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Bias correction for estimators of the extremal index

Holger Drees∗
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Abstract

We investigate the joint asymptotic behavior of so-called blocks estimator of the extremal
index, that determines the mean length of clusters of extremes, based on the exceedances over
different thresholds. Due to the large bias of these estimators, the resulting estimates are
usually very sensitive to the choice of the threshold and thus difficult to interpret. We propose
and examine a bias correction that asymptotically removes the leading bias term while the rate
of convergence of the random error is preserved.
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1 Introduction

When one analyzes a risk related to extreme values of a stationary time series, then the clustering
behavior of extremes can be as least as important as the tail behavior of the marginal distribution.
For example, while a flood control basin may cope with a single day of extreme rainfall, an extended
period of heavy rain will more likely lead to a flooding of the surrounding area. Similarly, large
negative returns on a stock index over several days may sum up to an overall loss which is much
worse than the most extreme crash ever experienced on a single day.

Obviously, there is no single parameter which captures all facets of serial dependence between
extreme values, and in different applications different features may be of interest. Recently, Drees
and Rootzén (2010) introduced a very flexible class of empirical processes that are capable of
describing quite general aspects of extremal dependence. In the present paper, it is demonstrated
how the asymptotic theory of these empirical processes can be used to immensely improve the
performance of well-known estimators of the so-called extremal index, that is the reciprocal value
of the asymptotic mean cluster size.

More specifically, let a stationary time series Xi, 1 ≤ i ≤ n, with marginal distribution function
(d.f.) F be observed. We assume that F belongs to the maximum domain of attraction of some
extreme value d.f.Gγ , i.e., for an accompanying sequence of independent and identically distributed
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(i.i.d.) random variables (r.v.s) X̃i, 1 ≤ i ≤ n, with d.f. F there exist normalizing constants an > 0
and bn ∈ R such that

P
{max1≤i≤n X̃i − bn

an
≤ x

}

−→ Gγ(x), x ∈ R, (1.1)

as n → ∞. It is well known that (up to a scale and location parameter) Gγ must be of the form
Gγ(x) = exp

(

− (1 + γx)−1/γ
)

for all x such that 1 + γx > 0. Let

un(x) := anx+ bn.

Moreover, assume the following mild mixing condition (a weakened version of Leadbetter’s condi-
tion D):

There exist coefficients αn,l and a sequence ln = o(n) such that αn,ln → 0 as n→ ∞ and

∣

∣P
{

max
i∈I1

Xi > un(x),max
i∈I2

Xi > un(x)
}

−P
{

max
i∈I1

Xi > un(x)}·P
{

max
i∈I2

Xi > un(x)
}
∣

∣ ≤ αn,l

for all x ∈ R and all I1, I2 ⊂ {1, . . . , n} such that max I1 ≤ min I2 − l, 1 ≤ l ≤ n− 1.

Then there exists a constant θ ∈ [0, 1], the so-called extremal index, such that

P
{max1≤i≤nXi − bn

an
≤ x

}

−→ Gθ
γ(x), x ∈ R, (1.2)

provided that the left hand side converges (to an arbitrary limit) for some x ∈ R. In what follows,
we will always rule out the degenerate case θ = 0 which, in the limit, corresponds to clusters of
extremes with infinite mean length.

If the extremal index θ is strictly positive, then usually it may be interpreted as the reciprocal
value of a limiting cluster size. To see this, note that from (1.1) and (1.2) one may conclude

P{max1≤i≤nXi > un(x)}
1− Fnθ(un(x))

−→ 1 ∀x ∈ R,

with the convention 0/0 := 1. Indeed, Hsing (1993, Theorem 3.1) proved that under a stronger
mixing condition this convergence holds uniformly in x. If the following condition holds:

There exist coefficients α̃n,l and a sequence ln = o(n) such that α̃n,ln → 0 as n→ ∞ and

∣

∣P
(

max
i∈I2

Xi > un(x) | max
i∈I1

Xi > un(x)
)

− P
{

max
i∈I2

Xi > un(x)
}
∣

∣ ≤ α̃n,l

for all x ∈ R and all I1, I2 ⊂ {1, . . . , n} such that max I1 ≤ min I2 − l, 1 ≤ l ≤ n− 1,

then

sup
u∈R

∣

∣

∣

P{max1≤i≤nXi > u}
1− Fnθ(u)

− 1
∣

∣

∣
−→ 0. (1.3)

Now a Taylor expansion yields 1−Fnθ(u) ∼ nθF̄ (u) = θE(Cn(u)) uniformly for all u ∈ [un, F
←(1))

where Cn(u) :=
∑n

i=1 1{Xi > u} denotes the total number of exceedances over u, provided un →
F←(1) := sup{x ∈ R | F (x) < 1} such that F̄ (un) := 1−F (un) = o(1/n). Hence, in view of (1.3),
it follows

1

E(Cn(u) | Cn(u) > 0)
=
P{max1≤i≤nXi > u}

nF̄ (u)
−→ θ (1.4)
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uniformly for all u ∈ [un, F
←(1)).

Convergence (1.4) suggests to estimate θ by replacing the unknown probability and expectation
on the left hand side by empirical counterparts. Since we cannot estimate P{max1≤i≤nXi > u}
consistently if we observe merely n consecutive r.v.s Xi, 1 ≤ i ≤ n, we must first replace n with
rn = o(n) in (1.4) and adjust u accordingly. Thus we split the sample into mn = ⌊n/rn⌋ blocks of
length rn and estimate θ by

θ̂n :=

∑mn
j=1 1{max(j−1)rn<i≤jrn Xi > un}
∑mn

j=1

∑jrn
i=(j−1)rn+1 1{Xi > un}

, (1.5)

for a sequence of thresholds un satisfying rnF̄ (un) → 0, but nF̄ (un) → ∞.

