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(1)Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal
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Abstract

With the Einstein-scalar field equations with positive cosmological constant in mind, we em-
ploy Christodoulou’s framework, developed to study the vanishing cosmological constant case, to
spherically symmetric solutions of the linear wave equation in de Sitter spacetime. We obtain an
integro-differentiable evolution equation which we solve by taking initial data on a null cone. As a
corollary we obtain elementary derivations of expected properties of linear waves in de Sitter space-
time: boundedness in terms of (characteristic) initial data, and a Price law establishing pointwise
exponential decay, in Bondi time, to a constant.

1 Introduction

The study of the linear wave equation
�gφ = 0 (1)

on fixed backgrounds (M, g) has been a stepping stone to the analysis of the nonlinearities of gravitation,
from cosmic censorship to non-linear stability [6]. Here we revisit spherical linear waves in de Sitter
spacetime as a prerequisite to the study of the Einstein-scalar field equations with positive cosmological
constant and spherically symmetric initial data.

With this nonlinear problem in mind, we employ Christodoulou’s framework, developed in the cel-
ebrated [3], to spherically symmetric solutions of the uncoupled equation (1). We obtain an integro-
differentiable evolution equation which we solve by taking initial data on a null cone. As a corollary we
obtain elementary derivations of expected properties of linear waves in de Sitter spacetime: boundedness
in terms of (characteristic) initial data, and pointwise exponential decay, in Bondi time1, to a constant2.
Numerical evidence for such decay can be found in [2], and references therein, where higher spherical
harmonics are also studied, as well as the non-linear system. Also, in [10], fundamental solutions of (1) in
de Sitter spacetime are constructed, for smooth and compactly supported data; no symmetry assumptions
are required, and exponential decay of certain homogeneous Sobolev Lp norms, 2 ≤ p < ∞, is proved.
Also along these lines, Ringström [9] obtained exponential decay for non-linear perturbations of locally
de Sitter cosmological models in the context of the Einstein-nonlinear scalar field system with a positive
potential.

By comparison, the results presented here suffer from the requirement of symmetry. In fact, the
methods used rely extensively on the assumption of spherical symmetry of solutions and on the existence
of a regular center of symmetry, and it is not clear if it is possible to extend them to the study of higher
spherical harmonics, or to the analysis of linear waves in other backgrounds, like Schwarzschild-de-Sitter3.
Nonetheless, we believe that the relevance of this work goes beyond the fact that the method used is both
elementary and presumably adaptable to the non-linear setting. First of all, although widely expected, we

1From which exponential decay to a constant in the usual static time coordinate easily follows.
2Such boundedness and decay results may be seen, respectively, as analogues of the Kay-Wald Theorem [7] and of a

Price law [8, 4], both originally formulated for Cauchy data in a Schwarzschild background.
3For a thorough discussion of linear waves in black hole spacetimes see [6].
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are unaware of a written proof of the results concerning the pointwise exponential decay (9)4. Secondly,
the bounds in terms of characteristic initial data are, to our knowledge, original. Finally, our results apply
to both the local and the cosmological regions, i.e. the past and the future of the cosmological horizon.

2 Christodoulou’s framework for spherical waves

Bondi coordinates [3] (u, r, θ, ϕ) map the causal future of any point in de Sitter spacetime isometrically
onto

(
[0,∞)× [0,∞)× S2, g

)
, where

g = −
(

1− Λ

3
r2
)

du2 − 2dudr + r2dΩ2 , (2)

with dΩ2 the round metric of the two-sphere (cf. Figure 1).

r = 0

i

H

I
+

Figure 1: Penrose diagram of de Sitter spacetime. The lines u = constant are the outgoing null geodesics

starting at r = 0. The point i corresponds to u = +∞, the cosmological horizon H to r =
√

3
Λ and the

future null infinity I + to r = ∞.

