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ABSTRACT

I investigate the suggestion that the Hyades moving group in the Solar neighbourhood
is the result of a recent inner Lindblad resonance. I use dynamical “torus” models of the
Galaxy to understand the expected distribution of solar neighbourhood stars in angle
coordinates for phase-mixed models and models which include a resonant component.
I show that attempts to find the signatures of resonances in angle coordinates are
strongly influenced by selection effects, including rather subtle effects associated with
the relationship between action and angle for stars at a given point. These effects
mean that one can not use simple tests to determine whether substructures seen in
the Solar neighbourhood are associated with any given resonance.

Key words: solar neighbourhood – Galaxy: kinematics and dynamics – methods:
data analysis

1 INTRODUCTION

Since Dehnen (1998) used proper motions and parallaxes ob-
tained by the Hipparcos satellite (ESA 1997) to investigate
the kinematics of the Solar neighbourhood, it has been clear
that the local distribution function (df) is far from smooth.
In particular, the distribution of stars in the U, V plane1 is
dominated by a number of streams, all of which are thought
to be dynamical in origin (e.g. Famaey et al. 2005).

Recently Sellwood (2010, henceforth S10) argued that
part of this substructure could be explained by a recent inner
Lindblad resonance (ILR), a conclusion he supported with
reference to the distribution in angle coordinates of stars
observed by the Geneva-Copenhagen survey (GCS: Holm-
berg, Nordström, & Andersen 2009). This conclusion was
supported by Hahn, Sellwood, & Pryor (2011) who looked
at stars in the Solar neighbourhood observed by the Radial
Velocity Experiment (RAVE: Steinmetz et al. 2006) and the
Sloan Digital Sky Survey (SDSS: Abazajian et al. 2009).

In this paper I reexamine S10’s conclusion that the dis-
tribution of stars in the Solar neighbourhood show signs of

⋆ E-mail: p.mcmillan1@physics.ox.ac.uk
1 Throughout this paper, in the Solar neighbourhood, velocities
with respect to the Sun are described in terms of a component
towards the Galactic Centre (U), a component in the direction
of Galactic rotation (V ), and a component perpendicular to the
Galactic plane towards the north Galactic pole (W ). Velocities
with respect to the local standard of rest are described in terms
of components in the same directions as U , V and W which are
given the symbols vx, vy and vz respectively

an inner Lindblad resonance (ILR). I compare the GCS sam-
ple of stars in the Solar neighbourhood to a phase-mixed dy-
namical model. This allows me to separate selection effects
from genuine substructure in the local df, and to develop
some understanding of the impact of selection effects on the
observed properties of any substructure that is found in the
local df. I then explore the impact of selection effects on
simple models of an ILR or an outer Lindblad resonance
(OLR).

In Section 2 I discuss angle-action coordinates, how they
might be used to determine the dynamical origin of observed
kinematic substructure, and their relationship to kinemat-
ics in the Solar neighbourhood. In Section 3 I give numer-
ical details of the assumptions made and the phase-mixed
dynamical model considered. In Section 4 I explore the ap-
pearance in angle coordinates of the solar neighbourhood in
a phase-mixed model, which I then use in Section 5 to inter-
pret the distribution in angle coordinates of stars observed
by the GCS. Section 6 discusses simple models which include
a resonant component, and uses them to better understand
the GCS data.

2 ANGLE-ACTION COORDINATES

Three actions Ji and three conjugate angle coordinates θi
provide canonical coordinates for stars orbiting in the grav-
itational potential of the Galaxy. For a particle on any orbit
the actions are conserved quantities and the angles increase
linearly with time, θi(t) = θi(0) + Ωit, where Ωi is a fre-
quency. This means that J can be thought of as labeling
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an orbit, and θ as describing a point on that orbit. The
usual phase space coordinates x,v are 2π-periodic in each
angle coordinate θi. For a phase-mixed df the distribution
of stars is uniform in angle for any given range of actions,
and therefore the df f = f(J).

The usage of angle-action coordinates has been some-
what limited by the fact that the relationship between x,v
and θ,J is only available analytically for a very limited set
of gravitational potentials. I use the “torus-fitting” method
(e.g. McMillan & Binney 2008) to find angle-action coor-
dinates for stars with known velocities, and to construct a
phase-mixed model. S10 found values for the angle-action
coordinates in the plane using the approximation that the
in-plane and vertical components of motion could be decou-
pled, and then integrating orbits in the plane. The torus
method requires no such approximation, but since the stars
being considered do not generally move far from the plane of
the Galaxy, these approaches produce very similar results.

It was shown by S10 that stars trapped or scattered at
a resonance with some perturbation in the potential will, at
any given time, satisfy the relation

lθr +mθφ ≃ const, (1)

where the perturbation has m-fold rotational symmetry, and
l is an integer or l = ± 1

2
for ultra-harmonic resonances.

l = −1 corresponds to an ILR, l = 1 corresponds to an
OLR, and l = 0 at corotation. The value of the constant in
eq. 1 can take any value, and varies linearly with time. This
condition is in addition to the usual condition for resonance

lΩr +mΩφ = const = mΩp, (2)

where Ωp is the pattern speed of the perturber, and l &
m have the same meaning as before. This condition on fre-
quency can also be thought of as being a condition on action,
since Ω = Ω(J)

The zero-points for the angles can be defined arbitrar-
ily (provide the same convention is applied for all orbits),
and for clarity I follow the conventions used by S10. This
means that each component of θi lies in the range [−π, π].
The Galactocentric coordinates are aligned such that the
Sun is at a position in real space with Galactocentric co-
ordinate φ = 0. I take θr = 0 at apocentre, and therefore
θr = ±π at pericentre. I define the zero point of θφ such that
at apocentre θφ = φ. Note that for small Jr, Jz, where it is
appropriate to use the epicycle approximation, the value of
θφ corresponds to the position (in φ) of the guiding centre.