This so-called blocks estimator of the extremal index has been intensively studied in the literature.
Hsing (1993) and Weissman and Novak (1998) proved its consistency and asymptotic normality
under suitable mixing conditions. Variants of the blocks estimator were also examined by Smith
and Weissman (1994) and Robert et al. (2009). As alternatives to blocks estimators, so-called runs
estimators of θ have been proposed. While, in the numerator of the right hand side of (1.5), the
number of clusters of extremes is defined as the number of blocks of length rn which contain at
least one exceedance, in the runs approach two exceedances are considered to belong to different
clusters if they are separated by at least r̃n consecutive observations that do not exceed un:

θ̃n :=

∑n−r̃n
i=1 1{Xi > un,Xj ≤ un for all i+ 1 ≤ j ≤ i+ r̃n}

∑n−r̃n
i=1 1{Xi > un}

.

The asymptotic behavior of this estimator was examined by Hsing (1993), Smith and Weissman
(1994) and Weissman and Novak (1998), among others. Yet another approach was suggested by
Ferro and Segers (2003), who used interarrival times between exceedances to estimate the extremal
index.

In all these papers, the behavior of the estimators was analyzed for a fixed sequence of thresholds.
Below we will argue that the analysis of the joint behavior of blocks estimators for different
thresholds does not only provide deeper insight, but that it is the key to a remarkable reduction
of the bias.

Indeed, all the estimators mentioned above are plagued by serious bias problems, which often
renders inconclusive the analysis of the strength of extremal dependence. As a typical example,
consider the following autoregressive time series of order 1 with Cauchy innovations εt: Xt =
ϕXt−1 + εt with ϕ = 0.6. Figures 1 (a) and (b) display blocks and runs estimates of θ based on
the exceedances over F←n (u) = Xn−⌈nu⌉+1:n as a function of u for several block lengths rn, resp.
run lengths r̃n. (Here Fn denotes the empirical d.f. and Xi:n the ith smallest order statistic.) The
true value θ = 1 − ϕ is indicated by the horizontal lines. The estimates are almost monotone
functions in u and monotonically increasing in the block lengths rn, resp. run lengths r̃n. (The
latter monotonicity holds by construction if n is divisible by rn resp. if the last r̃n observations
do not exceed the threshold.) Since there is no region where the estimates remain stable, it is not
obvious how to choose the threshold appropriately. Without an objective procedure for choosing
the threshold, it will thus be difficult to justify any particular estimate for the extremal index.

In Section 3 we suggest a method to combine blocks estimators that are based on the exceedances
over different thresholds in a suitable way such that the leading bias term cancels out for many
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Figure 1: Blocks estimator (left) with block lengths r = 5 (blue solid line), r = 10 (red dashed) and
r = 20 (black dash-dotted), runs estimator (middle) with run lengths r̃ = 2 (blue solid), r̃ = 5 (red
dashed) and r̃ = 10 (black dash-dotted), and bias corrected blocks estimator (right) as functions
of the standardized threshold for a AR(1)-times series with ϕ = 0.6 and Cauchy innovations; the
true extremal index equals 1− ϕ = 0.4.

well-known time series models. In Figure 1 (c) the resulting estimates based on exceedances over
F←n (u) are shown (again as a function of u) for the same block lengths. Obviously, the estimates
are not only almost constant for a wide range of thresholds, but they also vary much less with the
block length than the original blocks estimator.

The remainder of the paper is organized as follows. In Section 2, we establish a limit result
for processes of blocks estimators indexed by the threshold. To this end, we represent the blocks
estimators as functionals of a suitably defined empirical cluster process. Then the joint asymptotic
behavior of the blocks estimators easily follows from a general limit theorem of such processes
proved in Drees and Rootzén (2010). In the main Section 3 we first show that often the leading
bias term of the blocks estimators is a power function of the threshold. We then introduce a
method to remove the leading bias term of the blocks estimators in that case without deteriorating
the rate of convergence of the random error part. All proofs are collected in Section 4.

2 Joint asymptotics of blocks estimators

In this section we want to analyze the joint asymptotic behavior of blocks estimators over a whole
continuum of thresholds. Since here we are interested in the extremal dependence (and not in the
marginal tails), the results should be invariant under strictly increasing transformations of the
observations. Hence it is natural to parameterize the thresholds in terms of the marginal quantile
function F←, that is to consider

θ̂∗n,t :=

∑mn
j=1 1{max(j−1)rn<i≤jrn Xi > F←(1− vnt)}
∑mn

j=1

∑jrn
i=(j−1)rn+1 1{Xi > F←(1− vnt)}

, 0 < t ≤ 1.

For later applications, though, it is more convenient to examine a version where the unknown
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quantile function is replaced with an empirical analog:

θ̂n,t :=

∑mn
j=1 1{max(j−1)rn<i≤jrn Xi > Xn−⌈nvnt⌉:n}
∑mn

j=1

∑jrn
i=(j−1)rn+1 1{Xi > Xn−⌈nvnt⌉:n}

, 0 < t ≤ 1.

If there are no ties among the largest ⌈nvn⌉ observations and none of them are among the last
n−mnrn observations, then θ̂n,t can be rewritten as

θ̂n,t =
1

⌈nvnt⌉

mn
∑

j=1

1{max(j−1)rn<i≤jrn Xi > Xn−⌈nvnt⌉:n}.

In particular, this representation holds with probability tending to 1 if we assume that F is
continuous on some neighborhood of F←(1) and rnvn → 0, which we will do throughout the
remainder of the paper.

