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Abstract

We present a 2+1 dimensional quantum gauge theory model with correlated

fermions that is exactly solvable by bosonization. This model gives an effective de-

scription of partially gapped fermions on a square lattice that have density-density

interactions and are coupled to photons. We show that the photons in this model are

massive due to gauge-invariant normal-ordering, similarly as in the Schwinger model.

Moreover, the exact excitation spectrum of the model has two gapped and one gapless

mode. We also compute the magnetic field induced by an external current and show

that there is a Meissner effect. We find that the transverse photons have significant

effects on the low-energy properties of the model even if the fermion-photon coupling

is small.

The possible violation of Landau’s Fermi liquid theory in models of strongly interacting
fermions has been an actively researched problem for many years. Interest in this topic
quickly grew with the discovery of the cuprate high-temperature superconductors in 1986
[1], and the realization that these materials display many properties not described by Fermi
liquid theory [2]. Early on, it was suggested that models of Hubbard-type capture the
strongly correlated physics of cuprates [3, 4, 5, 6]. While it has proven very difficult to
do reliable computations for two dimensional (2D) such models, an excellent theoretical
understanding has been obtained for the corresponding one-dimensional (1D) cases. This
understanding is largely based on models that are exactly solvable. A famous example is
the Luttinger model [7, 8], which provides an effective description of interacting fermions
on a 1D lattice, and which has become a prototype of non-Fermi-liquid behavior [9, 10].

It has been known for quite some time that fermions coupled to dynamical photons
can have non-Fermi-liquid behaviour [11, 12]. One argument against this mechanism being
relevant for real materials is the smallness of the fine-structure constant (α ≈ 1

137
), which

governs the strength of interactions between matter and transverse photons. However,
various scenarios have been proposed and explored in which effective photon-like gauge
fields arise in the low-energy limit of models for strongly correlated fermions [13, 14, 15];
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see also [10]. In these instances, the effective coupling constant need not be small. The
computations to explore this mechanism in 2D are usually based on approximations that
are difficult to justify and, again, things are much better understood in 1D due to the
existence of exactly solvable prototype models. For example, the (1+1)D quantum gauge
theory obtained by minimally coupling the Luttinger model to dynamical photons is exactly
solvable [16]. This model is a generalization of the Schwinger model [17] and, similarly as in
the latter model [18], the photons have a non-zero mass that arises due to gauge-invariant
normal ordering.

Despite a concerted effort, much remains to be understood when it comes to strongly
correlated fermions in 2D. We believe that there is a need for models that are amenable to
exact computations. One pioneer in this direction is Mattis who, already in 1987, presented
a 2D interacting fermion model that can be mapped exactly to non-interacting bosons [19].
Despite its potential, Mattis’ model did not receive much attention (notable exceptions
are [20, 21, 22]). In recent work, we derived an effective model describing fermions on
a square lattice with local interactions and close to half filling [23, 24, 25]. Since this
model is similar to Mattis’ [19], we refer to it as the Mattis model. In [26] we obtained a
complete solution of the Mattis model, including all Green’s functions. We also proved that
the fermion two-point functions have algebraic decay with exponents that depend on the
interaction strength, which is a hallmark of Luttinger liquids [9]. The Mattis model is not
relativistically invariant but, as already noted in [19], this is natural for effective models of
square-lattice fermions.

In this Letter, we present a (2+1)D quantum gauge theory obtained by coupling the
Mattis model to a dynamical U(1) gauge field. We refer to the latter as photon field, even
though other physical interpretations are possible. Our main result is that this model
is exactly solvable by bosonization. We also show that this model has some remarkable
properties, including a non-zero photon mass due to gauge-invariant normal ordering, and a
Meissner effect. We find that there is a renormalization of the bare charge, which determines
the strength of fermion-photon interactions. Furthermore, the gauge theory contains a
gapless mode that is strongly affected by the presence of the dynamical photons even if the
fermion-photon coupling is weak. The idea of mapping fermions to free bosons has been
used before to study 2D interacting fermions coupled to gauge fields [27, 28], but no exactly
solvable fermion model was clearly identified before.

(Notation: µ, ν = 0,+,− are space-time indices, s, s′ = +,− space indices, r, r′ = ±
chirality indices; the space-time metric signature is (−,+,+); x = (ct,x) are space-time
coordinates with 2D positions x = (x+, x−); c is the velocity of light; ∂s = ∂/∂xs are spatial

derivatives; ψ
(†)
r,s are standard fermion field operators; Aµ is the gauge potential, Es are the

electric field components, and B = ∂+A−−∂−A+ is the magnetic field. Common argument
x of field operators are suppressed whenever possible.)

