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We study the morphology of watersheds in two and three dimensional systems subjected to differ-
ent degrees of spatial correlations. The response of these objects to small, local perturbations is also
investigated with extensive numerical simulations. We find the fractal dimension of the watersheds
to generally decrease with the Hurst exponent, which quantifies the degree of spatial correlations.
Moreover, in two dimensions, our results match the range of fractal dimensions 1.10 ≤ df ≤ 1.15
observed for natural landscapes. We report that the watershed is strongly affected by local pertur-
bations. For perturbed two and three dimensional systems, we observe a power-law scaling behavior
for the distribution of areas (volumes) enclosed by the original and the displaced watershed, and
for the distribution of distances between outlets. Finite-size effects are analyzed and the resulting
scaling exponents are shown to depend significantly on the Hurst exponent. The intrinsic relation
between watershed and invasion percolation, as well as relations between exponents conjectured in
previous studies with two dimensional systems, are now confirmed by our results in three dimensions.

PACS numbers: 64.60.ah, 91.10.Jf, 89.75.Da, 92.40.Cy

I. INTRODUCTION

Watersheds are the lines separating adjacent drainage
basins (catchments). They play a fundamental role in
water management [1–3], landslides [4–7], and flood pre-
vention [7–9]. Natural watersheds are fractal [10]. Ge-
ographers and geomorphologists have found the evolu-
tion of watersheds to be driven by local events classi-
fied as stream captures or drainage rearrangements.These
events can affect the biogeography [11], and may occur
due to various mechanisms like erosion [12–14], natural
damming [7], tectonic motion [15–17], as well as volcanic
activity [18].
Fractality of watersheds was first claimed in Ref. [10].

Their observations were limited to small scales and only
few samples. In Ref. [19], extensive numerical simula-
tions were devised to study watersheds on uncorrelated
artificial landscapes, as well as on large-scale natural
landscapes in the form of digital elevation maps (DEM),
as the ones obtained from satellite imagery [20]. Defin-
ing the watershed to be the line dividing the entire land-
scape into two parts, a novel and efficient identification
algorithm was developed. Using this method, the self-
similarity was confirmed and the fractal dimension was
estimated to be 1.10± 0.01 for the Alps, 1.11± 0.01 for
the Himalayas, and 1.211 ± 0.001 for uncorrelated arti-
ficial landscapes. Due to the ubiquity of the obtained
fractal dimension, also relations to other physical models
have been proposed, such as optimal paths and optimal
path cracks [21–23], bridge percolation [24–26], and the
surface of explosive percolation clusters [27, 28]. This
opens a broad range of possible implications and appli-
cations of the properties of watersheds. In this paper, we
study the effect of correlations on the fractal dimension
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of watersheds for artificial landscapes and compare in
two dimensions to the values obtained for several natural
landscapes ranging from flat (Big Lakes) to mountainous
regions (Rocky Mountains).

The mechanisms triggering the stream capture and
drainage rearrangement events [7, 12–18], although di-
verse, are all modifications of the topography. In that
perspective, Fehr et al. [29] investigated the effect of
such events by applying small local perturbations to nat-
ural and artificial landscapes and found that watersheds
can be strongly affected. Power-law scaling behavior was
observed, e.g. for the distribution of the area enclosed
by the original and the displaced watershed, and shown
to be independent on the strength of the perturbation.
Tuning the correlation degree in the artificial landscapes,
the values of the exponents were matched with the ones
obtained for natural landscapes. Additionally, for un-
correlated artificial landscapes, relations for the scaling
laws to properties of invasion percolation [30] were con-
jectured. We now extend these studies to three dimen-
sional systems, where the watershed is a surface dividing
the volume into two parts. We focus mainly on the study
of conjectured scaling relations, analyze the finite-size ef-
fects, and clarify the relation to invasion percolation.

This paper is organized as follows. In Section II we
briefly revisit the definition of our model and show the
dependence of the fractal dimension on the landscape cor-
relations for both two and three dimensions. Section III
summarizes our results for the power-law distributions
found for the effects of topographical modifications [29].
To validate the relations conjectured for two dimensions,
we study in Section IV the effect of perturbations for
three dimensional systems. Conclusions are drawn in
Section V.

http://arxiv.org/abs/1106.6200v1
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FIG. 1. (color online) Example of a watershed for uncorrelated systems with linear size L = 129 lattice sites in (a) two and
(b) three dimensions. The upper and lower catchments drain to the top and bottom boundary, respectively.