For sufficiently large n, we then have

θ̂∗n,t =

∑mn
j=1 1{max(j−1)rn<i≤jrn Ui > 1− vnt}
∑mn

j=1

∑jrn
i=(j−1)rn+1

1{Ui > 1− vnt}

where the random variables Ui = F (Xi), 1 ≤ i ≤ n, have a distribution which equals the uniform
distribution in a neighborhood of 1. Thus this blocks estimator can be expressed in terms of certain
empirical processes of cluster functionals that have been introduced and analyzed by Drees and
Rootzén (2010). To this end, define standardized excesses

Un,i :=
(Ui − (1− vn))

+

vn
=

(Ui − (1− vn)) ∨ 0

vn
, 1 ≤ i ≤ n,

blocks thereof
Yn,j := (Un,i)(j−1)rn<i≤jrn , 1 ≤ j ≤ mn,

and functionals on R∪ :=
⋃

l∈NR
l by

ft(x1, . . . , xl) := 1{max1≤i≤l xi > 1− t}

gt(x1, . . . , xl) :=

l
∑

i=1

1{xi > 1− t}.

Then

θ̂∗n,t =
m−1n

∑mn
j=1 ft(Yn,j)

m−1n
∑mn

j=1 gt(Yn,j)
=
E(ft(Yn,1)) + (nvn)

1/2m−1n Zn(ft)

E(gt(Yn,1)) + (nvn)1/2m
−1
n Zn(gt)

, (2.1)

where for a generic functional h : R∪ → R we define

Zn(h) :=
1√
nvn

mn
∑

j=1

(

h(Yn,j)− Eh(Yn,j)
)

.

Under suitable conditions on the time series and the family H of functionals h, Drees and Rootzén
(2010) proved convergence of the empirical processes (Zn(h))h∈H to a centered Gaussian process
with continuous sample paths.
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Here we recall conditions that ensure the convergence of the processes
(

Zn(ft), Zn(gt)
)

0≤t≤1
. Note

that (Zn(gt))0≤t≤1 is the usual tail empirical process, whose asymptotic behavior has been inves-
tigated by Rootzén (1995, 2009) and Drees (2000).

(C1) The β-mixing coefficients

βn,k := sup
1≤l≤n−k−1

E
(

sup
B∈Bnn,l+k+1

∣

∣P (B|Bl
n,1)− P (B)

∣

∣

)

of the vector of excesses (Xk − F←(1 − vn(1 − ε)))+1≤k≤n satisfy βn,lnn/rn → 0 for some

sequence ln = o(rn). Here Bj
n,i denotes the σ-field generated by (Xk − F←(1 − vn(1 −

ε)))+i≤k≤j for some ε > 0.

(C2) rn → ∞, rnvn → 0, nvn → ∞.

(C3.1) For some ε > 0

1

rnvn
Cov

(

rn
∑

i=1

1{Xi > F←(1− vn(1− s))},
rn
∑

i=1

1{Xi > F←(1− vn(1− t))}
)

→ cg(s, t) ∀ − ε ≤ s, t ≤ 1.

(C3.2) For some ε > 0

1

rnvn
Cov

(

1{max1≤i≤rn Xi > F←(1− vn(1− s))},
rn
∑

i=1

1{Xi > F←(1− vn(1− t))}
)

→ cfg(s, t) ∀ − ε ≤ s, t ≤ 1.

(C4) There exists a bounded function h : (0, 1] → R such that limt→0 h(t) = 0 and for sufficiently
large n

1

rnvn
E
(

rn
∑

i=1

1{F←(1− vn(1− s)) < Xi ≤ F←(1− vn(1− t))}
)2

≤ h(t−s) ∀−ε ≤ s < t ≤ 1.

Theorem 2.1. (i) Under the conditions (C1) and (C2), (Zn(ft))0≤t≤1 converge weakly to Zf :=
(
√
θBt)0≤t≤1 with B denoting a standard Brownian motion.

(ii) If the conditions (C1), (C2), (C3.1) and (C4) are met and rn = o(
√
nvn), then (Zn(gt))0≤t≤1

converge to a centered Gaussian process (Z(gt))0≤t≤1 with covariance function cg.

(iii) If the conditions (C1)–(C4) are satisfied and rn = o(
√
nvn), then (Zn(ft), Zn(gt))0≤t≤1 con-

verge weakly to (Zf (t), Zg(t))0≤t≤1 with

Cov(Zf (s), Zf (t)) = θ(s ∧ t),
Cov(Zg(s), Zg(t)) = cg(s, t),

Cov(Zf (s), Zg(t)) = cfg(s, t), 0 ≤ s, t ≤ 1.

Remark 2.2. The covariance conditions (C3.1) and (C3.2) are fulfilled if all finite dimensional
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marginal distributions (X1, . . . ,Xk) belong to the domain of attraction of some multivariate extreme
value distribution, limn→∞ lim supm→∞ βn,m = 0, and the following condition holds:

(C5) For some δ > 0

E
(

rn
∑

i=1

1(0, 1](Un,i)
)2+δ

= O(rnvn).

In this case, Segers (2003) has shown that the conditional distributions P (Un,i)1≤i≤k |Un,1 6=0 of (Un,i)1≤i≤k
given that the first observation exceeds the threshold converge weakly to the distribution of (Wi)1≤i≤k =
(Vi ∨ 0)1≤i≤k, where (Vi)1≤i≤k is the so-called tail sequence pertaining to the time series Ui, i ∈ N.
The limiting covariance functions cg and cfg are then given by

cg(s, t) = s ∧ t+
∞
∑

k=2

(

P{W1 > 1− s,Wk > 1− t}+ P{W1 > 1− t,Wk > 1− s}
)

, (2.2)

cfg(s, t) =







P{W1 > 1− t,maxj≥1Wj > 1− s}
+
∑∞

k=2 P{W1 > 1− s,Wk > 1− t,maxj≥2Wj ≤ 1− s}, s < t,
t s ≥ t.

