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1. Introduction

The study of discrete integrable systems has receivedaenadile attention in the past decade
(see, for example, [1]). Ablowitz and Ladik proposed a mdtbbintegrable discretizations
of soliton equations, including the nonlinear Schrodimggquation and the modified KdV
(mKdV) equation, based on the Lax forml| [2—4], and Hirota dized various soliton
equations such as the KdV, the mKdV, and the sine-Gordontiemsaby using the bilinear
formalism [5+9]. Following the pioneering work of AblowHzadik and Hirota, Date, Jimbo
and Miwa developed a unified algebraic approach from thetpdiniew of the KP theory
[10-+16]. For other approaches to the discrete integralsiesys, see, for example, [17]18].

It is known that there is a class of soliton equations whicmigglloop, cusp, and peak
soliton solutions. Among them, some soliton equations, ¢ Wadati-Konno-Ichikawa
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(WKI) elastic beam equation, the Camassa-Holm equati@Dé&gasperis-Procesi equation,
the short pulse equation and the Hunter-Saxton equatigmeaspas model equations of
various physical phenomena [19+-26]. It should be notedthiweate equations are transformed
to certain soliton equations which admit smooth solitonusohs through hodograph
transformations [27—35]. For example, the WKI elastic besguation is transformed to the
potential mKdV equatior [27].

Integrable discretization of those soliton equations hasnbregarded as a flicult
problem until recently. Especially, a systematic treattr@rhodograph transformations in
discretizations has been unknown. Recently, some of thHeoeisucceeded in integrable
discretization of some equations in the above class ofsspétjuations by using the bilinear
method, and it was confirmed that those integrable discrgt@tens work &ectively on
numerical computations of the above class of soliton eqoatas self-adaptive mesh schemes
[36--39]. However, the method employed there is rather teehrso it is not easy to extract
a fundamental structure of discretizations to apply thithoe to a broader class of nonlinear
wave equations.

On the other hand, the discrete integrable systems havedpgdied to discretizations
of curves and surfaces, and this area has been recentlgdtactively under the name of the
discrete diferential geometry [40,41]. In particular, there have be¢grisive studies in topics
related to curve geometry after the pioneering work of Lamdb Goldstein-Petrich [42, 43],
and then several frameworks for the motion of discrete @ihave been proposed in various
settings[[44-49].

It is well known that the potential mKdV equation describég tmotion of plane
curves [43]. Recently, the authors considered continumgsdiscrete motion of discrete
plane curves in the Euclidean plane and presented the #Xplimula in terms of ther-
function [48/49]. The hodograph transformation of the Wkdstic beam equation can be
viewed as the Euler-Lagrange transformation of the motigplane curves. From this fact,
it may be possible to establish a discrete analogue of thedragh transformation for the
motion of discrete curves, and to discretize soliton egmatihaving singularities naturally
from a geometric point of view.

In the present paper, we construct discrete analogues afgnaph transformations by
the Euler-Lagrange transformations of the motion of digcpane curves in the Euclidean
plane. Based on them, we construct semi-discrete and fidbrete analogues of the WKI
elastic beam equation, the complex Dym equation, and the phise equation. In Section
2.1, we discuss the motion of plane curves described by ttenpal mKdV equation and
the hodograph transformations for the WKI elastic beam tguiaand the complex Dym
equation. We also discuss the relationship between theGimdon equation and the short
pulse equation.

In Section 2.2, we introduce the discrete hodograph tram&fion for the continuous
motion of discrete plane curves which are described by tha-descrete potential mKdV
equation. Then we construct the semi-discrete WKI elast@nb equation and the semi-
discrete complex Dym equation. Using the same techniqueetsemi-discrete sine-Gordon
eguation, we construct the semi-discrete short pulse eouat
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In Section 2.3, we consider the discrete motion of discrdé#émeo curves which are
described by the discrete potential mKdV equation. Then arestuct the discrete WKI
elastic beam equation and the discrete complex Dym equayiasing the discrete hodograph
transformations. In a similar way, we construct the discigtiort pulse equation from the
discrete sine-Gordon equation.

In Section 3, we presentafunction which gives soliton and breather solutions fasi
equations, and Hirota-type bilinear equations fortHenction. Section 4 is devoted to the
conclusion.