Figure 1 is a schematic diagram illustrating the rela-
tionship between θr and θφ using the example of an orbit in
the plane of the Galaxy with small eccentricity, where use of
the epicycle approximation is appropriate. The star moves
on an epicycle about the guiding centre, which is itself mov-
ing at a constant angular velocity. The radius of the orbit of
the guiding centre about the galactic centre is determined by
the angular momentum of the orbit. The size of the epicycle
(i.e. a, the maximum radial excursion of the orbit away from
the guiding centre and δ, the maximum value of |φ − θφ|)
can be found under the epicycle approximation

a ≈
√

2Jr/κ (3)

and

δ ≈
2Ωc

κRg
×
√

2Jr/κ, (4)

Figure 1. Schematic diagram illustrating the relationship be-
tween φ and θφ as a function of θr for low eccentricity orbits, for
which the epicycle approximation applies. The dotted line and
arrow shows the motion of the guiding centre (shown as a cross).
The solid line and arrows show the motion of the star on an epicy-
cle around the guiding centre. The maximum difference between
φ and θφ is δ which can be found (under the epicycle approxima-
tion) using eq. 4. Note that the epicycle approximation is used
purely for illustrative purposes in this paper, and is not used to
find the relationship between x,v and θ,J .

where Rg is the radius of the guiding centre, Ωc(Jφ) is the
circular frequency, and κ(Jφ) is the radial epicycle frequency
(e.g. Binney & Tremaine 2008). For given value of J the
value of θr sets the relationship between θφ and φ, and the
orbit only goes through a given point (e.g. the Sun’s po-
sition) at two values of θ (related through θr,1 = −θr,2,
θφ,1 − φ = φ− θφ,2).

In Figure 2 I show how values of Jr, Jφ, θr or θφ corre-
spond to lines in the vx, vy-plane for stars that are exactly
at the Sun’s position, and for which we can ignore motion
out of the plane (i.e. Jz = 0). As that plot shows, one can
think of Jφ and θφ as providing near-Cartesian coordinate
axes in the vx, vy-plane, and Jr and θr as providing near-
polar coordinate axes in the vx, vy-plane. Indeed specifying
any two values from the set (Jr, Jφ, θr, θφ) defines a single
position in the vx, vy-plane for a star at the Sun’s position
– except if the values are Jr and anything other than θr, in
which case it can describe zero, one or two possible positions
in the vx, vy-plane.

The stars considered in this paper are those found
within 200 pc of the Sun, but none actually at the Sun’s
position, so the relationships between vx, vy and J ,θ shown
in Figure 2 are only approximate (even ignoring the motion
out of the plane). A star being at Galactocentric φ = φ∗ 6= 0
affects the value of θφ, shifting it by φ∗ for a given vx, vy ,
with the greatest value of φ∗ possible for this sample being
∼ 0.02. A star being at R 6= R0 affects the value of Jφ for
a given vx, vy , but only by maximum of ∼ 0.02Jφ,0 in this
sample (with Jφ,0 the angular momentum of a circular or-
bit at R0). The values of Jr or θr for a given vx, vy are not
significantly affected by the star’s position within the solar
neighbourhood, primarily because the circular velocity (and
thus the velocity of a Jr = 0 orbit) barely changes across the
volume considered for any reasonable Galactic potential.
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Figure 2. The vx, vy plane, with lines of constant θφ or Jφ (dotted and dashed respectively, left panel) or lines of constant θr or Jr
(again dotted and dashed respectively, right panel) plotted, for a star at the Sun’s position with Jz = 0. The lines of constant θφ and Jφ
are linearly spaced in each case and labelled on the plot (where Jφ,0 = 2080 kpc kms−1 is the angular momentum of a circular orbit at
the Solar radius) – they form a nearly-Cartesian coordinate system for the vx, vy plane. The lines of constant θr are shown at intervals
of π/8, with θr increasing as you move anti-clockwise on the plot. The lines of constant Jr are logarithmically spaced in Jr, with the
innermost one at 1 kpc kms−1 and the value of Jr increasing by a factor of

√
10 at a time, with the outermost visible line corresponding

to Jr = 100 kpc km s−1. Jr and θr form a nearly-polar coordinate set in the vx, vy plane, with Jr as a “radius” and θr as a “polar angle”.

The rest of this paper focuses on the distribution of
stars in θr and θφ. I have examined the distribution of stars
in θz and, apart from the expected tendency for stars to be
at values of θz that place them near the Galactic plane (a
selection effect), it shows no interesting features. This is en-
tirely in keeping with the absence of kinematic substructure
in vz noted by Dehnen (1998), and S10’s brief discussion of
the Jz distribution.

