ON EMBEDDING OF DENDRIFORM ALGEBRAS INTO ROTA-BAXTER ALGEBRAS

V. YU. GUBAREV ${ }^{1)}$, P. S. KOLESNIKOV ${ }^{2)}$

Abstract

Following a recent work by C. Bai, O. Bellier, L. Guo, X. Ni (arXiv:1106.6080) we define what is a dendriform di- or trialgebra in an arbitrary variety Var of binary algebras (associative, commutative, Poisson, etc.). We prove that every dendriform dialgebra in Var can be embedded into a Rota-Baxter algebra of weight zero in the same variety, and every dendriform trialgebra can be embedded into a Rota-Baxter algebra of nonzero weight.

1. Introduction

In 1960 Glen Baxter [7] introduced an identity defining what is now called RotaBaxter operator in developing works of F. Spitzer 33 in fluctuation theory. By definition, a Rota-Baxter operator R of weight λ on an algebra A is a linear map on A such that

$$
R(x) R(y)=R(x R(y)+R(x) y)+\lambda R(x y), \quad x, y \in A
$$

where λ is a scalar from the base field.
Later, commutative associative algebras with such an operator were studied by G.-C. Rota and others [10, 31]. In 1980s, these operators appeared in the context of Lie algebras independently in works A. A. Belavin and V. G. Drinfeld [8] and M. A. Semenov-Tian-Shansky 32 in research of solutions of classical YoungBaxter equation named in the honour of physicists Chen Ning Yang and Rodney Baxter.

For the present time, numerous connections of Rota-Baxter operators with other areas of mathematics are found. The latter include quantum field theory, Young-Baxter equations, operads, Hopf algebras, number theory etc. [2, 13, 14 , 16, 24.

The notion of a Leibniz algebra introduced by J.-L. Loday [25] is originated from cohomology theory of Lie algebras; this is a noncommutative analogue of Lie algebras. Associative dialgebras (now often called diassociative algebras) emerged in the paper by J.-L. Loday and T. Pirashvili [26, they play the role of universal enveloping associative algebras for Leibniz algebras. Dendriform dialgebras were defined by J.-L. Loday in 1999 [27] in his study of algebraic K-theory. Moreover, they occur to be Koszul-dual to diassociative algebras. In 2001, J.-L. Loday and V. Ronco [28] introduced a generalization of dialgebras-trialgebras and dual to them dendriform trialgebras.
M. Aguiar in 2000 [1] was the first who noticed a relation between Rota-Baxter algebras and dendriform algebras. He proved that an associative algebra with a Rota-Baxter operator R of weight zero relative to operations $a \prec b=a R(b)$, $a \succ b=R(a) b$ is a dendriform dialgebra. In 2002, K. Ebrahimi-Fard [15] generalized this fact to the case of Rota-Baxter algebras of arbitrary weight and obtained
as result both dendriform dialgebra and dendriform trialgebra. In the paper by K. Ebrahimi-Fard and L. Guo [17] in 2007, universal enveloping Rota-Baxter algebras of weight λ for dendriform dialgebras and trialgebras were defined.

The natural question: Whether an arbitrary dendriform di- or trialgebra can be embedded into its universal enveloping Rota-Baxter algebra was solved positively in 17 for free dendriform algebras only. In 2010, Y. Chen and Q. Mo proved that any dendriform dialgebra over a field of characteristic zero can be embedded into an appropriate Rota-Baxter algebra of weight zero [12] using the Gröbner-Shirshov bases technique for Rota-Baxter algebras developed in 9.

To solve the problem for any dendriform dialgebra (or trialgebra) from a RotaBaxter algebra of arbitrary weight, C. Bai, L. Guo and K. Ni 4] introduced in 2010 a notion of \mathcal{O}-operators, a generalization of Rota-Baxter operators and proved that every dendriform di- or trialgebra can be explicitly obtained from an algebra with a \mathcal{O}-operator.

In a recent work [5], the results of Aguiar and Ebrahimi-Fard were extended to the case of arbitrary operad of Rota-Baxter algebras and dendriform dialgebras and trialgebras.

In the present work, we solve the following problem. Given a binary operad $\mathcal{P}_{\text {Var }}$ governing a variety Var of Ω-algebras (Ω is a set of binary operations), we define what is a di- or tri-Var-dendriform algebra (following [5]). Then we construct a Rota-Baxter Ω-algebra from the variety Var such that the initial dendriform dior trialgebra embeds into this Rota-Baxter algebra in the sense of Aguiar and Ebrahimi-Fard (for trialgebras, we demand $\lambda \neq 0$).

The idea of the construction can be easily illustrated as follows. Suppose $(A, \prec, \succ$ $, \cdot)$ is an (associative) dendriform trialgebra. Then the direct sum of two isomorphic copies of A, the space $\hat{A}=A \oplus A^{\prime}$, endowed with a binary operation
$a * b=a \prec b+a \succ b+a \cdot b, \quad a * b^{\prime}=(a \succ b)^{\prime}, \quad a^{\prime} * b=(a \prec b)^{\prime}, \quad a^{\prime} * b^{\prime}=(a \cdot b)^{\prime}$
for $a, b \in A$, is an associative algebra. Moreover, the map $R\left(a^{\prime}\right)=a, R(a)=-a$ is a Rota-Baxter operator of weight 1 on \hat{A}. The embedding of A into \hat{A} is given by $a \mapsto a^{\prime}, a \in A$.

In this work, we also introduce and consider some modification of Loday's notion of trialgebras which we will call skew trialgebras (or s-trialgebras, for short). This class of algebras appears from differential and \mathbb{Z}-conformal algebras. Associative skew trialgebras turn to be related with a natural noncommutative analogue of Poisson algebras. Dendriform s-trialgebras are Koszul dual to s-trialgebras and they are also connected with Rota-Baxter algebras in the same way as usual dendriform dialgebras and trialgebras.

2. Operads for di- and trialgebras

Our main object of study is the class of dendriform di- or tri-algebras. In this section, we start with objects from the "dual world" in the sense of Koszul duality.