2. Motion of plane curves and hodograph transfor mations

2.1. Motion of smooth curves

Let ¥(s) be an arc-length parametrized curve in Euclidean pRf€eThen the tangent vector
2 satisfies

87‘
—|=1 2.1
o (2.1)
Thusg—é admits the parametrization
oy cosd
== . . 2.2
0s [ sing ] (2:2)

The functiory = 6(s) is called the angle function gfwhich denotes the angle é%g measured
from thex-axis. We define the normal vectbrby

0 -1 |oy —-sing

N_[l 0 a_s_[ cosd ] (23)

and introduce the Frenet frame
dy
F=(T,N T=-—"= 24
(T.N). T==% (2.4)

which is the orthonormal basis attached to the curve. Thedtmquation is given by

0 0 —«

~ZF= 2.

Js k 0| (2:5)

where the functior = g—z is the curvature of. The angle functiod is also referred to as the
potential function. Let us consider the following isopeeinic motion in timet:

) 0 Kest ™

—F=F 2 2.6

at l _KSS_ K_23 0 ( )
In terms ofg—g, (2.8) and[(2.6) can be expressed as

%y 0 —« |0y

Z7 - hth 2.7

0s? [ k 0 ] ds’ 1

8 (dy 0 kst |y

99 Z % 2.8

ot (as) [ —kss—S 0 |ds (2.8)
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respectively. Then the compatibility condition bf (2.5)Y8f2.6), or (2.¥) and_(218) yields the
mKdV equation fok = (s, t) [42,/43
Ky + gkzks + ksss= 0, (2.9)

or the potential mKdV equation far = (s, t):
1
0 + §(95)3 + Osss= 0. (2.10)

The mKdV equation can be viewed as the governing equationeokLagrangian description
for the motion of the curves in terms of the arc-length parameter Let us consider the

Eulerian description of the same motion of the curves. Todhid, we introduce the Eulerian
coordinates

[ x(st)y | [°] coso(s,t) Xo
Yst) = V(s t) ] _fo [ sing(s, 1) ]dg +[ Vo ] (2.11)
and change the independent variabkes$) (o
(xt) = (fscose(s’,t) ds + Xo, t). (2.12)
0

For simplicity we writet” ast without causing confusion. Let us write down the equatian fo
vin terms ofx andt. It can be easily shown that

VXX
S(x,t) = f N1+v2dx  k(xt) = , (2.13)
" (L+V3)?
N= —— = ) 2.14
NGV VI+V2[ W (214)
Noticing
0 1
Sy = kN - 5T, (2.15)
it follows that
Vi

(2.16)

by taking the inner product with on both sides of (2.15). By usinﬁ = 1+ V2, we see

that
Vi = —Ks4J L+ V2 = —ky. (2.17)

Thus we derive
VXX
Vi = — . (218)
t ((1 +\2)} )
Introducingu = vy, we obtain the WKI (Wadati-Konno-Ichikawa) elastic beamaiipn [19—
22]

1+ w)?

U = —(L)XX. (2.19)
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Therefore,[(2.18) of (2.19) can be viewed as the governingtémn of the Eulerian description
for the curve motions given by (2.5) arid (2.6).

We note that[(2.11) is the hodograph transformation betweenpotential mKdV
equation[(2.10) and the WKI elastic beam equation (2.18)ddwy Ishimori [27]. The above
discussion shows that the hodograph transformation anatgally as the transformation
between the Lagrangian and Eulerian descriptions from tiet @f view of geometry of
plane curves.

There is another equation related to the plane curve motidneh is known as the
complex Dym equation (this is often called the complex H&yyn equation) [[19,43,50-55].
Introducing the complex variablesandz, we consider the transformation

r(st) = eV-16sy, (2.20)
S

z(s,t):f eV 1) dd 475, t' =t. (2.21)
0

Then the potential mKdV equation (2]10) is transformed &dbimplex Dym equation [52,53]
re = r3r,., (2.22)

Here we set’ = t without causing confusion. The geometric meaning of theplemDym
equation may be described as follows. The variabkasdz are expressed as

r =cos(s,t) + V=1sind(st) = xs+ V=1vs, z=x+ V-1v+z. (2.23)

Identifying the Euclidean plarng? asC, we see thatis the position vector of the curye and
r corresponds to the tangent vecg§r By treating the Eulerian coordinatesyofs a complex
variablez, the complex Dym equation is nothing but the governing eéquab describe the
motion of the tangent vectcg%.