3 NUMERICAL DETAILS

In all cases I use the “convenient” model Galactic poten-
tial given by McMillan (2011). This model consists of a
bulge component, thin and thick exponential discs, and a
Navarro, Frenk, & White (1996) halo. This sets the solar ra-
dius R0 = 8.5 kpc and the circular velocity at the Sun (the
local standard of rest) v0 = 244.5 kms−1. I have explored
the effect of using alternative Galactic potentials (including
a logarithmic potential of the kind used by S10), and it does
not significantly alter the main results.

I assume that the velocity of the Sun with respect to
the local standard of rest is the best-fitting value found by
Schönrich, Binney, & Dehnen (2010)

v⊙ = (U⊙, V⊙,W⊙) = (11.1, 12.24, 7.25) km s−1. (5)

The phase-mixed model df I compare to the real data is
very similar to that described in Binney & McMillan (2011),
but with altered disc scale-lengths (to reflect the scale-
lengths of the discs that produce the potential). The thin

and thick discs are modelled as having “quasi-isothermal”
dfs, which is to say that they are of the form

f(Jr, Jφ, Jz) = fσr
(Jr, Jφ)×

νz
2πσ2

z

e−νzJz/σ
2

z , (6)

where

fσr
(Jr, Jφ) ≡

ΩcΣ

πσ2
rκ

∣

∣

∣

∣

Rc

[1 + tanh(Jφ/L0)]e
−κJr/σ

2

r . (7)

Here ν(Jφ) is the vertical epicycle frequency and Σ(Jφ) =
Σ0e

−(Rc−R0)/Rd is the (approximate) radial surface-density
profile, where Rc(Jφ) is the radius of the circular orbit with
angular momentum Jφ. The factor 1+tanh(Jφ/L0) in equa-
tion (7) is there to effectively eliminate stars on counter-
rotating orbits and the value of L0 is unimportant provided
it is small compared to the angular momentum of the Sun.
In equations (6) and (7) the functions σz(Jφ) and σr(Jφ)
control the vertical and radial velocity dispersions, and I set

σr(Jφ) = σr0 e
q(R0−Rc)/Rd

σz(Jφ) = σz0 e
q(R0−Rc)/Rd , (8)

where q = 0.45 and σr0 and σz0 are approximately equal
to the radial and vertical velocity dispersions at the Sun. I
take the df of the entire disc to be the sum of a df of the
form (6) for the thin disc, and a similar df for the thick
disc, the normalisations being chosen so that at the Sun the
surface density of thick-disc stars is 23 per cent of the total
stellar surface density. Table 1 lists the parameters of each
component of the df.

The physical properties of the model are determined by
both the df and the Galactic potential and, as in Binney &
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Table 1. Parameters of the df.

Disc Rd/kpc σr0/km s−1 σz0/km s−1 L0/kpc km s−1

Thin 3.0 27 20 10
Thick 3.5 48 44 10

Figure 3. Distribution in vx (left) and vy (right) of stars ob-
served by the GCS (assuming v⊙ is as given in eq. 5, dotted

line) and taken from the solar neighbourhood in the phase-mixed
model (solid line).

McMillan (2011), the df does not self-consistently reproduce
the potential. To produce a self-consistent dynamical model
one has to specify a df for the dark matter (which makes
a substantial contribution to the potential), and distinguish
carefully between the masses and luminosities of the stars.
This lies well beyond the scope (or needs) of this study.

Samples of stars are produced by sampling the df in J ,
then sampling evenly in θ in the range [−π, π]. This fully
determines the position and velocity of the stars, and only
those that lie within 200 pc of the Sun become part of the
sample. This is the same procedure that was used in Binney
& McMillan (2011) and, as in that paper, 200, 000 values of
J are sampled from the df (all of which correspond to orbits
that enter the solar neighbourhood) from which 1, 000, 000
stars in the solar neighbourhood are sampled.

In Figure 3 I plot the distribution of stars in vx and in
vy from the GCS (assuming the value of v⊙ given in eq. 5)
and from the phase-mixed df. This simple df does not en-
tirely fit the observed data, in particular the GCS data has a
much higher peak in its vy distribution than the model data.
However the vx distributions are very similar and the model
vy-distribution is appropriately skew. Since this model is
only being used as a guide, rather than as an attempt to
reproduce the observed distributions, this is sufficient and
I do not attempt to fit the observed distribution more pre-
cisely with dfs that are more complicated functions of the
actions (e.g. Binney 2010).

4 APPEARANCE OF A PHASE-MIXED

COMPONENT IN ANGLE COORDINATES

While, for a phase-mixed population, the distribution of
stars in angle is uniform over any given range in action,
it does not generally follow that the distribution is uniform
over a given volume in real space. The distribution in angle
of stars found within the Solar neighbourhood in a phase-

Figure 4. Distribution in θr (upper) and θφ (lower) of stars
in the solar neighbourhood (radius of 200 pc) taken from the df

given in equation 6. These histograms, and all others in this paper
showing the relative density of stars as a function of the angles, are
normalised such that the total area under the histogram is unity,
and are found by binning stars with bin width ∼ 0.1 radians.