In these coordinates the wave equation

�gφ = 0 ⇔ ∂µ

(√

− det(g) ∂µφ
)

= 0 ,

for spherically symmetric functions, ∂θφ = ∂ϕφ = 0, reads

− 2r
∂

∂r

(
∂φ

∂u

)

− 2
∂φ

∂u
+ r

(

1− Λ

3
r2
)

∂2φ

∂r2
+

(

2− 4

3
Λr2

)
∂φ

∂r
= 0 . (3)

Following Christodoulou [3] we consider the change of variable

h :=
∂

∂r
(rφ) .

If we assume that
lim
r→0

rφ = 0 ,

it immediately follows that

φ = h̄ :=
1

r

∫ r

0

h (u, s) ds and
∂φ

∂r
=

∂h̄

∂r
=

h− h̄

r
. (4)

4For Schwarzschild-de-Sitter with non-vanishing mass, exponential pointwise decay in the local region up to the horizons
follows from [5, 6]. See also [1].
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Moreover, assuming that the crossed partial derivatives of rφ commute, we see that (3) is equivalent to

Dh = −Λ

3
r(h− h̄) , (5)

where D is the differential operator given by

D :=
∂

∂u
− 1

2

(

1− Λ

3
r2
)

∂

∂r
.

3 Main result: statement and proof

Our main result is the following

Theorem 1. Let Λ > 0. Given h0 ∈ Ck([0,∞)), for some k ≥ 1, the problem

{
Dh = −Λ

3 r(h− h̄)
h(0, r) = h0(r)

(6)

has a unique solution h ∈ Ck([0,∞)× [0,∞)).
Moreover, if ‖h0‖C0 is finite then

‖h‖C0 = ‖h0‖C0 . (7)

Also, if ‖(1 + r)p∂rh0‖C0 is finite for some 0 ≤ p ≤ 4 and H ≤ 2
√

Λ
3 then

‖(1 + r)peHu∂rh‖C0 . ‖(1 + r)p∂rh0‖C0 , (8)

and, consequently, there exits h ∈ R such that

|h(u, r)− h| . (1 + r)n(p)e−Hu , (9)

with

n(p) =

{
0 , 2 < p ≤ 4
2 , 0 ≤ p ≤ 2

. (10)

Remark 1. The powers of 1 + r obtained are far from optimal. Since we are mainly interested in
understanding whether the decay in u obtained by this method is uniform in r, we were only careful in
computing precise estimates for 2 < p ≤ 4, which is enough to establish uniform decay for p > 2 (if p > 4
the p = 4 result applies, and in fact it does not seem to be possible to obtain a stronger decay in r for
∂rh). For p ≤ 2 our method does not provide uniform decay, but it is not clear if this is an artifact of
these techniques or an intrinsic property of spherical linear waves in de Sitter.

Proof. For h ∈ C0([0,∞) × [0,∞)), we have rh̄ ∈ C0([0,∞) × [0,∞)), and so we can define F(h) to be
the solution to the linear equation

{
D(F(h)) = −Λ

3 r(F(h) − h̄)
F(h)(0, r) = h0(r)

. (11)

The integral lines of D (incoming light rays in de Sitter), which satisfy

dr

du
= −1

2

(

1− Λ

3
r2
)

, (12)

are characteristics of the problem at hand. Integrating (11) along such characteristics we obtain

F (h) (u1, r1) = h0(r(0))e
−Λ

3

∫ u1

0
r(s)ds +

Λ

3

∫ u1

0

r(v)h̄(v, r(v))e−
Λ

3

∫
u1
v

r(s)dsdv , (13)

where, to simplify the notation, we denote the solution to (12) satisfying r(u1) = r1 simply by s 7→ r(s);
we are dropping any explicit reference to the dependence on (u1, r1), but it should be noted, in particular,
that r(0) is an analytic function of (u1, r1).
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Given U,R > 0, let C0
U,R denote the Banach space

(

C0 ([0, U ]× [0, R]) , ‖ · ‖C0

U,R

)

, where

‖f‖C0

U,R
= sup

(u,r)∈[0,U ]×[0,R]

|f(u, r)| . (14)

Let rc :=
√

3
Λ be the unique non-negative root of 1 − Λ

3 r
2 (see (2) and (12)). The non-decreasing

behavior of the characteristics satisfying r1 ≥ rc shows that the restriction of F to C0
U,R is well defined

for all R ≥ rc. In fact:

Lemma 1. Given U > 0 and R ≥ rc :=
√

3
Λ , F contracts in C0

U,R.

