

|Zn(θ)− Zn(ψ)|

≤ |Zn(θ)− Zn(l(θ)δ)|+ |Zn(ψ)− Zn(l(ψ)δ)| + |Zn(l(θ)δ) − Zn(l(ψ)δ)|

≤ 3 max
l∈{−⌈M/δ⌉...⌊M/δ⌋}6

sup
t,u∈Il

|Zn(t)− Zn(u)|

≤ 3
k1/2

wn(γ1) ∨ wn(γ2)
max

l∈{−⌈M/δ⌉...⌊M/δ⌋}6

(

νn(E
(n)
(l+1)δ \E

(n)
lδ ) + Eνn(E

(n)
(l+1)δ \E

(n)
lδ )
)

(4.21)

where (l + 1)δ := ((li + 1)δ)1≤i≤6. By (D1), the expectation can be approximated as follows:

Eνn(E
(n)
(l+1)δ \E

(n)
lδ ) =

n

k
P{T←n (X,Y ) ∈ E

(n)
(l+1)δ \E

(n)
lδ } = ν

(

E
(n)
(l+1)δ \E

(n)
lδ

)

+O(A0(n/k)). (4.22)

To bound the right-hand side, first note that by similar calculations as in the proof of Lemma 4.1,
one obtains

H̃
(n,i)
ϑi,χi,ξi

(x)

=
dn
en
x

(

1 +







−k−1/2 log cn(
χi

γi
+ oP (1)) +OP (k

−1/2(xdn/en)
−γi), γi > 0

k−1/2(dnk/n)
−γi
(

(ξi/γi + ϑi/γ
2
i + oP (1))x

−γi + oP (1)
)

, γi < 0

−k−1/2 log2 cn(χi + ϑi/2 + oP (1)) +OP (k
−1/2 log cn log x), γi = 0

)

uniformly for x ∈ [λn,i, τn,i]. That means that under the same conditions as in Lemma 4.1 one
can prove an analogous approximation where Γi is replaced with χi if γi > 0, αi/γi− βi−Γi/γ

2
i is

replaced with ξi/γi + ϑi/γ
2
i if γi < 0, and Γi is replaced with 2χi + ϑi in the case γi = 0. Hence,

we may also conclude a corresponding analog to Corollary 4.5, i.e. ν((en/dn)E
(n)
(ϑi,χi,ξi)i=1,2

)− ν(S)

equals the right-hand side of (4.17) with the above substitutions. Because all integrals are finite,
there exists a constant K > 0 such that for sufficiently large n

ν(E
(n)
(l+1)δ)− ν(E

(n)
lδ ) ≤

en
dn
Kδk−1/2(wn(γ1) ∨wn(γ2))

uniformly for all l ∈ {−⌈M/δ⌉ . . . ⌊M/δ⌋}6. A combination with (4.22), en ≍ dn and condition
(S2) shows that to each η > 0 there exists δ > 0 such that for sufficiently large n

Eνn(E
(n)
(l+1)δ \E

(n)
lδ ) ≤

η

12
k−1/2(wn(γ1) ∨ wn(γ2)). (4.23)
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In view of (4.21), we obtain

P
{

sup
θ,ψ∈[−M,M ]6,‖θ−ψ‖∞≤δ

|Zn(θ)− Zn(ψ)| > η
}

≤ P
{

max
l∈{−⌈M/δ⌉...⌊M/δ⌋}6

(

νn(E
(n)
(l+1)δ \E

(n)
lδ ) + Eνn(E

(n)
(l+1)δ \E

(n)
lδ )
)

>
η

3
k−1/2(wn(γ1) ∨ wn(γ2))

}

≤
∑

l∈{−⌈M/δ⌉...⌊M/δ⌋}6

P
{

∣

∣νn(E
(n)
(l+1)δ \ E

(n)
lδ )− Eνn(E

(n)
(l+1)δ \ E

(n)
lδ )
∣

∣

>
η

6
k−1/2(wn(γ1) ∨ wn(γ2))

}

.

Therefore the asserted asymptotic equicontinuity (4.20) follows from (4.23) and Chebyshev’s in-

equality applied to the binomial random variables kνn(E
(n)
(l+1)δ \E

(n)
lδ ):

P
{

∣

∣νn(E
(n)
(l+1)δ \E

(n)
lδ )− Eνn(E

(n)
(l+1)δ \E

(n)
lδ )
∣

∣ >
η

6
k−1/2(wn(γ1) ∨wn(γ2))

}

≤
kEνn(E

(n)
(l+1)δ \E

(n)
lδ )

(η/6)2k((wn(γ1) ∨ wn(γ2)))2
→ 0 .

uniformly for all l ∈ {−⌈M/δ⌉ . . . ⌊M/δ⌋}6.