It is well known that the sine-Gordon equation

Bys = 4 sine, (2.24)

belongs to the the same hierarchy as the mKdV equation [périiithat it describes a certain
motion of plane curves [58]. It is possible to derive the gougg equation of curve motion
in the Eulerian description in a similar manner to the casthefmKdV equation. In fact,
applying the transformations

S
(xYy) = (f cosA(s,y) ds + Xo, Y|, (2.25)
0
S
V= f sing(s,y) ds + v, (2.26)
0
we obtain the short pulse equation[25,59-62]
2
Viy = 4V + 2 (V?’)XX, (2.27)

where we sely = y for simplicity. Again, we note that the short pulse equat{@®1)
describes the same curve motions as the sine-Gordon equayiocusing the Eulerian
description. The transformation (2]25) gives the hodogtegnsformation between them [33,
63-+65].
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2.2. Continuous motion of discrete curves

In this subsection we discuss the semi-discrete equatiigis@from the continuous motion
of discrete plane curves and the hodograph transformasioreg them. Amap : Z —
R?; | — v, is said to be a discrete curve of segment lerayih

Yi+1 — ’ ~1 (2.28)
Q
We introduce the angle functiaf of a discrete curve by
N1 =N [ CQSllfl ] (2.29)
Q siny
A discrete curvey satisfies
Yislr — Y Vi —Yi-1
— = =R(g) ———, 2.30
o =R S~ (2.30)
for x = Yy — ¢¥_1, whereR(x;) denotes the rotation matrix given by
COSk; —Sink
R(x) =1 _. . 2.31
(KI) ( SINk;  COSk; ) ( )
We seta = € (> 0), and consider the following motion of discrete curves:
dy, 1 K\ Yi+1 =Y
o R(——) Nazn 2.32
d/  cos3 2 € ( )

Then from the isoperimetric condition (2128) and the confyilitty condition of (2.30) and
(2.32) , it follows that there exists a potential functircharacterized by

_ O +6 ‘= O — 61

| 5 ME S (2.33)
and thay, satisfies the semi-discrete potential mKdV equation [244466, 67|

do, 2 041 — 9|—1)

— = —tan|————|. 2.34

dZ e ( 4 ( )
We note thakK, = %tanﬁz' satisfies the semi-discrete mKdV equation

dK, 2 e ,

— = — {1+ =K | (Kiy1 — Ki_1). 2.35

R (R [CRE (2.39

It is possible to consider the Eulerian description of theveumotion defined by (2.30)
and [Z.3R). Noticing(2.29) and (Z133), we introduce thesliah coordinates

_ 0j+1+0;
x@) | 4| ecos(*57) [ Xo
Then from [(2.2D),[(2.34) an@ (2.36), one can derive
d_ Vik—Vi[{Aa-A A=A
d_gdl B € (1 + A * 1+ A|A|_1) ’ (237)
d o[ A=A A=Ay
@ (Vis1 — W) = ?(1+A|+1A| + 1+A|A|_1)’ (2.38)
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where
_ _ _ _ Viea — Vi _VI+1_VI
O =Xu1—X, A =sgn 1 —v) p— ’ = ero (2.39)
sincee + 6) = €(1 + cosy,) > 0. Note thaty, and¢, satisfy
—vi\2 2
(V'+1 V') N (ﬂ) _1 (2.40)
€ €
From (2.3T) and(2.38), we obtain
d V|+1—V|) 1( (V|+1—V|)2)(A|+1—A| Al—Al—l)
— =—|1+ + . 2.41
d¢ (X|+1 -X) € X1 — X 1+AA 1+ AA ( )