Proof. Fix U > 0 and R ≥ rc. Then

‖F(h1)−F(h2)‖C0

U,R
= sup

(u1,r1)∈[0,U ]×[0,R]

|F(h1)(u1, r1)−F(h2)(u1, r1)|

≤ sup
(u1,r1)∈[0,U ]×[0,R]

{
Λ

3

∫ u1

0

r(v)
∣
∣h̄1(v, r(v)) − h̄2(v, r(v))

∣
∣ e−

Λ

3

∫
u1
v

r(s)dsdv

}

≤ sup
(u1,r1)∈[0,U ]×[0,R]

{∫ u1

0

Λ

3
r(v)e−

Λ

3

∫
u1
v

r(s)dsdv

}

· ‖h̄1 − h̄2‖C0

U,R

≤ sup
(u1,r1)∈[0,U ]×[0,R]

{[

e−
Λ

3

∫
u1
v

r(s)ds
]u1

v=0

}

· sup
(u,r)∈[0,U ]×[0,R]

{
1

r

∫ r

0

|h1(u, s)− h2(u, s)|ds
}

≤ sup
(u1,r1)∈[0,U ]×[0,R]

{

1− e−
Λ

3

∫ u1

0
r(s)ds

}

︸ ︷︷ ︸

:=σ

·‖h1 − h2‖C0

U,R
.

Throughout, to obtain estimates, and in particular to estimate σ, one needs to consider three (causally)
separate regions, naturally corresponding to the bifurcations of (12): the local region (r < rc), the
cosmological horizon (r = rc), and the cosmological region (r > rc). However, since the computations
are similar we will only present the details concerning the most delicate case, r > rc .

The solution to (12) satisfying r1 = r(u1) > rc :=
√

3
Λ , is given by

r(u) =

√

3

Λ
coth

(

1

2

√

Λ

3
(c− u)

)

, (15)

for an appropriate choice of c = c(u1, r1), from which it follows that

−Λ

3

∫ u1

0

r(s)ds =

∫ u1

0

−
√

Λ

3
coth

(

1

2

√

Λ

3
(c− s)

)

ds

=

∫ u1

0

2
d

ds
ln

[

sinh

(

1

2

√

Λ

3
(c− s)

)]

ds = ln






sinh
(

1
2

√
Λ
3 (c− u1)

)

sinh
(

1
2

√
Λ
3 c
)






2

,

and consequently

e−
Λ

3

∫ u1

0
r(s)ds =

sinh2
(

1
2

√
Λ
3 (c− u1)

)

sinh2
(

1
2

√
Λ
3 c
) =

cosh2
(

1
2

√
Λ
3 (c− u1)

)

sinh2
(

1
2

√
Λ
3 c
)

coth2
(

1
2

√
Λ
3 (c− u1)

)

=

[
cosh (α(c− u1))

sinh (αc)

1

2αr1

]2

=

[
eα(c−u1) + e−α(c−u1)

eαc − e−αc

]2
1

4α2r21

≥ e−2αu1

4α2r21
,
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where α := 1
2

√
Λ
3 . Define

σcosm (U,R) := sup
(u1,r1)∈[0,U ]×(rc,R]

(

1− e−
Λ

3

∫ u1
0

r(s)ds
)

≤ sup
(u1,r1)∈[0,U ]×(rc,R]

(

1− e−2αu1

4α2r21

)

≤
(

1− 3

Λ

e−
√

Λ

3
U

R2

)

< 1 .