Figure 5. Contour plot showing the density in the θr , θφ plane of
stars in the solar neighbourhood (radius of 200 pc) taken from the
df given in equation 6. Contours are spaced linearly in density.
Note that the regions near θr = 0,±π have a high density because
all stars near those points have φ ≈ θφ, and so stars in the solar
neighbourhood have values of θφ that lie in a very small range
(which does not vary with Jr).

mixed model is significantly non-uniform. In Figure 4 I show
the distribution in θr and in θφ of stars in the solar neigh-
bourhood, taken from the phase-mixed model.

The narrow distribution in θφ reflects the fact that the
stars are taken from a very narrow range in φ, and that
there is a close relationship between φ and θφ. The average
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Figure 6. Plot showing the relative density of stars in the solar neighbourhood taken from my phase-mixed model (dotted line) and
the GCS data (solid line) for the linear combinations of angles θr + nθφ for various values of n. The dotted line illustrates the effects of
selection effects in each plot, so peaks in the solid line that are not seen in the dotted line are genuine substructure. ILRs are expected
to produce peaks for n < 0 and OLRs to produce peaks for n > 0. The main features are (a) the peak visible in all plots that moves
gradually with increasing n from θr − 4θφ ∼ −1 to θr + 4θφ ∼ −2; and (b) the peak that is only clearly visible for n > 0, moving with
increasing n from θr ∼ 2 to θr + 4θφ ∼ 3. The movement and (to at least some extent) sharpening or broadening of the peaks is due to
the selection effects seen in Figure 5.

value of δ (approximated using eq. 4) for stars in the survey
volume is ∼ 0.16.

The relative density of stars in θr is at a maximum
around 0 (i.e. apocentre) and a minimum around ±π (peri-
centre). The stars at apocentre have guiding radii smaller
than their current radius, and those at pericentre have guid-
ing radii larger than their current radius. The excess of stars
at apocentre is due to the fact that the density of stars, and
their velocity dispersion, decreases with increasing radius,
so more stars visit the Solar neighbourhood from guiding
radii smaller than R0 than from guiding radii larger than
R0. Since stars at apocentre are lagging circular rotation,
while those at pericentre are leading it, this non-uniformity
in the θr distribution is directly related to asymmetric drift,
and the skew distribution in vy seen in Figure 3 (e.g. Bin-
ney & Tremaine 2008). This behaviour is different from that
suggested by S10 who incorrectly claimed that one should
expect low relative density of stars around both θr = ±π
and θr = 0.

In Figure 5 I show density contours for the values of
θr and θφ taken from the phase-mixed model. There is a
clear relationship between the two values, with θφ & 0 for
θr > 0, and θφ . 0 for θr < 0. There are extrema in θφ at
θr = ±π/2, and θφ ≈ 0 for θr = 0 & ±π. This is again due
to the fact I am selecting stars from a very narrow range in
φ, and because of the relationship between θr and θφ for a
given orbit at a given point illustrated in Figures 1 and 2.

5 GENEVA COPENHAGEN SURVEY DATA

I now compare the phase-mixed model analysed in Section 4
to the stars in the Solar neighbourhood observed by the
GCS. The GCS data are taken from the table produced
by Holmberg et al. (2009), and I follow S10 in restricting
the analysis to stars that have full 6D phase-space coordi-
nates quoted, are at distances 6 200 pc from the Sun, and
are not directly associated with the Hyades cluster. The dis-
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tributions in angle space that I find are very similar to those
found by S10, and the small differences are due to the differ-
ent choices of Galactic potential and the use of torus-fitting
as opposed to integrating orbits in the plane.

In Figure 6 I plot the distributions in θr + nθφ of the
GCS stars (solid line) and those taken from the phase-mixed
model (dotted line) for a series of integers n. Naively one
would simply expect an OLR to produce a peak for some
value of n > 0, and an ILR to produce a peak for some
value of n < 0 (with the perturber being |n|-fold symmetric).
The relationship between θr and θφ due to selection effects
produces a peak around 0 in plots with n < 0 and around
±π for n > 0. 2

There are two main features in the angle distribution
of the GCS data (besides those due to selection effects), one
peak that lies at θr ∼ −1.5, and one that lies at θr ∼ 2.2.
It is also noticeable that the peak at 0 which appears in the
model data for n < 0 is offset to slightly lower values in the
GCS data – this can be associated with the small peak in
the θr distribution at θr ∼ −0.4.

Figure 7 shows the distribution of stars taken from the
GCS data in the vx, vy-plane (assuming the Solar velocity
relative to the local standard of rest given in eq. 5) overlaid
on the lines of constant θr and of constant θφ (at the Sun’s
position) as shown in Figure 2. This makes it easy to see
which of the familiar features in the vx, vy-plane correspond
to which peaks in Figure 6. The peak at θr ∼ −1.5 is asso-
ciated with the Hyades moving group, the peak at θr ∼ 2.2
is associated with the Sirius moving group and the peak at
θr ∼ −0.4 is associated with the Pleiades moving group.