II. THE WATERSHED AND ITS FRACTAL
STRUCTURE

In nature, watersheds are the lines separating adjacent
drainage basins (catchments). We study the watershed
lines in two dimensions as well as their extension to three
dimensions. We use real and artificial systems in the form
of Digital Elevation Maps (DEM), giving the elevations
(resistances) on a square (cubic) lattice. We define as the
watershed, the line (surface) dividing the entire system
into two sets of sites, catchments, as shown in Fig. 1.
Each site in a catchment drains to the same boundary
of a chosen pair of opposite boundaries (top-bottom in
Fig. 1) of the DEM. Hereby, the drainage of a site is
determined by following the local slope and filling the
valleys (local minima), until eventually reaching one of
the two boundaries. For the determination of this line
we use an iterative invasion percolation procedure (IIP),
as introduced in Ref. [19].
Recently, watersheds have numerically been shown to

be self-similar objects [19]. These structures are typically
characterized by their fractal dimension df , which is de-
fined through the scaling of the mass M , corresponding
to the number of sites or bonds in the watershed, with
the linear system size L,

M ∼ Ldf . (1)

In Ref. [19] the fractal dimension of watersheds for un-
correlated artificial landscapes has been estimated to be
df = 1.211± 0.001, which differs from the ones obtained
for landscapes from satellite imagery shown in Tab. I.
This is expected as in natural landscapes typically long-
range correlations are present [31]. Therefore, we study
here the dependence of the fractal dimension on correla-
tions for several artificial landscapes.
Spatial long-range correlated distributions can be ob-

tained with fractional Brownian motion (fBm) [32, 33].

TABLE I. Fractal dimension of watersheds for natural land-
scapes obtained from satellite imagery [20]. We added here
the values presented in Ref. [19] for the Alps and the Hi-
malayas for completeness. The fractal dimensions are ob-
tained using the yardstick method. The error bars are of the
order of 2%.

Landscape df

Alpes 1.10 [19]

Europe 1.10

Rocky Mountains 1.11

Himalayas 1.11 [19]

Kongo 1.11

Andes 1.12

Appalachians 1.12

Brazil 1.12

Germany 1.14

Big Lakes 1.15

Similarly to previous studies [23, 29, 34–44], we use the
Fourier filtering method [23, 33, 35–37], which allows to
control the nature and the strength of correlations. A
detailed description of this method can be found, e.g.,
in Ref. [23]. In brief, the desired correlated distri-
bution can be introduced by generating Fourier coeffi-
cients in the reciprocal space according to a power-law
spectral density. For each frequency in the reciprocal
space, we calculate these Fourier coefficients through a
random phase in the interval [0 : 2π ) and an amplitude
(

√

k21 + · · ·+ k2d

)

−2H−d

, where ki are the frequency in-

dices of the discrete Fourier transform, d the spatial di-
mension, and H the Hurst exponent. The inverse Fourier
transform is applied to obtain the distribution in real
space. Finally, we normalize the spatial domain distri-
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bution in the range [0 : 1] to represent the correlated
topology, characterized by the Hurst exponent H . Three
different categories of fBm surfaces can be distinguished:
0 < H < 1/2, H = 1/2, and 1/2 < H < 1 [45]. The cor-
relations between the increments are persistent (positive)
for 1/2 < H < 1, meaning that sites with similar height
tend to cluster together, leading to rather smooth sur-
faces. The opposite is true for 0 < H < 1/2, where the
correlations of the increments are anti-persistent (nega-
tive), resulting in surfaces that seem to oscillate more
erratically. For H = 1/2, the classical Brownian mo-
tion is recovered, where the increments are uncorrelated
but the obtained heights are still correlated. The un-
correlated distribution of heights is solely obtained for a
constant spectral density, i.e. H = −d/2 (H = −1 and
H = −3/2 in two and three dimensions, respectively).
In Fig. 2 we plot the dependency of the fractal dimen-