The relation of the Mattis model to square-lattice fermions is described using Figure 1,
which shows the Brillouin zone corresponding to a square lattice (dashed large square)
divided into regions of non-equal sizes. Close to half filling, mean field theory predicts that
the system is partially gapped, and there is an underlying Fermi surface in the so-called
nodal regions (the four tilted rectangles) [26]. We model this underlying surface by straight

2



kx

ky

−

π

a
0 π

a

−

π

a

0

π

a

(−,−)

(−,+)

(+,+)

(+,−)

Figure 1: The Brillouin zone corresponding to a 2D square lattice with lattice constant a.
The quantum gauge theory provides a low-energy description of fermions with momenta
in one of the four tilted rectangles labeled by (r, s), r, s = ±. Fermion degrees of freedom
outside the rectangles are assumed to be gapped.

arcs, which either corresponds to a truncated Fermi surface or the portion of a closed Fermi
pocket having dominant momentum occupation. The Mattis model describes the fermion
degrees of freedom in the vicinity of these arcs. It is written in terms of four fermion field
operators ψr,s, r, s = ±, in one-to-one correspondence with the nodal regions. The quantum
field theory limit making this model amenable to bosonization amounts to removing the
momentum cutoff orthogonal to the arcs (indicated by the arrow in the nodal (+,+)-region,
for example), which is possible after normal ordering [24]. The arc-picture underlying our
derivation of the Mattis model is supported by renormalization group studies of weakly
coupled 2D Hubbard-like systems [29]. It is also a signature feature of the pseudogap phase
as observed in angle-resolved photoemission experiments on hole-doped cuprates [30].

The Hamiltonian of the Mattis model is

HM =
∑

r,s=±

∫

d2x
(

rvF :ψ†
r,s(−i∂s)ψr,s : +

∑

r′,s′=±

gr,s,r′,s′ :ψ
†
r,sψr,s ::ψ

†
r′,s′ψr′,s′ :

)

(1)

with
{

ψr,s(x), ψ
†
r′,s′(y)

}

= δr,r′δs,s′δ
2(x − y), etc., and colons denoting standard fermion

normal ordering with respect to a Dirac vacuum [26]. These definitions are formal since an

important UV regularization has been suppressed: while the xs-component of x in ψ
(†)
r,s (x) is

continuous, the x−s-component is discretized to integer multiples of a UV cutoff ã, and thus
the integrals and Dirac deltas have to be interpreted as partial Riemann sums and Kronecker
deltas [26]. The coupling constants scale with the UV cutoff as gr,s,r′,s′ = ãπvF

(

γ1δs,s′δr,−r′+
γ2δs,−s′/2

)

, with the Fermi velocity vF > 0 and dimension-less constants γ1,2 such that
|γ1| < 1 and |γ2| < |1 + γ1|. The above scaling of the coupling constants is not only
obtained by deriving the model from lattice fermions [24], but it also ensures that HM has
a non-trivial limit as ã → 0. The restrictions on γ1,2 are to ensure stability of the Dirac
vacuum [26].
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The Hamiltonian of our quantum gauge theory model is obtained by coupling the Mattis
Hamiltonian in (1) to a dynamical electromagnetic field,

H =
∑

r,s=±

∫

d2x
(

rvF
◦

◦ψ†
r,s(−i∂s + e0As)ψr,s

◦

◦ +
∑

r′,s′=±

gr,s,r′,s′
◦

◦ψ†
r,sψr,s

◦

◦

◦

◦ψ†
r′,s′ψr′,s′

◦

◦

)

+
1

2

∫

d2x
×

×

(

E2
+ + E2

− + c2B2
)

×

×

(2)

with [As(x), Es′(y)] = iδs,s′δ
2(x−y), etc., e0 the bare charge,

×

× · · ·×× boson normal ordering,
and ◦

◦ · · · ◦

◦ a gauge-invariant generalization of fermion normal ordering (see below). The
Gauss law operators generating gauge transformations As → As + ∂sχ, etc., are

G[χ] =

∫

d2xχ
∑

s=±

(

−∂sEs + e0
∑

r=±

◦

◦ψ†
r,sψr,s

◦

◦

)

, (3)

and the physical states are those annihilated by G[χ], for arbitrary real-valued functions
χ(x). Note that, except for the normal-ordering procedures, the Hamiltonian in (2) is
obtained from the Mattis Hamiltonian by standard minimal coupling: introduce the action
corresponding to the Mattis Hamiltonian in (1); couple to Abelian gauge fields using the
substitution −i∂µ → −i∂µ + e0Aµ; add the Maxwell term c2FµνF

µν/4; perform the usual
Dirac procedure for systems with constraints [31] to obtain the formal Hamiltonian (i.e.
without normal ordering) and the formal Gauss law constraint. We note in passing that
the gauge field operators are well-defined without UV regularization (details will be spelled
out elsewhere).

