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ABSTRACT

We investigate the signature of primordial non-Gaussiesit the weak lensing bispectrum,
in particular the signals generated by local, orthogondlequilateral non-Gaussianities. The
questions we address include the signal-to-noise ratiergéed in the Euclid weak lens-
ing survey (we find the &-errors for fy. are 200, 575 and 1628 for local, orthogonal and
equilateral non-Gaussianities, respectively), miseaions of fy, if one chooses the wrong
non-Gaussianity model (misestimations by up to a factaedfn fy_ are possible, depend-
ing on the choice of the model), the probability of noticingk a mistake (improbably large
values for the/?-functional occur fromfiy. ~ 200 on), degeneracies of the primordial bispec-
trum with other cosmological parameters (only the mattesigQ, plays a significant role),
and the subtraction of the much larger, structure-fornmagienerated bispectrum. If a prior
on a standarwCDM-parameter set is available from Euclid and Planck, thecture forma-
tion bispectrum can be predicted accurately enough foradtixyn, and any residual structure
formation bispectrum would influence the estimatiorfigf to a minor degree. Configuration-
space integrations which appear in the evaluatigpPefuinctionals and related quantities can
be carried out veryféciently with Monte-Carlo techniques, which reduce the ctaxity by a
factor ofO(10%) while delivering sub-percent accuracies. Weak lensimgpes smaller scales
than the CMB and hence provide an additional constraint en@®aussianities, even though
they are not as sensitive to primordial non-Gaussianisebk@ CMB.
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1 INTRODUCTION and gravitational lensingl (Fedelietal. 2011; Paceletafl120
Marian et all 2011; Jeong etial. 2011).

Most constraints on non-Gaussianities are reported using
CMB-observations, either by measuring the bispectrum ef th
temperature perturbation directly (Komatsu 2003; Creitiieeal.
2006; | Yadav & Wandel. 2008; Curto etal. 2009; Komatsu et al.
2009; | Vielva & Sanz| 2009| 2010; Casaponsa =t al. [2011), by
measuring the skewness of weighted averaged CMB-patches
(Mukherjee & Wangl 2004) or by quantifying the correspond-
ing Minkowski functionals|(Cabella et &l. 2005; Gott et|aD0Z;
Hikage et al. 2008). The tightest bounds on the amplitiygd®f the
bispectrum~10 < fy. < 74 has been obtained by Komatsu et al.
(2011).

So far, observational constraints on the weak lensing bispe
trum (Bernardeau et al. 2003; Shi ellal. 2011) mainly corextthe
non-Gaussianities generated by structure formation agidhiteak-
ing of theQ,-0g degeneracy (Ménard etlal. 2003), and first results
have been obtained using the skewness of the aperture-tatiss s
tic (Schneider et al. 1998; Semboloni et al. 2011).

In this paper we forecast the constraints which the weak lens
ing bispectrum will be able to make on primordial non-Gaaisty,
especially with a view to Euclid. Although the constrainte aot
* e-mail: bjoern.malte.schaefer@uni-heidelberg.de competitive with the CMB if the non-Gaussianities are séadie-

As cosmological data improves, it is becoming increasirigsi-
ble to probe models of the early universe. In particulampridial
non-Gaussianity has emerged as a leading window onto treqshy
of inflation and the early universe (for reviews, see Bardilal.
2004] Komatgu 2010; Langlais 2011). Although non-Gauspan
turbations could in principle take any form, in practicersbing
for just a few shapes of the bispectrum (3-point correlafiomc-
tion) allows one to discriminate between entire classes ofi-m
els (Bernardeau & Uzan 2003; Komatsu €t al. 2009; Komatsl et a
2011). Many alternative models to inflation produce the saore
Gaussian shapes, and therefore can also be constrainedsaintie
time.

The theory of primordial non-Gaussianities is very evolved
and predictions for non-Gaussianities infeient observational
channels have been made: number counts and large-scaleistru
statistics |(Verde 2010; Desjacques & Seljak 2010a.b; Fedal.
2011), the cosmic microwave background even outside thbBsSac
Wolfe regime |(Fergusson & Shellard 2007; Fergussonlet 4I020
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pendent, they are complementary since they probe smakégssc
compared to the CMB and provide constraints on a possible-sca
dependence_(Lo Verde et al. 2008). A scale dependendg odit
the same order as the spectral index of the power spectruatus n
ral (Byrnes et al. 2010) and it may be much stronger, e.g.ep“st
function” which is zero on large scales and large on smallesca
(Riotto & Slothi2011). Weak lensing also has lower systecnati
rors than other large scale structure probes such as theydaita
pectrum, scale dependent bias and cluster counts. Betsuseak
shear provides a linear mapping of the cosmic matter digtab,
the statistical properties of the source field are conseirvéte ob-
servable.