The peak at θr ∼ −1.5 clearly appears in all the plots
shown in Figure 6, shifted to higher values for n < 0 and
to lower values for n > 0. This peak is made up of almost
the same set of stars in each plot. It is this feature that S10
identified as the signature of an ILR. It is clear from Figure 6
that these data are consistent with the stars that make up
the peak at θr ∼ −1.5 being associated with any value of n
between −4 and 4 (including non-integer values, and indeed
for |n| > 4 though these are not shown as selection effects
create ever greater distortions). While S10 shows plots that
are almost identical to the centre and bottom-left panels
of Figure 6 (his fig. 4 upper panel and fig. 7 top panel,
respectively), the peaks in these plots are misidentified as
being primarily due to selection effects that S10 incorrectly
claimed should result in high relative densities around θr =
±π/2.

The peak at θr ∼ 2.2 becomes a more clearly defined
(and higher) peak for n > 0 (shifted to higher values), and
nearly disappears for n < 0. It is also noticeable that the
feature around θr ∼ −1.5 becomes more sharply peaked for
n < 0. This would seem to imply that the peak at θr ∼ 2.2
is associated with an OLR, and the peak at θr ∼ −1.5 is
associated with an ILR, but this is not necessarily the case,
both because of the selection effects discussed previously,
and because of the other condition on resonant stars (eq. 2,
see Section 6).

2 The convention I use for these graphs means that for n < 0
they are mirror images of the comparable figures in S10. This
choice is made so that the features in the various plots can easily
be “followed” from one to another as n increases.

Figure 7. Distribution of GCS stars in the vx, vy-plane (solid
contours), overlaid on lines of constant θr (dotted) and thetaφ
(dashed) for stars at the Sun’s position with Jz = 0, which
are shown as a guide. This makes it easy to associate fea-
tures seen in Figure 6 with the familiar Solar neighbourhood
moving groups (e.g. Dehnen 1998). The Hyades moving group
(around vx = −25 km s−1, vy = −5 kms−1) is clearly associated
with the peak at θr ∼ −1.5. The Sirius moving group (around
vx = 20 km s−1, vy = 15 km s−1) is associated with the peak at
θr ∼ 2.2. The Pleiades moving group (around vx = −2 km s−1,
vy = −10 km s−1 is associated with the peak near θr = −0.4.

In Figure 8 I show a contour plot of the density in the θr,
θφ plane of the selected stars from the GCS catalogue. The
plots in Figure 6 are found from the distribution in angle
space plotted in Figure 8 by marginalising it over straight
lines, the gradient of which are determined by n. In Figure 8,
lines corresponding to a few different values of n are plotted,
centred on the main overdensities, to guide the eye.

The distribution in the θr, θφ plane seen in Figure 8
shows the same strong selection effects in θ illustrated
by the phase-mixed model. These selection effects have a
very strong effect on the overdensities associated with the
Pleiades and Sirius moving groups, which drives them to-
wards the observed correlation between θr and θφ in the two
different cases. The Hyades overdensity (around θr = −1.5)
is a less straightforward case. It is approximately triangu-
lar in the θr, θφ plane, and lies either side of the expected
minimum in θφ at θr = −π/2 (this minimum is seen in the
phase-mixed model, Figure 5). The Hyades overdensity has
increasing θφ with increasing θr for θr > −π/2, and with
decreasing θr for θr < −π/2 (Figure 8), and these are the
directions one would expect the selection effects that affected
the phase-mixed model to drive the observations. This selec-
tion effect is important, but it is not clear that it is enough
to explain the observed shape, and in Section 6 I explore
the distribution in angle space of models with a resonant
component.

Figure 9 shows a contour plot of the GCS data dis-
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Figure 8. Contour plot of the density in the θr, θφ plane of
stars taken from the GCS data (solid lines). Contours are spaced
linearly in density, at the same densities as Figure 5 (relative
to the total number of stars in each case). The various plots in
Figure 6 can be thought of as being constructed from the density
in this plane by marginalising over lines of constant θr + nθφ.
The dotted lines show these lines for n = −4,−2,+2,+4 passing
through the main overdensities, to guide the eye.

Figure 9. Contour plot showing the distribution of GCS stars in
polar coordinates with radial coordinate a (eq. 3) the amplitude
of radial motion under the epicycle approximation, and polar co-
ordinate ϕ = θr + nθφ with n = −2 (left) or n = 2 (right).
The overdensity corresponding to the Hyades is found around
(x, y) = (0.3,−0.6) in the n = −2 plot and around (−0.05,−0.6)
in the n = 2 plot. A plot very similar to the n = −2 one was
shown by S10 as fig. 8.

tributed in polar coordinates with radial coordinate a (the
amplitude of radial motion under the epicycle approxima-
tion, eq. 3) and polar coordinate ϕ = θr − 2θφ (left) or
ϕ = θr + 2θφ (right). These are comparable to the upper
panel of S10’s fig. 8. In both cases one can see an over-
density at particular values of the polar coordinate, found
(unsurprisingly) at the values of ϕ one would anticipate
given Figure 6. S10 only showed a version of the plot with
ϕ = θr − 2θφ, finding that the plot for ϕ = θr +2θφ (i.e. the
plot that would suggest an OLR) argued against the sug-
gestion that the Hyades corresponded to an OLR, primarily
because the overdensity in the ϕ = θr − 2θφ plot appears to
lie in a radial line out to larger a in the figure, whereas in
the ϕ = θr + 2θφ plot it does not (Sellwood priv. comm.).
This is not a particularly strong effect, but can be seen in

