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We study the condensed fraction of a harmonically-trapped atomic Bose gas at the critical point predicted by
mean-field (MF) theory. The non-zero condensed fraction f0 is induced by critical correlations which increase
the transition temperature Tc above TMF

c . Unlike the Tc shift in a trapped gas, f0 is sensitive only to the
critical behaviour in the quasi-uniform part of the cloud near the trap centre. To leading order in the interaction
parameter a/λ0, where a is the s-wave scattering length and λ0 the thermal wavelength, we expect a universal
scaling f0 ∝ (a/λ0)4. We experimentally verify this scaling using a Feshbach resonance to tune a/λ0. Further,
using the local density approximation, we compare our measurements with the universal result obtained from
Monte-Carlo simulations for a uniform system, and find excellent quantitative agreement.

PACS numbers: 03.75.Hh, 67.85.-d

Some of the most interesting fundamental problems of
many-body physics involve strong inter-particle correlations,
and cannot be addressed by mean-field (MF) theories. Har-
monically trapped ultracold atomic gases are promising can-
didates for highly controllable “quantum simulation” of such
intricate many-body scenarios [1]. However, for testing the
existing theories of spatially uniform systems, it is often im-
portant to experimentally extract information on local proper-
ties of a non-uniform trapped gas (see e.g. [2–4]).

The effect of interactions on Bose-Einstein condensation
of a dilute gas is a classic example of a difficult beyond-MF
problem, which has challenged theorists for decades [5–17].
It is also an example of a situation where harmonic confine-
ment both quantitatively and qualitatively alters the physics
[18–27]. For a uniform gas the interaction shift of the crit-
ical temperature Tc cannot be calculated to any order in the
interaction strength using perturbation theory, owing to strong
correlations that develop near the critical point. On the other
hand, non-uniformity of a trapped atomic gas results in a sig-
nificant MF shift of Tc [18]. More importantly, it diminishes
the more interesting beyond-MF effects, in essence because
near Tc only a small fraction of the cloud is actually in the
critical regime (see Fig. 1). Only recently have the beyond-
MF effects on condensation of an atomic gas become experi-
mentally accessible [27]. Many questions remain open since
beyond-MF effects in a uniform and a trapped gas have differ-
ent dependence on the strength of interactions, and quantita-
tive connections between the two are highly non-trivial.

In this Letter, we study the condensed fraction (f0) of an
atomic Bose gas at the critical point predicted by MF theory.
By definition f0 vanishes within MF theory, and directly mea-
sures the effect of critical correlations which shift Tc above
TMF
c . Moreover, while the Tc shift itself strongly depends on

the global properties of a non-uniform gas, f0 measurements
directly probe the quasi-uniform critical region near the cen-
tre of the trap. To leading order in the strength of interactions
we predict a universal scaling f0 ∝ (a/λ0)4, where a > 0 is
the s-wave scattering length and λ0 the thermal wavelength at

the ideal gas critical temperature T 0
c . Using a Feshbach res-

onance in a 39K gas to tune a/λ0, and accurately measuring
condensed fractions in the range 0.1−1%, we experimentally
verify this prediction. Further, we directly relate our measure-
ments to the universal critical behaviour seen in the classical-
field Monte-Carlo simulations of a uniform system [28], and
find excellent quantitative agreement.

In Fig. 1(a) we illustrate the difference between the beyond-
MF shifts of the critical point in a uniform and a trapped sys-
tem, and in Fig. 1(b) the expected scaling of the condensed
fraction at the MF critical point. For visual clarity, here we fix
the temperature of the gas and consider the interaction shift of
the critical density nc (in the centre of the trap) and the crit-
ical atom number Nc. Surprisingly, the beyond-MF shifts of
nc andNc are not directly related to each other. The quadratic
beyond-MF Nc shift is of direct relevance to the experimen-
tally pertinent case of a trapped gas, but from the point of view
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FIG. 1. (color online) Beyond-mean-field effects near the critical
point in a harmonically trapped Bose gas. (a) For a fixed tempera-
ture, the density distribution at the critical point N = Nc < NMF

c

(solid blue line) is compared with the mean-field prediction (dashed
red line). In the trap centre we expect nMF