After a brief recapitulation of cosmology and structurenfiar
tionin Sect® we introduce primordial and structure forigration-
Gaussianities in Se¢f] 3, in particular the bispectral ebamd the
motivation for studying them. The mapping of non-Gaussiesi
by weak gravitational lensing is treated in SEtt. 4, wherénwes-
tigate the properties of the weak lensing bispectrum ircies and
configuration dependence, and how it builds up as a funcfieare
vey depth. Statistical questions concerning the signahgth and
misestimations of the non-Gaussianity parameter are asleldein
Sect[®, before we focus on systematic errors in the non-<Emity
parameter due to incompletely removed structure formatiam
Gaussianities in Se¢i] 6. We summarise our main resultsén[$e
and provide visualisations of the weak lensing bispectranrced
by different non-Gaussianity shapes in Appeiidix A.

The reference cosmological model used is a spatially flat
wCDM cosmology with Gaussian adiabatic initial perturbasidor
the cold dark matter density. The specific parameter chaces
Qm=0.25,ns =1,0g = 0.8,Q, = 0.04 andH, = 100hkm/s/Mpc,
with h = 0.72. The dark energy equation of state is constant in time
with a value ofw = —0.9.

2 COSMOLOGY AND STRUCTURE FORMATION

In spatially flat dark energy cosmologies with the mattersitgn
parametef),, the Hubble functiorH(a) = d Ina/dt is given by

H%(@ Qn 1-Qn
Hg = ? as@+w) ’

@)

for a constant dark energy equation of state-paranvet€omov-
ing distancey and scale factoa are related by

_Cfl da
A=), @H@

such that the comoving distance is given in units of the Hebbl
distanceyy = c¢/Ho. For the linear matter power spectrupgk)
which describes the Gaussian fluctuation properties ofitiealy
evolving density field,

(6(K)6(K)) = (2n)*6p(k + K)P(K)

@)

(©)

the ansatP(k) o k™sT2(k) is chosen with the transfer functidik),
which is well approximated by the fitting formula

T = M

for low-matter density cosmologies (Bardeen etial. 198@)e T
polynomialp(q) is given byp(q) = 1+3.89q+ (16.10)?+ (5.460)° +
(6.710)*. The wave vectok = gI" enters rescaled by the shape pa-
rametel” (Sugiyama 1995),

x p(a) ™, 4
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).

I'=Qpnhexp|-Qp|1+ —
m Xp[ b[ + Qm
The fluctuation amplitude is normalised to the vadtgeon the scale

R = 8 Mpc/h,

o= % f dk IRWR(K)P(K), (6)

with a Fourier-transformed spherical top-Ng$(k) = 3j1(kR)/(kR)

as the filter function.j,(x) denotes the spherical Bessel function
of the first kind of order’ (Abramowitz & Stegun 1972). The lin-
ear growth of the density field(x,a) = D.(a)d(x,a = 1), is de-
scribed by the growth functioB, (a), which is the solution to the
growth equation. (Turner & White 1997; Wang & Steinhardt 1.998
Linder & Jenking 2003),

2
d 1(3+d|nH)d

3
—D. (@) + a dinal aa D.(a) Qm(a)D.(a).
3 NON-GAUSSIANITIES

222

@)

da? da

3.1 Primordial non-Gaussianities

We write the primordial bispectra in terms of the Bardeevature
perturbationd (Bardeen 1980; Bardeen eilal. 1983), which may be
related to the primordial curvature perturbatios 5®/3 (see e.g.
chapter 8 in_Riotld 2002) and the CMB temperature anisotinpy
the Sachs-Wolfe limiAT/T = —®/3 (Sachs & Wolfe 1967). The
bispectrum ofd is defined by

(D(k)D(k2)D(K3)) = (21)%0p (K1 + Kz + k3)Bo(Ky, ko, Ks). (8

We will be particularly interested in three bispectral skgpvhich
cover the expected shape from a wide range of inflationaryetsod
(Komatsll 2010). They are defined as:

(i) Local shape.This is defined by
BE(ka. ko k) = 2A7H3 (K1 + (2 perm) ©)

where the amplitud@ is defined byPq(k) = AK™. It may arise
through a simple Taylor expansion about the Gaussian (ised)
perturbationd(x) = dg(X) + fy @2, although this is not the most
general ansatz fab which gives rise to the local bispectrum. The
local shape typically arises from super-horizon evolutadrthe
curvature perturbationk( < aH), which occurs for example in
some multifield inflation models (Byrnes eilal. 2008; Ellistd al.
2011), during modulated reheating (Dvali etlal. 2004), i ¢thr-
vaton scenarid_(Lyth et &l. 2003) (the last three models lasely
connected (Alabidi et al. 2010)), as well as the ekpyrotensgio
(Lehners 2010) and non-local inflation (Barnaby & Cline 2008
(i) The equilateral shapeis given by

Bkt ko ks) = BAZEEM (-2 (Kykoks) 203
~| (k)™ + (2 permy|
+ KRR 4 (5 permy ). (10)

This shape typically arises in models with non-canonicakkt
terms, the most studied example being Dirac-Born-Infelitain
tion (Silverstein & Tong 2004; Alishahiha et .al. 2004). Alsar-
ious other models can produce this shape (Arkani-Hamed et al
2004 Seery & Lidsey 2005; Chen etlal. 2007; Cheunglét al.;;2008
Li et all|2008).