Figure 10. Contour plot of the density in the Jr, Jφ plane of
stars taken from the GCS data (solid lines, upper plot), and of
the phase-mixed model described in Section 3 (solid lines, lower
plot). Contours are spaced linearly in density, at the same densi-
ties in each plot (relative to the total number of stars in each case).
The Pleiades and Sirius moving groups produce small overdensi-
ties around (Jr , Jφ) = 0.96, 0.0015 and 1.02, 0.0015 respectively
(in units where Jφ,0 = 1). The Hyades moving group produces a
overdensity which is spread out in Jr at around Jφ = 0.97, tend-
ing towards slightly lower Jφ with increasing Jr. Resonance lines
for 2:1 OLRs (dotted) and ILRs (dashed) are plotted, where the
value of Ωp (eq. 2) is chosen in each case such that the lines reach
Jr = 0 for Jφ = 0.9, 1 and 1.1. A scatterplot of the distribution
of the GCS stars in action was shown by S10 as fig. 3.

Figure 9, and understanding it requires moving beyond a
phase-mixed model.

6 APPEARANCE OF AN OLR OR ILR IN

ANGLE COORDINATES

Thus far in this study I have only considered two of the
conditions on resonant stars – that they lie on or near lines
of lθr + mθφ = const and that they must lie in the survey
volume. To understand the expected distribution of reso-
nant stars in a survey of the Solar neighbourhood, one must
consider the combination of three different requirements on
them:

• They must have angle coordinates near to a given res-
onance line in angle (eq. 1).

• They must have orbital frequencies (and thus actions)
which place them near to a given resonance line in frequency
(eq. 2).

• They must lie within the survey volume (e.g. within
200 pc of the Sun).

Note that over the Galaxy as a whole, the requirement on
θ only affects the distribution in θ and the requirement on
J only affects the distribution in J – the two distributions
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can be thought of as independent3. It is only because of the
finite survey volume, and therefore the finite range of θ for
which stars with for a given J will be observed, that the
J condition significantly affects the observed θ distribution
(and vice versa).

In Figure 10 I plot the density of the GCS stars as a
function of Jφ and Jr. The density of stars in my phase-
mixed model is also plotted, for comparison. For a given
Jφ there is a minimum Jr = Jr,min for stars to reach the
Solar neighbourhood, which can be thought of as a minimum
epicyclic amplitude for a given guiding centre radius4. This
is the cause of the near-parabolic lower boundary seen in
Figure 10. The Pleiades and Sirius moving groups can be
clearly seen as small overdensities in this plot. The Hyades
moving group is seen as a rather more spread out overdensity
at a range of Jr, around Jφ = 0.97Jφ,0, tending towards
slightly lower Jφ with increasing Jr.

The dotted and dashed lines in Figure 10 are 2:1 OLR
and ILR lines respectively, these are lines along which
2Ωφ(J) + Ωr(J) = 2Ωp and 2Ωφ(J) − Ωr(J) = 2Ωp re-
spectively, for different values of Ωp, the perturber pattern
speed, chosen such that the resonance lines reach Jr = 0 at
Jφ = 0.9, 1, or 1.1Jφ,0. Changing the value of Ωp moves the
resonance lines in Jφ, but does not significantly alter their
gradient in this range of J . The Hyades overdensity seems
to lie around a Lindblad resonance line, but this could be ei-
ther an OLR or ILR line – it was this fact which lead S10 to
claim this was an Lindblad resonance, but that one needed
to investigate the distribution in angle to determine which
one. Other resonances – the 3:1 or 4:1 OLR or ILR lines –
would appear very similar on Figure 10, though the 2:1 ILR
line is the furthest from the vertical. It is also worth noting
that the slope of the various resonance lines is sensitive to
the Galactic potential – in a logarithmic potential (of the
kind used by S10), the gradients of the 2:1 OLR and ILR
lines in this part of J -space are nearly identical. It may be
possible to use the slope of resonance lines in action space
to provide information about the Galactic potential by com-
paring them to observed dynamical substructure, but that
is beyond the scope of this study.

To explore the expected distribution of stars in the Solar
neighbourhood associated with a resonance, I consider a df

related to the phase-mixed df used previously, adjusted to
include a resonant component:

f(J ,θ) ∝ f0(J)× (1 + C ηres(J ,θ)) (9)

where f0 is the distribution function described in Section 3,
C is a constant chosen such that the resonant component

3 In practice they are not entirely independent – the resonant
stars at the (say) higher values of lθr +mθφ about the resonance
are probably there because they have the higher values of lΩr(J)+
mΩφ(J). This effect is likely to have some impact, but is beyond
the scope of this study
4 For a given Jφ, the value of Jr,min is in fact dependent on
Jz, with increasing Jz generally causing a decrease in Jr,min if
Jφ < Jφ,SN , and an increase in Jr,min if Jφ > Jφ,SN , where
Jφ,SN is the angular momentum of a circular orbit that passes
through the Solar neighbourhood. This effect is small for the stars
considered here as they have Jz ≪ Jφ.

contributes 8 percent of the stars observed in the Solar
neighbourhood, and

ηres(J ,θ) = exp

(

−
(Jφ − Jφ,res)

2

∆2
J,res

−
(θr − θr,res)

2

∆2
θ,res

)

. (10)

Jφ,res is a function of Jr and is chosen such that
lΩr(Jr, Jφ,res) + mΩφ(Jr, Jφ,res) = const, for Jz = 0,
and θr,res is a function of θφ and is chosen such that
lθr,res + mθφ = const. The values ∆J,res and ∆θ,res give
the width of the resonance peak around the exact resonance
lines in Jφ and θr, respectively. One could, equally, describe
the width in action or angle in terms of a spread in Jr or θφ
respectively, but for convenience I have chosen to describe it
in terms of the coordinates with the greater ranges of values
in these data. The width ∆J,res is effectively a width in fre-
quency about the pattern speed of the perturber. In the toy
models I show here I take ∆J,res = 0.01Jφ,0, ∆θ,res = 0.3.