It remains to prove that Zn(θ) → 0 in probability for all θ ∈ [−M,M ]6. This, however, follows
similarly by Chebyshev’s inequality, (D1) and the aforementioned analog to Corollary 4.5:

P{|Zn(ϑ)| > η}

= P
{

k
∣

∣νn(E
(n)
θ )− Eνn(E

(n)
θ )
∣

∣ > ηk1/2(wn(γ1) ∨ wn(γ2))
}

≤
nP{T←n (X,Y ) ∈ E

(n)
θ }

η2k(wn(γ1) ∨ wn(γ2))2

=
ν(E

(n)
θ ) +O(A0(n/k))

η2(wn(γ1) ∨ wn(γ2))2

=
ν(S) + o(1)

η2(wn(γ1) ∨ wn(γ2))2

→ 0.

Remark 4.7. Two remarks on this proof are in place. At first glance it seems peculiar that in the

definition of H̃
(n,i)
ϑi,χi,ξi

both parameters −ϑi and χi take over the role of k1/2(γ̂i−γi) in the definition

of H̃. This, however, is necessary to ensure the crucial monotonicity property of H̃
(n,i)
ϑi,χi,ξi

in the
case γi > 0.

Secondly, we used the (slightly old-fashioned) classical approach to establish asymptotic equiconti-
nuity instead of the often more elegant approach via bracketing numbers (see van der Vaart and
Wellner (2000), Theorem 2.11.9), because the same approximation error of order O(A0(n/k))

in (D1) always enters the upper bound on Eνn(E
(n)
(l+1)δ \ E

(n)
lδ ), thus impeding the calculation of

bracketing numbers for radii of smaller order.
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Next we show that the terms I and III in decomposition (1.15) are negligible.

Lemma 4.8. If the conditions of Theorem 2.1 are fulfilled, then

p̂n −
1

en
νn

(dn
en
Hn(S

∗
n)
)

= oP
(

d−1n k−1/2(wn(γ1) ∨ wn(γ2))
)

(4.24)

1

en

(

Eνn(B)− ν(B)
)

|B=(dn/en)Hn(S∗n)
= oP

(

d−1n k−1/2(wn(γ1) ∨ wn(γ2))
)

. (4.25)

Proof. As p̂n = νn(
(

dn/en)Hn(S)
)

/en, the left-hand side of (4.24) is non-negative with expectation

n

ken
P
{

T←n (X,Y ) ∈
dn
en
Hn(S \ S

∗
n)
}

≤
n

ken
P
{

T←n (X,Y ) ∈
dn
en
Hn

(

(0, u∗n)× [q(u∗n−),∞) ∪ [q←(v∗n),∞)× [q(∞), v∗n)
)

}

=
1

dn

(

ν
(

Hn

(

(0, u∗n)× [q(u∗n−),∞) ∪ [q←(v∗n),∞)× [q(∞), v∗n)
)

+ o
(

k−1/2(wn(γ1) ∨wn(γ2))
)

)

where we have used (D1) and (S2). Now assertion (4.24) follows from Lemma 4.2 and the proof
of Corollary 3.5.

Likewise, by conditions (D1), (S2) and dn ≍ en, the left-hand side of (4.25) equals

1

en

(n

k
P{T←n (X,Y ) ∈ B} − ν(B)

)
∣

∣

∣

B=(dn/en)Hn(S∗n)
= OP

(

e−1n A0(n/k)
)

= oP
(

d−1n k−1/2(wn(γ1) ∨ wn(γ2))
)

.

Finally, we derive a bound on term VI in decomposition (1.15).

Lemma 4.9. Under the assumptions of Theorem 2.1 one has

ν(dnS)− pn = o
(

d−1n k−1/2(wn(γ1) ∨ wn(γ2))
)

.

Proof. With λn,i, τn,i as in Lemma 4.1, we define for x ∈ [λn,i, τn,i]

H∗n,i(x) :=
(

1 + γi
Ui(dnx)− bi(dn)

ai(dn)

)1/γi
.

According to de Haan and Ferreira (2006), Theorem 2.3.6 and 2.3.7 one can choose ai(t) as a
multiple of tγi and bi(t) = Ui(t) + O(ai(t)Ai(t)). Thus, for ∆1(x) defined in the proof of Lemma
4.1

Ui(dnx)− bi(dn)

ai(dn)
=

ai(n/k)

ai(dn)

(Ui(dnx)− bi(n/k)

ai(n/k)
−
bi(dn)− bi(n/k)

ai(n/k)

)

=
( n

kdn

)γi((xdnk/n)
γi − 1

γi
+∆1(x) +

(dnk/n)
γi − 1

γi
+∆1(1)

)

+O(Ai(dn))

=
xγi − 1

γi
+O

(

Ai(n/k)
(dnk

n

)ρi+ε
(xγi+ρi+ε + 1)

)

+ o
(

Ai(n/k)
(dnk

n

)ρi+ε)

,
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where in the last step we have used (4.1), (4.18) and the Potter bound for the regularly varying
function A0 (de Haan and Ferreira (2006), Prop. B.1.9 5.). We conclude that

1 + γi
Ui(dnx)− bi(dn)

ai(dn)
= xγi

(

1 +O
(

Ai(n/k)
(xdnk

n

)ρi+ε)

+O
(

Ai(n/k)
(dnk

n

)ρi+ε
x−γi

))

.