The system of[(2.37)[(2.88) and (2. 39) is nothing but theisbBserete WKI elastic beam
equation. We remark thdf (2J36) can be regarded as the haplogransformation between
(Z.32) and the semi-discrete WKI elastic beam equation. eNbat the angle function
Yy = 211 satisfies

cosy = X=X : sing = o2~V tany, = o2~ (2.42)
€ € X|+1 - X|
Thus [2.41) can be rewritten as
¢|+1 4 - lﬁl—l)
d{wl ( > + tan > . (2.43)
Equation [(2.413) with the discrete hodograph transfornmatio
-1 -1
X(0) = > ecosyi() + Xo. W(Q) = > esinu(d) + o, (2.44)
j=0 j=0

can be also regarded as the semi-discrete WKI elastic beaatieq. In the continuous limit
€ - Owiths= €l + 7 andt = —f—éf, (2.43) and[(2.44) converge to

1
6 + é(e)s)3 +0ses= 0, (2.45)

and

S

x(s,t):focose(s“,t)d§+xo, v(s,t):fosine(s“,t)d§+vo, (2.46)

which give the (potential) WKI elastic beam equatibn (2.¢&e Appendix).
One can construct a semi-discrete version of the complex Byuation as follows. In
view of (2.23), [2.3B) and(2.86), it is natural to introdube complex variables () and

Z,(¢) by

I-1 VT e
@) =eV W =¥ () =X (@) + V) = ) eV Zo. (2.47)

j=0

Then we have froni(2.34) and (2147)
%:ﬂ M= M=o VAR A
dg e\l + 10 r| + -1
which is the semi-discrete complex Dym equation. The genmeteaning of[(2.48) can be
described as follows: under the identificatioriRdfasC, Z, is the position vector of the curve

I, (2.48)
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v, andr, corresponds to the segment vectsF2. Then [2.48) is the governing equation
describing the motion of the segment vector in the Euler@ordinates ofy,. To take the
continuous limit, we use the angle functign Then the semi-discrete complex Dym equation
(2.48) is rewritten as

¢|+1 U /]
dg‘”‘ 6( 2+ tant ) (2.49)

and
-1

Z(0) = Z €e\/—_1Wj(§) +7Zy, n)= e‘/__l‘/’l(g)_ (2.50)
j=0

In the continuous limit — 0 with s= €l + ¢ andt = —E—gf, (2.49) and[(2.50) converge to

1
0 + é(e)s)3 +0sss= 0, (2.51)
and
S
2(s t) = f eV HENGg 7, r(st) = eV sy (2.52)
0

which give the complex Dym equation (2]122) (see Appendix).
Now we construct the semi-discrete short pulse equatiorthisoend, we consider the
semi-discrete sine-Gordon equation

O+ + 9|—1)
— )

diy(e.+1 ~6) = desin| (2.53)

Similar to the continuous case, the semi-discrete sina&l@oequation (2.533) can be regarded
as describing a certain motion of discrete plane curves.refbie, we may expect that the
application of the same transformation as the case of the-disaorete WKI equation to the
semi-discrete sine-Gordon equatibn (2.53) yields the gbserete analogue of the short pulse
equation. In fact, by using the transformation

-1 Oi+1+6j
X e cos( 4
no) = [ V'(Y) l = o Yol (2.54)
|(y) 0 €S|n( j+1 J) Vo
we obtain the semi-discrete short pulse equation
d
d_y(X|+1 - Xl) = _2(VI2+1 - VIZ)’ (255)
d
d—y(V|+1 = Vi) = 2(X11 = X)(Vie1 + V). (2.56)

We note that the following relation also holds from (2.54)

(M)Z N (_X'+1 — X )2 _1 (2.57)

€ €

From (2.55) and (2.56), we obtain

d v|+1—v|) (
— =2V +V)+2
dy(X|+1_X| (|l |)

Vil — V)
X1 =X

2
) (Vs + V1) (2.58)
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In order to take the continuous limit, we assume the boundangitionX, = vy = 0 forl < 0,
which is consistent witH (2.54). Then the continuous lienit O (i.e., X1 — X; — 0) gives

Visr — Vi oV VitV
— —

Xo1— X 0x 2 ’
-1 -1
X 0% IXje1 = Xj) 0% ox
— = = -2 2 VP = -2 > — = -2\,
ay ay +jZ=(; ay ay JZ:;)( j+1 ]) I ay
0 0 0Xo0 0 0 0 0
g0 RO _ 9 Hpl PV
oy oy ayox ay Vox oy AX
Consequently[(2.58) converges to
(Oy — 2P0 )V = 4V + AWV, (2.59)

which is nothing but the short pulse equatibn (2.27).