I consider two toy models, each designed to produce
models with an overdensity in phase-space in a similar vol-
ume to that where the Hyades moving group is found (but
not tuned to produce a best fit), one corresponding to an
OLR (l = 1, m = 2) and one corresponding to an ILR (l =
−1, m = 2). For the OLR model, I take θr,res +2θφ = −1.9,
and for the ILR model −θr,res + 2θφ = 1.3. In the OLR
case I take Jφ,res(Jr = 0) = 0.975Jφ,0 , and in the ILR case
Jφ,res(Jr = 0) = 0.985Jφ,0 .

Figure 11 shows contour plots of the density in the θr,
θφ plane of the OLR and ILR models, and plots of θr + nθφ
(as in Figure 6) restricted to n = ±2 in the interests of
brevity. Both the ILR and OLR models reproduce some of
the features of the Hyades overdensity. In both cases the
overdensity in angle space is somewhat triangular in shape,
like the Hyades overdensity, rather than following a single
line as one would expect if only the condition on angle (eq. 1)
was relevant. In both cases the overdensity in angle is strong
for the two cases n = ±2, as well for other values of n (not
shown).

In an effort to explain the structure of the overdensity in
the θr, θφ plane, the upper panels of Figure 11 also show the
lines θr = θr,res for the two models, and lines correspond-
ing to the condition on J . The latter are found by taking
the condition that Jφ = Jφ,res(Jr) (or Jφ = Jφ,res ±∆J,res

or Jφ = Jφ,res ± 2∆J,res) and determining the two possible
values of θ that a star with these actions would have at the
Sun’s position – in the relevant part of phase space, lower
values of Jr correspond to smaller (i.e. closer to zero) val-
ues of θφ. This gives a sense of the two competing effects
which (in addition to the general selection effects illustrated
in Figure 5) determine the shape of the overdensity in angle
space, but it is important to also consider the effect of the
finite volume surveyed on the constraint applied by the con-
dition on J , i.e. how close to the dotted lines in Figure 11
stars must actually lie.

A star with a given value of J which lies within 200 pc
of the Sun will have a value θφ which lies within ∼ 0.02 of
the value for a star at the Sun, while the range of possible
values of θr is typically larger, and increases with decreasing
Jr (and thus, in the overdensity considered, with decreasing
θφ). This latter point can be understood by considering a
star in the epicycle approximation. As Jr → 0 the epicycle
shrinks to negligible size, so the star can be at any point on
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Figure 11. Plots showing the distribution of stars in θ of stars taken from the OLR (left) and ILR (right) models. The upper panels
show a contour plot of the density in the θr, θφ plane (solid line). The dashed line in those figures is the line θr = θr,res(θφ) (eq. 10), and
the dotted lines are the angle coordinates corresponding to the resonance lines in action at the Sun’s position – as discussed in Section 2 a
position and value of J defines two possible values of θ. In either set of five dotted lines, the central one corresponds to Jφ = Jφ,res(Jr),

and those either side correspond to ±∆J,res and ±2∆J,res. The lower panels show the distribution of stars in θr + nθφ, as in Figure 6
except restricted to only n = −2 or 2. In this case the solid line shows the distribution for the model, and the dotted line shows the
distribution for the GCS stars (for comparison).

the epicycle (therefore any θr) and still be within the survey
volume if the value of θφ is one that places it there. As Jr

increases, and the epicycle increases in size, the fraction of
the epicycle (i.e. the range in θr) that corresponds to stars
that enter the survey volume decreases.

Figure 12 shows polar plots, analogous to those in Fig-
ure 9, each labeled with which model they represent and
what was used as the polar angle ϕ (the radial coordinate,
as before, is always radial epicycle amplitude a). In each
case I again plot the lines corresponding to θr = θr,res(θφ)
and Jφ = Jφ,res(Jr), evaluated at the Sun’s position. Once
again, it is clear that both resonant conditions are impor-
tant on the distribution in these plots, so the overdensity
seen will be distorted away from θr + nθφ = const even if
the model has θr,res+nθφ = const as a constraint, providing
there is a non-negligible width around the resonance in θ.