The notion of an operad once introduced in [29] has been reincarnated in the beginning of 2000 s . We address the reader to either of perfect expositions of this notion and its applications in universal algebra, e.g., [18, 23, 34 .

Throughout this paper, \mathbb{k} is an arbitrary base field. All operads are assumed to be families of linear spaces, compositions are linear maps, and the actions of symmetric groups are also linear.

By an Ω-algebra we mean a linear space equipped with a family of binary linear operations $\Omega=\left\{\circ_{i} \mid i \in I\right\}$. Denote by \mathcal{F} the free operad governing the variety of all Ω-algebras. For every natural $n>1$, the space $\mathcal{F}(n)$ can be identified with the space spanned by all binary trees with n leaves labeled by x_{1}, \ldots, x_{n}, where each vertex (which is not a leaf) has a label from Ω.

Let Var be a variety of Ω-algebras defined by a family S of poly-linear identities of any degree (which is greater than one). Denote by $\mathcal{P}_{\text {Var }}$ the binary operad governing the variety Var, i.e., every algebra from Var is a functor from $\mathcal{P}_{\text {Var }}$ to the multi-category Vec of linear spaces with poly-linear maps.

Denote by $\Omega^{(2)}$ and $\Omega^{(3)}$ the sets of binary operations $\left\{\vdash_{i}, \dashv_{i} \mid i \in I\right\}$ and $\Omega^{(2)} \cup$ $\left\{\perp_{i} \mid i \in I\right\}$, respectively. Similarly, let $\mathcal{F}^{(2)}$ and $\mathcal{F}^{(3)}$ stand for the free operads governing the varieties of all $\Omega^{(2)}$ - and $\Omega^{(3)}$-algebras, respectively.

We will need the following important operads.
Example 1. Operad Perm introduced in 11 is governing the variety of Permalgebras [39, p. 17]. Namely, $\operatorname{Perm}(n)=\mathbb{k}^{n}$ with a standard basis $e_{i}^{(n)}, i=1, \ldots, n$. Every $e_{i}^{(n)}$ can be identified with an associative and commutative poly-linear monomial in x_{1}, \ldots, x_{n} with one emphasized variable x_{i}.

Example 2. Operad CommTrias introduced in [36] is governing the variety of associative and commutative trialgebras, see [39, p. 25]. Namely, CommTrias(n) has a standard basis $e_{H}^{(n)}$, where $\emptyset \neq H \subseteq\{1, \ldots, n\}$. Such an element (corolla) can be identified with a commutative and associative monomial with several emphasized variables $x_{j}, j \in H$.

The number of observations made, for example, in [37, 11, 22] lead to the following natural definition.
Definition 1. A di-Var-algebra is a functor from $\mathcal{P}_{\text {Var }} \otimes$ Perm to Vec, i.e., an $\Omega^{(2)}$-algebra satisfying the following identities:

$$
\begin{gather*}
\left(x_{1} \dashv_{i} x_{2}\right) \vdash_{j} x_{3}=\left(x_{1} \vdash_{i} x_{2}\right) \vdash_{j} x_{3}, \quad x_{1} \dashv_{i}\left(x_{2} \vdash_{j} x_{3}\right)=x_{1} \dashv_{i}\left(x_{2} \dashv_{j} x_{3}\right), \tag{1}\\
f\left(x_{1}, \ldots, \dot{x}_{k}, \ldots, x_{n}\right), \quad f \in S, n=\operatorname{deg} f, k=1, \ldots, n \tag{2}
\end{gather*}
$$

where $i, j \in I$, and $f\left(x_{1}, \ldots, \dot{x}_{k}, \ldots, x_{n}\right)$ stands for $\Omega^{(2)}$-identity obtained from f by means of replacing all products \circ_{i} with either \dashv_{i} or \vdash_{i} in such a way that all horizontal dashes point to the selected variable x_{k}.

Example 3. Let $|\Omega|=1$. The variety of diassociative algebras (or associative dialgebras) [26] is given by (11) together with

$$
\begin{align*}
x_{1} \dashv\left(x_{2} \dashv x_{3}\right)= & \left(x_{1} \dashv x_{2}\right) \dashv x_{3}, \quad x_{1} \vdash\left(x_{2} \dashv x_{3}\right)=\left(x_{1} \vdash x_{2}\right) \dashv x_{3}, \\
& x_{1} \vdash\left(x_{2} \vdash x_{3}\right)=\left(x_{1} \vdash x_{2}\right) \vdash x_{3} . \tag{3}
\end{align*}
$$

Example 4. Consider the class of Poisson algebras $(|\Omega|=2)$, where \circ_{1} is an associative and commutative product (we will denote $x \circ_{1} y$ simply by $x y$) and \circ_{2} is a Lie product $\left(x \circ_{2} y=[x, y]\right)$ related with \circ_{1} by the following identity:

$$
\left[x_{1} x_{2}, x_{3}\right]=\left[x_{1}, x_{3}\right] x_{2}+x_{1}\left[x_{2}, x_{3}\right]
$$

Then a di-Poisson algebra is a linear space equipped by four operations $(\cdot * \cdot)$, $[\cdot * \cdot], * \in\{\vdash, \dashv\}$ satisfying (11) and (2). Commutativity of the first product and
anticommutativity of the second one allow to reduce these four operations to only two, since (2) implies

$$
\left(x_{1} \dashv x_{2}\right)=\left(x_{2} \vdash x_{1}\right), \quad\left[x_{1} \dashv x_{2}\right]=-\left[x_{2} \vdash x_{1}\right] .
$$

With respect to the operations

$$
x y:=(x \vdash y), \quad[x, y]:=[x \vdash y],
$$

the identities (1) and (2) are equivalent to the following system:

$$
\begin{gathered}
x_{1}\left(x_{2} x_{3}\right)=\left(x_{1} x_{2}\right) x_{3}, \quad\left(x_{1} x_{2}\right) x_{3}=\left(x_{2} x_{1}\right) x_{3}, \\
{\left[x_{1},\left[x_{2}, x_{3}\right]\right]-\left[x_{2},\left[x_{1}, x_{3}\right]\right]=\left[\left[x_{1}, x_{2}\right], x_{3}\right],} \\
{\left[x_{1} x_{2}, x_{3}\right]=x_{1}\left[x_{2}, x_{3}\right]+x_{2}\left[x_{1}, x_{3}\right],} \\
{\left[x_{1}, x_{2} x_{3}\right]=\left[x_{1}, x_{2}\right] x_{3}+x_{2}\left[x_{1}, x_{3}\right] .}
\end{gathered}
$$

In [27, a more general class was introduced (without assuming commutativity of the associative product).