Similar computations give

σloc := sup
(u1,r1)∈[0,U ]×[0,rc)

(

1− e−
Λ

3

∫ u1

0
r(s)ds

)

≤
(

1− e−
√

Λ

3
U

4

)

< 1 ,

for the local region, and

σhor := sup
u1∈[0,U ]

(

1− e−
Λ

3

∫ u1

0
rcds

)

≤ 1− e−
√

Λ

3
U < 1 ,

along the cosmological horizon. Finally σ = max{σloc, σhor, σcosm} < 1, and the statement of the lemma
follows.

By the contraction mapping theorem, given U > 0 and R ≥ rc, there exits a unique fixed point hU,R ∈
C0
U,R of F . Uniqueness guarantees that in the intersection of two rectangles [0, U1]×[0, R1]∩[0, U2]×[0, R2]

the corresponding hU1,R1
and hU2,R2

coincide. Consequently

h(u, r) := hu+1,r+rc(u, r) ,

is well defined in [0,∞)× [0,∞); it is also clearly continuous and satisfies h = F(h), i.e.,

h(u1, r1) = h0(r(0))e
−Λ

3

∫ u1

0
r(s)ds +

Λ

3

∫ u1

0

r(v)h̄(v, r(v))e−
Λ

3

∫
u1
v

r(s)dsdv , (16)

in [0,∞) × [0,∞). Continuity of h implies continuity of rh̄, so we are allowed to differentiate (16) in
the direction of D, which proves that h is in fact a (C0) solution of (6). Existence and uniqueness in
C0 ([0,∞)× [0,∞)) follows.

To see that a solution of (6) is as regular as its initial condition assume that h0 ∈ Ck+1, k ≥ 0, and
start by noticing that if h ∈ Ck then rh̄ and ∂r(rh̄) are also in Ck. In particular for h ∈ C0 we can
differentiate (16) with respect to u1 to obtain

∂h

∂u1
=

∂

∂u1

(

h0(r(0))e
−Λ

3

∫ u1
0

r(s)ds
)

+
Λ

3

(
rh̄
)
(u1, r1)

+
Λ

3

∫ u1

0

∂(rh̄)

∂r

∂r

∂u1
(v, r(v))e−

Λ

3

∫
u1
v

r(s)dsdv

+
Λ

3

∫ u1

0

r(v)h̄(v, r(v))
∂

∂u1

(

e−
Λ

3

∫
u1
v

r(s)ds
)

.

(17)

This last expression shows that h0 ∈ Ck+1 and h ∈ Ck implies ∂h
∂u1

∈ Ck. The same reasoning works for

the derivative with respect to r1. Consequently, if h0 ∈ Ck+1 and h ∈ Ck, then h is in fact in Ck+1 and
the regularity statement follows by induction.

To establish (7) first note that:

Lemma 2. If ‖h0‖C0 ≤ y0 and ‖h‖C0 ≤ y0, for some y0 ≥ 0, then ‖F(h)‖C0 ≤ y0.

Proof. From (13) we see that

|F(h)(u1, r1)| ≤ ‖h0‖C0 e−
Λ

3

∫ u1
0

r(s)ds + ‖h̄‖C0

Λ

3

∫ u1

0

r(v)e−
Λ

3

∫
u1
v

r(s)dsdv

≤ y0

(

e−
Λ

3

∫ u1

0
r(s)ds +

Λ

3

∫ u1

0

r(v)e−
Λ

3

∫
u1
v

r(s)dsdv

)

︸ ︷︷ ︸

≡1

= y0 .
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The last step follows by a direct computation, as before, or by noticing that since h ≡ 1 is a solution
to (6), with h0 ≡ 1, one has F(1) ≡ 1.

Now consider the sequence
{

h0(u, r) = h0(r)
hn+1 = F(hn)

.

We have already established that, for any U > 0 and R ≥ rc, hn converges in C0
U,R to h, the solution

of (6). Lemma 2 then tells us that

‖hn‖C0

U,R
≤ ‖hn‖C0 ≤ ‖h0‖C0 , and so ‖h‖C0

U,R
= lim

n→∞
‖hn‖C0

U,R
≤ ‖h0‖C0 .