sion of the watershed on the Hurst exponent, measuring
the degree of correlations. A monotonic decrease of df
withH is observed, in line with what was observed for the
optimal path crack in d = 2 [23]. Considering the typi-
cal range of 0.3 < H < 0.5 for natural landscapes [31],
our simulation results in two dimensions are in agreement
with the values for the fractal dimension of watersheds
in natural landscapes measured from satellite imagery,
as listed in Tab. I. The lines in Fig. 2 show the fractal
dimension obtained for the watershed of the Alps (solid
line) and the one close to the Big Lakes (dotted line),
characterizing the range of values obtained for natural
landscapes.
We now extend the concept of a watershed to a three

dimensional system, in which the values at the sites no
longer represent heights but for instance resistances. The
watershed is now a surface, as shown in Fig. 1b, that di-
vides the system into two parts. Similarly, each site in
one part drains to the same boundary of a chosen pair of
opposite boundaries (top-bottom in Fig. 1) of the DEM.
The drainage of a site is determined by following the low-
est gradient in the resistances and filling the regions of
local minima, until eventually reaching one of the two
boundaries. Again, the IIP procedure [19] can be used
to determine the watershed surface numerically. Alike
the two dimensional case, we use Eq. (1) to estimate the
fractal dimension. For uncorrelated three dimensional
systems, we find df = 2.48 ± 0.02. In Fig. 2, we show
that the fractal dimension of the watershed for three di-
mensional systems also decreases continuously with the
Hurst exponent H .

III. IMPACT OF PERTURBATIONS IN TWO
DIMENSIONS

So far we have considered that the properties of the
landscape, and consequently of the watershed, are static,
i.e., do not change in time. However, landscapes might
change due to several phenomena such as erosion, tec-
tonic motion, and volcanic activity. Such changes in the
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FIG. 2. (color online) The fractal dimension df of the wa-
tershed as a function of the Hurst exponent H of the system
in two (red stars) and three dimensions (green open circles)
according to left and right hand axes, respectively. In two di-
mensions, each point corresponds to an estimate of the fractal
dimension by fitting the power law in Eq. (1) to the water-
shed masses for system sizes L = {5, 17, 65, 257, 1025, 4097}.
For each system size, the mass was averaged over 104 land-
scape realizations. In three dimensions, the system sizes
L = {5, 9, 17, 33, 65, 129, 257} were used with the same
number of realizations. The lines show the fractal dimension
of the watershed obtained for the Alps (solid) and close to the
Big Lakes (dotted), characterizing, according to the left hand
axes, the range of estimates for natural landscapes as sum-
marized in Tab. I. In the typical range of natural landscapes,
0.3 < H < 0.5, the simulation results are in agreement with
the natural ones.

landscape are known to trigger local events called stream
capture [12–18], which can affect the watershed. In what
follows, we extend the recent work presented in Ref. [29].
This approach is based on a perturbation scheme, where
a local event is induced by changing the height hk at a
single site k of the system to hk + ∆, with ∆ being the
perturbation strength. It has been shown in Ref. [29]
that, without loss of generality, we can fix the perturba-
tion strength to the height difference between the highest
and lowest height of the landscape. As shown in Fig. 3b,
we quantify this response by the area, i.e. the number
of sites, Ns, enclosed by the resulting watershed (dark
(blue) line) after the perturbation at site k (cross) and
the watershed of the original landscape (light (red) line).
The water can only escape from this area through one
single site, which we call outlet. In this scheme, two out-

lets can be considered, one before (cross) and another
after the perturbation (dot). The former always coin-
cides with the perturbed site k and can be connected to
the latter, inside the enclosed area, by an invasion perco-
lation cluster, whose mass we denote by M . The number
of enclosed sites Ns, the mass M of the connecting clus-
ter and the distance R between the two outlets (dotted
line in Fig. 3a) are measured. After that, the original
landscape is restored by resetting the height at k to its
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(a) (b)