A similar approach works for trialgebras.
Definition 2. A tri-Var-algebra is a functor from $\mathcal{P}_{\text {Var }} \otimes$ CommTrias to Vec, i.e., an $\Omega^{(3)}$-algebra satisfying the following identities:

$$
\begin{gather*}
\left(x_{1} *_{i} x_{2}\right) \vdash_{j} x_{3}=\left(x_{1} \vdash_{i} x_{2}\right) \vdash_{j} x_{3}, \quad x_{1} \dashv_{i}\left(x_{2} *_{j} x_{3}\right)=x_{1} \dashv_{i}\left(x_{2} \dashv_{j} x_{3}\right), \\
* \in\{\vdash, \dashv, \perp\}, \tag{4}\\
f\left(x_{1}, \ldots, \dot{x}_{k_{1}}, \ldots, \dot{x}_{k_{l}}, \ldots, x_{n}\right), \\
f \in S, n=\operatorname{deg} f, 1 \leq k_{1}<\cdots<k_{l} \leq n, l=1, \ldots, n .
\end{gather*}
$$

where $i, j \in I$, and $f\left(x_{1}, \ldots, \dot{x}_{k_{1}}, \ldots, \dot{x}_{k_{l}}, \ldots, x_{n}\right)$ is the result of a procedure described below. (It is somewhat similar to the tri-successor procedure from [5]).

Suppose $u=u\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{F}(n)$ is a non-associative Ω-monomial. Fix l indices $1 \leq k_{1}<\cdots<k_{l} \leq n$, and denote the the monomial u with l emphasized variables $x_{k_{j}}, j=1, \ldots, l$, by $u^{H}, H=\left\{k_{1}, \ldots, k_{l}\right\}$. Now, identify u^{H} with an element from $\mathcal{F}(n) \otimes \operatorname{CommTrias}(n)$ in the natural way:

$$
u^{H} \equiv u \otimes e_{k_{1}, \ldots, k_{l}}^{(n)}
$$

It can be considered as a binary tree from $\mathcal{F}(n)$ with l emphasized leaves.

Fig. 1
Example: $u^{H}=\left(x_{5} \circ_{1}\left(\dot{x}_{1} \circ_{3} x_{3}\right)\right) \circ_{2}\left(\dot{x}_{2} \circ_{1} x_{4}\right), H=\{1,2\}$. Emphasized leaves are colored in black, others-in white.

Now the task is to mark all vertices of u^{H} with appropriate labels from $\Omega^{(3)}$. Define the family of maps

$$
\Phi(n): \mathcal{F}(n) \otimes \operatorname{CommTrias}(n) \rightarrow \mathcal{F}^{(3)}(n), \quad n \geq 1
$$

as follows. Given $u \otimes e_{k_{1}, \ldots, k_{l}}^{(n)} \in \mathcal{F}(n) \otimes \operatorname{CommTrias}(n)$, the structure of the tree u as well as labels of leaves do not change. For $n=1$, there is nothing to do. If $u=v \circ_{i} w$ then the set $H=\left\{k_{1}, \ldots, k_{l}\right\}$ of emphasized variables splits into two subsets, $H=H_{1} \dot{\cup} H_{2}$, where H_{1} consists of all k_{j} such that $x_{k_{j}}$ appears in v. Assume $\operatorname{deg} v=p$, then $\operatorname{deg} w=n-p$. Set

$$
\Phi(n)\left(u^{H}\right)= \begin{cases}\Phi(p)\left(v^{H_{1}}\right) \perp_{i} \Phi(n-p)\left(w^{H_{2}}\right), & \text { if } H_{1}, H_{2} \neq \emptyset \\ v^{\vdash} \vdash_{i} \Phi(n-p)\left(w^{H}\right), & \text { if } H_{1}=\emptyset \\ \Phi(p)\left(v^{H}\right) \dashv_{i} w^{\dashv}, & \text { if } H_{2}=\emptyset\end{cases}
$$

where v^{\vdash} (or $\left.w^{-1}\right)$ stands for the tree where each vertex label \circ_{j} turns into $\vdash_{j}\left(\dashv_{j}\right)$.
One may extend $\Phi(n)$ by linearity, so, if $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\xi} \alpha_{\xi} u_{\xi} \in \mathcal{F}(n)$ then

$$
f\left(x_{1}, \ldots, \dot{x}_{k_{1}}, \ldots, \dot{x}_{k_{l}}, \ldots, x_{n}\right):=\sum_{\xi} \alpha_{\xi} \Phi(n)\left(u_{\xi}^{H}\right) .
$$

Fig. 2
Example: $\Phi(5)\left(u^{H}\right)=\left(x_{5} \vdash_{1}\left(x_{1} \dashv_{3} x_{3}\right)\right) \perp_{2}\left(x_{2} \dashv_{1} x_{4}\right)$ for u and H as on Fig. 1 . For each vertex which is not a leaf we assign \perp if both left and right branches have emphasized leaves. If only left branch contains an emphasized leaf then we assign \dashv to this vertex and to all vertices of the right branch. Symmetrically, if only right branch contains an emphasized leaf then we assign \vdash to this vertex and to all vertices of the left branch.