c −nc ∝ a/λ0, characteris-
tic of the critical behaviour in a uniform system. However the experi-
mentally measuredNc shift,NMF

c −Nc ∝ (a/λ0)2, is dominated by
the density shift outside the central critical region, and is not directly
related to the nc shift. (b) If N is increased to NMF

c > Nc, a small
condensate induced by critical correlations forms within the critical
region of size ∝ a/λ0. The condensed atom number N0 ∝ (a/λ0)4

directly relates to the critical density shift ∆nc ∝ a/λ0.
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of the theory of critical behaviour the linear nc shift is actu-
ally more interesting. Here we will show how to use a trapped
atomic cloud to experimentally obtain information about the
critical behaviour in a uniform system.

We first outline some general scaling arguments, then
present our experimental results, and finally return to a quanti-
tative comparison of our measurements with the theory based
on the classical-field Monte-Carlo simulations of Ref. [28] for
a uniform system.

In a uniform system, ideal-gas condensation occurs at a
chemical potential µ0

c = 0, and a critical phase space den-
sity nλ3 = ζ(3/2) ≈ 2.612, where ζ is the Riemann func-
tion. In an interacting gas there is no Tc shift at MF level,
i.e. TMF

c = T 0
c . To leading order in a/λ0 � 1 the expected

beyond-MF Tc shift is given by [7–17]

∆Tc
T 0
c

≈ c a
λ0

, (1)

where ∆Tc = Tc − T 0
c , and c ≈ 1.8 [11, 12]. Equivalently,

the nc shift at constant T is ∆nc/n
0
c ≈ −(3/2)∆Tc/T

0
c .

An important point is that, at both MF and beyond-MF
level, the interactions differently affect Tc (or equivalently nc)
and the critical chemical potential µc. The simple MF shift
βµMF

c = 4 ζ(3/2)a/λ0, where β = 1/kBT , has no effect on
condensation, and to lowest beyond-MF order [29]:

βµc ≈ βµMF
c +B2

(
a

λ0

)2

. (2)

The qualitative difference between Eqs. (1) and (2) highlights
the fact that the problem of the Tc shift is non-perturbative and
near criticality the equation of state does not have a regular
expansion in µ (otherwise one would get ∆nc ∝ µMF

c − µc).
In a harmonically trapped gas Tc is defined for a given atom

number N , rather than for a given density n. For an ideal gas
kBT

0
c = h̄ω [N/ζ(3)]

1/3, where ζ(3) ≈ 1.202. Within the
local density approximation (LDA) one expects the uniform-
system results for nc and µc to apply in the centre of the trap,
r = 0. Elsewhere in the trap the local chemical potential is
µ(r) = µ(0)−mω2r2/2, wherem is the atom mass and ω the
trapping frequency. The result for the Tc shift however does
not carry over so easily to the trapped case; the basic reason
for this is that at Tc only a small fraction of the non-uniform
cloud is actually in the critical regime. The size of the central
critical region is rc ∼ (a/λ0)RT , where RT =

√
kBT/mω2

is the thermal radius [22]. Combining this with ∆nc ∼ a/λ0
implied by Eq. (1), we obtain a very small beyond-MF shift of
the critical number of atoms within the critical region, of the
order (a/λ0)4. However the interaction shift of µc affects the
density everywhere in the trap. One famous consequence of
this is the negative MF shift of Tc in a harmonically trapped
gas [18]: while nMF

c = n0c , repulsive interactions broaden the
density distribution so that NMF

c > N0
c .

More generally, the experimentally observed Tc shift in a

trapped gas [27] qualitatively mirrors Eq. (2):

∆Tc
T 0
c

≈ b1
a

λ0
+ b2

(
a

λ0

)2

. (3)

Here b1 ≈ −3.426 is an analytical, strictly MF result [18],
and b2 = 46 ± 5 was measured in [27]. The quadratic Tc
shift depends on the beyond-MF correlations, but does not di-
rectly correspond to the lowest-order (beyond-MF) Tc shift in
a uniform system [Eq. (1)], which should enter the in-trap Tc
only at the (a/λ0)4 level. We can qualitatively understand the
similarity of Eqs. (2) and (3) by noting that: (i) Away from
the critical point the equation of state is regular in µ and the
local density shift is simply proportional to µc, at both MF
and beyond-MF level [30], and (ii) The contribution to Nc

from the non-critical region outweighs the contribution from
within the critical region by a large factor ∼ (λ0/a)3.