FIG. 3. (color online) (a) Example of a displacement (top, green) of the original watershed (bottom, red, the same as in
Fig. 1a) after a perturbation at the spot marked by a cross for an uncorrelated artificial landscape. The dotted line connects
the two outlets of the area before (cross) and after (dot) perturbation and defines the distance R. (b) The watershed close to
the big lakes in the United States (light (red) line). A perturbation of 2 m at a spot (cross) near Thunder Bay caused a change
in the watershed (dark (blue) line). The watershed displacement encloses an area of about 3730 km2 [29]. The dot marks the
new outlet of the area after the perturbation.

initial value. Except of those sites located on the orig-
inal watershed, this procedure is repeated for every site
k in the landscape. In the following, we consider only
perturbations actually leading to a displacement of the
watershed, i.e. Ns > 0. To reduce finite-size effects, we
explicitly exclude those perturbations, where the changed
areas touch the borders of the system and, therefore, the
original and the perturbed watershed are always overlap-
ping at the boundaries. From the obtained set of mea-
sures Ns, M , and R, we calculate the distribution P (Ns)
of the numbers of enclosed sites (areas) Ns, the distri-
bution P (M) of the clusters mass, and the probability
distribution P (R) of the Euclidean distance R between
the two outlets. To investigate the dependence of Ns and
M on the distance R, we define the average 〈Ns〉 and
distribution P (Ns|R) of areas associated with a distance
R, as well as the average 〈M〉 and distribution P (M |R).
For the dependence of M and Ns on each other we study
the average mass associated with an area Ns. All these
distributions and measures were sampled for each config-
uration, then averaged over 2000 realizations of systems
with size L = 513 and over 4000 for L = 129 and 257.
In Ref. [29], the distributions P (Ns), P (R), P (Ns|R),
and P (M |R), as well as 〈Ns〉, have been shown to follow
power laws of the form

P (Ns) ∼ N−β
s , (2a)

P (R) ∼ R−ρ, (2b)

〈Ns〉 ∼ Rσ, (2c)

P (Ns|R) ∼ N−α
s , (2d)

P (M |R) ∼ M−(1+α∗), (2e)

where the exponents α, β, and ρ have been estimated for
several natural as well as artificial landscapes. While ρ

and β were found to increase with increasing H , the ex-
ponent α did decrease. It has been observed that the av-
erage angle between the lines connecting the outlets with
the center of mass of the area, decreases with increasing
correlation degree. This implies that, on average, the two
outlets approach each other with increasing H , so that R
is no longer representative of the area extension. There-
fore, with H → 1, fixing the distance R no longer re-
stricts the areas entering the distribution P (Ns|R), such
that the exponent α decreases with H and approaches
β. For all considered landscapes the value σ = 2 has
been obtained. The distribution P (M |R) for uncorre-
lated landscapes can be directly related to point-to-point
invasion percolation, with α∗ = 1.39 being the subcritical
exponent as introduced in Ref. [30].
In the following we present a functional description

for the average number of enclosed sites 〈Ns〉 (R,L) that
captures the dependence on R, including also the finite-
size effects. We can write the average for a given distance
R as the first moment of the distribution P (Ns|R), i.e.,

〈Ns〉 (R) =

∫

dNs Ns P (Ns|R) . (3)

The distribution obtained from our simulation has a
lower and an upper cutoff, as can be seen from Fig. 4a.
Considering that those perturbations with areas touch-
ing the boundary are excluded, we need to determine the
scaling of the cutoffs numerically. From the data col-
lapse achieved using the scaling P (Ns|R) = L2αf [NsL

2],
we can see that the upper cutoff indeed scales as Ld.
Similarly, the lower cutoff follows Rd as obtained from
the data collapse shown in the inset of Fig. 4a. Applying
both cutoffs as bounds for the integral on the right hand
side of Eq. (3), as well as for the normalization integral
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FIG. 4. (color online) (a) Data collapse for the distribution
P (Ns|R) with R = 1 (filled) and R = 10 (open) and system
sizes L = {129, 257, 513} (triangles, circles, and squares, re-
spectively), using the scaling P (Ns|R) = L2αf [NsL

