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Abstract. We consider integrable discretizations of some soliton equations associated with
the motions of plane curves: the Wadati-Konno-Ichikawa elastic beam equation, the complex
Dym equation, and the short pulse equation. They are relatedto the modified KdV or the
sine-Gordon equations by the hodograph transformations. Based on the observation that the
hodograph transformations are regarded as the Euler-Lagrange transformations of the curve
motions, we construct the discrete analogues of the hodograph transformations, which yield
integrable discretizations of those soliton equations.
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1. Introduction

The study of discrete integrable systems has received considerable attention in the past decade
(see, for example, [1]). Ablowitz and Ladik proposed a method of integrable discretizations
of soliton equations, including the nonlinear Schrödinger equation and the modified KdV
(mKdV) equation, based on the Lax form [2–4], and Hirota discretized various soliton
equations such as the KdV, the mKdV, and the sine-Gordon equations by using the bilinear
formalism [5–9]. Following the pioneering work of Ablowitz-Ladik and Hirota, Date, Jimbo
and Miwa developed a unified algebraic approach from the point of view of the KP theory
[10–16]. For other approaches to the discrete integrable systems, see, for example, [17,18].

It is known that there is a class of soliton equations which admits loop, cusp, and peak
soliton solutions. Among them, some soliton equations, e.g. the Wadati-Konno-Ichikawa

http://arxiv.org/abs/1107.1148v1
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(WKI) elastic beam equation, the Camassa-Holm equation, the Degasperis-Procesi equation,
the short pulse equation and the Hunter-Saxton equation, appear as model equations of
various physical phenomena [19–26]. It should be noted thatthose equations are transformed
to certain soliton equations which admit smooth soliton solutions through hodograph
transformations [27–35]. For example, the WKI elastic beamequation is transformed to the
potential mKdV equation [27].

Integrable discretization of those soliton equations has been regarded as a difficult
problem until recently. Especially, a systematic treatment of hodograph transformations in
discretizations has been unknown. Recently, some of the authors succeeded in integrable
discretization of some equations in the above class of soliton equations by using the bilinear
method, and it was confirmed that those integrable discrete equations work effectively on
numerical computations of the above class of soliton equations as self-adaptive mesh schemes
[36–39]. However, the method employed there is rather technical, so it is not easy to extract
a fundamental structure of discretizations to apply this method to a broader class of nonlinear
wave equations.

On the other hand, the discrete integrable systems have beenapplied to discretizations
of curves and surfaces, and this area has been recently studied actively under the name of the
discrete differential geometry [40,41]. In particular, there have been intensive studies in topics
related to curve geometry after the pioneering work of Lamb and Goldstein-Petrich [42, 43],
and then several frameworks for the motion of discrete curves have been proposed in various
settings [44–49].

It is well known that the potential mKdV equation describes the motion of plane
curves [43]. Recently, the authors considered continuous and discrete motion of discrete
plane curves in the Euclidean plane and presented the explicit formula in terms of theτ-
function [48, 49]. The hodograph transformation of the WKI elastic beam equation can be
viewed as the Euler-Lagrange transformation of the motion of plane curves. From this fact,
it may be possible to establish a discrete analogue of the hodograph transformation for the
motion of discrete curves, and to discretize soliton equations having singularities naturally
from a geometric point of view.

In the present paper, we construct discrete analogues of hodograph transformations by
the Euler-Lagrange transformations of the motion of discrete plane curves in the Euclidean
plane. Based on them, we construct semi-discrete and fully discrete analogues of the WKI
elastic beam equation, the complex Dym equation, and the short pulse equation. In Section
2.1, we discuss the motion of plane curves described by the potential mKdV equation and
the hodograph transformations for the WKI elastic beam equation and the complex Dym
equation. We also discuss the relationship between the sine-Gordon equation and the short
pulse equation.

In Section 2.2, we introduce the discrete hodograph transformation for the continuous
motion of discrete plane curves which are described by the semi-discrete potential mKdV
equation. Then we construct the semi-discrete WKI elastic beam equation and the semi-
discrete complex Dym equation. Using the same technique to the semi-discrete sine-Gordon
equation, we construct the semi-discrete short pulse equation.
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In Section 2.3, we consider the discrete motion of discrete plane curves which are
described by the discrete potential mKdV equation. Then we construct the discrete WKI
elastic beam equation and the discrete complex Dym equationby using the discrete hodograph
transformations. In a similar way, we construct the discrete short pulse equation from the
discrete sine-Gordon equation.

In Section 3, we present aτ-function which gives soliton and breather solutions for these
equations, and Hirota-type bilinear equations for theτ-function. Section 4 is devoted to the
conclusion.

2. Motion of plane curves and hodograph transformations

2.1. Motion of smooth curves

Let γ(s) be an arc-length parametrized curve in Euclidean planeR
2. Then the tangent vector

∂γ

∂s satisfies
∣

∣

∣

∣

∣

∂γ

∂s

∣

∣

∣

∣

∣

= 1. (2.1)

Thus ∂γ

∂s admits the parametrization

∂γ

∂s
=

[

cosθ
sinθ

]

. (2.2)

The functionθ = θ(s) is called the angle function ofγ which denotes the angle of∂γ
∂s measured

from thex-axis. We define the normal vectorN by

N =
[

0 −1
1 0

]

∂γ

∂s
=

[

− sinθ
cosθ

]

, (2.3)

and introduce the Frenet frame

F = (T, N), T =
∂γ

∂s
, (2.4)

which is the orthonormal basis attached to the curve. The Frenet equation is given by

∂

∂s
F = F

[

0 −κ
κ 0

]