Example 5 (Tri-associative algebra). Let Var $=$ As be the variety of associative algebras. It has only one defining identity $\left(x_{1}, x_{2}, x_{3}\right)=x_{1}\left(x_{2} x_{3}\right)-\left(x_{1} x_{2}\right) x_{3}$, that turns into seven identities (5). Indeed, each nonempty subset $H \subseteq\{1,2,3\}$ gives rise to an identity of $\Omega^{(3)}$-algebras, $\Omega^{(3)}=\{\vdash, \dashv, \perp\}$. If $|H|=1$ then these are just the identities of a di-As-algebra (3). For $|H|=2$, we obtain three identities, e.g., if $H=$ $\{1,3\}$ then the corresponding identity $\left(\dot{x}_{1}, x_{2}, \dot{x}_{3}\right)$ is $x_{1} \perp\left(x_{2} \vdash x_{3}\right)-\left(x_{1} \dashv x_{2}\right) \perp x_{3}$ If $H=\{1,2,3\}$ then we obtain the relation of associativity for \perp. Together with (4), these are exactly the defining identities of triassociative algebras [39, p. 23].

Example 6. Let A be an associative algebra. Then the space $A^{\otimes 3}$ with respect to operations

$$
\begin{gathered}
a \otimes b \otimes c \vdash a^{\prime} \otimes b^{\prime} \otimes c^{\prime}=a b c a^{\prime} \otimes b^{\prime} \otimes c^{\prime}, \quad a \otimes b \otimes c \dashv a^{\prime} \otimes b^{\prime} \otimes c^{\prime}=a \otimes b \otimes c a^{\prime} b^{\prime} c^{\prime} \\
a \otimes b \otimes c \perp a^{\prime} \otimes b^{\prime} \otimes c^{\prime}=a \otimes b c a^{\prime} b^{\prime} \otimes c^{\prime}
\end{gathered}
$$

is a triassociative algebra.
The following construction invented in [30] for dialgebras also works for trialgebras.

Let A be a 0 -trialgebra, i.e., an $\Omega^{(3)}$-algebra which satisfies (4). Then $A_{0}=$ Span $\left\{a \vdash_{i} b-a \dashv_{i} b, a \vdash_{i} b-a \perp_{i} b \mid a, b \in A, i \in I\right\}$ is an ideal of A. The quotient $\bar{A}=A / A_{0}$ carries a natural structure of an Ω-algebra. Consider the formal direct sum $\hat{A}=\bar{A} \oplus A$ with (well-defined) operations

$$
\begin{equation*}
\bar{a} \circ_{i} x=a \vdash_{i} x, \quad x \circ_{i} \bar{a}=x \dashv_{i} a, \quad \bar{a} \circ_{i} \bar{b}=\overline{a \vdash_{i} b}, \quad x \circ_{i} y=x \perp_{i} y, \tag{5}
\end{equation*}
$$

$\bar{a}, \bar{b} \in \bar{A}, x, y \in A$.
Proposition 1. A trialgebra A satisfying (4) is a tri-Var-algebra if and only if \hat{A} is an algebra from the variety Var.

Proof. The claim follows from the following observation. If $f\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{F}(n)$ then the value $f\left(\bar{a}_{1}, \ldots, \bar{a}_{n}\right)$ in $\bar{A} \subset \hat{A}$ is just the image of $\left[\Phi(n)\left(f^{H}\right)\right]\left(a_{1}, \ldots, a_{n}\right)$ in \bar{A} for any subset H; moreover, the value of $f\left(x_{1}, \ldots, \dot{x}_{k_{1}}, \ldots, \dot{x}_{k_{l}}, \ldots, x_{n}\right)$ on $a_{1}, \ldots, a_{n} \in A$ is equal to $f\left(\bar{a}_{1}, \ldots, a_{k_{1}}, \ldots, a_{k_{l}}, \ldots, \bar{a}_{n}\right) \in \hat{A}$, i.e., one has to add bars to all non-emphasized variables.

Assuming $x \perp_{i} y \equiv 0$ for all $x, y \in A, i \in I$, we obtain the construction from [30]. This construction turns to be useful in the study of dialgebras (see, e.g., [20, 38]). For a variety Var, let us denote by $\mathcal{D}_{\text {Var }}$ and $\mathcal{T}_{\text {Var }}$ the operads governing di- and tri-Var-algebras, respectively.

The structure of a di-Var-algebra may be recovered from a structure of a Var-pseudo-algebra over an appropriate bialgebra H. Let us recall this notion from 6]. Suppose H is a cocommutative bialgebra with a coproduct Δ and counit ε. We will use the Swedler notation for Δ, e.g., $\Delta(h)=h_{(1)} \otimes h_{(2)}, \Delta^{2}(h):=(\Delta \otimes \mathrm{id}) \Delta(h)=$ $(\mathrm{id} \otimes \Delta) \Delta(h)=h_{(1)} \otimes h_{(2)} \otimes h_{(3)}, h \in H$. The operation $F \cdot h=F \Delta^{n-1}(h)$, $F \in H^{\otimes n}, h \in H$, turns $H^{\otimes n}$ into a right H-module (the outer product of right regular H-modules).

A unital left H-module C gives rise to an operad (also denoted by C) such that

$$
C(n)=\left\{f: C^{\otimes n} \rightarrow H^{\otimes n} \otimes_{H} C \mid f \text { is } H^{\otimes n} \text {-linear }\right\} .
$$

For example, if $\operatorname{dim} H=1$ then what we obtain is just a linear space with polylinear maps. The composition of such maps as well as the action of a symmetric group is defined in 6.