2]. The
solid lines represent fits to the data of a power law with expo-
nent α = 2.23±0.03. The inset shows the collapse of the same
data for L = 513, when the x-axis is rescaled by Rd, visual-
izing the lower cutoff from the power-law behavior. (b) The
average number of sites (area) 〈Ns〉 enclosed by the original
and the perturbed watershed at an outlet distance R for the
same landscapes and system sizes as in (a). The lines show
the expression given by Eq. (4). Each data point, in both (a)
and (b), corresponds to an average over 2000 realizations of
linear system size L = 513 and over 4000 for L = 129 and
257. The error bars are smaller than the size of the symbols.

for P (Ns|R), we obtain

〈Ns〉 (R,L) =

∫ Ld

Rd

dNs N
1−α
s

∫ Ld

Rd

dNs N
−α
s

(4)

= C

(

1− α

2− α

) (

Ld(2−α) −Rd(2−α)

Ld(1−α) −Rd(1−α)

)

.

This result matches, within the error bars, our sim-
ulation data as shown in Fig. 4b. In the limit
L → ∞, only possible because α > 2 [29], it reduces to

〈Ns〉 (R) = C(1 − α)/(2− α)Rd and, therefore, σ = 2, as
observed numerically.
In a similar way, as calculated for the number of en-

closed sites Ns, we investigate the massM of the invasion
percolation cluster which connects the two outlets before
and after perturbation. The cluster is always a subset of
the enclosed sites Ns. Hence, we assume also the distri-
bution P (M) and the average mass 〈M〉 to obey power
laws of the form

P (M) ∼ M−(1+β∗) (5a)

and 〈M〉 ∼ Rσ∗

, (5b)

where we choose Eq. (5a) to have a similar form as
Eq. (2e). Analogously to Eq. (3), we can define the av-
erage mass 〈M〉 as the first moment of the distribution
P (M |R). With a (finite-size) scaling analysis similar to
the one used to get the cutoffs in P (Ns|R), we find the

lower and upper cutoff of P (M |R) to scale as Rd∗

f and

Ld∗

f , respectively, where d∗f is the fractal dimension of

the invasion percolation clusters. Using Eq. (2e) together
with Eq. (3) with M instead of Ns we obtain

〈M〉 (R,L) =

∫ L
d∗
f

R
d∗
f

dM M−α∗

∫ L
d∗
f

R
d∗
f

dM M−α∗

−1

(6)

= C

(

α∗

α∗ − 1

)

(

Ld∗

f(1−α∗) −Rd∗

f(1−α∗)

L−d∗

f
α∗

−R−d∗

f
α∗

)

.

In Fig. 5 the matching, within the error bars, of this
result with the simulation data is shown. For L → ∞ the
result reduces to 〈M〉 (R) = α∗/(α∗ − 1)Rd∗

f , as α∗ > 1,
yielding σ∗ = d∗f = 91/48. The relation of the area

and the mass is analyzed with the average mass 〈M〉
associated to a given number of enclosed sites Ns. From
the dependence of 〈Ns〉 and 〈M〉 on R we expect

〈M〉 ∼ N
d∗
f
σ

s , (7)

which matches the value 0.95 ± 0.01 obtained from the
power-law fit to the data plotted in the inset of Fig. 5.
Based on this result, using Eq. (7) together with Eq. (2a)
and (5a) we expect β∗ = σβ/d∗f − 1 ≈ 0.22. This predic-
tion matches the value β∗ = 0.21± 0.02 estimated from
the data collapse of P (M) shown in Fig. 6. Summarizing
our results in two dimensions, together with the relations
conjectured in Ref. [29] we obtain the relations

α =
d∗f
σ
(1 + α∗), (8a)

β =
d∗f
σ
(1 + β∗), (8b)

ρ = σβ, (8c)