(iii) The orthogonal shapeis given by
Bk, ko, ka) = BAZFI (=8 (kykoks) 203
~3 (k)™ + (2 perm)|
+3 [k IS 4 (5 perm)]) L(11)

(Senatore et @l. 2010) and it was constructed in order tothe@r
onal to both the equilateral shape and to a lesser extenbtaé |
shape.

The local model is maximised for squeezed triangiles k, ~ ks,
the equilateral model is maximised for equilateral trissd; =~

k. ~ ks while the orthogonal model receives contributions from
a broader range of triangles. Another frequently consitlstepe

is the enfolded one, which is maximised for “flattened” ismsc
les trianglesk; ~ k, ~ ks/2, but this can be written as a linear
combination of the three shapes above. We note that althitegh

above three shapes cover many classes of non-Gaussiansmodel
there do exist other shapes which cannot be written as a eombi M (k;, k) =

nation of the above three shapes including localised otlasog
bispectra, which may be caused by a feature in the inflatotepo
tial (Chen et al. 2007; Arroja et al. 2011), particle prodioctwvhile
observable modes are crossing the horizon (Barhaby 20L0R(b
burst of particle production later in inflation generatesalonon-
Gaussianity, Battefeld etial. 2011), or an inflaton potémtith su-
perimposed oscillations (Chen etlal. 2008; Chen 2011).

Becausefy, for all three shapes is normalised to an equilat-
eral triangle, but the signal-to-noise is maximised fdfedtent tri-
angle shapes depending on the configuration it is not surgris
that the error bars on the three shapes are significanfigreint
(Fergusson & Shellarnd 2009). In line with this expectation,find
that weak lensing can constrain the local model most tigéutig
the equilateral model least well. When investigating re¢ainag-
nitudes between structure formation bispectra and prirabodes,
we restrict ourselves to the equilateral case, as all pdmabbis-
pectra have equal values for this configuration. An altévaator-
malisation was proposed by Fergusson & Shellard (2009).

A mild scale dependence df,. is natural, for both the local
model (Byrnes et al. 2010; Byrnes etjal. 2010; Huang 2010), an
the equilateral and orthogonal models (Chen 2005; Bartodd e
2010;/ Noller & Magueijo 2011); Burrage etial. 2011), and it may
be much stronger, e.g. a “step—function” which is zero ogdar
scales and large on small scales (Riotto & Sloth 2011). Aigto
we treatfy. as constant in this paper, the motivation for consid-
ering scale-dependence is important because weak lensibgp

smaller scales than the CMB and hence the CMB bounds may not

apply here, see Sdd. 4. Observational probes have beenle®ti
in (Lo Verde et al. 2008; Sefusatti etlal. 2009; Shandera/ @04l ;
Becker et al. 2011).

For converting the bispectrum of the potential fluctuatitms
those of the density field we use the Newtonian Poisson emuati
for each occurence of the potential in the bispectium (Muetsall
2011),

30

A® = 225, s(k,a) = == D, @(mk?T(K) OK)
2 x7 3

o (12)

The horizon entry of each mode is governed by the transfetifum
T(k) and it growsx D, (a) in the linear regime, such that

3
Bl ke k) = | | (3D @0k T00) Boll ke ). 13)
i=1 m
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We choose the normalisation fact&to be consistent for each lin-
early evolving mode of the density field with our definitionc.

3.2 Non-Gaussianities from structure formation

Nonlinear processes in structure formation break the hemeg
ity of the growth equation and generate non-Gaussian festiar
the initially close to Gaussian density field. From Eulerjzar-
turbation theory (see Sahni & Cales 1995; Bernardeaul e0aR;2
Matsubara 2011; Scoccimarro & Couchman 2001), the firstrorde
contribution to the bispectrurBs(ky, kz, k3) (for an introduction,
see| Fry 1984a,b) of the density field from nonlinear strectar-
mation is given by:

Bs(ks, ko, ks, @) = > D%(a) M(ki, k;) P(k)P(K;), (14)
i.j=12.3
i#]
where the classical mode coupling functiorMgki, k;)
10 (k ki 4
7+(E+E)X+?X2. (15)

x = kikj/(kik;) denotes the cosine between the wave vedtpssid
k;. Due to the fact thaP(k,a) growso D2(a) in linear structure
formation, the bispectrum scales wibt (a) in lowest order per-
turbation theory. In terms of non-Gaussianity parametetscn-
figuration dependences, structure formation non-Gaussisirare
strongest for the squeezed configuration because the maogkngp
functionM(ki, kj) assumes the largest values for parallel wave vec-
tors (with the cosine being ong, = 1), and therefore resembles
non-Gaussianities of the local type. Their strength in teakshear
bispectrum corresponds to dg,-parameter ofO(10%), i.e. two
orders of magnitude larger than the primordial non-Gani#s
weak lensing can probe.