, (2.5)

where the functionκ = ∂θ
∂s is the curvature ofγ. The angle functionθ is also referred to as the

potential function. Let us consider the following isoperimetric motion in timet:

∂

∂t
F = F













0 κss+
κ3

2

−κss− κ3

2 0













. (2.6)

In terms of∂γ
∂s, (2.5) and (2.6) can be expressed as

∂2γ

∂s2
=

[

0 −κ
κ 0

]

∂γ

∂s
, (2.7)

∂

∂t

(

∂γ

∂s

)

=













0 κss+
κ3

2

−κss− κ3

2 0













∂γ

∂s
, (2.8)
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respectively. Then the compatibility condition of (2.5) and (2.6), or (2.7) and (2.8) yields the
mKdV equation forκ = κ(s, t) [42,43]

κt +
3
2
κ2κs + κsss= 0, (2.9)

or the potential mKdV equation forθ = θ(s, t):

θt +
1
2

(θs)
3
+ θsss= 0. (2.10)

The mKdV equation can be viewed as the governing equation of the Lagrangian description
for the motion of the curvesγ in terms of the arc-length parameters. Let us consider the
Eulerian description of the same motion of the curves. To this end, we introduce the Eulerian
coordinates

γ(s, t) =

[

x(s, t)
v(s, t)

]

=

∫ s

0

[

cosθ(s′, t)
sinθ(s′, t)

]

ds′ +

[

x0

v0

]

, (2.11)

and change the independent variables (s, t) to

(x, t′) =

(∫ s

0
cosθ(s′, t) ds′ + x0, t

)

. (2.12)

For simplicity we writet′ ast without causing confusion. Let us write down the equation for
v in terms ofx andt. It can be easily shown that

s(x, t) =
∫

√

1+ v2
x dx, κ(x, t) =

vxx

(1+ v2
x)

3
2

, (2.13)

N =
1

√

1+ v2
x

[

−vx

1

]

, T =
1

√

1+ v2
x

[

1
vx

]

. (2.14)

Noticing

∂

∂t
γ = −κsN −

1
2
κ2T, (2.15)

it follows that

− κs = γt · N =
vt

√

1+ v2
x

, (2.16)

by taking the inner product withN on both sides of (2.15). By usingds
dx =

√

1+ v2
x, we see

that

vt = −κs

√

1+ v2
x = −κx. (2.17)

Thus we derive

vt = −













vxx

(1+ v2
x)

3
2













x

. (2.18)

Introducingu = vx, we obtain the WKI (Wadati-Konno-Ichikawa) elastic beam equation [19–
22]

ut = −
(

ux

(1+ u2)
3
2

)

xx

. (2.19)
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Therefore, (2.18) or (2.19) can be viewed as the governing equation of the Eulerian description
for the curve motions given by (2.5) and (2.6).

We note that (2.11) is the hodograph transformation betweenthe potential mKdV
equation (2.10) and the WKI elastic beam equation (2.18) found by Ishimori [27]. The above
discussion shows that the hodograph transformation arisesnaturally as the transformation
between the Lagrangian and Eulerian descriptions from the point of view of geometry of
plane curves.

There is another equation related to the plane curve motionswhich is known as the
complex Dym equation (this is often called the complex HarryDym equation) [19,43,50–55].
Introducing the complex variablesr andz, we consider the transformation

r(s, t) = e
√
−1 θ(s,t), (2.20)

z(s, t) =
∫ s

0
e
√
−1 θ(s′,t) ds′ + z0, t′ = t. (2.21)

Then the potential mKdV equation (2.10) is transformed to the complex Dym equation [52,53]

r t = r3rzzz. (2.22)

Here we sett′ = t without causing confusion. The geometric meaning of the complex Dym
equation may be described as follows. The variablesr andzare expressed as

r = cosθ(s, t) +
√
−1 sinθ(s, t) = xs +

√
−1vs, z= x+

√
−1v+ z0. (2.23)

Identifying the Euclidean planeR2 asC, we see thatz is the position vector of the curveγ, and
r corresponds to the tangent vector∂γ

∂s. By treating the Eulerian coordinates ofγ as a complex
variablez, the complex Dym equation is nothing but the governing equation to describe the
motion of the tangent vector∂γ

∂s.
It is well known that the sine-Gordon equation

θys = 4 sinθ, (2.24)

belongs to the the same hierarchy as the mKdV equation [56,57] and that it describes a certain
motion of plane curves [58]. It is possible to derive the governing equation of curve motion
in the Eulerian description in a similar manner to the case ofthe mKdV equation. In fact,
applying the transformations

(x, y′) =

(∫ s

0
cosθ(s′, y) ds′ + x0, y

)

, (2.25)

v =
∫ s

0
sinθ(s′, y) ds′ + v0, (2.26)

we obtain the short pulse equation [25,59–62]

vxy = 4v+
2
3

(

v3
)

xx
, (2.27)

where we sety′ = y for simplicity. Again, we note that the short pulse equation(2.27)
describes the same curve motions as the sine-Gordon equation by using the Eulerian
description. The transformation (2.25) gives the hodograph transformation between them [33,
63–65].
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2.2. Continuous motion of discrete curves

In this subsection we discuss the semi-discrete equations arising from the continuous motion
of discrete plane curves and the hodograph transformationsamong them. A mapγ : Z →
R2; l 7→ γl is said to be a discrete curve of segment lengthal if

∣

∣

∣

∣

∣

γl+1 − γl

al

∣

∣

∣

∣

∣

= 1. (2.28)

We introduce the angle functionψl of a discrete curveγ by

γl+1 − γl

al
=

[

cosψl

sinψl

]

. (2.29)