In these terms, if Var is a variety of Ω-algebras defined by a system of poly-linear identities S then a Var-pseudo-algebra structure on an H-module C is a functor from $\mathcal{P}_{\text {Var }}$ to the operad C. Such a functor is determined by a family of $H^{\otimes 2}$-linear maps $*_{i}: C \otimes C \rightarrow H^{\otimes 2} \otimes_{H} C$ satisfying the identities (c.f. 21])

$$
f^{*}\left(x_{1}, \ldots, x_{n}\right)=0, \quad f \in S, \operatorname{deg} f=n
$$

where f^{*} is obtained from f in the following way. Assume a poly-linear Ω-monomial u in the variables x_{1}, \ldots, x_{n} turns into a word $x_{\sigma(1)} \ldots x_{\sigma(n)}, \sigma \in S_{n}$, after removing
all brackets and symbols $\circ_{i}, i \in I$. Denote by u^{*} the same monomial u with all \circ_{i} replaced with $*_{i}$. Then u^{*} can be considered as a map $C^{\otimes n} \rightarrow H^{\otimes n} \otimes_{H} C$, which is not necessary $H^{\otimes n}$-linear. However, $u^{(*)}=\left(\sigma \otimes_{H} \mathrm{id}\right) u^{*}$ is $H^{\otimes n}$-linear. Finally, if $f=\sum_{\xi} \alpha_{\xi} u_{\xi}, \alpha_{\xi} \in \mathbb{k}$, then

$$
f^{*}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\xi} \alpha_{\xi} u_{\xi}^{(*)}
$$

Example 7 (c.f. 6]). Consider an Ω-algebra A, a cocommutative bialgebra H, and define $C=H \otimes A$. Then C is an pseudo-algebra with respect to the operations

$$
(f \otimes a) *_{i}(h \otimes b)=(f \otimes h) \otimes_{H}\left(a \circ_{i} b\right), \quad f, h \in H, a, b \in A, i \in I
$$

Such a pseudo-algebra is denoted by Cur A (current pseudo-algebra). If A belongs to Var then, obviously, Cur A is a Var-pseudo-algebra over H.

Given a pseudo-algebra C with operations $*_{i}, i \in I$, one may define operations \vdash_{i}, \dashv_{i} on the same space C as follows: if $a *_{i} b=\sum_{\xi}\left(h_{\xi} \otimes f_{\xi}\right) \otimes_{H} d_{\xi}$ then

$$
\begin{equation*}
a \vdash_{i} b=\sum_{\xi} \varepsilon\left(h_{\xi}\right) f_{\xi} d_{\xi}, \quad a \dashv_{i} b=\sum_{\xi} h_{\xi} \varepsilon\left(f_{\xi}\right) d_{\xi} . \tag{6}
\end{equation*}
$$

Proposition 2. Let C be a Var-pseudo-algebra. Then $C^{(0)}$ is a di-Var-algebra.
Proof. It is enough to check that (1) and (2) hold on $C^{(0)}$. Indeed, if $a *_{i} b=$ $\sum_{\xi}\left(h_{\xi} \otimes f_{\xi}\right) \otimes_{H} d_{\xi}, d_{\xi} *_{j} c=\sum_{\eta}\left(h_{\eta}^{\prime} \otimes f_{\eta}^{\prime}\right) \otimes_{H} e_{\eta}$ then

$$
\left(a \vdash_{i} b\right) *_{j} c=\sum_{\eta}\left(\sum_{\xi} \varepsilon\left(h_{\xi}\right) f_{\xi} d_{\xi}\right) *_{j} c=\sum_{\eta, \xi}\left(\varepsilon\left(h_{\xi}\right) f_{\xi} h_{\eta}^{\prime} \otimes f_{\eta}^{\prime}\right) \otimes_{H} e_{\eta}
$$

Hence,

$$
\left(a \vdash_{i} b\right) \vdash_{j} c=\sum_{\eta, \xi} \varepsilon\left(h_{\xi} f_{\xi} h_{\eta}^{\prime}\right) f_{\eta}^{\prime} e_{\eta} .
$$

On the other hand,

$$
\left(a \dashv_{i} b\right) *_{j} c=\sum_{\eta}\left(\sum_{\xi} h_{\xi} \varepsilon\left(f_{\xi}\right) d_{\xi}\right) *_{j} c=\sum_{\eta, \xi}\left(h_{\xi} \varepsilon\left(f_{\xi}\right) h_{\eta}^{\prime} \otimes f_{\eta}^{\prime}\right) \otimes_{H} e_{\eta}
$$

so $\left(a \vdash_{i} b\right) \vdash_{j} c=\left(a \dashv_{i} b\right) \vdash_{j} c$ for all $a, b, c \in C$. The second identity in (11) can be proved in the same way.

Consider a poly-linear identity $f \in S$. This is straightforward to check (c.f. [22]) that if

$$
f^{(*)}\left(a_{1}, \ldots, a_{n}\right)=\sum_{\xi}\left(h_{1 \xi} \otimes \cdots \otimes h_{n \xi}\right) \otimes_{H} c_{\xi}
$$

then $f\left(a_{1}, \ldots, \dot{a}_{k}, \ldots, a_{n}\right)=\sum_{\xi} h_{1 \xi} \ldots \varepsilon\left(h_{k \xi}\right) \ldots h_{n \xi} c_{\xi}$ in $C^{(0)}$. It is clear that if $f^{(*)}$ vanishes in C then $C^{(0)}$ satisfies the identity (2).

In particular, if B is a Var-algebra then $(\operatorname{Cur} B)^{(0)}$ is a di-Var-algebra.
Proposition 3. If H contains a nonzero element T such that $\varepsilon(T)=0$ then every di-Var-algebra A embeds into $(\operatorname{Cur} \hat{A})^{(0)}$.

Proof. Recall that $\hat{A}=\bar{A} \oplus A$, Cur $\hat{A}=H \otimes \hat{A}$. Define

$$
\begin{equation*}
\iota: A \rightarrow H \otimes \hat{A}, \quad \iota(a)=1 \otimes \bar{a}+T \otimes a \tag{7}
\end{equation*}
$$

This map is obviously injective, and
$\iota(a) *_{i} \iota(b)=(1 \otimes 1) \otimes_{H}\left(1 \otimes \overline{a \vdash_{i} b}\right)+(T \otimes 1) \otimes_{H}\left(1 \otimes a \dashv_{i} b\right)+(1 \otimes T) \otimes_{H}\left(1 \otimes a \vdash_{i} b\right)$.
Since $\overline{a \vdash_{i} b}=\overline{a \dashv_{i} b}$ in \hat{A}, we have

$$
\begin{aligned}
& \iota(a) \vdash_{i} \iota(b)=1 \otimes \overline{a \vdash_{i} b}+T \otimes a \vdash_{i} b=\iota\left(a \vdash_{i} b\right), \\
& \iota(a) \vdash_{i} \iota(b)=1 \otimes \overline{a \vdash_{i} b}+T \otimes a \dashv_{i} b=\iota\left(a \dashv_{i} b\right) .
\end{aligned}
$$