4 WEAK GRAVITATIONAL LENSING
4.1 Convergence spectrum

The weak lensing convergengdollows from a line-of-sight inte-
gration weighted with the lensingfieiencyW, (y) (for reviews, see
Bartelmann & Schneider 2001; Bartelmann 2010),

WH
K= f dy Wi (x)d
0
and reflects, because of its linearity, all statistical prtips of the
density fields. The weak lensingf&ciency is given by
30, 1
— =G
% s
with the weighted distance distributi@{y) of the lensed galaxies,
dz y' —x

6w - [ dr a5

The spectrunC,(¢) then results from applying Limber’s equation
(Limber{1954),

(16)

W.(y) = 17

(18)

“YH d
C.(0) = fo 2 WPk = £/ 8,

For the galaxy redshift distribution(z) we assume a standard
shape,

a-of2of (2} o =210

(19)

(20)
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with the median redshift set to 0.9, as projected for Euclid.

4.2 Convergence bispectrum
Similarly as in the case of the weak shear spect@iyff) we use
the Limber-equation in the flat-sky approximation,

AT Ky, ko, k
Bi(f1, 62, 63) = ¥ W2 (x) Bs(ka, ko, ks, @), (21)
0

with k, = &p/x, p = 1,2,3, for projection of the flat-
sky convergence bispectruB) (Schneider et al. 1998; Hu 1999;
Takada & Jain| 20032,k, 2004; Dodelson & Zhang 2005). The
spherical bispectrurB, ({1, (>, £3) is related to the flat-sky bispec-
trum B,(£1, €2, £3) by (Miralda-Escude 1991; Kaiser 1992)

41 l3
0 0 )

14
0

IT5-1(26p + 1)

4 BK([]J [2’ [3)’ (22)
T

Bi(t1, 62, (3) = (

where

2 +1

denotes the Wignerj3ymbol, which results from integrating over
three Legendre polynomial%(x) (x = cosd). The Wigner-3 sym-
bol nulls configurations which would violate the triangledguality,

|6 = ¢ < & < |6+ ¢| (Abramowitz & Stegun 1972). The facto-
rials in the Wigner-3 symbol are evaluated using the Stirling ap-
proximation for the-function,

12
0

14

0 (23)

I(h+1)=nl with T(X) = V2r exp(x) X2, (24)

for x > 1 (Abramowitz & Stegun 1972). At this point, it is ap-
propriate to recall two important issues related to the wa@ar
bispectrum as a line of sight-integrated quantity: The-bfisight
integration causes the non-Gaussianities in the conveegnbe
weaker than that of the source field, as a consequence of the ce
tral limit theorem, because many uncorrelated lensifepes (if the
Born approximation is invoked and lens-lens coupling idecgd,
see _Cooray & Hu 2002; Shapiro & Cooray 2006; Krause & Hirata
2010] Schaefer et al. 2011) add up to the signal (Jeong edHl)2
Secondly, the evaluation of the wave vedkot ¢/y in the source
field bispectrumB; generates a mixing of scales when the distance
x runs over the integration range such that the observed veask |
ing bispectrum is a superposition of density field bispectraary-

ing scale and fixed projected configuration.

4.3 Properties of the weak lensing bispectrum

Fig.[AT gives a 3-dimensional visual impression of the thtiger-
ent bispectra as observed by weak shear. The weak sheac-bispe
tra are given as dimensionless bispectra, by multiplicatich the
prefactor 1£,£3)*° ~ £*. There are clear ffierences in the config-
uration dependence: Local non-Gaussianities provide largpli-
tudes for squeezed configurations, i.e. in the corners adoh@ain
admissible by the triangle inequality, orthogonal non-&sanities
are largest for folded configurations and the equilaterspédxitra
assume large values if the three multipole orders are equal.

Fig.[d illustrates the contribution@j(¢)/dy to the spectrum
and the contributionB,(¢, ¢, £)/dy to the equilateral bispectrum as
a function of comoving distance. For the relevant range offtimu
poles, modes with wave numbers in the rande 0 1 Mpc/h are
being probed by weak shear, which are larger than those wawe n
bers measurable in the primary CMB bispectrum and emplsasise
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Figure 1. Contributions¢2dC,(¢)/dy to the lensing spectrum (solid line),
and ¢4dB,(¢, ¢, £)/dy to the lensing bispectra for both primordial non-
Gaussianities (dashed linefy_ 1) and structure formation non-
Gaussianities (dash-dotted line), #br 10 (thin lines),f = 100 (medium
lines) and¢ = 1000 (thick lines). The bispectra are plotted for the eduila
eral configuration.

the necessity of measurirfg, in its scale dependence, in a similar

way as advocated by Lo Verde et al. (2008) for number counts.
The skewness parameteBg(¢) are defined as the ratio be-

tween the squared equilateral bispectrum and the cubettspec

’ B2(¢,¢,¢)
Sk(f) = W .