2.3. Discrete motion of discrete curves

Now let us recall the following discrete motion of discretiare curvey introduced by
Matsuural[49]:

Toa T g (2.60)
an 3

Yo~ Yn my 7~ Vi

T =00 Remy L0 Tnt 2.61
R (261)

m+1l _ . m m _ .m

In 00 o R 20 (2.62)
m

wherea, andb,, are arbitrary functions in andm, respectively. Compatibility of the system
(2.60){2.6P2) implies the existence of the potential fiorce™ defined by

ot — om o, —om
wnm __n 5 n+1’ 21: n+1 5 n 1’ (263)
and it follows tha®]' satisfies the discrete potential mKdV equation [68]:
erml —m b + a, 9m+1 —gm
tan( 1) = T tan| — ey 2.64
Note that the functiong;' and¢' can be expressed as
gm . +6m gl + om
Y = % o = % (2.65)
Note also
yrf]T\+1 B yrf]T\ — C(.)swrﬂnq , ’Yrrlm-l - ’Yrrln — [ COS¢E: , (266)
an siny, bm | singy
and
XM S Xm =X ] X ]S [ cosy™ | [ XD
yr’{‘_[ " ]: l T A B = > a| . L+ ].(2.67)
w RN MRV I LT N
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From the discrete potential mKdV equatign (2.64) and theolyoabh transformation (2.67),
we obtain
AP TR bp+an, [T - A7

= , 2.68
1+AM™I™  by—a,1+IMAD ( )
where
-V vl — Vv
Am =san _ n+1 n n+1 n , 2.69
: g M:—l n al"l + (Xn+1 - XTT) aﬂ + (Xn+1 XTT) ( )
vml _ym vl _ym
= T _ym L L = L L 2.7
n = SO =) e - )| T o (= X) (2.70)
sincean + (XM, — XI) = a,(1 + cosy) > 0 andby, + (X7 — XT) = by(1 + cosgl) > 0. We
note that' and X' satisfy the following relations
(qull B er]n)z " (Vrr?+l V'r?) -1, (2.71)
an an
Xm+1_xm2 Vrml_vm2
( n n)+(n ﬂ):]__ (2.72)

To construct an explicit form of the discrete WKI elastic tve@quation, we consider an
identity

Substituting
N ) Xm. —Xm VAERVAL
eV = cosy™+ V_lsinyM =L 0oy g oml 0
an an
m+1 Xm Vm+1 Vm
eV = cosg + V=1sing™ = - VA T
m m

into (2.73), we obtain the system of two discrete equatioms fthe real and imaginary parts,
respectively, which should be considered together withctivestraints[(Z.71) and (2172). To
incorporate[(Z.71) and@(2.72), an easy way is to considedtmity

eV e VIR = V-l VIR (2.74)
instead of[(2.713). We then obtain the following system of thisrrete equations
(X — XXM — XM 4 (Ve — v (vt — v
= (Xn+1 X)) (Xnis = X3) + (Vi l n+1)( 1= V) s (2.75)
O = X )+t =) = O — X’“)( -
= (xn+1 n+1)( n+1 \/rP) (Xn+1 erp )(‘/51:11 \/rP+1) ’ (2.76)
which is simplified to
(Xt = Xr’lll X+ XD (X = X0
+ (Vg Ve +Vm)( mi— V) =0, (2.77)
(Xt + x'n“+l — XM - XM (VI =V v — v

O XXX L - =0, @78)

n+1 n
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Note that the second equatidn (2.78) is further simplified to
(X1 = XA = Vi) = (X0 = XD (v, = vi) = 0. (2.79)

n+1
We remark that the system (2177) and (2.78) can be solvedcigkpin terms of vi*! and
X1 in the form of rational functions of, v, vl XM X  and X7™!. Therefore the
system[(2.7]7) and (Z.V8) (dr (Z179)) can be regarded as fiieiexorm of the discrete WKI
elastic beam equation. Note that we can obtain {2.68), (268 [2.7D) by replacing' by
XM = X’“+ZJ oaj+ ?jol bj in (2.78) and[(2.76) and then dividinig (2176) by (2.75). Bings