A discrete curveγ satisfies
γl+1 − γl

al
= R(κl)

γl − γl−1

al−1
, (2.30)

for κl = ψl − ψl−1, whereR(κl) denotes the rotation matrix given by

R(κl) =

(

cosκl − sinκl

sinκl cosκl

)

. (2.31)

We setal = ǫ (> 0), and consider the following motion of discrete curves:

dγl

dζ
=

1
cosκl

2

R
(

−
κl

2

)

γl+1 − γl

ǫ
. (2.32)

Then from the isoperimetric condition (2.28) and the compatibility condition of (2.30) and
(2.32) , it follows that there exists a potential functionθl characterized by

ψl =
θl+1 + θl

2
, κl =

θl+1 − θl−1

2
, (2.33)

and thatθl satisfies the semi-discrete potential mKdV equation [2,44–47,66,67]

dθl

dζ
=

2
ǫ

tan
(

θl+1 − θl−1

4

)

. (2.34)

We note thatKl =
2
ǫ

tan κl

2 satisfies the semi-discrete mKdV equation

dKl

dζ
=

2
ǫ

(

1+
ǫ2

4
K2

l

)

(Kl+1 − Kl−1). (2.35)

It is possible to consider the Eulerian description of the curve motion defined by (2.30)
and (2.32). Noticing (2.29) and (2.33), we introduce the Eulerian coordinates

γl(ζ) =

[

Xl(ζ)
vl(ζ)

]

=

l−1
∑

j=0



















ǫ cos
(

θ j+1+θ j

2

)

ǫ sin
(

θ j+1+θ j

2

)



















+

[

X0

v0

]

. (2.36)

Then from (2.29), (2.34) and (2.36), one can derive

d
dζ
δl = −

vl+1 − vl

ǫ

(

∆l+1 − ∆l

1+ ∆l+1∆l
+
∆l − ∆l−1

1+ ∆l∆l−1

)

, (2.37)

d
dζ

(vl+1 − vl) =
δl

ǫ

(

∆l+1 − ∆l

1+ ∆l+1∆l
+
∆l − ∆l−1

1+ ∆l∆l−1

)

, (2.38)
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where

δl = Xl+1 − Xl , ∆l = sgn (vl+1 − vl)
∣

∣

∣

∣

∣

vl+1 − vl

ǫ + δl

∣

∣

∣

∣

∣

=
vl+1 − vl

ǫ + δl
, (2.39)

sinceǫ + δl = ǫ(1+ cosψl) ≥ 0. Note thatvl andδl satisfy
(vl+1 − vl

ǫ

)2

+

(

δl

ǫ

)2

= 1. (2.40)

From (2.37) and (2.38), we obtain

d
dζ

(

vl+1 − vl

Xl+1 − Xl

)

=
1
ǫ













1+

(

vl+1 − vl

Xl+1 − Xl

)2










(

∆l+1 − ∆l

1+ ∆l+1∆l
+
∆l − ∆l−1

1+ ∆l∆l−1

)

. (2.41)

The system of (2.37), (2.38) and (2.39) is nothing but the semi-discrete WKI elastic beam
equation. We remark that (2.36) can be regarded as the hodograph transformation between
(2.34) and the semi-discrete WKI elastic beam equation. Note that the angle function
ψl =

θl+1+θl

2 satisfies

cosψl =
Xl+1 − Xl

ǫ
, sinψl =

vl+1 − vl

ǫ
, tanψl =

vl+1 − vl

Xl+1 − Xl
. (2.42)

Thus (2.41) can be rewritten as

d
dζ
ψl =

1
ǫ

(

tan
ψl+1 − ψl

2
+ tan

ψl − ψl−1

2

)

. (2.43)

Equation (2.43) with the discrete hodograph transformation

Xl(ζ) =
l−1
∑

j=0

ǫ cosψ j(ζ) + X0 , vl(ζ) =
l−1
∑

j=0

ǫ sinψl(ζ) + v0 , (2.44)

can be also regarded as the semi-discrete WKI elastic beam equation. In the continuous limit
ǫ → 0 with s= ǫl + ζ andt = − ǫ

2

6 ζ, (2.43) and (2.44) converge to

θt +
1
2

(θs)
3
+ θsss= 0 , (2.45)

and

x(s, t) =
∫ s

0
cosθ(s′, t)ds′ + x0 , v(s, t) =

∫ s

0
sinθ(s′, t)ds′ + v0 , (2.46)

which give the (potential) WKI elastic beam equation (2.18)(see Appendix).
One can construct a semi-discrete version of the complex Dymequation as follows. In

view of (2.23), (2.33) and (2.36), it is natural to introducethe complex variablesr l(ζ) and
Zl(ζ) by

r l(ζ) = e
√
−1ψl = e

√
−1

θl+1+θl
2 , Zl(ζ) = Xl(ζ) +

√
−1vl(ζ) =

l−1
∑

j=0

ǫe
√
−1

θ j+1+θ j
2 + Z0. (2.47)

Then we have from (2.34) and (2.47)

drl

dζ
=

r l

ǫ

(

r l+1 − r l

r l+1 + r l
+

r l − r l−1

r l + r l−1

)

,
Zl+1 − Zl

ǫ
= r l , (2.48)

which is the semi-discrete complex Dym equation. The geometric meaning of (2.48) can be
described as follows: under the identification ofR2 asC, Zl is the position vector of the curve
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γl, andr l corresponds to the segment vectorγl+1−γl

ǫ
. Then (2.48) is the governing equation

describing the motion of the segment vector in the Eulerian coordinates ofγl. To take the
continuous limit, we use the angle functionψl. Then the semi-discrete complex Dym equation
(2.48) is rewritten as

d
dζ
ψl =

1
ǫ

(

tan
ψl+1 − ψl

2
+ tan

ψl − ψl−1

2

)