S,(¢) is proportional tofy, (and toog to lowest order) and is inde-
pendent o, It will become relevant for the signal-to-noise ratio
>(¢) (see eqr_26 in Se¢t.5.1). These skewness-parameters-are d
picted in Fig[2 as a function of median redshift of the lensing
survey for both the primordial and the structure formatiodticed
weak lensing bispectrum. The skewness parameters incnetise
increasing survey depth and in case of primordial non-Ganges
saturate at redshifts of unity, which is affieet of the time evolution
of the gravitational potential being mapped out by weakitensas
perturbations in the potentials decay in the dark energyidated
phase and are constant in the matter-dominated phasetuséruc
formation non-Gaussianities decrease slightly for deepaching
surveys, which is caused by the fact that the structure fooma
skewness’s are building up durin@,-domination, as they scale
o D#/a® ~ ain contrast to primordial non-Gaussianities in the po-
tential, which are constant with their scalirg D, (a)/a)® ~ const.
The plot suggests that with the redshift range probed byié thod
largest-possible skewness'’s are being observed.

(25)

5 STATISTICS
5.1 What signal-to-noise ratio can one expect?

The cumulative signal-to-noise ratif¢) for the weak lensing bis-
pectrumB,(¢1, £2, £3) up to multipole order is given by (Htl 1999)

4 13

#0- 3 ¥ 3

C1=Cmin (2=Cmin (3=Cmin

B2(¢1, L2, £3)

_— 26
cov(l1, £z, {3) (26)
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Figure 2. Skewness paramet&(¢) for both primordial non-Gaussianities
(dashed line,fyy. = 1) and structure formation non-Gaussianities (dash-
dotted line) as a function of the survey depth,fe 10 (thin lines) £ = 100
(medium lines) and = 1000 (thick lines).

The summation is carried out with the conditién < ¢ < €3
(Takada & Jain 2004), such that the covariance becomes

A(€q, €2, 03) ~ ~
cov(ly, b, £s) = %C(a)qu)wg), @27)
sky
where the functiom\(¢4, £2, £3) counts the multiplicity of triangle

configurations and is defined as

6, l(1=~0(=1{3
A(fl,fz,fg) = 2, 6 = fj fori # j (28)
1, G#l#l3+0

fsy denotes the fraction of the observed sky and is s&jjc= 1/2
for Euclid. The observed spectra

~ 0’2
C() =C(¢) + FS , (29)
with the number density of ellipticity measurements perast@n
n, which is set to 40 galaxies per squared arcminute, cornespg
to the projected Euclid performance. Instead of a directaation
over{y, {», £3 we use a Monte-Carlo integration technique and con-
sider the evaluation of eqii._(26) as a three-dimensionedjiation,
for which we use publicly available CUBA-library (Hahn 2005
The cumulative signal-to-noise ratk{¢) for a measurement
of the weak shear bispectrum is depicted in Elg. 3 as a fumctié
and for all three non-Gaussianity types. As the signal gtieh is
proportional to the non-Gaussianity paramdier, it is convenient
to plot the ratiox(¢)/ fnL. The plot suggests that weak lensing bis-
pectra sourced by primordial non-Gaussianities could balynea-
sured with Euclid forfy, significantly larger than 100. Orthogonal
bispectra are weaker by a factor of 3 compared to local bispec
and equilateral bispectra generate the weakest signag bdactor
of 8 weaker than local non-Gaussianities. The fodfedént MC-
integration algorithms agree well in their results Xgf), and when
the number of sampling points is chosen toobé, the algorithms
retain accuracies, indicating that the adaptive algorithake ac-
count of the symmetry properties of the integrand/At 1000, is
is suficient to computed(10°) samples, which reduces the num-
ber of evaluations of the integrand by a factor of t@mpared to
the exact evaluation, which would requit§10°) evaluations, for
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Figure 3. Cumulative signal-to-noise rati(¢)/ fy. as a function of maxi-
mum multipole orde¥, for local (circles), orthogonal (lozenges) and equi-
lateral (squares) non-Gaussianities. The figure complaeggsult from dif-
ferent Monte-Carlo integration routines.

precisions on the sub-percent level. We will restfictpace inte-
grations to multipoless 1000, because the increase in signal when
extending the-range is marginal for primordial non-Gaussianities
and additionally, it helps to avoid scales influenced by baly
physics and intrinsic alignments (Semboloni et al. 2008120