3. Dendriform di- and trialgebras

The operad Dend of associative dendriform algebras is known to be Koszul dual (see [18] for details of Koszul duality) to the operad Dias $=\mathcal{D}_{\text {As }}$ of diassociative algebras. Since Dias \simeq As \otimes Perm and it was noticed in 37] that for Perm (as well as for CommTrias) the Hadamard product \otimes coincides with the Manin white product \circ, we have Dend $:=(\text { As } \otimes \text { Perm })^{!}=$As \bullet PreLie, where As ${ }^{!}=$As, PreLie is the operad of pre-Lie algebras which is Koszul dual to Perm, • stands for the Manin black product of operads [18].

In general, for a binary operad \mathcal{P} the successor procedure described in 5] gives rise to what is natural to call defining identities of di- or tri- \mathcal{P}-dendriform algebras. In addition, if \mathcal{P} is quadratic then these \mathcal{P}-dendriform algebras are dual to the corresponding di- or tri- $\mathcal{P}^{!}$-algebras. In this case, obviously, $\left(\mathcal{P}^{!} \otimes \operatorname{Perm}\right)^{!}=P \bullet$ PreLie for dialgebras, and $\left(\mathcal{P}^{!} \otimes \text { CommTrias }\right)^{!}=\mathcal{P}^{!} \bullet$ PostLie, where PreLie $=$ Perm ${ }^{!}$ PostLie $=$ CommTrias!. This is closely related with Proposition 4 below.

In terms of identities, we do not need \mathcal{P} to be quadratic (in fact, it is easy to generalize the successor procedure even for algebras with n-ary operations, $n \geq 2$).

Usually, the operations in a dendriform di- or trialgebra are denoted by \prec, \succ, and \cdot. We will use \dashv, \vdash, and \perp instead.

Suppose Var is a variety of Ω-algebras defined by a family S of poly-linear identities, as above.

Definition 3. A tri-Var-dendriform algebra is an $\Omega^{(3)}$-algebra satisfying the identities

$$
\begin{equation*}
f^{*}\left(x_{1}, \ldots, \dot{x}_{k_{1}}, \ldots, \dot{x}_{k_{l}}, \ldots, x_{n}\right), \quad f \in S, n=\operatorname{deg} f, 1 \leq k_{1}<\cdots<k_{l} \leq n, \tag{8}
\end{equation*}
$$

for all $l=1, \ldots, n$, where $f^{*}\left(x_{1}, \ldots, \dot{x}_{k_{1}}, \ldots, \dot{x}_{k_{l}}, \ldots, x_{n}\right)$ is obtained from f by means of the following procedure.

If u is a non-associative monomial, $u=v w, H=\left\{k_{1}, \ldots, k_{l}\right\}, \operatorname{deg} v=p, H=$ $H_{1} \dot{\cup} H_{2}$ as above, then

$$
\Phi^{*}(n)\left(u^{H}\right)= \begin{cases}\Phi^{*}(p)\left(v^{H_{1}}\right) \perp_{i} \Phi^{*}(n-p)\left(w^{H_{2}}\right), & \text { if } H_{1}, H_{2} \neq \emptyset \\ v^{*} \vdash_{i} \Phi^{*}(n-p)\left(w^{H}\right), & \text { if } H_{1}=\emptyset \\ \Phi^{*}(p)\left(v^{H}\right) \dashv_{i} w^{*}, & \text { if } H_{2}=\emptyset\end{cases}
$$

where v^{*} stands for the linear combination of trees obtained when we replace each label \circ_{j} in v with $\vdash_{j}+\dashv_{j}+\perp_{j}$).

Now, extend $\Phi^{*}(n)$ by linearity and set

$$
f^{*}\left(x_{1}, \ldots, \dot{x}_{k_{1}}, \ldots, \dot{x}_{k_{l}}, \ldots, x_{n}\right):=\sum_{\xi} \alpha_{\xi} \Phi^{*}(n)\left(u_{\xi}^{H}\right)
$$

for $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{\xi} \alpha_{\xi} u_{\xi} \in \mathcal{F}(n), \alpha_{\xi} \in \mathbb{k}, H=\left\{k_{1}, \ldots, k_{l}\right\}$.
To get the definition of a di-Var-dendriform algebra, it is enough to set $x \perp y=0$ and consider $|H|=1$ only.

Denote by dend $\mathcal{D}_{\text {Var }}$ and dend $\mathcal{T}_{\text {var }}$ the operads governing di- and tri-Var-dendriform algebras.
Proposition 4. Suppose $|\Omega|<\infty$. If $\mathcal{P}_{\mathrm{Var}}$ is a binary quadratic operad with $\mathcal{P}_{\text {Var }}(1)=\mathbb{k}$ then $\left(\mathcal{D}_{\text {Var }}\right)!=\operatorname{dend} \mathcal{D}_{\text {Var }}$ and $\left(\mathcal{T}_{\text {Var }}\right)^{!}=\operatorname{dend} \mathcal{T}_{\text {Var! }}$, where Var! stands for the class of algebras governed by the Koszul dual operad $\mathcal{P}_{\text {Var }}^{!}$.
Proof. We consider trialgebra case in details since it covers the dialgebra case.
Suppose $\mathcal{P}_{\mathrm{Var}}=\mathcal{P}(E, R)$ is a binary quadratic operad, i.e., a quotient operad of $\mathcal{F}, \mathcal{F}(2)=E$, with respect to the operad ideal generated by S_{3}-submodule $R \subseteq \mathcal{F}(3)$, see 18 for details.