the potential functiod], the discrete WKI elastic beam equation can be written as

fm On\ _bm+an (060,
= t 2.
tan( 7] ) b an( 7] ) , (2.80)
+ 9’“
XM = Za, cos( i )+x0 (2.81)
Setting
a+b a-b
=(n+m)s, lIl=n-m, a,=a, by=Db, 5:7, €=——, (2.82)
and taking the continuous limit— 0, (2.80) and[{Z2.81) are reduced to
do, 2 041 — 9|—1)
— = —tan|————— 2.83
di e an( 4 ’ ( )
-1
0. +0;
X(@)=)a COS(M) + Xo(0) (2.84)
j=0
which are transformed to the semi-discrete WKI elastic begmation [(2.37),[{Z2.38) and
(2.39).
Let us consider a discrete analogue of the complex Dym equdtitroducing
= vt (2.85)
n-1 n-1
= XM+ V-1 = Za,- cosy™ + \/—_12ajsinw?”+zg‘
j=0 j=0
n-1
=) ar'+2y, (2.86)

o

J:
and using the discrete potential mKdV equation (R.64), wavdé¢he discrete analogue of the
complex Dym equation

M —pn _bmtanpn -yt P
L+ ol bn—a, pp+r? ol o
0, -7y = aqnr, (2.88)

n+1

: (2.87)

wherep]' is an auxiliary variable defined by

1 m
pm = eVt (2.89)
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Similar to the semi-discrete case, the systeni of (2.87) @BB) describes the motion of
segment vector of the curyé' in the Eulerian coordinates ¢f'. It should be noted that by
introducingQy' by

Qr=eV, (2.90)

we have an alternate form of the discrete complex Dym equatio

e = QuiQR (2.91)

\ = QT _bnta, VO - Qo (2.92)

Jomi+ Y@ P VO VT

20, -Z0 =aqlr. (2.93)
Usingdy, the discrete complex Dym equation can be written as

erml —m b + ay 9m+1 —gm
t n+1 n — m t n n+1 2.94
an( 7] ) — an 7] , (2.94)
n-1 om +om
2N = Z aeV T 4+ 70, (2.95)
j=0
Setting
a+b a-b

[=(M+m)s, Il=n-m, a,=a, by,=Dhb, 6:7, €=——, (2.96)
and taking the continuous limit— 0, (2.94) and[{2.95) become

do, 2 041 — 9|—1)

— = —tan|————, 2.97

dZ e ( 4 ( )

-1 N R AL
Z@)= ) ae T + 7o), (2.98)
j=0

which are transformed to the semi-discrete complex Dym touéZ.48).
We next construct the discrete short pulse equation. Censiee following discrete
motion of plane discrete curve [48]

k Ak

Tt Z 0l g (2.99)
a,

kK _ .k k _ .k

7—”+;n I = Ry e anyl”‘l, (2.100)

1 Vi — h 1 0
k+l _ k_ — _ky /n+l n _
=S = o SR-on) T —, S (o _1), (2.101)

wherea, andc are arbitrary functions im andk, respectively. Compatibility of this system
implies the existence of the potential functi@ndefined by
ok, — 05, Oyt + 6k

Kk = % ok = T”“ (2.102)
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and it follows thawX satisfies the discrete sine-Gordon equation

9k+1 ek 9k+1 + ek 9k+1 + 9 + 9k+1 + ek
sin( n+l ”*14 L n):aan sin( n+l ”*14 ”). (2.103)
Note that the functiongX andek can be expressed as
Qk + Qk 9k+1 _ Qk
n="— dh= (2.104)
Note also
Yna=n _ [ cosyf |yt —Syf | cosgh )
Il 7o | S Tn _SVn_ | OO (2.105)
an sinyX 1 singk
and
-1
SR S e
n - - k . .
VK | V-V siny vE

=0
From the discrete sine-Gordon equatibn (21103) and thedragh transformatiori (2.106),
we obtain