. (2.49)

and

Zl(ζ) =
l−1
∑

j=0

ǫe
√
−1ψ j (ζ) + Z0 , r l(ζ) = e

√
−1ψl (ζ) . (2.50)

In the continuous limitǫ → 0 with s= ǫl + ζ andt = − ǫ
2

6 ζ, (2.49) and (2.50) converge to

θt +
1
2

(θs)
3
+ θsss= 0 , (2.51)

and

z(s, t) =
∫ s

0
e
√
−1θ(s′,t)ds′ + z0 , r(s, t) = e

√
−1θ(s,t) , (2.52)

which give the complex Dym equation (2.22) (see Appendix).
Now we construct the semi-discrete short pulse equation. Tothis end, we consider the

semi-discrete sine-Gordon equation

d
dy

(θl+1 − θl) = 4ǫ sin
(

θl+1 + θl−1

2

)

. (2.53)

Similar to the continuous case, the semi-discrete sine-Gordon equation (2.53) can be regarded
as describing a certain motion of discrete plane curves. Therefore, we may expect that the
application of the same transformation as the case of the semi-discrete WKI equation to the
semi-discrete sine-Gordon equation (2.53) yields the semi-discrete analogue of the short pulse
equation. In fact, by using the transformation

γl(y) =

[

Xl(y)
vl(y)

]

=

l−1
∑

j=0



















ǫ cos
(

θ j+1+θ j

2

)

ǫ sin
(

θ j+1+θ j

2

)



















+

[

X0

v0

]

, (2.54)

we obtain the semi-discrete short pulse equation

d
dy

(Xl+1 − Xl) = −2(v2
l+1 − v2

l ), (2.55)

d
dy

(vl+1 − vl) = 2(Xl+1 − Xl)(vl+1 + vl). (2.56)

We note that the following relation also holds from (2.54)
(vl+1 − vl

ǫ

)2

+

(Xl+1 − Xl

ǫ

)2

= 1. (2.57)

From (2.55) and (2.56), we obtain

d
dy

(

vl+1 − vl

Xl+1 − Xl

)

= 2(vl+1 + vl) + 2

(

vl+1 − vl

Xl+1 − Xl

)2

(vl+1 + vl) . (2.58)
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In order to take the continuous limit, we assume the boundaryconditionXl = vl = 0 for l < 0,
which is consistent with (2.54). Then the continuous limitǫ → 0 (i.e.,Xl+1 − Xl → 0) gives

vl+1 − vl

Xl+1 − Xl
→

∂v
∂x

,
vl+1 + vl

2
→ v ,

∂Xl

∂y
=
∂X0

∂y
+

l−1
∑

j=0

∂(X j+1 − X j)

∂y
=
∂X0

∂y
− 2

l−1
∑

j=0

(v2
j+1 − v2

j ) = −2v2
l →

∂x
∂y
= −2v2 ,

∂

∂y
=

∂

∂y′
+
∂x
∂y

∂

∂x
=

∂

∂y′
− 2v2

l

∂

∂x
→

∂

∂y′
− 2v2 ∂

∂x
.

Consequently, (2.58) converges to

(∂y′ − 2v2∂x)vx = 4v+ 4vv2
x , (2.59)

which is nothing but the short pulse equation (2.27).

2.3. Discrete motion of discrete curves

Now let us recall the following discrete motion of discrete plane curveγm
n introduced by

Matsuura [49]:
∣

∣

∣

∣

∣

∣

γm
n+1 − γ

m
n

an

∣

∣

∣

∣

∣

∣

= 1, (2.60)

γm
n+1 − γ

m
n

an
= R(κm

n )
γm

n − γ
m
n−1

an−1
, (2.61)

γm+1
n − γm

n

bm
= R(ωm

n )
γm

n+1 − γ
m
n

an
, (2.62)

wherean andbm are arbitrary functions inn andm, respectively. Compatibility of the system
(2.60)–(2.62) implies the existence of the potential function θm

n defined by

ωn
m =

θm+1
n − θm

n+1

2
, κm

n =
θm

n+1 − θ
m
n−1

2
, (2.63)

and it follows thatθm
n satisfies the discrete potential mKdV equation [68]:

tan

(

θm+1
n+1 − θ

m
n

4

)

=
bm+ an

bm− an
tan

(

θm+1
n − θm

n+1

4

)

. (2.64)

Note that the functionsψm
n andφm

n can be expressed as

ψm
n =

θm
n+1 + θ

m
n

2
, φm

n =
θm+1

n + θm
n

2
. (2.65)

Note also
γm

n+1 − γ
m
n

an
=

[

cosψm
n

sinψm
n

]

,
γm+1

n − γm
n

bm
=

[

cosφm
n

sinφm
n

]

, (2.66)

and

γm
n =

[

Xm
n

vm
n

]

=

n−1
∑

j=0













Xm
j+1 − Xm

j

vm
j+1 − vm

j













+

[

Xm
0

vm
0

]

=

n−1
∑

j=0

a j













cosψm
j

sinψm
j













+

[

Xm
0

vm
0

]

.(2.67)
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From the discrete potential mKdV equation (2.64) and the hodograph transformation (2.67),
we obtain

∆
m+1
n − Γm

n

1+ ∆m+1
n Γ

m
n

=
bm+ an

bm− an

Γ
m
n − ∆

m
n

1+ Γm
n∆

m
n

, (2.68)

where

∆
m
n = sgn(vm

n+1 − vm
n )

∣

∣

∣

∣

∣

∣

vm
n+1 − vm

n

an + (Xm
n+1 − Xm

n )