The configuration dependence of the contribution to the in-
tegrated signal is given in Fig—Al in the appendix for theséhr
bispectrum types considered here. The panels show the Weak s
bispectrum in units of the nois®,(¢1, 2, £3)/ Vcov(l1, {2, {3) as a
function of¢,, £, and¢3. While the local non-Gaussianity provides
the largest contributions for squeezed configurationspttieogo-
nal non-Gaussianity shows a much uniformer contributioough-
out £-space, and the equilateral non-Gaussianity is only piogid
significant amplitudes for very small values &fThis behavior is
reflected in in the cumulative signal-to-noise ratio, aswshadn
Fig.[3. From the signal-to-noise ratios one can alreadynedé
the accuracy for a measurement faf . The conditional Cramér-
Rao boundsry, = 1/ /Fs 1, On the non-Gaussianity parameter
(which are at the same time the non-Gaussianities requirgdrt-
erate a signal of unity) arey,, = 200 (local),o s, = 575 (orthog-
onal) ando;,, = 1628 (equilateral) which is significantly weaker
than other probes such as the primary CMB, due to the Gaissian
ing effect of the line-of-sight integrations (Jeong ef al. 2011).

5.2 Would one misestimatefy, using the wrong bispectrum?

The y?-functional constructed for measuring the noise-weighted
mismatch between the true bispectrBfrand the wrongly assumed
bispectrumBy for interpreting the data reads:

4 t t

NP ID)

t1=Cmin (2=Cmin (3=Cmin

[@BY(t1, 2, bs) — BY(L1, 2, 65))
COV(fl, 0>, 63)

(30)

and yields the best fitting from the minimisatiordy?/da = 0.

The variablea measures the ratio between the wrongly in-
ferred non-Gaussianity paramet& and the true value, and is
given by Fig[% as a function of maximum multipole order con-
sidered in the integration of thg?-functional. For weak signals
this ratio is very close to unity, andfterences emerge when the
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Figure 4. The ratioa(¢) of inferred fy,-value to the truefy_-value as a
function of maximum multipole ordef. The true non-Gaussianity model
is indicated by the line style, whereas the wrongly chosen@®aussianity
model is given by the marker style: local (circles, soliceBj orthogonal

(lozenges, dashed lines) and equilateral (squares, datdddines) non-
Gaussianities.

integration is carried out to larger multipoles, and thenalgbe-
comes stronger. Misestimations iy up to half an order of mag-
nitude appear possible, including wrong signs fqr-estimates.
Most combinations oB! and B" yield very small values for the
estimatedfy, -parameter (equivalently, ~ —1) when choosing the
wrong non-Gaussianity. Again, the evaluations necessaryld-

termininga are carried out as an MC-integration with the CUBA-
library (Hahn 2005).

5.3 Would one notice fitting the wrong bispectrum?

Now, the question appears if one would notice the assumpfian
wrong primordial bispectrum when fitting for the non-Gaasdy
parameterfy,. . This can be quantified by the probabiligyof ob-
taining data more extreme than the one at hand. This pratyatyil
(Fisher’sp-value) is given as a function of the trifg_ under the
assumption of a Gaussian likelihood, which is well justifggeen
the very large number of degrees of freedom (although dds
been raised about how accurate this is, see _Smithlet al. 2841)
shown in Fig[h for all combinations between true non-Gaussi
types and wrongly fitted non-Gaussianity models, this podina
drops very rapidly towards very small numbers fgr-values of a
few hundred, indicating that it would be veryfliult to reconcile
non-Gaussianities of that strength with observationséfhong
non-Gaussianity model had been chosen. f@rvalues smaller
than 100 the signal is so weak that no significant discreparime-
tween data and model appear, for any type of non-Gaussianity

5.4 Do parameter constraints depend on non-Gaussianity?

The Fisher-matrix formalism (Tegmark etlal. 1997) is widebed
in cosmology for deriving parameter forecasts, and requirghe
case of the bispectrum as the signal-to-noise ratio the stimm
over all triangle configurations:

l 4

4
ey Y 9B, 1 B 1)

0X, coV(ly, >, £3) X
£1=Lmin £2=Cmin €3=Cmin X# ( 102 3) v

local
— — —ortho
—-— equil

_ =8 =0 - O local [
107 eS8 :i\ &~ ° ¢ ortho 3
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N ° N O equil

probabilityq(fa.)
/E/
#,/f’”:/@/
- _ A
-;1’—”:/4@06;

\ | [l
\ ! \
.

o L 10°
non-éaussmnlty parametéy,

Figure 5. Probability g(fy.) of obtaining data as extreme as a wrong fit
to the weak lensing bispectrum by choosing the wrong nons€ianity
model (indicated by the line style) to data (indicated by rterker style):
local (circles, solid lines), orthogonal (lozenges, dashees) and equi-
lateral (squares, dash-dotted lines) non-Gaussianifies.horizontal lines
indicate 12, 3, 40 confidence intervals antlhas been set to 1000.
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Figure 6. 1o, 20- and 3r-constraints on the non-Gaussianity paraméger
and the matter densit®,, for the local non-Gaussianity (solid lines) and

the orthogonal non-Gaussianity (dotted lines) at1000, from a numerical
MC-integration of the Fisher-matrix.