AR — AF = 8, (TR +TX), (2.107)
where
_ an+l - an Vkn+1 an (2 108)
n+1 n K K .
(Xn+1 Xn) al"l + (Xn+1 Xn)
vk+1 + VK VL LK
K= sgn@krt + & = n n_, 2.109
9 &k ) (Xk+1 xh) 1 + (Xk+1 _ Xk) ( )
sincean + (XX, — X¥) = an(1+ coswn) > 0andg + (X,‘§+1 XK) = &(1+cosgy) > 0. We note
thatVk and XX satisfy the following relations
VvV X xky?
( e ”) (—”+1 ”) =1, (2.110)
an an
VL K 2 Xkt _ yk 2
( L ”) T =1 (2.111)
Ck Ck

We now construct an explicit form of the discrete short pelgeation. Similar to the case of
discrete WKI elastic beam equation, we consider the identit

e\/—_ll//ﬁﬂe— ‘/—_l‘PE — e\/__ll//ﬁe\/__l‘prﬁﬂ s (2112)

with

Nt . xk 1 xk
eV~¥n = cosyX + V-1sinyX = ”*T

\/_‘Pn

X —
= cosgk + V-1singk =" "1



Discrete Integrable Systems and Hodograph Transformation 14

We then obtain the following system of two discrete equation
(xk+l _ xk _ Xr|§+1 + Xrlﬁ)(xk _ xh+l)

n+1 n+1 n+1
— (T + Vi — W = (Vg ) = 0, (2.113)

(xﬁii - Xr|§+1 + Xri?l - Xrii)( n::lL - VE+1 - an+1 + Vﬁ)

— (X xR X X (K VT ) = 0., (2.114)

n+1 n+1 n+1 n+1

Note that the second equation (2.1114) is further simplified t
(XK = XA oK) (XK XK+ v = 0. (2.115)

n+1 n+1 n+l n+1

ReplacingXk by X + 37 ¢+ (2113) and[(2.114) become

1
0k = X=X X9 X - X - 2
— (T + Vi — W = (V) =0, (2.116)

2
2 Xt X X O - )

n+1 n+l

— (XK xR = X Y (D K

+ n+l n+l ne1 T an+1 + an) =0. (2.117)
Note that this form was obtained in [37] by using the bilinegathod. Taking the continuous

limit ¢, — 0 of (2.116) and(2.117), we obtain the semi-discrete shddepequation (2.55)
and (2.56).

3. r-function and soliton type solutions

In this section, we list ther-function and the bilinear equations which give rise to the
soliton and breather type solutions to the equations angeauotions discussed in Section 2.
Although they have been already discussed inl[37, 48, 69allect and present the results
for completeness and the convenience of readers. It sheuldrbarked that all the solutions
can be expressed in terms of oréunction.

The solutions can be expressed in the following form:

mk
Om(st,£,Y) = ——log 2L (3.1)
' V-1 T*nmj
k —2(log TnkaT*nka y
Y (SL.4,Y) = L (1og : (3.2)

Here, ther-functionfnka(s, t,Z,y) is given by [48]:

n-1 m-1 k-1 1 ]
- [S+ g + el + Z ay + Z bm’ + Z C_k’)y] det(fj(l—)l)i’j:]_ ..... N’ (33)
n nm k’

fj(i) = @l + A, (3.4)

™S t,4,y) = exp
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Pi

e e K1 1 psap 1
¢ =aip/(L-ep)' [ [A-avp) [ [@-bwp) [ ] (1 - %k) & R
n n K |

| (3.5)
1—epé pi2 & Piiy

o pis+4pit-
e

n-1 m-1 k-1
& = Bi(-p) (1 +ep)” l_l(l +ay p) l—[(l + by pi) l—[ (1 + %k)
n nm K i

The parameters are chosen as follows:
(i) N-soliton solution:
p, i €R, Bie V-1IR (i=1,...,N). (3.6)
(i) M-breather solution:

N=2M, p,a, BicC (i=1,...,2M), a.7)
P2j = Poj_1,  @2j = g5y, Boj =Py (j=1....M).
The bilinear equations which are necessary to recover thatems and curve motions are
given as follows. Note that we only show the relevant indeljgen variables, and other
variables can be regarded as parameters.
Continuous case [37,48]: T = (S t, ),

1

D37r.7" =0, (3.9)