Check that the first remainder term is of smaller order than k−1/2wn(γi) by condition (i) of Lemma
4.1. Moreover, for γi > 0, (4.19) and again condition (i) of Lemma 4.1 imply

Ai(n/k)
(dnk

n

)ρi+ε
x−γi = O

(

Ai(n/k)
(dnk

n

)ρi+ε
k1/2/ log cn

)

→ 0,

while for γi < 0 this convergence follows from the conditions (i) and (iii) of Lemma 4.1, and for γi
it is obvious from condition (i).

This shows that H∗n,i(x) is indeed well defined with

H∗n,i(x) = x

(

1 +







o(k−1/2 log cn) +O
(

Ai(n/k)(dnk/n)
ρi+εx−γi

)

, γi > 0

o
(

k−1/2(dnk/n)
−γi(1 + x−γi)

)

, γi < 0

o(k−1/2 log2 cn), γi = 0

)

uniformly for x ∈ [λn,i, τn,i]. Notice that this representation is of similar type as the approximation
derived in Lemma 4.1 with all leading terms equal to 0 (though in the case γi > 0 the second
remainder term has a slightly different form). Therefore, we may proceed as before to conclude

ν(H∗n(S
∗
n))− ν(S) = o

(

k−1/2(wn(γ1) ∨ wn(γ2))
)

+
2
∑

i=1

O
(

Ai(n/k)(dnk/n)
ρi+ε

)

1{γi>0}

= o
(

k−1/2(wn(γ1) ∨ wn(γ2))
)

,

where the last equality follows from Lemma 4.1 (i) (cf. Corollary 4.5).

To complete the proof, we must show that

pn − ν
(

dnH
∗
n(S

∗
n)
)

= o
(

d−1n k−1/2(wn(γ1) ∨ wn(γ2))
)

.

This, however, follows from assumption (D1) (with t = dn) in a similar way as (4.24).

Proof of Theorem 2.1. The assertion is a direct consequence of (1.15), Corollary 4.5 and of
the Lemmas 4.8, 4.6 and 4.9. ✷

Proof of Corollary 2.2. First note that, similarly as for p̂n, one obtains the representation

ν̂n(Ŝ
+
n,2) = νn

(

dn
en
H+
n (S)

)

with H+
n (x, y) :=

(

Hn,1(x),H
+
n,2(y)

)

,

H+
n,2(y) :=

en
dn
T←n ◦ T̂n ◦ (T̂

(c+)
n )← ◦ U(dny)

and c+ := c+n := (1 + ℓn)n/(ken). Thus Lemma 4.1 (with en replaced by en/(1 + ℓn)) yields the
approximation

H+
n,2(y) = (1+ℓn)y

(

1+







−k−1/2 log cn(Γ2/γ2 + oP (1)) +OP (k
−1/2(ydn/en)

−γ2), γ2 > 0

k−1/2(dnk/n)
−γ2
(

(α2/γ2 − β2 − Γ2/γ
2
2 + oP (1))y

−γ2 + oP (1)
)

, γ2 < 0

−k−1/2 log2 cn(Γ2/2 + oP (1)) +OP (k
−1/2 log cn log y), γ2 = 0

)
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Now the very same arguments as used in the analysis of p̂n show that

ν̂n(Ŝ
+
n,2) = ν(S+

n,2) +OP
(

k−1/2(wn(γ1) ∨ wn(γ2))
)

.

Together with an analogous approximation for ν̂n(Ŝ
−
n,2) and our assumption on ℓn, we may conclude

that

dn
en
În,2 =

dn
en

ν(S−n,2)− ν(S
+
n,2)

2ℓn
+ oP (1)

=

∫ ∞

xl

(2ℓn)
−1

∫ (1+ℓn)q(u)

(1−ℓn)q(u)
η(u, v) dv du

→

∫ ∞

xl

q(u)η(u, q(u)) du.

In the last step we have used the fact that, on the range of integration, η(u, v) is continuous and
bounded by a multiple of u−3 ∨ (q(u))−3 (cf. (2.4)), so that the integrand of the outer integral can
easily be bounded by an integrable function and convergence follows by the dominated convergence
theorem. ✷
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