As already indicated, fermion normal ordering plays a key role for our model. Indeed,
formulating a sensible quantization of the classical theory is non-trivial, even in the absence
of gauge fields: In order for the Hamiltonian to be bounded from below (have a ground
state), we need to normal-order all fermion bilinears with respect to the Dirac vacuum
in which all negative energy states are occupied. An important consequence of normal-
ordering is that the fermion densities Jr,s ≡ : ψ†

r,sψr,s : obey the anomalous commutator
relations [32]

[Jr,s(x), Jr′,s′(y)] = rδr,r′δs,s′(2πiã)
−1∂sδ

2(x− y), (4)

and the non-interacting part of (1) can be expressed in terms of these densities using the
operator identity

∫

d2x :ψ†
r,sr (−i∂s)ψr,s : = πã

∫

d2x
×

×J2
r,s

×

× (5)

(see Propositon 2.1 in [26] for proofs of these statements). The commutation relations in
(4) imply that

∂sΦs =
√
πã

(

J+,s + J−,s

)

, Πs =
√
πã

(

−J+,s + J−,s

)

(6)

define boson operators obeying the usual canonical commutator relations [Φs(x),Πs′(y)] =
iδs,s′δ

2(x− y), etc. It follows, using (5), that the Mattis Hamiltonian in (1) can be written
in terms of free bosons, and this is the key step towards the exact solution of the Mattis
model [26].
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The gauge fields are quantized as usual by a partial gauge fixing A0 = 0, postulating
the canonical commutation relations (see below (2)), and imposing the Gauss law operator
constraint on the Hilbert space [33]. However, the corresponding quantum Hamiltonian is
not obtained as the straightforward quantization of the minimally coupled classical Hamil-
tonian: due to the anomalous commutators in (4), the Gauss law operators G[χ] would
in this case no longer commute with the Hamiltonian, and the theory would thus not be
gauge invariant. The remedy of this problem is to introduce a manifestly gauge-invariant
normal-ordering prescription. We use the point-splitting method pioneered by Schwinger
[32]: start with the gauge-invariant expression

ψ†
r,s(x− ǫes/2) e

ie0
∫ ǫ/2
−ǫ/2

As(x+ξes)dξψr,s(x+ ǫes/2), (7)

which includes a line integral of the gauge field. We define our gauge-invariant fermion
normal ordering of bilinears, ◦

◦ψ†
r,sψr,s

◦

◦, as the limit ǫ → 0 of (7) after first subtracting off
its singular part r/(2πiãǫ) (see Equation(4.9) in [26]). The result is

◦

◦ψ†
r,sψr,s

◦

◦ = Jr,s + re0As/(2πã), (8)

and similarly

∫

d2x ◦

◦ψ†
r,sr (−i∂s + e0As)ψr,s

◦

◦ =

∫

d2x
(

:ψ†
r,sr(−i∂s)ψr,s : +re0AsJr,s +

e20
4πã

A2
s

)

(9)

(computational details will be provided elsewhere). An important feature of (9) is the
”bare” photon mass term in the second line; as noted, this is a direct consequence of gauge-
invariant normal-ordering. One can verify that (8) and (9) are gauge-invariant expressions.

The Hamiltonian and the Gauss law operators of the gauged model are now bosonized
using the above results:

H =
1

2

∫

d2x
×

×

(

vF
∑

s=±

[

(1− γ1)(Πs − eRAs)
2 + (1 + γ1)(∂sΦs)

2

+γ2(∂sΦs)(∂−sΦ−s)
]

+ E2
+ + E2

− + c2B2
)

×

×

(10)

and G[χ] =
∫

d2xχ
∑

s=± ∂s(−Es + eRΦs), with the renormalized charge eR = e0/(
√
πã).

Note that the scaling of the model parameters and boson fields are such that our gauge
theory model remains well-defined in the UV limit ã → 0+. The charge renormalization
e0 → eR shows that photons can have stronger influence on physical properties than what
superficial arguments might suggest. Under a gauge transformation, As → As + ∂sχ,
Es → Es, Φs → Φs and Πs → Πs + eR∂sχ, such that Πs − eRAs, and thus H in (10), are
gauge invariant.