(2.3)

Using the joint convergence of Zn(ft) and Zn(gt) and the representation (2.1), one can easily derive
a limit theorem for the processes (θ̂∗n,t)0<t≤1 of blocks estimators.

Corollary 2.3. Under the conditions of Theorem 2.1 (iii)
(√
nvnt(θ̂

∗
n,t − θn,t)

)

0<t≤1
→ Z := Zf − θZg weakly as n→ ∞

with

θn,t :=
E(ft(Yn,1))

E(gt(Yn,1))
=
P{max1≤i≤rn Xi > F←(1− vnt)}

rnvnt
.

The limit process Z is Gaussian with E(Z(t)) = 0 and

Cov(Z(s), Z(t)) = θ
(

s ∧ t− cfg(s, t)− cfg(t, s)
)

+ θ2cg(s, t) =: c(s, t). (2.4)

Note that the centering constant θn,t, which is the leading term in the representation (2.1), con-
verges to θ uniformly for all t ∈ (0, 1] by Hsing’s (1993) result (1.4). However, the convergence can
be rather slow leading to a large bias of the blocks estimator as observed in Figure 1.

In the next section we will see how to combine all blocks estimators θ̂∗n,t non-linearly such that the
resulting estimator has a much smaller bias. As the threshold F←(1 − vnt) is unknown, for any
given threshold un in the definition (1.5) it is not known for which index t one has θ̂n = θ̂∗n,t. Hence,

we first need an analog to Corollary 2.3 for the estimator θ̂n,t with random threshold Xn−⌈nvnt⌉:n.

To this end, we analyze the difference between the deterministic threshold 1 − vnt (after stan-
dardization of the marginals) and its random counterpart 1 − Un−⌈nvnt⌉:n. It has been shown in
Drees (2000), proof of Corollary 3.1, that

√
nvn

(

(1−Un−⌈nvnt⌉:n)/vn−t
)

0≤t≤1
converges to a Gaus-

sian process if (Zn(gt))−ε≤t≤1 converges to a Gaussian process. Note that the latter convergence
follows from an analog to Theorem 2.1 (ii), because the conditions (C3.1) and (C4) have been
formulated for s, t ∈ [−ε, 1] (while for Theorem 2.1 (ii) to hold it suffices to require the conditions
for s, t ∈ [0, 1]). This suffices to establish a limit theorem for θ̂n,t. It turns out that under a
suitable continuity condition on θn,t, the blocks estimator with estimated threshold has the same

asymptotic behavior as θ̂∗n,t.
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Corollary 2.4. Suppose the conditions of Theorem 2.1 (iii) are met. Then
(√
nvnt(θ̂n,t − θn,(1−Un−⌈nvnt⌉:n)/vn)

)

0≤t≤1
→ Z weakly as n→ ∞. (2.5)

If, in addition, to each t0 ∈ (0, 1) and each M1 > 0 there exists M2 > 0 such that

sup
s,t≥t0,|s−t|≤M1(nvn)−1/2

∣

∣

∣

θn,s − θ

θn,t − θ
− 1

∣

∣

∣
≤M2(nvn)

−1/2, (2.6)

then
(√
nvnt(θ̂n,t − θn,t)

)

0≤t≤1
→ Z weakly as n→ ∞. (2.7)

3 Bias correction

As in Figure 1, the blocks estimator θ̂n,t often exhibits a clear trend, that is caused by its bias,
when it is plotted versus t. In this section we show how to combine blocks estimators for different
thresholds such that the leading bias term vanishes while the order of magnitude of the random
error is preserved. To this end, we make structural assumptions on the form of the bias θn,t− θ as
a function of t. The following examples demonstrate that in time series models discussed in the
literature the leading bias term often equals a power of t with positive exponent.

Example 3.1. Let Zi, i ∈ N, be iid r.v.s with d.f. F , and let ξi, i ∈ N, denote a series of iid
Bernoulli rvs, independent of (Zi)i∈N, with P{ξi = 0} = ψ = 1 − P{ξi = 1}. Weissman and
Novak (1998, p. 285) proved that then the time series X0 := Z0, Xt := ξtZt + (1− ξt)Xt−1, t ∈ N,
is stationary with marginal d.f. F and extremal index θ = 1 − ψ. Moreover, if F is eventually
continuous, then for all t0 > 0

θn,t =
1− (1− vnt)(1− θvnt)

rn−1

rnvnt
= θ − θ2

2
rnvnt+

1− θ

rn
+O(vn + r2nv

2
n)

uniformly for t ∈ [t0, 1]. If r2nvn → ∞, then the linear function −θ2rnvnt/2 is the leading bias
term.

Example 3.2. Consider a finite order moving maxima time series

Xt = max
0≤j≤q

(ψjZt−j)

with non-negative coefficients ψj ≥ 0. W.l.o.g. we may and will assume that max0≤j≤q ψj = 1.
Further assume that the innovations Zt are iid with heavy tailed d.f. FZ satisfying

F̄Z(z) := 1− FZ(z) = c1z
−β1

(

1 + c2z
−β2 + o(z−β2)

)

for some β1, β2, c1 > 0 and c2 6= 0.

If β2 < β1, then

F (x) := P{Xt ≤ x}
= P{Zt−j ≤ x/ψj ∀ 0 ≤ j ≤ q}

=

q
∏

j=0

(

1− c1(x/ψj)
−β1

(

1 + c2(x/ψj)
−β2 + o(x−β2)

)

)

= 1− c1

q
∑

j=0

ψβ1

j x
−β1 − c1c2

q
∑

j=0

ψβ1+β2

j x−(β1+β2) + o
(

x−(β1+β2)
)

8



as x→ ∞, and thus for all fixed A > 0

F̄Z(x/A) =
Aβ1

∑q
j=0 ψ

β1

j

F̄ (x) +
c2

c
β2/β1

1

Aβ1+β2

(
∑q

j=0ψ
β1

j

)1+β2/β1

(

1−
∑q

j=0 ψ
β1+β2

j
∑q

j=0 ψ
β1

j A
β2

)

(F̄ (x))1+β2/β1

+o(x(−β1+β2)).