The space E is spanned by $\mu_{i}: x_{1} \otimes x_{2} \mapsto x_{1} \circ_{i} x_{2}$ and $\mu_{i}^{(12)}: x_{1} \otimes x_{2} \mapsto x_{2} \circ_{i} x_{1}$, $i \in I$. Without loss of generality, we may assume that $\mu_{i}, i \in I$, are linearly independent and

$$
\mu_{k}^{(12)}=\sum_{i \in I} \alpha_{i k} \mu_{i}, \quad k \in I^{\prime} \subseteq I, \alpha_{i k} \in \mathbb{k},
$$

are the only defining identities of Var of degree two, $\left|I^{\prime}\right|=d \geq 0$ (if char $\mathbb{k} \neq 2$, these are just commutativity and anti-commutativity). Denote by $N=2|I|-d$ the dimension of E.

The space $\mathcal{F}(3)$ can be naturally identified with the induced S_{3}-module $\mathbb{k} S_{3} \otimes_{\mathbb{k} S_{2}}$ $(E \otimes E)$, where $E \otimes E$ is considered as an S_{2}-module via $(\mu \otimes \nu)^{(12)}=\mu \otimes \nu^{(12)}$, $\mu, \nu \in E$. Namely, the basis of $\mathcal{F}(3)$ consists of expressions

$$
\sigma \otimes_{\mathbb{k} S_{2}}(\mu \otimes \nu), \quad \sigma \in\{e,(13),(23)\},
$$

μ and ν range over a chosen basis of E. Therefore, $\operatorname{dim} \mathcal{F}(3)=3 N^{2}$.
In terms of monomials (or binary trees), for example, $e \otimes_{\mathbb{k} S_{2}}\left(\mu_{i} \otimes \mu_{j}\right)$ corresponds to $\left(x_{1} \circ_{j} x_{2}\right) \circ_{i} x_{3}, e \otimes_{\mathbb{k} S_{2}}\left(\mu_{i}^{(12)} \otimes \mu_{j}\right)$ to $x_{3} \circ_{i}\left(x_{1} \circ_{j} x_{2}\right)$. A permutation $\sigma \in S_{3}$ in the first tensor factor permutes variables, e.g., (13) $\otimes_{\mathbb{k} S_{2}}\left(\mu_{i}^{(12)} \otimes \mu_{j}^{(12)}\right)$ corresponds to $x_{1} \circ_{i}\left(x_{2} \circ_{j} x_{3}\right)$.

Recall that E^{\vee} denotes the dual space to E considered as an S_{2}-module with respect to sgn-twisted action: $\left\langle\nu^{(12)}, \mu\right\rangle=-\left\langle\nu, \mu^{(12)}\right\rangle, \nu \in E^{\vee}, \mu \in E$. If \mathcal{F}^{\vee} is the free binary operad generated by E^{\vee} then $(\mathcal{F}(3))^{\vee} \simeq \mathcal{F}^{\vee}(3)=\mathbb{k} S_{3} \otimes_{k} S_{2}\left(E^{\vee} \otimes E^{\vee}\right)$.

The Koszul-dual operad $\mathcal{P}_{\mathrm{V} \text { ar }}^{+}$is the quotient of \mathcal{F}^{\vee} by the operad ideal generated by $R^{\perp} \subset \mathcal{F}^{\vee}(3)$, the orthogonal space to R.

By the definition, the operad $\mathcal{T}_{\text {var }}$ governing the variety of tri-Var-algebras is equal to $\mathcal{P}\left(E^{(3)}, R^{(3)}\right)$, where the initial data $E^{(3)}, R^{(3)}$ are defined as follows. The space $E^{(3)}$ is spanned by $\mu_{i}^{*},\left(\mu_{i}^{*}\right)^{(12)}, i \in I, * \in\{\vdash, \dashv, \perp\}$, with respect to the relations

$$
\begin{gathered}
\left(\mu_{k}^{\vdash}\right)^{(12)}=\sum_{i \in I} \alpha_{i k} \mu_{i}^{\perp}, \quad\left(\mu_{k}^{\dashv}\right)^{(12)}=\sum_{i \in I} \alpha_{i k} \mu_{i}^{\vdash} \\
\left(\mu_{k}^{\perp}\right)^{(12)}=\sum_{i \in I} \alpha_{i k} \mu_{i}^{\perp}, \quad k \in I^{\prime} .
\end{gathered}
$$

The S_{3}-module $R^{(3)}$ is generated by the defining identities of tri-Var-algebras, i.e.,

$$
R^{(3)}=\left\{\Phi(3)\left(f^{H}\right) \mid f \in R, \emptyset \neq H \subseteq\{1,2,3\}\right\} \oplus O^{(3)}
$$

and $O^{(3)}$ is the S_{3}-submodule of $\mathcal{F}^{(3)}$ generated by

$$
\begin{gather*}
\mu_{j}^{\vdash} \otimes \mu_{i}^{\dashv}-\mu_{j}^{\vdash} \otimes \mu_{i}^{\vdash}, \quad \mu_{j}^{\vdash} \otimes \mu_{i}^{\perp}-\mu_{j}^{\vdash} \otimes \mu_{i}^{\vdash} \\
\left(\mu_{i}^{\dashv}\right)^{(12)} \otimes \mu_{j}^{\vdash}-\left(\mu_{i}^{\dashv}\right)^{(12)} \otimes \mu_{j}^{\dashv}, \quad\left(\mu_{i}^{\dashv}\right)^{(12)} \otimes \mu_{j}^{\perp}-\left(\mu_{i}^{\dashv}\right)^{(12)} \otimes \mu_{j}^{\perp} \tag{9}\\
i, j \in I .
\end{gather*}
$$

This is easy to calculate that $\operatorname{dim} E^{(3)}=3 N, \operatorname{dim} \mathcal{F}^{(3)}(3)=27 N^{2}$, $\operatorname{dim} O^{(3)}=6 N^{2}$, so $\operatorname{dim} R^{(3)}=6 N^{2}+7 \operatorname{dim} R$. Denote by $O_{+}^{(3)}$ the S_{3}-submodule of $\mathcal{F}^{(3)}$ generated by the first summands of all relations from (9).