The Hamiltonian in (10) is quadratic in boson operators and can therefore be diag-
onalized by a Bogoliubov transformation. To this end, we perform a Fourier transfor-
mation, Es(x) → Ês(p), and define longitudinal- and tranverse fields by |p|ÊL(p) =
ip+Ê+(p)+ ip−Ê−(p) and |p|ÊT (p) = ip+Ê−(p)− ip−Ê+(p) (similarly for Âs, Π̂s, and Φ̂s).
The Gauss law constraint then implies that |p|(−ÊL+ eRΦ̂L) is zero on the physical space.
Fixing the Coulomb gauge, ÂL = 0, and solving the Gauss law, ÊL = eRΦ̂L, we obtain the
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gauge-fixed Hamiltonian Hg.f. describing transverse photons (ÂT ) coupled to longitudinal-

and transverse plasmons (Φ̂L and Φ̂T , respectively). By straightforward methods, this
Hamiltonian can be written in the diagonal form Hg.f. = E0 +

∑

j=1,2,3

∑

p
ωj(p)b

†
j(p)bj(p)

with standard boson operators, i.e. [bj(p), b
†
j′(p

′)] = δj,j′δp,p′ , etc. (see e.g. Appendix C in
[26] for further details), and the groundstate energy E0. The exact dispersion relations
ωj(p) are computed from the eigenvalues of a certain 3×3 matrix. We obtain the following
characteristic polynomial of this matrix whose zeros λ = λj are equal to ωj(p)

2

λ(λ−Θ2 − c2|p|2)(λ−Θ2 − ṽ2F |p|2) + |p|4S2v2−(v
2
+(λ− c2|p|2)− c2Θ2) (11)

with v2± = v2F (1 − γ1)(1 − γ1 ± γ2)/2, ṽ
2
F = v2F (1 − γ21), Θ =

√

vF (1− γ1)|eR|, and S =
| sin(2ϕ)| = |2p+p−|/|p|2 (|p|2 ≡ p2+ + p2−). We thus obtain two gapped modes with the
same gap proportional to the renormalized charge: ω1(0) = ω2(0) = Θ, whereas the third
mode is gapless, ω3(0) = 0. Moreover, for c≫ vF and v2F |p|2S ≪ 1, ω1(p) ≈

√

Θ2 + c2|p|2,
ω2(p) ≈

√

Θ2 + ṽ2F |p|2, and

ω3(p) ≈ |p|2S
√

c2v2−(Θ
2 + v2+|p|2)

(Θ2 + c2|p|2)(Θ2 + ṽ2F |p|2)
. (12)

This shows that ω1 gives the energy spectrum of the dressed transverse photon, whereas
ω2 and ω3 give those of the dressed transverse- and longitudinal plasmons, respectively.
Remarkably, the behavior of the last mode is qualitatively different for eR = 0 and eR 6= 0:
in the former case, ω3(p) ≈ |p|S√v+v−/ṽF , which is equal to the lowest-energy mode of
the Mattis model [26], whereas in the latter case, ω3(p) ≈ |p|2Scv−/Θ for p < Θ/c. Thus
the photons can affect the low-temperature thermodynamical properties of the system, no
matter how small |eR| 6= 0. For example, we found that the temperature (T ) dependence of
the specific heat at low T is linear for eR = 0: Cv ∝ T , but there are logarithmic corrections
for eR 6= 0: Cv ∝ T ln(T0/T ) with T0 = (π/ã)2c

√
v−/(1.423Θ).

We also studied the magnetic field response to an external current Jµ with J0 =
0, i.e., we computed the linear response function K̂(ω,p) in the relation 〈B̂(ω,p)〉 =
K̂(ω,p)|p|ĴT (ω,p) + O(Ĵ2

T ) (|p|ĴT is the Fourier transform of ∂+J− − ∂−J+). The ex-
act result is

K̂(ω,p) =
ω2
+(ω

2
+ −Θ2 − ṽ2F |p|2) + v2−S

2|p|2(Θ2 + v2+|p2|)
(−ω2

+ + ω1(p)2)(−ω2
+ + ω2(p)2)(−ω2

+ + ω3(p)2)
(13)

with ω2
+ ≡ (ω + i0+)2 and ωj(p) the dispersion relations given above. Expanding K̂(ω,p)

in partial fractions and inserting the long-distance approximations of ωj(p) given above,
we obtain for c≫ vF ,

〈B̂(ω,p)〉 ≈ 1

−ω2
+ + c2|p|2 +Θ2

|p|ĴT (ω,p), (14)

ignoring O(Ĵ2
T )-terms. This proves that there is a Meissner effect with a London penetration

depth λL = c/Θ. The question if our model has other features of a superconductor, e.g. a
fermion condensate, is under investigation.
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The exact solution of the model presented in this paper provides a reliable starting
point to explore the physics of 2D correlated fermion systems. If the gauge field in this
model is to be interpreted as a physical electromagnetic field, one should extend it to three
dimensions. Furthermore, if the model is to describe correlated fermions in real materials,
one should introduce spin degrees of freedom, and investigate if the gapped fermions affect
the ones in the nodal regions. Exactly solvable extensions of our model addressing these
remarks will be presented elsewhere.
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