To determine θn,t, check that with

d :=
c2

c
β2/β1

1

1
(
∑q

j=0 ψ
β1

j

)1+β2/β1

(

1−
∑q

j=0 ψ
β1+β2

j
∑q

j=0 ψ
β1

j

)

it follows that

P
{

max
1≤t≤rn

Xt ≤ F←(1− vnt)
}

= P
{

Zt−j ≤
F←(1− vnt)

ψj
∀ 1 ≤ t ≤ rn, 0 ≤ j ≤ q

}

= P
{

Zm ≤ F←(1− vnt)

max0∨(1−m)≤j≤q∧(rn−m) ψj
∀ 1− q ≤ m ≤ rn

}

=
0
∏

m=1−q

FZ

( F←(1− vnt)

max1−m≤j≤q ψj

)

·
rn−q
∏

m=1

FZ

(F←(1− vnt)

max0≤j≤q ψj

)

·
rn
∏

m=rn−q+1

FZ

( F←(1− vnt)

max0≤j≤rn−m ψj

)

=

0
∏

m=1−q

(1 +O(vn)) ·
(

1− 1
∑q

j=0 ψ
β1

j

vnt− d(vnt)
1+β2/β1 + o(v1+β2/β1

n )
)rn−q

·
rn
∏

m=rn−q+1

(1 +O(vn))

= 1− 1
∑q

j=0 ψ
β1

j

rnvnt− drn(vnt)
1+β2/β1 +O(vn + r2nv

2
n) + o(rnv

1+β2/β1

n ).

Hence, if rnv
β2/β1
n → ∞ but rnv

1−β2/β1
n → 0 (which implies β2 < β1/2), then for all t0 > 0

θn,t =
1− P

{

max1≤t≤rn Xt ≤ F←(1− vnt)
}

rnvnt
=

1
∑q

j=0 ψ
β1

j

+ d(vnt)
β2/β1 + o(vβ2/β1

n )

uniformly for t ∈ [t0, 1]. Here the the constant d is strictly negative if ψj ∈ (0, 1) for some

j ∈ {0, . . . , q}. Hence, in this case, θ := 1/
∑q

j=0 ψ
β1

j is the extremal index and the leading term

of the bias θn,t − θ is a multiple of tβ2/β1 .

Now we investigate the general case, i.e. we do not assume that β2 < β1. By similar calculations
as above, we obtain that

F̄ (x) = 1 + c1

q
∑

j=0

ψβ1

j x
−β1 +O(x−(β1+β2) + x−2β1)

=⇒ F̄Z(x/A) =
Aβ1

∑q
j=0 ψ

β1

j

F̄ (x) +O(x−(β1+β2) + x−2β1).

9



Therefore

P
{

max
1≤t≤rn

Xt ≤ F←(1− vnt)
}

= (1 +O(vn))
2q ·

(

1− vnt
∑q

j=0 ψ
β1

j

+O(v1+β2/β1

n + v2n)
)rn−q

= 1− rnvnt
∑q

j=0 ψ
β1

j

+
1

2

(

rnvnt
∑q

j=0 ψ
β1

j

)2

+O
(

vn + (rnvn)
3 + rn(v

1+β2/β1

n + v2n)
)

,

which in turn implies

θn,t = θ − θ2

2
rnvnt+ o(rnvn)

if rnv
max(1/2,1−β2/β1)
n → ∞. Hence, in this case the leading bias term is a linear function of t.

Remark 3.3. Theorem 4.1 of Hsing (1993) suggests that indeed for m-dependent time series with
m-dimensional regularly varying marginal distributions the leading bias term usually is a linear
function of t if rn → ∞ sufficiently fast.

We propose the following estimator of the extremal index with reduced bias:

θ̂n,µ :=

∫

(0,1]2
θ̂n,sθ̂n,t µ(ds, dt)

∫

(0,1]2
θ̂n,s + θ̂n,t µ(ds, dt)

, (3.1)

where µ is some finite signed measure on (0, 1]2 satisfying the following conditions:

(M1) The signed measure µπ induced by the product map π : (0, 1]2 → (0, 1], π(s, t) = st,
vanishes, i.e. µ{π ∈ B} = 0 for all B ∈ B((0, 1]).

(M2)
∫

sδ + tδ µ(ds, dt) 6= 0 for all δ > 0.

(M3) The total variation measure |µ| pertaining to µ satisfies
∫

(0,1]2(st)
−1 |µ|(ds, dt) <∞.

Example 3.4. (i) Let F,G be d.f.s of probability measures QF and QG on (0, 1] such that
∫

(0,1] t
−1QF (dt) < ∞,

∫

(0,1] t
−1QG(dt) < ∞ and

∫

(0,1] t
δ QF (dt) 6=

∫

(0,1] t
δ QG(dt) for all δ >

0. (The latter condition is, for instance, fulfilled if QF equals the distribution QTb
G of the map

Tb(x) := x/b under QG for some b > 1.) Then the signed measure µ = QTa
F ⊗QG−QF ⊗QTa

G

for some a > 1 (i.e., µ
(

(0, x]× (0, y]
)

= F (ax)G(y)− F (x)G(ay) for all x, y ∈ (0, 1]) satisfies

10



the conditions (M1)–(M3):

µ{(s, t) | st ≤ u} =

∫

(0,1]
G(u/s)QTa

F (ds)−
∫

(0,1]
G(au/s)QF (ds) = 0,

∫

(0,1]2
sδ + tδ µ(ds, dt) =

∫

(0,1]
sδQTa

F (ds) +

∫

(0,1]
tδ QG(dt)−

∫

(0,1]
sδQF (ds)−

∫

(0,1]
tδQTa

G (dt)

= (a−δ − 1)
(

∫

(0,1]
sδ QF (ds)−

∫

(0,1]
tδ QG(dt)

)

6= 0,
∫

(0,1]2
(st)−1 |µ|(ds, dt) =

∫

(0,1]
s−1QTa

F (ds)

∫

(0,1]
t−1QG(dt) +

∫

(0,1]
s−1QF (ds)

∫

(0,1]
t−1QTa

G (dt)

= (1 + a)

∫

(0,1]
s−1QF (ds) ·

∫

(0,1]
t−1QG(dt) <∞.