To summarize this analysis: On the one hand we expect
nMF
c − nc ∝ a/λ0, characteristic of the critical behaviour in

a uniform system. On the other hand NMF
c − Nc ∝ (a/λ0)2

is dominated by the effect of the µc shift on the density out-
side the critical region. The latter result was observed in [27];
the former cannot be experimentally verified without a direct
probe of the local density in a 3D cloud.

By studying the condensed fraction f0 at the MF-predicted
critical point we overcome the problem of the absence of the
local density probe, and gain more direct insight into the crit-
ical behaviour in the centre of the trap. Simply put, instead
of asking how Nc is reduced with respect to NMF

c by criti-
cal correlations, we ask how many atoms pile up in the con-
densate if (at constant T ) we increase the total atom num-
ber to NMF

c > Nc. Experimentally, the obvious advantage is
that the condensed and thermal component can be clearly dis-
tinguished in standard time-of-flight (TOF) expansion, thus
allowing us to use a “global” measurement technique to ac-
cess the local behaviour of the gas within the critical re-
gion. Theoretically, the analogous quantity for a uniform gas,
n0/n (where n0 is the condensate density), was first con-
sidered by Holzmann and Baym [31]. Although the formal
proof is rather involved, the main scaling result is intuitive,
n0/n ∝ ∆nc ∝ a/λ0 [32]. From this result we immediately
obtain f0 ∝ (a/λ0)4, as illustrated in Fig. 1(b). The presence
of the harmonic trapping potential still affects the scaling of
f0 with a/λ0, but in this case the results for a harmonic and
a uniform system are trivially related by the volume of the
critical region, ∝ (a/λ0)3.

To experimentally measure f0 we use an optically trapped
cloud of 39K atoms in the |F,mF 〉 = |1, 1〉 hyperfine state,
in which the strength of interactions can be tuned via a Fes-
hbach resonance centred at 402.5 G [33]. Our experimental
system and the procedure for making precise and accurate
measurements close to the critical point are described in detail
in [27, 34, 35]. Briefly, we prepare partially condensed clouds
at various values of the scattering length a, and then let the
number of atoms in the trap gradually decay through inelas-
tic processes, while finite trap depth and sufficiently high rate
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of elastic collisions ensure that the sample remains in equilib-
rium at an approximately constant temperature. For the mea-
surements presented here, N ≈ (4 − 5) × 105, the geomet-
ric mean of the trapping frequencies in our nearly isotropic
trap is ω̄/2π ≈ 80 Hz, and T ≈ 250 nK, corresponding to
λ0 ≈ 104 a0, where a0 is the Bohr radius.

To discern condensed fractions as low as ∼ 0.1 % we turn
off the interactions (switch a close to zero) during TOF, thus
minimizing the condensate expansion [27]. We numerically
calculate NMF

c using standard MF theory (see also [30]) and
measure the condensed atom number N0 at the point where
the total atom number is N = NMF

c . To eliminate various
sources of a-independent systematic errors (including abso-
lute N and ω̄ calibration) we perform “reference” measure-
ments in a weakly interacting gas with a/λ0 ≈ 0.005 [27]. At
this reference point the expected value of f0 is < 10−5 (see
below), and we neglect it in our analysis.

Our experimental results are summarized in Fig. 2. Starting
at zero for small a (in agreement with MF theory), the con-
densed fraction f0 grows to ∼ 1% at a ≈ 350 a0. The use of
a Feshbach resonance in principle allows us to increase a fur-
ther, but in the more strongly interacting gases the unfavorable
ratio of the three-body loss rate to the two-body elastic colli-
sion rate precludes reliable equilibrium measurements [27].

We fit our f0 data with a function (a/λ0)x where x is a free
parameter. The fit yields x = 3.9±0.4, in agreement with the
predicted x = 4. This confirmation of the expected scaling of
f0 with a/λ0 is the first main result of this paper.