between the exponents α and β for the numbers of sites
Ns enclosed by the original and the perturbed watershed,
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FIG. 5. (color online) The average mass 〈M〉 of the inva-
sion percolation cluster connecting the two outlets with a dis-
tance R for uncorrelated two dimensional landscapes of sizes
L = {129, 257, 513} (triangles, circles, and squares, respec-
tively). The lines show the predictions according to Eq. (6) for
different system sizes. The inset shows the average mass vary-
ing with the number of enclosed sites. The line is a power-law
fit to the data yielding an exponent 0.95± 0.01 ≈ d∗f/2. Each
data point corresponds to an average over 2000 realizations
of systems with size L = 513 and over 4000 for L = 129 and
257. The error bars are smaller than the size of the symbols.
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FIG. 6. (color online) Data collapse of the size distribution
P (M) of the mass M of the invasion percolation cluster con-
necting the two outlets for uncorrelated landscapes of three
different system sizes L = {129, 257, 513} (triangles, circles,
and squares, respectively). The line represents a power-law
fit to the data for the largest landscape (squares) yielding an
exponent 1+ β∗ = 1.21± 0.02. Each data point is an average
over 2000 realizations of systems with size L = 513 and over
4000 for L = 129 and 257. The error bars are smaller than
the size of the symbols.

α∗ and β∗ for the mass M of the invasion percolation
clusters, and ρ for the probability density to induce, af-
ter perturbation, a change at a given distance. Despite
the similarity of α and ρ for uncorrelated two dimen-
sional landscapes [29], they differ significantly in three

dimensions, as shown in the next section.

IV. IMPACT OF PERTURBATIONS IN THREE
DIMENSIONS

In this section we extend the previous concepts to three
dimensional systems. As introduced in Sec. II, the wa-
tershed in three dimensions is a surface that divides the
system into two parts. Similar to two dimensions, a per-
turbation is induced by changing the local resistance rk
at site k to rk+∆, where ∆ is the perturbation strength.
We quantify the impact on the watershed surface, as be-
fore, by the number of sites Ns enclosed by the original
and the perturbed watershed, which now corresponds to
a change in volume. As an example, the largest of all
changed volumes observed in our simulations is shown
in Fig. 7. The outlets of this volume, before and after
perturbation, are determined as well as their distance R
and mass M of the invasion percolation cluster connect-
ing them. The original system is then restored by reset-
ting rk to its initial value. This procedure is repeated
for all sites k of the system, except those located on the
watershed. Again, the averages 〈Ns〉, 〈M〉, and distri-
butions P (R), P (Ns), P (Ns|R), P (M), and P (M |R) are
sampled and averaged over 2000 configurations. Similar
to the two dimensional case, as shown in Fig. 8 for the
distribution P (Ns) of volumes, we find these quantities
to follow power laws of the form introduced in Eqs. (2a)-
(2e) and Eqs. (5a)-(5b). The values of all the exponents
estimated for uncorrelated systems are summarized in
Tab. II.

TABLE II. Summary of the exponents numerically obtained
in this study. Estimates are given for watersheds on natural
and uncorrelated artificial landscapes in two dimensions, as
well as for uncorrelated artificial systems in three dimensions.
For exponents obtained in previous works the corresponding
citations are given. The range 1.10−1.15 of fractal dimension
for natural landscapes is obtained from Tab. I.

Type Eq. natural artificial (uncorr.)

d 2 2 3

df (1) 1.10 - 1.15 1.211±0.001 [19] 2.48±0.02

α (2d) 2.3±0.2 [29] 2.23±0.03 [29] 2.4±0.1

β (2a) 1.65±0.15 [29] 1.16±0.03 [29] 1.31±0.05

ρ (2b) 3.1±0.3 [29] 2.21±0.01 [29] 3.2±0.2

σ (2c) 2 [29] 2 [29] 2.45±0.05

α∗ (2e) – 1.39±0.03 [29, 30] 1.4±0.1

β∗ (5a) – 0.21±0.02 0.29±0.06

σ∗ (5b) – 91/48 [46] 2.53 [46]

Although the volumes Ns are still compact, we find
σ = 2.48 ± 0.02 by an analysis of 〈Ns〉 and P (Ns|R)
similar to the one performed in two dimensions using
Eq. (4) in the limit L → ∞. The obtained value of σ
is close to the fractal dimension of the watershed, what
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(a) (b)