(ii) The above example is a special case of the following more general construction. Let T :
(0, 1]2 → D := {(u, v) | 0 < u ≤ v ≤ 1}, T (x, y) := (xy, y), and let T−1 : D →
(0, 1]2, T−1(u, v) = (u/v, v) denote its inverse. Choose some measure ν on (0, 1] satisfy-
ing

∫

(0,1] s
−1 ν(ds) < ∞, and Markov kernels K1 and K2 from (0, 1] to (0, 1] such that

Ki(u, [u, 1]) = 1. Then the signed measure µ := (ν ⊗K1)
T−1 − (ν ⊗K2)

T−1

meets the con-
ditions (M1) and (M3), because π = T ◦ pr1 with pr1 denoting the projection on the first

coordinate, and thus µπ =
(

(

(ν ⊗ K1)
T−1)T

)pr1
−

(

(

(ν ⊗ K2)
T−1)T

)pr1
= ν − ν = 0 and

∫

(0,1]2(st)
−1 (ν ⊗Ki)

T−1

(ds, dt) =
∫

(0,1]2 u
−1 (ν ⊗Ki)(du, dv) <∞.

Our main result shows that the bias of θ̂n,µ (and hence its estimation error) is of smaller order than
the bias of θn,t if the bias dominates the random error and its leading term is a power function.

Theorem 3.5. Suppose that conclusion (2.7) of Corollary 2.4 holds and that

θn,t = θn + cnt
δ +Rn(t) ∀ t ∈ (0, 1] (3.2)

for some δ > 0 with dn := sup0<t≤1 t|Rn(t)| = o(cn) and (nvn)
−1/2 = o(cn). If the conditions

(M1)–(M3) are fulfilled, then

θ̂n,µ =d θn + (nvn)
−1/2

∫

(0,1]2
sδt−1Z(t) + tδs−1Z(s)µ(ds, dt)

∫

(0,1]2
sδ + tδ µ(ds, dt)

+

∫

(0,1]2
sδRn(t) + tδRn(s)µ(ds, dt)

∫

(0,1]2
sδ + tδ µ(ds, dt)

+ oP ((nvn)
−1/2 + dn).

In particular, if dn = o((nvn)
−1/2), then

√
nvn(θ̂n,µ − θn) −→

∫

(0,1]2
sδt−1Z(t) + tδs−1Z(s)µ(ds, dt)

∫

(0,1]2
sδ + tδ µ(ds, dt)

. (3.3)
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Remark 3.6. If sup0<t≤1 |Rn(t)| = o
(

(nvn)
−1/2

)

, then assertion (3.3) holds if merely convergence
(2.5) is required instead of (2.7), that is, the smoothness assumption (2.6) on θn,t is not needed.

In (3.3) the leading bias term which depends on the threshold is removed, while the random error is
still of the order (nvn)

−1/2. To analyze the latter, w.l.o.g. we may assume that the signed measure
µ is symmetric, because θ̂n,µ = θ̂n,µ̃ for µ̃(ds, dt) := µ(ds, dt)+µ(dt, ds) and µ̃ satisfies (M1)–(M3)
iff µ meets these conditions. Then the right-hand side of (3.3) equals

∫

(0,1]2
sδt−1Z(t)µ(ds, dt)

∫

(0,1]2
sδ µ(ds, dt)

which is a centered Gaussian rv with variance

σ2µ :=

∫

(0,1]2

∫

(0,1]2
(ss̃)δ(tt̃)−1c(t, t̃)µ(ds, dt)µ(ds̃, dt̃)

(

∫

(0,1]2
sδ µ(ds, dt)

)2
.

If µ is the symmetrized version of the signed measure discussed in Example 3.4 (i) with f and g
denoting Lebesgue densities of QF and QG := QTb

F , respectively, then

σ2µ =

(

ab

(1− a−δ)(1− b−δ)

)2

×

×
∫ 1

0

∫ 1

0

(

a−(δ+1)f(bt) + b−(δ+1)f(at)− f(abt)− (ab)−(δ+1)f(t)
)

×

×
(

a−(δ+1)f(bt̃) + b−(δ+1)f(at̃)− f(abt̃)− (ab)−(δ+1)f(t̃)
)

(tt̃)−1c(t, t̃) dt dt̃.

To estimate this asymptotic variance is essentially as difficult as to determine the asymptotic
variance of the original blocks estimators. To this end, one may employ ideas developed in Drees
(2003), but a bootstrap approach, that will be worked out in a forthcoming paper, seems more
promising.

Finally, we would like to mention that our approach is obviously not capable of removing the part
θn − θ of the bias which does not depend on the threshold but on the block length rn.

4 Proofs

Proof of Theorem 2.1. We apply Theorem 2.10 of Drees and Rootzén (2010) to prove asymp-
totic equicontinuity of the processes and Theorem 2.3 to establish convergence of the finite di-
mensional marginal distributions. To this end, we must verify the conditions required in these
theorems.