(DI+Dy) 77" =0. (3.10)
Semi-discrete case [37,/69]: T = 7i(Z, Y),

1
D11+ = - (7 4Tha = Ti,7i) (3.11)
1

T = > (1T + T 7141) (3.12)

1

EDgDy T T = —T1,1T_1» (3.13)

Dy 1141 - 71 = —€T1 477 (3.14)
Discrete case [37,48]: T = 7(y),

Dy 7% = T, @19

Dy T o = by T (3.16)

D, Tnmk+1 . T*gxk _ _CET*nm,kﬂTng’ (3.17)

K
T T St e Y Y e s o) (3.18)

4. Conclusions

In this paper, we have discretized several soliton equatwimich admit loop type soliton
solutions through the discrete analogues of the hodograpisformations based on the
geometry of plane curves. More concretely, we have cornstrusemi-discrete and fully
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discrete versions of the WKI elastic beam equation, the ¢expym equation and the short
pulse equation, and presented théunction which gives rise to the soliton and breather
solutions.

Geometric consideration igfective for discretization of soliton equations which admit
soliton solutions with singularities, and it may be alsolaggble to other soliton equations.
For example, the soliton equations arising from the curvéane in the Minkowski plane are
of so-called “defocusing type” which have nonlinear termthwlifferent signs compared to
the equations discussed in this paper, and it is known tleastiiucture and behaviour of the
solutions are quite elierent. The geometric consideration may also be useful toatige this
class of equations. This problem will be reported in a fasthing paper.

Appendix: Hodograph transfor mations

The WKI elastic beam equation:
A conservation law of the potential mKdV equatidn (2.10)iiseeg by

1 .
(cosh); + (5(495)2 cost — esssme) =0. (A.1)
S

Consider the hodograph transformationi [27]

X(s,t) = foscose(s’,t)ds’ + X, t(st)=t, (A.2)

which leads to

c’)ﬁs = cos@(%, % = % + (stsine - %(95)2 cosh a% (A.3)
Applying (A.3) to (A1), we obtain

Oy + COS O(SiNG) ek = 0, (A.4)
which can be rewritten as

(tand)y + (SinB)yxx = 0. (A.5)

Introducing a new dependent variahlgs, t) = fossine(s’,t)ds‘ + Vo (note targ = v, and

sing = v/ /1 + (v)?), (A.B) is transformed to

o] o ~s
XXX

V1+(W)?

which is the (potential) WKI elastic beam equatibn (2.18).

The complex Dym equation:
A conservation law of the potential mKdV equatidn (2.10)iiseeg by

G (%(es)zefw ¥ x/—_lesse@) =0. (A7)

S
Consider the hodograph transformation! [52, 53]

S
zst) = f eV NS + 29, t(st)=t, (A.8)
0
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which leads to

0 _ 189 g _ 9 1 \2aVTTo N=AR
9 _md 9 _0 (1, _ V1o 9 (A9
as_°  az o= av | S (A.9)

Applying (A.9) to [A.7) and introducing a new dependent sater = e¥-, we obtain the
complex Dym equation

Fv +r3(f),2,= 0. (A.10)
Note that
0z
z=x+ V-1v, r=—. (A.11)

The short pulse equation:
A conservation law of the sine-Gordon equation (2.24) iegilby

[2) 2
(cosh), + (%) =0. (A.12)
S
Consider the hodograph transformation |[33,63—65]
S
Ksy) = [ cosH(S.y)ds + 0. V(s =Y. (A13)
0
which leads to
_ 0 o 9 Yo
a_S = COSQ& , a/ = ay, - TE( . (A14)
Introduce a new dependent variable
S Sbys(S, 1
V(s y) = f sind(s, y)ds + vo = f ys y)ds +Vo = 76, (A.15)
0 0
then it follows
Vy = tanfd.
Applying (A.14) to [A.12), we obtain
0 0
(c’)y’ - 2V26_><) cost = —4vv, COSH . (A.16)
this can be rewritten as
0 0 1 1
(ay’ - szﬁ) 020~ oz (A17)
From
@ = 1+tar?9: 1+V)2(,
it follows that
0 0
( 3y " ZVZE() (1+V2) = 8wy (1 +V2), (A.18)
which is nothing but the short pulse equation
2
Vyy = 4V + 3 (va)xx . (A.19)
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