The explicit summation can be replaced by*&htegration, which
can be carried out using the MC-technique outlined in $ed. 5
Resulting simultaneous constraints @Qp, and fy. from the weak
shear bispectrum sourced only by primordial non-Gaus#sni
with no other priors are given in Fif] 6 for local and orthogbn
models at a referenclg,. = 1000. The equilateral bispectrum does

not constrain the parameter pair in a meaningful way due ¢o th
weak signal.



6 SYSTEMATICS DUE TO STRUCTURE FORMATION
6.1 Can one subtract the structure formation bispectrum?

Naturally, the small primordial non-Gaussianities areesapded

by much stronger non-Gaussianities due to nonlinearitiethe

cosmic structure formation processes, whidfeets the measur-

ability of fy.. There exists an accurate description of the struc-

ture formation bispectrum provided by Eulerian perturdratheory

on the scales of interest (compare SEcil 3.2, and Bernasded.u

2002), if the cosmology is known — but there are always uncer-

tainties in the cosmological parameter set, which wouldiltés

an uncertainty in predicting the structure formation bitpem. If

the structure formation bispectrum is not properly sulia@drom

the observed bispectrum, there will be errors in the estimaif

the non-Gaussianity parametgy. for the primordial bispectrum,

which can be quantified with theg’-functional,

e i 2 2 [aBY(6r. C2. €3) ~ ABL (01 (2. )
COV([1,52,53) ’

(32

t1=Cmin (2=Cmin (3=Cmin
describing the fit of a primordial bispectruBi to dataAB,,
AB(£1, €2, £3) = BY(£1, Lo, €3) + BLST(1, €2, £3) — B SF(€1, L2, €5)(33)

which contain the true primordial bispectruBj itself, the very
large structure formation bispectruBtS for the true cosmology,
from which the structure formation bispectrBf#SF has been sub-
tracted, possibly incompletely, by assuming the wrong adsgy.
Derivation dy?/da = 0 yields the best fittingr, which is related
to the misestimatedy] = afy. and the deviation from the true
non-Gaussianity = a — 1.

Distributions p(5)dé have been derived for all bispectrum
types by drawing 1®samples from a Gaussian likelihood for the
parameter€)y, osg, h, ns andw of a standard spatially flat dark
energy model. The covariance matrix has been construcied us
the icosmo resource for the Euclid weak lensing and BAO data
(Refregier et dl. 2011), and provides an excellent priorhendos-
mological parameters. By this sampling process ifis possible
to propagate the entire uncertainty in the cosmologicahmpater
set onto the estimate df,_. As shown by Fig]7, the resulting dis-
tribution is very close to Gaussian, with zero mean and stahd
deviations ofor, = 119 (local),os, = 372 (orthogonal) and
o, = 511 (equilateral), which is similar to the statistical unce
tainty of measuringfy. and thus constitutes a serious error. The
width of the distributions are independent of the true vafye
and the relative errof/ fy. scalesx 1/fy.. Misestimates of that
magnitude make it very flicult to assign a primordial origin to a
non-zero residual bispectrum, given the current boundgonAll
integrations were computed up#e= 1000.

6.2 What happens if a better prior is available?

The uncertainty in predicting the weak shear bispectrunegead
by nonlinear structure formation can be reduced if a stropger
on the cosmological parameter set is available or if the dexity
of the model is reduced, e.g. if teCDM dark energy cosmol-
ogy would be replaced by the simpl&iCDM cosmology. Fig[B
illustrates the distributiong(6)ds of the diferences between the
inferred non-Gaussianity parameter and the true paranietae
contamination of the bispectrum is computed by drawingskin-
ple wCDM cosmologies from a Gaussian likelihood whose covari-
ance matrix incorporates constraints from Euclid weak ishpec-
tra, Euclid baryon acoustic oscillations and in additioarfek’s

weak lensing and non-Gaussianities7
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Figure 7. Distributions p(6)ds of the biass between the inferred non-
Gaussianity parameter and the true paramfgeiif the structure formation

bispectrum is not completely removed, due to uncertairitidhe cosmo-

logical model, for local (circles, solid line), orthogon@zenges, dashed
line) and equilateral (squares, dash-dotted line) nonsGianities. As pri-

ors, Euclid weak lensing and baryon acoustic oscillatioesevwused.
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Figure 8. Distributions p(6)ds of the biass with an enhanced prior for the
cosmological model with constraints from weak lensing ybaracoustic

oscillations (both Euclid) and CMB temperature and poddiom spectra

(Planck), for local (circles, solid line), orthogonal (mes, dashed line)
and equilateral (squares, dash-dotted line) non-Gautsgan

constraints from the observation of primary CMB tempemtmd
polarisation spectra. In comparison to the distributionews in
Fig.[d, the width is now much reduced, by about a factor of 4,
allowing measurements down to smaller valuesfigr. The spe-
cific uncertainties arery, = 29 (local),oq, = 98 (orthogo-
nal) andoy, = 149 (equilateral), all stated as standard devia-
tions of the distributiom(s)ds. These uncertainties are below cur-
rent bounds orfy. and are small enough for studies of primordial
non-Gaussianities. Again, all integrations were carriatl up to