∣

∣

∣

∣

∣

∣

=
vm

n+1 − vm
n

an + (Xm
n+1 − Xm

n )
, (2.69)

Γ
m
n = sgn(vm+1

n − vm
n )

∣

∣

∣

∣

∣

∣

vm+1
n − vm

n

bm+ (Xm+1
n − Xm

n )

∣

∣

∣

∣

∣

∣

=
vm+1

n − vm
n

bm+ (Xm+1
n − Xm

n )
, (2.70)

sincean + (Xm
n+1 − Xm

n ) = an(1+ cosψm
n ) ≥ 0 andbm+ (Xm+1

n − Xm
n ) = bm(1+ cosφm

n ) ≥ 0. We
note thatvm

n andXm
n satisfy the following relations

(

Xm
n+1 − Xm

n

an

)2

+

(

vm
n+1 − vm

n

an

)2

= 1 , (2.71)

(

Xm+1
n − Xm

n

bm

)2

+

(

vm+1
n − vm

n

bm

)2

= 1 . (2.72)

To construct an explicit form of the discrete WKI elastic beam equation, we consider an
identity

e
√
−1ψm+1

n e
√
−1ψm

n = e
√
−1φm

n+1e
√
−1φm

n . (2.73)

Substituting

e
√
−1ψm

n = cosψm
n +
√
−1 sinψm

n =
Xm

n+1 − Xm
n

an
+

√
−1

vm
n+1 − vm

n

an
,

e
√
−1φm

n = cosφm
n +
√
−1 sinφm

n =
Xm+1

n − Xm
n

bm
+

√
−1

vm+1
n − vm

n

bm
,

into (2.73), we obtain the system of two discrete equations from the real and imaginary parts,
respectively, which should be considered together with theconstraints (2.71) and (2.72). To
incorporate (2.71) and (2.72), an easy way is to consider theidentity

e
√
−1ψm+1

n e−
√
−1φm

n = e
√
−1φm

n+1e−
√
−1ψm

n , (2.74)

instead of (2.73). We then obtain the following system of twodiscrete equations

(Xm+1
n+1 − Xm+1

n )(Xm+1
n − Xm

n ) + (vm+1
n+1 − vm+1

n )(vm+1
n − vm

n )

= (Xm+1
n+1 − Xm

n+1)(X
m
n+1 − Xm

n ) + (vm+1
n+1 − vm

n+1)(v
m
n+1 − vm

n ) , (2.75)

(Xm+1
n+1 − Xm+1

n )(vm+1
n − vm

n ) − (Xm+1
n − Xm

n )(vm+1
n+1 − vm+1

n )

= (Xm+1
n+1 − Xm

n+1)(v
m
n+1 − vm

n ) − (Xm
n+1 − Xm

n )(vm+1
n+1 − vm

n+1) , (2.76)

which is simplified to

(Xm+1
n+1 − Xm

n+1 − Xm+1
n + Xm

n )(Xm
n+1 − Xm+1

n )

+ (vm+1
n+1 − vm

n+1 − vm+1
n + vm

n )(vm
n+1 − vm+1

n ) = 0 , (2.77)

(Xm+1
n+1 + Xm

n+1 − Xm+1
n − Xm

n )(vm+1
n+1 − vm

n+1 + vm+1
n − vm

n )

− (Xm+1
n+1 − Xm

n+1 + Xm+1
n − Xm

n )(vm+1
n+1 + vm

n+1 − vm+1
n − vm

n ) = 0 . (2.78)
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Note that the second equation (2.78) is further simplified to

(Xm
n+1 − Xm+1

n )(vm+1
n+1 − vm

n ) − (Xm+1
n+1 − Xm

n )(vm
n+1 − vm+1

n ) = 0 . (2.79)

We remark that the system (2.77) and (2.78) can be solved explicitly in terms of vm+1
n+1 and

Xm+1
n+1 in the form of rational functions ofvm

n , vm
n+1, vm+1

n+1 , Xm
n , Xm

n+1 andXm+1
n . Therefore the

system (2.77) and (2.78) (or (2.79)) can be regarded as the explicit form of the discrete WKI
elastic beam equation. Note that we can obtain (2.68), (2.69) and (2.70) by replacingXm

n by
Xm

n = Xm
n +

∑n−1
j=0 a j +

∑m−1
j=0 b j in (2.75) and (2.76) and then dividing (2.76) by (2.75). By using

the potential functionθm
n , the discrete WKI elastic beam equation can be written as

tan

(

θm+1
n+1 − θ

m
n

4

)

=
bm+ an

bm− an
tan

(

θm+1
n − θm

n+1

4

)

, (2.80)

Xm
n =

n−1
∑

j=0

a j cos

(

θm
j+1 + θ

m
j

2

)

+ Xm
0 . (2.81)

Setting

ζ = (n+m)δ , l = n−m, an = a , bm = b , δ =
a+ b

2
, ǫ =

a− b
2

, (2.82)

and taking the continuous limitδ→ 0, (2.80) and (2.81) are reduced to

dθl

dζ
=

2
ǫ

tan
(

θl+1 − θl−1

4

)

, (2.83)

Xl(ζ) =
l−1
∑

j=0

a j cos

(

θ j+1(ζ) + θ j(ζ)

2

)

+ X0(ζ) , (2.84)

which are transformed to the semi-discrete WKI elastic beamequation (2.37), (2.38) and
(2.39).