Since this holds for arbitrarily large U and R, the bound (7) follows.

We will now show that the estimate (8) holds. First of all if h ∈ C1 we see that Dh and ∂rDh are
both continuous, and consequently D∂rh exists and its equal to ∂rDh+ [D, ∂r]h

5. Using this last fact
and equations (4) while differentiating (5) with respect to r we obtain an evolution equation for ∂rh:

D∂rh = −2
Λ

3
r ∂rh . (18)

Integrating the last equation along the (ingoing) characteristics, as before, yields

∂rh(u1, r1) = ∂rh0(r0)e
− 2Λ

3

∫ u1
0

r(s)ds. (19)

It is then clear that initial data controls the supremum norm of ∂rh. In fact, let

d0 = ‖(1 + r)p∂rh0‖C0 .

In the cosmological region (r > rc), one has, after recalling (15),

∣
∣(1 + r1)

peHu1∂rh(u1, r1)
∣
∣ =

∣
∣
∣(1 + r1)

peHu1∂rh0(r0)e
− 2Λ

3

∫ u1

0
r(s)ds

∣
∣
∣

≤ d0

(
1 + r1
1 + r0

sinh (α(c− u1))

sinh (αc)

)p

eHu1

(
sinh (α(c − u1))

sinh (αc)

)4−p

,
(20)

where α = 1
2

√
Λ
3 as before. Now, since c− u1 ≤ c, then e−2α(c−u1) ≥ e−2αc, and

sinh (α(c − u1))

sinh (αc)
=

eα(c−u1) − e−α(c−u1)

eαc − e−αc

= e−αu1
1− e−2α(c−u1)

1− e−2αc

≤ e−αu1 .

(21)

Also
1 + r1
1 + r0

sinh (α(c− u1))

sinh (αc)
=

1 + 1
2α coth (α(c− u1))

1 + 1
2α coth (αc)

sinh (α(c− u1))

sinh (αc)

=
sinh (α(c− u1)) +

1
2α cosh (α(c− u1))

sinh (α(c)) + 1
2α cosh (αc)

≤ 1 + 1
2α

1
2α

· cosh (α(c− u1))

cosh (αc)

≤ (2α+ 1) 2e−αu1 .

(22)

5Here we are using the following generalized version of the Schwarz Lemma: if X and Y are two nonvanishing C1 vector
fields in R

2 and f is a C1 function such that X · (Y · f) exists and is continuous then Y · (X · f) also exists and is equal to
X · (Y · f) − [X,Y ] · f .
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Therefore, if 0 ≤ p ≤ 4 and H ≤ 4α = 2
√

Λ/3, we plug (21) and (22) into (20) to obtain

sup
(u1,r1)∈[0,U ]×[rc,R]

∣
∣(1 + r1)

peHu1∂rh(u1, r1)
∣
∣ ≤ d0 sup

(u1,r1)∈[0,U ]×[rc,R]

∣
∣
∣2p(2α+ 1)pe(H−4α)u1

∣
∣
∣

≤ 2p(2α+ 1)pd0 .

(23)

Similar, although simpler, computations yield

sup
(u1,r1)∈[0,U ]×[0,rc]

∣
∣(1 + r1)

peHu1∂rh(u1, r1)
∣
∣ ≤ 16 sup

r1∈[0,rc]

|(1 + r1)
p∂rh0(r1)| ≤ 16d0 (24)

for the local region. This proves (8).

To finish the proof of Theorem 1 all is left is to establish the pointwise decay statement (9). Start
with

∣
∣h(u, r)− h̄(u, r)

∣
∣ ≤ 1

r

∫ r

0

|h(u, r)− h(u, s)| ds

≤ 1

r

∫ r

0

∫ r

s

|∂ρh(u, ρ)| dρ ds

.
1

r

∫ r

0

∫ r

s

e−Hu

(1 + ρ)p
dρ ds .







e−Hu

1+r
, 2 < p ≤ 4

re−Hu , 0 ≤ p ≤ 2

.