¢ = 1000.
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7 SUMMARY

The topic of this paper are measurements of primordial bispe
tra in weak shear data from Euclid, comparisons betweéardi
ent types of non-Gaussianity configuration dependencatstst
cal questions concerning the inference of the non-Gausgipa-
rameterfy. and the removal of the much stronger structure forma-
tion induced bispectrum. Although not as sensitive as obsiens

of the CMB-bispectrum or the galaxy bispectrum for scaéefr
non-Gaussianities, weak lensing can place useful indegreradn-
straints on non-Gaussianities, in particular on smallalescwhere
CMB bounds might not apply. It is less prone to systematies th
other large-scale structure probes and provides a direzdimap-
ping of the density field, which conserves its statisticalgarties.

(i) Primordial non-Gaussianities provide a rather wealnaig
in the weak shear bispectrum (because of the Gaussianifing e
fect of the line-of-sight integration, see Jeong et al. 30&hd
signal-to-noise ratios of order unity can only be expected f
fa. = 200,575 1628 for local, orthogonal and equilateral non-
Gaussianities, respectively, where this measurement & sem-
sitive to scales @...1 (Mpc/h)t. These bounds are weaker than
those from e.g. observations of the CMB bispectrum, butseitize
nevertheless for cross validation, in particular given dbsence
of strong systematics is weak shear data, or as bounds o scal
dependent non-Gaussianity, because weak lensing mapsabes s
which are not constrained by the CMB and is sensitive to scale
probed by number counts.

(i) Configuration space integrations can be veffycgently car-
ried out by Monte-Carlo integration schemes, at a fractibthe
computational cost. Computations of the signal-to-noa@y of
x*-functionals or of the Fisher-matri,, can be done with accu-
racies below a percent wit(10°) evaluations instead ap(10°)
evaluations for the direct sum ovér, £, and{s. Very good results
were obtained with the CUBA library (Halhn 2005).

(i) Fitting the wrong bispectrum type to data yields seso
misestimates in the non-Gaussianity paraméter Depending on
the combination of true and false model there are two cagibgre
the estimatedfy. becomes very small, or the estimate fiar is
a factor of~ +£3 too large. When looking at numerical values for
the y?-functional, one would notice strong discrepancies betwee
data and model when fitting the wrong non-Gaussianity typenfr
values offy_ of a few hundred on.

(iv) The much stronger structure formation bispectrum can b
subtracted with a prediction of its bispectrum from peratitn
theory if the cosmology is known precisely enough. Progagat
the uncertainty in the cosmological parameter set onto tisesti-
mation of fy,_ if the structure formation bispectrum is not correctly
subtracted yielded typical uncertainties of 29, 98 and bt9d-
cal, orthogonal and equilateral non-Gaussianities, mash than
the statistical accuracy. As a prior on the cosmologicahpeters
we assumed a Gaussian likelihood fov@DM model combining
Euclid’'s weak shear with baryon acoustic oscillations atah€k’s
observations of primary CMB anisotropies. Similar ratiesvieen
the numerical value ofy, and the standard cosmological parame-
ters were found by Pace et al. (2011).

Many of our investigations can be straightforwardly gelieea
to other probes of large-scale structure statistics. Wenihtto
generalise our investigations to higher polyspectra andpiay
ideas from Bayesian model selection (Trotta 2007, 2008pfor
signing probabilities to the problem of choosing the carrmemn-
Gaussianity type.

B.M. Schafer, A. Grassi, M. Gerstenlauer, C.T. Byrnes
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APPENDIX A: CONFIGURATION DEPENDENCE

Fig.[AT compares the configuration dependence of the bispact
and of the signal strength in a weak lensing experiment. As a
representation, we chose to plot the dimensionless weakecon
gence bispectrun?{£,£3)*3B,(£1, £2, £3) and the convergence bis-
pectrum in units of the nois@,(¢1, €2, £3)/ VCoV({ly, L2, C3), Which
when added in quadrature yields the signal-to-noise ratie.fac-

tor (£1£263)*3 ~ £* makes the angular bispectra dimensionless.

This paper has been typeset fromgXTIATEX file prepared by the
author.
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Figure Al. Configuration dependencé;{£3)*/3B,(¢1, £2, £3) (first column) and signal-to-noise ratiy(¢1, €2, £3)/ Vcov{ly, {2, £3) (second column) of the
weak lensing bispectrum, for local (first row), orthogorsgdond row) and equilateral (third row) non-Gaussianifiée size of the blobs and their colour is
proportional to the bispectrum, where a correct relativenadisation in the columns is maintained. Configurationtsiole the grey bounding planes violate

the triangle inequality.
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