Note that as Jr increases (and the size of the epicycle
increases), the condition on J becomes more restrictive in
θ for the reason discussed above. Therefore this condition
becomes increasingly dominant on the observed overdensity.
This can be seen in Figure 12 as the outer contours show that

the overdensity appears to follow the dotted line correspond-
ing to Jφ = Jφ,res(Jr) at large Jr. For both of the models
this means that the contours seem to show an overdensity
that lies around a value of θr − 2θφ that is approximately
constant with increasing Jr, while lying around a value of
θr +2θφ that varies with increasing Jr. This provides a nat-
ural explanation for the slight curvature as Jr increases of
the overdensity associated with the Hyades moving group in
the equivalent plot for the GCS stars (Figure 9) – for over-
densities produced by either an OLR or ILR, this curvature
is seen as a result of the selection effects and the constraint
in J .

I have explored models with resonances at other fre-
quency ratios (and thus with different relationships between
θr and θφ), and found that it is possible to produce overden-
sities in θ that are qualitatively very similar to those shown
here. While it may be possible to tell one from another for
given observations (such as those of the Hyades) it is cer-
tainly a very complicated task, and one that will require
careful modelling and analysis.
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Figure 12. Contour plot showing the distribution of stars from
the OLR (left) and ILR (right) models in polar coordinates with
radial coordinate a, the amplitude of radial motion in the epicycle
approximation, and polar coordinate ϕ = θr + nθφ with n = −2
(upper) or n = 2 (lower). The dashed lines are given by θr =
θr,res(θφ) (eq. 10) for the given model, evaluated at the Sun’s
position (so that the value of θ determines a value of J). The
dotted lines are given by Jφ = Jφ(Jr,res) for the given model,
again evaluated at the Sun’s position.

7 DISCUSSION AND CONCLUSIONS

In this paper I have re-examined the distribution of stars
in the Solar neighbourhood in angle coordinates following
the claim by S10 that the Hyades moving group is related
to an ILR. Using a dynamical “torus” model I showed the
significant impact of selection effects associated with survey-
ing a finite (small) volume upon the distribution of stars in
angle coordinates taken from a phase-mixed model. Using
models which contain resonant components in addition to
a phase-mixed background I have demonstrated the impor-
tant effects that the distribution of resonant stars in action
have on the observed distribution in angle (again because of
selection effects).

The distribution of the stars associated with the Hyades
moving group in action (Figure 10) indicates that it is associ-
ated with some resonance between the radial oscillations and
the azimuthal motion (i.e. follows a relation of the form of
lΩr+mΩφ). It is also clear that the stars which make up the
resonant component are constrained in θ in some way, oth-
erwise there would be an overdensity at θr ∼ 1.5 as well as
θr ∼ −1.5. However, it is very difficult to determine what the
values of l and m are, and thus which resonance is respon-
sible. In action space the lines lΩr(J) + mΩφ(J) = const
are very similar, in the relevant range of J , for different val-
ues of l and m, and are sensitive to choice of the Galactic
potential. The approach taken by S10, of looking for over-
densities in the statistic lθr +mθφ, is also flawed because of
the selection effects that have important influences on the
distribution in θ. I find that, contrary to the conclusions of

S10, it not clear that the Hyades moving group is the result
of an inner Lindblad resonance.

It may be possible to use careful modeling and analysis,
which takes into account selection effects and the distribu-
tions in θ and J simultaneously, to determine what type of
resonance is responsible for the Hyades moving group from
these data. However this task is made even more difficult by
uncertainty about the Galactic potential which significantly
affects the gradient of resonance lines in action space.

It seems likely the problems of selection effects in stud-
ies of this kind will prove extremely challenging, if not in-
tractable, while we are dealing with survey volumes cor-
responding to the relatively small radii (∼ 200 pc) associ-
ated with the GCS. To go beyond this with similar accuracy
(i.e. ∼ 1 kms−1 velocity uncertainty) requires distance and
proper measurements more accurate than those currently
available – the RAVE and SDSS data used by Hahn et al.
(2011) has significantly larger uncertainties even though
they select stars which lie in the same volume as the GCS
stars. Gaia (Perryman et al. 2001) is expected to produce 3-
dimensional velocity measurements accurate to ∼ 1 kms−1

for some stars up to ∼ 3 kpc from the Sun, corresponding to
a range in Galactocentric φ of order 0.7 radians. This will
dramatically reduce the impact of selection effects on the ob-
served distributions in angle-action coordinates, and should
make it relatively straightforward to pick out structures in
angle space that are unambiguously of the kind predicted
by S10. This process is likely to both be guided by and af-
fect the determination of the gravitational potential of the
Galaxy (an essential product of the Gaia mission).

Throughout this study I have assumed that the uncer-
tainties on the positions and velocities of the stars observed
by the GCS can be ignored, because they are too small to
have any significant effect. It is worth noting that the re-
lationship between the uncertainty in x,v and that in θ,J
is not entirely straightforward, and that a small uncertainty
in velocity does not necessarily correspond to a small un-
certainty in θ. As inspection of Figure 2 suggests, the rela-
tionship between an uncertainty in velocity and that in θr
is heavily dependent on Jr, with smaller Jr corresponding
to a greater uncertainty in θr for given uncertainty in v.
Indeed as Jr → 0 a negligible uncertainty in v corresponds
to an uncertainty of 2π in θr. The Hyades overdensity does
not extend to Jr = 0 (as can be seen in Figure 7), so the
assumption that the uncertainty in θr can be ignored is rea-
sonable for this study. However, future efforts to understand
resonances of this type is likely to require appropriate treat-
ment of these uncertainties.
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