(i) The assumptions (B1) and (B2) of Drees and Rootzén (2010) follow from our conditions (C1)
and (C2). For the functionals ft, condition (C2) of Drees and Rootzén (2010) is trivial. Condition
(C3) of Drees and Rootzén (2010) reads as

P{max1≤i≤rn Un,i > (1− s) ∨ (1− t)}
rnvn

→ θ(s ∧ t)
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(cf. Drees and Rootzén (2010), (4.1)). This is immediate from (1.4), which implies

P{max1≤i≤rn Un,i > 1− t}
rnvnt

→ θ (4.1)

uniformly for t ∈ (0, 1].

Likewise, condition (D3) of Drees and Rootzén (2010) is equivalent to

lim
δ↓0

lim sup
n→∞

sup
0≤s≤t≤1,t−s≤δ

P{1 − t < max1≤i≤rn Un,i ≤ 1− s}
rnvn

= 0,

which again is a direct consequence of the uniform convergence (4.1).

The remaining conditions can be verified by the arguments given in Drees and Rootzén (2010),
Section 4 and the proof of Corollary 4.3. (Note that Zn(ft) equals the random variable Z̃n(1− t)
defined in Example 4.2 (with k = 1) of that paper.)

(ii) This assertion is a reformulation of the results on the univariate tail empirical process given in
Example 3.8 of Drees and Rootzén (2010).

(iii) The equicontinuity of the joint process immediately follows from the equicontinuity of (Zn(ft))0≤t≤1
and (Zn(gt))0≤t≤1 and a similar remark applies to the conditions (C1) and (C2) of Drees and
Rootzén (2010). The remaining condition (C3) follows from (C3.1) and (C3.2) of the present pa-
per and the calculations in part (i) above. ✷

Proof of Remark 2.2. The conditions (C3.1) and (C3.2) follow by similar arguments as in
Remark 3.7 (ii) of Drees and Rootzén (2010) (cf. also Corollary 2.4 of that paper). Here we have

cg(s, t) = E
(

1(1− s, 1](W1)1(1− t, 1](W1)

+

∞
∑

k=2

1(1− s, 1](W1)1(1− t, 1](Wk) + 1(1− t, 1](W1)1(1− s, 1](Wk)
)

,

which equals the right hand side of (2.2), and

cfg(s, t) = E
(

1(1− s, 1](max
i≥1

Wi)
∞
∑

k=1

1(1− t, 1](Wk)− 1(1 − s, 1](max
i≥2

Wi)
∞
∑

k=2

1(1− t, 1](Wk)
)

.

If s ≥ t and the first sum does not vanish, then the first indicator equals 1. Together with a similar
reasoning for the second sum, one obtains

cfg(s, t) = E(1(1− t, 1](W1)) = t.

In the case s < t, direct calculations show that

cfg(s, t) = E
(

1(1− s, 1](max
i≥1

Wi)1(1− t, 1](W1)

+
(

1(1− s, 1](max
i≥1

Wi)− 1(1− s, 1](max
i≥2

Wi)
)

∞
∑

k=2

1(1− t, 1](Wk)
)
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is equal to the right hand side of (2.3). ✷

Proof of Corollary 2.3. Using E(gt(Yn,1)) = rnvnt and representation (2.1), we obtain by
simple calculations

√
nvnt(θ̂

∗
n,t − θn,t) =

n

mnrn
· Zn(ft)− θn,tZn(gt)

1 +
√
nvn/(mnrnvnt)Zn(gt)

. (4.2)

By the equicontinuity of (Zn(gt))0≤t≤1 and Zn(g0) = 0, there exists a sequence ηn → 0 such that
sup0≤t≤(nvn)−1/4 |Zn(gt)| = OP (ηn). Hence, for tn := (ηn/(nvn))

1/2,

sup
tn≤t≤1

|Zn(gt)|√
nvnt

= OP

( ηn√
nvntn

)

+ sup
(nvn)−1/4≤t≤1

|Zn(gt)|
(nvn)1/4

= oP (1),

so that the denominator of the second fraction tends to 1 uniformly for t ∈ [tn, 1]. Moreover, since
both θ̂∗n,t and θn,t are bounded,

sup
0≤t≤tn

√
nvnt|θ̂∗n,t − θn,t| = oP (1). (4.3)

Finally, the continuity of Z implies

sup
0≤t≤tn

|Z(t)| = oP (1). (4.4)

Therefore, in view of (4.2)–(4.4), Theorem 2.1 and the uniform convergence of θn,t to θ prove the
assertion. ✷

Proof of Corollary 2.4. Check that under the conditions of Theorem 2.1 (iii) the follow-
ing equivalences hold on a set with probability tending to 1: Xi > Xn−⌈nvnt⌉:n ⇐⇒ Ui >

Un−⌈nvnt⌉:n ⇐⇒ Un,i > 1 − (1 − Un−⌈nvnt⌉:n)/vn, and thus θ̂n,t = θ̂∗n,sn(t) with sn(t) := (1 −
Un−⌈nvnt⌉:n)/vn. An application of Vervaat’s (1972) Theorem 1 to the assertion of Theorem 2.1
(ii) yields √

nvn(sn(t)− t)0≤t≤1 −→ Zg (4.5)

(cf. the proof of Corollary 3.1 of Drees (2000)). In particular, sn(t)/t → 1 uniformly for all
t ∈ [(nvn)

−1/3, 1].

Moreover, by continuity sup0≤t≤(nvn)−1/3 |Z(t)| → 0 and thus by Corollary 2.3

√
nvnt

(

θ̂n,t − θn,sn(t)
)

1[(nvn)−1/3,1](t) =
√
nvnsn(t)

(

θ̂∗n,sn(t) − θn,sn(t)
)

· t

sn(t)
1[(nvn)−1/3,1](t)

→ Z(t) (4.6)

uniformly for t ∈ [0, 1].