Let us consider a discrete analogue of the complex Dym equation. Introducing

rm
n = e

√
−1

θmn+1+θ
m
n

2 , (2.85)

Zm
n = Xm

n +
√
−1vm

n =

n−1
∑

j=0

a j cosψm
j +
√
−1

n−1
∑

j=0

a j sinψm
j + Zm

0

=

n−1
∑

j=0

a jr
m
j + Zm

0 , (2.86)

and using the discrete potential mKdV equation (2.64), we derive the discrete analogue of the
complex Dym equation

rm+1
n − ρm

n

rm+1
n + ρm

n

=
bm+ an

bm− an

ρm
n − rm

n

ρm
n + rm

n

,
rm+1

n

ρm
n

=
ρm

n+1

rm
n

, (2.87)

Zm
n+1 − Zm

n = anr
m
n , (2.88)

whereρm
n is an auxiliary variable defined by

ρm
n = e

√
−1

θm+1
n +θmn

2 . (2.89)
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Similar to the semi-discrete case, the system of (2.87) and (2.88) describes the motion of
segment vector of the curveγm

n in the Eulerian coordinates ofγm
n . It should be noted that by

introducingQm
n by

Qm
n = e

√
−1θm

n , (2.90)

we have an alternate form of the discrete complex Dym equation

rm
n =

√

Qm
n+1Qm

n , (2.91)
√

Qm+1
n+1 −

√

Qm
n

√

Qm+1
n+1 +

√

Qm
n

=
bm+ an

bm− an

√

Qm+1
n −

√

Qm
n+1

√

Qm+1
n +

√

Qm
n+1

, (2.92)

Zm
n+1 − Zm

n = anr
m
n . (2.93)

Usingθm
n , the discrete complex Dym equation can be written as

tan

(

θm+1
n+1 − θ

m
n

4

)

=
bm+ an

bm− an
tan

(

θm+1
n − θm

n+1

4

)

, (2.94)

Zm
n =

n−1
∑

j=0

a je
√
−1

θmj+1+θ
m
j

2 + Zm
0 . (2.95)

Setting

ζ = (n+m)δ , l = n−m, an = a , bm = b , δ =
a+ b

2
, ǫ =

a− b
2

, (2.96)

and taking the continuous limitδ→ 0, (2.94) and (2.95) become

dθl

dζ
=

2
ǫ

tan
(

θl+1 − θl−1

4

)

, (2.97)

Zl(ζ) =
l−1
∑

j=0

a je
√
−1

θ j+1(ζ)+θ j (ζ)

2 + Z0(ζ) , (2.98)

which are transformed to the semi-discrete complex Dym equation (2.48).
We next construct the discrete short pulse equation. Consider the following discrete

motion of plane discrete curveγk
n [48]

∣

∣

∣

∣

∣

∣

γk
n+1 − γ

k
n

an

∣

∣

∣

∣

∣

∣

= 1, (2.99)

γk
n+1 − γ

k
n

an
= R(κk

n)
γk

n − γ
k
n−1

an−1
, (2.100)

γk+1
n − Sγk

n =
1
ck

S R(−σk
n)
γk

n+1 − γ
k
n

an
, S =

(

1 0
0 −1

)

, (2.101)

wherean andck are arbitrary functions inn andk, respectively. Compatibility of this system
implies the existence of the potential functionθk

n defined by

κk
n =

θk
n+1 − θ

k
n−1

2
, σk

n =
θk+1

n + θk
n+1

2
, (2.102)
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and it follows thatθk
n satisfies the discrete sine-Gordon equation

sin

(

θk+1
n+1 − θ

k
n+1 − θ

k+1
n + θk

n

4

)

= anck sin

(

θk+1
n+1 + θ

k
n+1 + θ

k+1
n + θk

n

4

)

. (2.103)

Note that the functionsψk
n andϕk

n can be expressed as

ψk
n =

θk
n+1 + θ

k
n

2
, ϕk

n =
θk+1

n − θk
n

2
. (2.104)

Note also

γk
n+1 − γ

k
n

an
=

[

cosψk
n

sinψk
n

]

,
γk+1

n − Sγk
n

1
ck

=

[

cosϕk
n

sinϕk
n

]

, (2.105)

and

γk
n =

[

Xk
n

vk
n

]

=

n−1
∑

j=0













Xk
j+1 − Xk

j

vk
j+1 − vk

j













+

[

Xk
0

vk
0

]

=

n−1
∑

j=0

a j













cosψk
j

sinψk
j













+

[

Xk
0

vk
0

]

.(2.106)

From the discrete sine-Gordon equation (2.103) and the hodograph transformation (2.106),
we obtain

∆
k+1
n − ∆k

n = anck(Γ
k+1
n + Γ

k
n) , (2.107)

where

∆
k
n = sgn(vk

n+1 − vk
n)

∣

∣

∣

∣

∣

∣

vk
n+1 − vk

n

an + (Xk
n+1 − Xk

n)

∣

∣

∣

∣

∣

∣

=
vk

n+1 − vk
n

an + (Xk
n+1 − Xk

n)
, (2.108)

Γ
k
n = sgn(vk+1

n + vk
n)

∣

∣

∣

∣

∣

∣

∣

vk+1
n + vk

n
1
ck
+ (Xk+1

n − Xk
n)

∣

∣

∣

∣

∣

∣

∣

=
vk+1

n + vk
n

1
ck
+ (Xk+1

n − Xk
n)
, (2.109)

sincean+ (Xk
n+1−Xk

n) = an(1+ cosψk
n) ≥ 0 and 1

ck
+ (Xk+1

n −Xk
n) = 1

ck
(1+ cosϕk

n) ≥ 0. We note
thatvk

n andXk
n satisfy the following relations

(

vk
n+1 − vk

n

an

)2

+

(

Xk
n+1 − Xk

n

an

)2

= 1 , (2.110)















vk+1
n + vk

n
1
ck















2

+















Xk+1
n − Xk

n
1
ck















2

= 1 . (2.111)