These estimates for 2 < p ≤ 4 follow from a lengthy, though straightforward, computation; they seem to
be the optimal results which follow from this method. The remaining cases, with the exception of p = 0,
are far from optimal. In fact, since we are mainly interested in a qualitative analysis, namely if the decay
obtained is or not uniform in r (see Remark 1), then, to avoid further computations, the results for p ≤ 2
were obtained from the estimate for p = 0 .

Using (5) we then see that

|∂uh| =
∣
∣
∣
∣
Dh+

1

2

(

1− Λ

3
r2
)

∂rh

∣
∣
∣
∣

≤
∣
∣
∣
∣
−Λ

3
r
(
h− h̄

)
∣
∣
∣
∣
+

1

2

∣
∣
∣
∣

(

1− Λ

3
r2
)

∂rh

∣
∣
∣
∣
. (1 + r)n(p)e−Hu ,

with n(p) as in the statement of the theorem.
Now since ∂uh is integrable with respect to u, by the fundamental theorem of calculus, we see that

there exists

lim
u→∞

h(u, r) = h(r) .

But
|h(r2)− h(r1)| = lim

u→∞
|h(u, r2)− h(u, r1)|

≤ lim
u→∞

∣
∣
∣
∣

∫ r2

r1

|∂rh(u, r)|dr
∣
∣
∣
∣

. lim
u→∞

|r2 − r1|e−Hu = 0 ,

and, consequently, there exists h ∈ R such that

h(r) ≡ h .

Finally

|h(u, r)− h| ≤
∫ ∞

u

|∂vh(v, r)| dv

.

∫ ∞

u

(1 + r)n(p)e−Hvdv . (1 + r)n(p)e−Hu .

Remark 2. The same calculation shows that given R > 0 the solutions of (6) satisfy |h(u, r)−h| . e−Hu

uniformly for r ∈ [0, R], even if ‖(1 + r)p∂rh0‖C0 is not finite.
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4 Boundedness and exponential pointwise decay for spherical

linear waves in de Sitter

We now translate part of the results in Theorem (1) back into results concerning linear waves in de Sitter.

Theorem 2. Let (M, g) be de Sitter spacetime with cosmological constant Λ and (u, r, θ, ϕ) Bondi coor-
dinates as in Section 2. Let φ = φ(u, r) ∈ C2 ([0,∞)× [0,∞)) be a solution 6 to

�gφ = 0 .

Then
|φ| ≤ sup

r≥0
|∂r (rφ(0, r))| . (25)

Moreover, if for some p ≥ 0

sup
r≥0

∣
∣
∣
∣
(1 + r)p

∂2

∂r2
(rφ(0, r))

∣
∣
∣
∣
< ∞ , (26)

then there exists φ ∈ R such that, for H ≤ 2
√

Λ
3 ,

∣
∣φ(u, r)− φ

∣
∣ . (1 + r)n(p)e−Hu , if 0 ≤ p ≤ 4 , (27)

where

n(p) =

{
0 , 2 < p ≤ 4
2 , 0 ≤ p ≤ 2

. (28)

Proof. Since φ is a spherically symmetric C2 solution of (1) we saw in Section 2 that h = ∂r(rφ) satis-
fies (5), with φ = h̄. Applying Theorem (1) the results easily follows.

Remark 3. Note once more that the powers of r obtained are far from optimal, see Remark 1.

Remark 4. It should be emphasized that the boundedness and decay results are logically independent. In
fact (25) follows from (7), which in turn is a consequence of a fortunate trick (see proof of Lemma 2)
relying on the non-positivity of the factor of the zeroth order term in (5) (here, non-negativity of Λ) and
the fact that F (13) is a contraction in appropriate function spaces; in some sense one is required to prove
existence and uniqueness of (6) in the process. That is no longer the case for obtaining (9), from which
pointwise decay of φ follows.
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