We now quantitatively relate our measurements to Monte-
Carlo (MC) calculations for a uniform gas. Following [28] we
first define the reduced chemical potential

X =
µ− µc

32π3(a/λ0)2kBT
. (4)

Next, following [11] we calculate X0, the value of X in the
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FIG. 2. (color online) Condensed fraction of an atomic gas induced
by critical correlations. The condensed fraction f0 is measured at the
point where the total atom number is N = NMF

c > Nc. A fit to the
data (solid line) with the function f0 ∝ (a/λ0)x gives an exponent
x = 3.9 ± 0.4, in agreement with the predicted x = 4. Vertical
error bars are statistical and horizontal error bars reflect the 0.1 G
uncertainty in the position of the Feshbach resonance. The insets
show representative column density distributions after 19 ms TOF.

centre of the trap for N = NMF
c (due to logarithmic correc-

tions this is a slightly different condition from µ(0) = µMF
c ,

but this distinction is not experimentally observable). We use
the experimental value b2 = 42 ± 2, and bMF

2 = 11.7 ± 0.1
[27, 30] to get

X0 ≈
3 ζ(3)

32π3ζ(2)

(
b2 − bMF

2

)
= 0.067± 0.005 . (5)

For a uniform system the reduced condensate density f̃(X),
defined by n0λ30 = 16π3(a/λ0)f̃(X), was tabulated in [28]
using MC simulations. Invoking LDA, for a harmonically
trapped gas we get

N0

N0
c

=

√
2(4π)7

4ζ(3)

(
a

λ0

)4 ∫ X0

0

f̃(X)
√
X0 −X dX . (6)

Writing (N0/N
0
c )1/4 = α(a/λ0) and numerically evaluating

the integral in Eq. (6), using the results of [28], we get the
numerical coefficient αMC = 10.4± 0.4.

In Eq. (6) N0 is calculated at N = NMF
c but normalised

to N0
c . This expression therefore differs from f0 by a factor

NMF
c /N0

c . This difference does not affect the leading (a/λ0)4

term and is relevant only at the (a/λ0)5 level. Nevertheless,
for a direct quantitative comparison, in Fig. 3 we normalise
the measured N0 values to N0

c , and assume the quartic de-
pendence on a/λ0. The linear fit to (N0/N

0
c )1/4 yields the

experimental value αexp = 10.3±0.3, in excellent agreement
with the Monte-Carlo result.

For another comparison, it is interesting to convert X0 into
N0 using the standard Thomas-Fermi (TF) law. This MF law
is valid well below Tc, where N0 ≈ N , but should not hold
close to the critical point. For a given X0, the TF law also
predicts N0 ∝ (a/λ0)4. However it corresponds to f̃(X) =
X and gives αTF = 8.2 ± 0.4. This result underestimates
the condensed fraction f0 by a factor (αMC/αTF)4 ≈ 2.6,

0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 3
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

a / λ 0

(N
0/N0 c)1/4

FIG. 3. (color online) Comparison with Monte-Carlo calculations for
a uniform system. To quantitatively compare our data with the MC
simulations we plot (N0/N

0
c )1/4 versus a/λ0 (see text). A linear fit

gives a gradient of αexp = 10.3 ± 0.3, in excellent agreement with
the prediction αMC = 10.4± 0.4. The error bars are obtained using
the limiting values from Fig. 2; the points with large error bars do not
significantly affect the fitted value of αexp but are clearly consistent
with it.
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and we experimentally exclude it at about 4 sigma level. This
confirms that near Tc mean-field theory fails on both sides of
the critical point.

In conclusion, we have studied the condensed fraction of
an atomic gas induced by inter-particle correlations at a point
where no condensate is predicted by mean-field theory. Build-
ing on the recent observation of correlation effects on the con-
densation temperature of a trapped gas, this work makes a
more direct connection with the critical behaviour in a ho-
mogeneous system. We experimentally confirm the predicted
scaling f0 ∝ (a/λ0)4, which highlights the conceptual dif-
ference between the interaction shifts of the critical density
(characteristic of a uniform system) and the critical atom num-
ber in a harmonically confined cloud. Moreover, we demon-
strate excellent quantitative agreement between our experi-
ments and Monte-Carlo simulations for a homogeneous gas.
In a more general context, this provides an example of the po-
tential of ultracold atomic gases for quantitative quantum sim-
ulation of intricate beyond-mean-field phenomena in uniform
many-body systems.
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