We now construct an explicit form of the discrete short pulseequation. Similar to the case of
discrete WKI elastic beam equation, we consider the identity

e
√
−1ψk+1

n e−
√
−1ϕk

n = e
√
−1ψk

ne
√
−1ϕk

n+1 , (2.112)

with

e
√
−1ψk

n = cosψk
n +
√
−1 sinψk

n =
Xk

n+1 − Xk
n

an
+

√
−1

vk
n+1 − vk

n

an
,

e
√
−1ϕk

n = cosϕk
n +
√
−1 sinϕk

n =
Xk+1

n − Xk
n

1
ck

+

√
−1

vk+1
n + vk

n
1
ck

.
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We then obtain the following system of two discrete equations

(Xk+1
n+1 − Xk

n+1 − Xk+1
n + Xk

n)(X
k
n+1 − Xk+1

n )

− (vk+1
n+1 + vk

n+1 − vk+1
n − vk

n)(v
k
n+1 + vk+1

n ) = 0 , (2.113)

(Xk+1
n+1 − Xk

n+1 + Xk+1
n − Xk

n)(v
k+1
n+1 − vk

n+1 − vk+1
n + vk

n)

− (Xk+1
n+1 + Xk

n+1 − Xk+1
n − Xk

n)(vk+1
n+1 + vk

n+1 + vk+1
n + vk

n) = 0 . (2.114)

Note that the second equation (2.114) is further simplified to

(Xk
n+1 − Xk+1

n )(vk+1
n+1 + vk

n) + (Xk+1
n+1 − Xk

n)(v
k
n+1 + vk+1

n ) = 0 . (2.115)

ReplacingXk
n by Xk

n +
∑k−1

j=0
1
cj

, (2.113) and (2.114) become

(Xk+1
n+1 − Xk

n+1 − Xk+1
n + Xk

n)

(

Xk
n+1 − Xk+1

n −
1
ck

)

− (vk+1
n+1 + vk

n+1 − vk+1
n − vk

n)(v
k
n+1 + vk+1

n ) = 0 , (2.116)
(

2
ck
+ Xk+1

n+1 − Xk
n+1 + Xk+1

n − Xk
n

)

(vk+1
n+1 − vk

n+1 − vk+1
n + vk

n)

− (Xk+1
n+1 + Xk

n+1 − Xk+1
n − Xk

n)(vk+1
n+1 + vk

n+1 + vk+1
n + vk

n) = 0 . (2.117)

Note that this form was obtained in [37] by using the bilinearmethod. Taking the continuous
limit ck → 0 of (2.116) and (2.117), we obtain the semi-discrete short pulse equation (2.55)
and (2.56).

3. τ-function and soliton type solutions

In this section, we list theτ-function and the bilinear equations which give rise to the
soliton and breather type solutions to the equations and curve motions discussed in Section 2.
Although they have been already discussed in [37, 48, 69], wecollect and present the results
for completeness and the convenience of readers. It should be remarked that all the solutions
can be expressed in terms of oneτ-function.

The solutions can be expressed in the following form:

θm,k
n,l (s, t, ζ, y) =

2
√
−1

log
τ

m,k
n,l

τ∗m,kn,l

, (3.1)

γ
m,k
n,l (s, t, ζ, y) =























−1
2(logτm,k

n,l τ
∗m,k
n,l )y

1
2
√
−1

(

log
τ

m,k
n,l

τ∗
m,k
n,l

)

y























. (3.2)

Here, theτ-functionτm,k
n,l (s, t, ζ, y) is given by [48]:

τ
m,k
n,l (s, t, ζ, y) = exp















−















s+ ζ + ǫl +
n−1
∑

n′
an′ +

m−1
∑

m′
bm′ +

k−1
∑

k′

1
ck′















y















det
(

f (i)
j−1

)

i, j=1,...,N
, (3.3)

f (i)
j = eηi + eµi , (3.4)
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









































eηi = αi p
j
i (1− ǫpi)

−l
n−1
∏

n′

(1− an′pi)
−1

m−1
∏

m′

(1− bm′pi)
−1

k−1
∏

k′

(

1−
ck′

pi

)−1

e
pi s−4p3

i t+
pi

1−ǫ2p2
i
ζ+ 1

pi
y
,

eµ j = βi(−pi)
j(1+ ǫpi)

−l
n−1
∏

n′

(1+ an′pi)
−1

m−1
∏

m′

(1+ bm′pi)
−1

k−1
∏

k′

(

1+
ck′

pi

)−1

e
−pi s+4p3

i t− pi
1−ǫ2p2

i
ζ− 1

pi
y
.

(3.5)

The parameters are chosen as follows:

(i) N-soliton solution:

pi , αi ∈ R, βi ∈
√
−1R (i = 1, . . . ,N). (3.6)

(ii) M-breather solution:

N = 2M, pi , αi, βi ∈ C (i = 1, . . . , 2M),

p2 j = p∗2 j−1, α2 j = α
∗
2 j−1, β2 j = −β∗2 j−1 ( j = 1, . . . ,M).