FIG. 7. (color online) (a) The largest of all observed changed volumes (dark, blue) attached to the perturbed watershed (light,
red) for the same uncorrelated three dimensional system of linear size L = 129, as used in Fig. 1b. The upper and lower
catchments drain to the top and bottom borders, respectively. (b) The same changed volume as in (a) without the watershed
for better visibility. The lines mark the sites where the original watershed intersects the system boundaries.
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FIG. 8. (color online) Data collapse of the distribution P (Ns)
of the number of sites (volume) enclosed by the original and
the perturbed watershed for uncorrelated three dimensional
systems of size L = {33, 65, 129}, (squares, circles, triangles,
respectively). The line represents a power-law fit to the data
yielding an exponent β = 1.31 ± 0.05. Each data point is
an average over 2000 realizations. The error bars are smaller
than the size of the symbols.

suggests that the mass of the changed volume is domi-
nated by its surface, in contrast to what we observe in
two dimensions. This is also confirmed by a box counting
analysis of the largest of all changed volumes, as depicted
in Fig. 9. In agreement with the findings by Lee in Ref.
[47], that the size distribution of sub-critical point-to-
point invasion percolation, as introduced by Araújo et

al. [30], is independent on the dimensionality of the sys-
tem, we obtain α∗ = 1.4 ± 0.1 for uncorrelated systems,
similar to the value found in two dimensions. This con-

10
-1

10
1

10
3

10
5

10
-1

10
1

10
3

C

1/ε

FIG. 9. (color online) Number of cubic boxes C of size ε
covering the changed volume, shown in Fig. 7, as obtained
from a box counting method. Each data point consists of a
single measurement. The line corresponds to ε2.48.

firms the relation to invasion percolation drawn in Ref.
[29]. Inserting the estimates of d∗f , σ, and α∗, given in

Tab. II, into Eq. (8a), we find α ≈ 2.48 matching with
the value 2.4±0.1 obtained numerically, hence validating
the conjectured relation. Similarly, we also observe that
our results are consistent with Eq. (8b).

The dependence of the exponents α, β, and ρ on the
Hurst exponent H is shown in Fig. 10, confirming the
relation ρ = σβ (Eq. (8c)), independent on the degree of
correlations. We observe α to decrease for H > 0 and to
approach β, similar as found in two dimensions (compare
Section III).
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FIG. 10. (color online) The exponents α, β, ρ, σ (squares,
circles, triangles up, and triangles down, respectively) as a
function of the Hurst exponent H for perturbations in 3D.
Each data point consists of a similar measurement as per-
formed in Fig. 8 to obtain β for uncorrelated systems.

V. CONCLUSION

In summary, we were able to show that watersheds
are fractals with a fractal dimension in the range of
1.10 ≤ df ≤ 1.15 for all analyzed natural landscapes
from mountainous (e.g. Alps) to rather flat ones (e.g. Big
Lakes). By studying model landscapes with long-range
correlations characterized by the Hurst exponent H , we

determined the dependence of the fractal dimension on
H in both two and three dimensions, where for the for-
mer we found good quantitative agreement with natural
landscapes, for which 0.3 < H < 0.5. Extending the work
done in Ref. [29] on the impact of perturbations on wa-
tersheds in two dimensional systems, we found the lower
and upper bounds of the distribution of areas to scale
with distance and system size with an exponent σ = 2 in
two and σ = 2.48±0.02 in three dimensions. Considering
these cutoffs, we were able to derive a function describ-
ing the average area, which includes the finite-size effects.
In a similar way, by integrating P (M |R), we obtained a
function for the average mass 〈M〉 of the invasion perco-
lation cluster. In the extension of the perturbation study
to three dimensional systems, we observed the changed
volumes to be dominated by their surface, i.e., the wa-
tershed, resulting in a value of σ close to the fractal di-
mension of the watershed itself. The distributions and
averages for the three dimensional case are shown to fol-
low power laws as in two dimensions. Indeed, we found
in the uncorrelated case an intrinsic relation to invasion
percolation. Finally, our results in three dimensions are
consistent with the conjectured relations between the ex-
ponents. As a followup of the work presented here, it
would be interesting to see how the impact of perturba-
tions could be related to other physical models, such as
optimal path cracks [21, 23], bridge percolation [26], and
the surface of explosive percolation clusters [27, 28].
We acknowledge useful discussions with D. Garcia-

Castellanos, C. Moukarzel, L. Hurni, and J. Schrenk
and thank CNPq, CAPES, FUNCAP, and the
CNPq/FUNCAP-Pronex grant for financial support.
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