Next note that
sup

0≤t≤(nvn)−3/4

√
nvnt|θ̂n,t − θn,sn(t)| ≤ (nvn)

−1/4 −→ 0, (4.7)
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while for (nvn)
−3/4 ≤ t ≤ (nvn)

−1/3

√
nvn|θ̂n,t − θn,sn(t)|

=
∣

∣

∣

nvnt

⌈nvnt⌉
(

Zn(fsn(t)) +
mn√
nvn

P
{

max
1≤i≤rn

Xi > F←(1− vns)
}

|s=sn(t)

)

−√
nvntθn,sn(t)

∣

∣

∣

≤ |Zn(fsn(t))|+
∣

∣

∣

nvnt

⌈nvnt⌉
· mnrn

n
− 1

∣

∣

∣

√
nvnsn(t)θn,sn(t) +

√
nvn|sn(t)− t|θn,sn(t). (4.8)

The first term on the right-hand side tends to 0 uniformly by Theorem 2.1 (i) and the continuity
of Zf , the last term converges to 0 by (4.5) and the continuity of Zg. Furthermore, by (4.5)

sup
(nvn)−3/4≤t≤(nvn)−1/3

∣

∣

∣

nvnt

⌈nvnt⌉
· mnrn

n
− 1

∣

∣

∣

√
nvnsn(t) = OP

(

(nvn)
−1/4 + rn/n

)

·OP

(

(nvn)
1/6

)

→ 0.

Combining this with (4.6)–(4.8), we arrive at the first assertion.

It remains to prove that under the additional continuity condition on θn,t

√
nvn sup

0≤t≤1
t|θn,sn(t) − θn,t| −→ 0

in probability. To this end, first check that

|θn,s − θn,t| ≤
∣

∣

∣

1

rnvns
− 1

rnvnt

∣

∣

∣
P
{

max
1≤i≤rn

Xi > F←(1− vns)
}

+
1

rnvnt
P
{

F←(1− vn(s ∨ t)) < max
1≤i≤rn

Xi ≤ F←(1− vn(s ∧ t))
}

≤ |t− s|
rnvnst

· rnvns+
1

rnvnt
· rnvn|t− s|

≤ 2
|t− s|
t

.

Hence, again by (4.5) and the continuity of Zg for each δ > 0 there exists η > 0 such that

P
{√

nvn sup
0≤t≤η

t|θn,sn(t) − θn,t| > δ
}

< δ.

On the other hand, by (4.5), assumption (2.6) and Hsing’s result (1.3)

√
nvnt|θn,sn(t) − θn,t| =

√
nvnt

∣

∣

∣

θn,sn(t) − θ

θn,t − θ
− 1

∣

∣

∣
· |θn,t − θ| = OP

(

|θn,t − θ|
)

→ 0

uniformly for t ∈ [η, 1], which completes the proof. ✷

Proof of Theorem 3.5. By condition (M1)

∫

(0,1]2
(st)δ µ(ds, dt) = 0, µ((0, 1]2) = 0. (4.9)
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Thus

θ̂n,µ − θn =

∫

(θ̂n,s − θn)(θ̂n,t − θn)µ(ds, dt)
∫

(θ̂n,s − θn) + (θ̂n,t − θn)µ(ds, dt)

=

∫

(

θ̂n,s − θn,s + cns
δ +Rn(s)

)(

θ̂n,t − θn,t + cnt
δ +Rn(t)

)

µ(ds, dt)
∫

θ̂n,s − θn,s + θ̂n,t − θn,t + cn(s
δ + tδ) +Rn(s) +Rn(t)µ(ds, dt)

.

In view of (2.7) and the integrability condition (M3), the right-hand side has the same distribution
as
∫

(

(nvn)
−1/2s−1(Z(s) + oP (1)) + cns

δ +Rn(s)
)(

(nvn)
−1/2t−1(Z(t) + oP (1)) + cnt

δ +Rn(t)
)

µ(ds, dt)

cn

(

∫

sδ + tδ µ(ds, dt) + oP (1)
)

+ (nvn)
−1/2

(

∫

s−1Z(s) + t−1Z(t)µ(ds, dt) + oP (1)
)

.

Because of (4.9), the conditions (M2) (M3), (nvn)
−1/2 = o(cn) and dn = o(cn) this fraction equals

∫

(nvn)
−1/2

(

tδs−1Z(s) + sδt−1Z(t)
)

+ sδRn(t) + tδRn(s)µ(ds, dt) + oP
(

(nvn)
−1/2

)

∫

sδ + tδ µ(ds, dt) + oP (1)

.

Now the first assertion is obvious and convergence (3.3) is an immediate consequence of the addi-
tional assumption dn = o((nvn)

−1/2) and the integrability condition (M3). ✷

Proof of Remark 3.6. Recall the definition of sn(t) from the proof of Corollary 2.4.
For 0 < δ ≤ 1 and 0 < u ≤ v one has vδ − uδ ≤ vδ−1(v − u) ≤ uδ−1(v − u) and hence
|(sn(t))δ − tδ)| ≤ tδ−1|sn(t) − t|. For δ > 1, the mean value theorem implies |(sn(t))δ − tδ)| ≤
δ|sn(t) − t|. Combining both inequalities with convergence (4.5), we conclude |(sn(t))δ − tδ)| =
OP

(

(nvn)
−1/2t−1

)

. Moreover, under the given conditions, Rn(sn(t)) = oP
(

(nvn)
−1/2

)

. Hence,

θ̂n,t − θn = (nvn)
−1/2t−1(Zn(t) + oP (1)) + cnt

δ and we proceed as in the proof of Theorem 3.5 to
establish (3.3). ✷
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