(3.7)

The bilinear equations which are necessary to recover the equations and curve motions are
given as follows. Note that we only show the relevant independent variables, and other
variables can be regarded as parameters.
Continuous case [37,48]: τ = τ(s, t, y),

1
2

DsDy τ · τ = − (τ∗)2
, (3.8)

D2
s τ · τ

∗
= 0, (3.9)

(

D3
s + Dt

)

τ · τ∗ = 0. (3.10)

Semi-discrete case [37,69]: τ = τl(ζ, y),

Dζ τl · τ∗l =
1
2ǫ

(

τ∗l−1τl+1 − τ∗l+1τl−1
)

, (3.11)

τlτ
∗
l =

1
2
(

τ∗l−1τl+1 + τ
∗
l+1τl−1

)

, (3.12)

1
2

DζDy τl · τl = −τ∗l+1τ
∗
l−1, (3.13)

Dy τl+1 · τl = −ǫτ∗l+1τ
∗
l . (3.14)

Discrete case [37,48]: τ = τm,k
n (y),

Dy τ
m,k
n+1 · τ

m,k
n = −anτ

∗m,k
n+1τ

∗m,k
n , (3.15)

Dy τ
m+1,k
n · τm,k

n = −bmτ
∗m,k
n+1τ

∗m,k
n , (3.16)

Dy τ
m,k+1
n · τ∗m,kn = −

1
ck
τ∗m,k+1

n τm,k
n , (3.17)

bmτ
∗m+1,k
n τ

m,k
n+1 − anτ

∗m,k
n+1τ

m+1,k
n + (an − bm)τ∗m+1,k

n+1 τm,k
n = 0. (3.18)

4. Conclusions

In this paper, we have discretized several soliton equations which admit loop type soliton
solutions through the discrete analogues of the hodograph transformations based on the
geometry of plane curves. More concretely, we have constructed semi-discrete and fully
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discrete versions of the WKI elastic beam equation, the complex Dym equation and the short
pulse equation, and presented theτ-function which gives rise to the soliton and breather
solutions.

Geometric consideration is effective for discretization of soliton equations which admit
soliton solutions with singularities, and it may be also applicable to other soliton equations.
For example, the soliton equations arising from the curve motions in the Minkowski plane are
of so-called “defocusing type” which have nonlinear terms with different signs compared to
the equations discussed in this paper, and it is known that the structure and behaviour of the
solutions are quite different. The geometric consideration may also be useful to discretize this
class of equations. This problem will be reported in a forthcoming paper.

Appendix: Hodograph transformations

The WKI elastic beam equation:
A conservation law of the potential mKdV equation (2.10) is given by

(cosθ)t +

(

1
2

(θs)
2 cosθ − θsssinθ

)

s

= 0 . (A.1)

Consider the hodograph transformation [27]

x(s, t) =
∫ s

0
cosθ(s′, t)ds′ + x0 , t′(s, t) = t , (A.2)

which leads to
∂

∂s
= cosθ

∂

∂x
,

∂

∂t
=

∂

∂t′
+

(

θsssinθ −
1
2

(θs)
2 cosθ

)

∂

∂x
. (A.3)

Applying (A.3) to (A.1), we obtain

θt′ + cos2 θ(sinθ)xxx = 0 , (A.4)

which can be rewritten as

(tanθ)t′ + (sinθ)xxx = 0 . (A.5)

Introducing a new dependent variablev(s, t) =
∫ s

0
sinθ(s′, t)ds′ + v0 (note tanθ = vx and

sinθ = vx/
√

1+ (vx)2), (A.5) is transformed to

vt′x +















vx
√

1+ (vx)2















xxx

= 0 , (A.6)

which is the (potential) WKI elastic beam equation (2.18).

The complex Dym equation:
A conservation law of the potential mKdV equation (2.10) is given by

(e
√
−1θ)t +

(

1
2

(θs)
2e
√
−1θ
+

√
−1θsse

√
−1θ

)

s

= 0 . (A.7)

Consider the hodograph transformation [52,53]

z(s, t) =
∫ s

0
e
√
−1θ(s′,t)ds′ + z0 , t′(s, t) = t , (A.8)
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which leads to
∂

∂s
= e

√
−1θ ∂

∂z
,

∂

∂t
=

∂

∂t′
+

(

−
1
2

(θs)
2e
√
−1θ −

√
−1θsse

√
−1θ

)

∂

∂z
. (A.9)

Applying (A.9) to (A.7) and introducing a new dependent variabler = e
√
−1θ, we obtain the

complex Dym equation

r t′ + r3(r)zzz= 0 . (A.10)

Note that

z= x+
√
−1v , r =

∂z
∂s
. (A.11)

The short pulse equation:
A conservation law of the sine-Gordon equation (2.24) is given by

(cosθ)y +

(

(θy)2

8

)

s

= 0 . (A.12)

Consider the hodograph transformation [33,63–65]

x(s, y) =
∫ s

0
cosθ(s′, y)ds′ + x0 , y′(s, y) = y , (A.13)

which leads to
∂

∂s
= cosθ

∂

∂x
,

∂

∂y
=

∂

∂y′
−

(θy)2

8
∂

∂x
. (A.14)

Introduce a new dependent variable

v(s, y) =
∫ s

0
sinθ(s′, y)ds′ + v0 =

∫ s

0

θys′(s′, y)

4
ds′ + v0 =

1
4
θy , (A.15)

then it follows

vx = tanθ .

Applying (A.14) to (A.12), we obtain
(

∂

∂y′
− 2v2 ∂

∂x

)

cosθ = −4vvx cosθ . (A.16)

this can be rewritten as
(

∂

∂y′
− 2v2 ∂

∂x

)

1
cos2 θ

= 8vvx
1

cos2 θ
. (A.17)

From
1

cos2 θ
= 1+ tan2 θ = 1+ v2

x ,

it follows that
(

∂

∂y′
− 2v2 ∂

∂x

)

(1+ v2
x) = 8vvx(1+ v2

x) , (A.18)

which is nothing but the short pulse equation

vxy′ = 4v+
2
3

(

v3
)

xx
. (A.19)
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