Suppose $f \in \mathcal{F}(3), g \in \mathcal{F}^{\vee}(3)$, and let $H_{1}, H_{2} \subseteq\{1,2,3\}$ be nonempty subsets. It follows from the definition of $\Phi(3)$ that $\left\langle\Phi(3)\left(f^{H_{1}}\right), \Phi(3)\left(g^{H_{2}}\right)\right\rangle=0$ if $H_{1} \neq H_{2}$. For $H_{1}=H_{2}=H$, orthogonality of f and g implies $\left\langle\Phi(3)\left(f^{H}\right), \Phi(3)\left(g^{H}\right)\right\rangle=0$ as well. Moreover, for every $f \in \mathcal{F}(3)$ we have $\left\langle\Phi(3)\left(f^{H}\right), O_{+}^{(3)}\right\rangle=0$ since neither of terms from $O_{+}^{(3)}$ appears in images of $\Phi(3)$.

This is now easy to see that if $g \in R^{\perp} \subseteq \mathcal{F}^{\vee}(3)$ then $\left\langle f, \Phi^{*}(3)\left(g^{H}\right)\right\rangle=0$ for every $f \in R^{(3)}$. Hence,

$$
\left(R^{\perp}\right)^{(3 *)}:=\left\{\Phi^{*}(3)\left(g^{H}\right) \mid g \in R^{\perp}, \emptyset \neq H \subseteq\{1,2,3\}\right\} \subseteq\left(R^{(3)}\right)^{\perp}
$$

On the other hand, $\operatorname{dim} R^{\perp}=3 N^{2}-\operatorname{dim} R$, so $\operatorname{dim}\left(R^{\perp}\right)^{(3 *)}=21 N^{2}-7 \operatorname{dim} R$. Therefore, $\operatorname{dim}\left(R^{\perp}\right)^{(3 *)}+\operatorname{dim} R^{(3)}=27 N^{2}$ and $\left(R^{\perp}\right)^{(3 *)}=\left(R^{(3)}\right)^{\perp}$. It remains to recall that, by definition, dend $\mathcal{T}_{\text {Var }}=\mathcal{P}\left(E^{(3)},\left(R^{\perp}\right)^{(3 *)}\right)$.

4. Embedding into Rota-Baxter algebras

Suppose B is an Ω-algebra. A linear map $R: B \rightarrow B$ is called a Rota-Baxter operator of weight $\lambda \in \mathbb{k}$ if

$$
\begin{equation*}
R(x) \circ_{i} R(y)=R\left(x \circ_{i} R(y)+R(x) \circ_{i} y+\lambda x \circ_{i} y\right) \tag{10}
\end{equation*}
$$

for all $x, y \in B, i \in I$.
Let A be an $\Omega^{(3)}$-algebra. Consider the isomorphic copy A^{\prime} of the underlying linear space A (assume $a \in A$ is in the one-to-one correspondence with $a^{\prime} \in A^{\prime}$), and define the following Ω-algebra structure on the space $\hat{A}=A \oplus A^{\prime}$:

$$
\begin{gather*}
a \circ_{i} b=a \vdash_{i} b+a \dashv_{i} b+a \perp_{i} b, \quad a \circ_{i} b^{\prime}=\left(a \vdash_{i} b\right)^{\prime}, \\
a^{\prime} \circ_{i} b=\left(a \dashv_{i} b\right)^{\prime}, \quad a^{\prime} \circ_{i} b^{\prime}=\left(a \perp_{i} b\right)^{\prime}, \tag{11}
\end{gather*}
$$

for $a, b \in A, i \in I$.
Lemma 1. Given a scalar $\lambda \in \mathbb{k}$, the linear map $R: \hat{A} \rightarrow \hat{A}$ defined by $R\left(a^{\prime}\right)=\lambda a$, $R(a)=-\lambda a(a \in A)$ is a Rota-Baxter operator of weight λ on the Ω-algebra \hat{A}.

Proof. It is enough to check the relation (10). Straightforward computation shows

$$
\begin{aligned}
& R\left(a+b^{\prime}\right) \circ_{i} R\left(x+y^{\prime}\right)=\lambda^{2}(-a+b) \circ_{i}(-x+y) \\
& =\lambda^{2}\left(a \vdash_{i} x+a \dashv_{i} x+a \perp_{i} x-a \vdash_{i} y-a \dashv_{i} y-a \perp_{i} y\right. \\
& \left.\quad-b \vdash_{i} x-b \dashv_{i} x-b \perp_{i} x+b \vdash_{i} y+b \dashv_{i} y+b \perp_{i} y\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{gathered}
R\left(\left(a+b^{\prime}\right) \circ_{i} R\left(x+y^{\prime}\right)+R\left(a+b^{\prime}\right) \circ_{i}\left(x+y^{\prime}\right)+\lambda\left(a+b^{\prime}\right) \circ\left(x+y^{\prime}\right)\right) \\
=\lambda R\left(\left(a+b^{\prime}\right) \circ_{i}(-x+y)+(-a+b) \circ_{i}\left(x+y^{\prime}\right)+\left(a+b^{\prime}\right) \circ\left(x+y^{\prime}\right)\right) \\
\quad=\lambda R\left(-a \vdash_{i} x-a \dashv_{i} x-a \perp_{i} x+a \vdash_{i} y+a \dashv_{i} y+a \perp_{i} y\right. \\
-\left(b \dashv_{i} x\right)^{\prime}+\left(b \dashv_{i} y\right)^{\prime}-a \vdash_{i} x-a \dashv_{i} x-a \perp_{i} x+b \vdash_{i} x+b \dashv_{i} x+b \perp_{i} x \\
\left.-\left(a \vdash_{i} y\right)^{\prime}+\left(b \vdash_{i} y\right)^{\prime}+a \vdash_{i} x+a \dashv_{i} x+a \perp_{i} x+\left(a \vdash_{i} y\right)^{\prime}+\left(b \dashv_{i} x\right)^{\prime}+\left(b \perp_{i} y\right)^{\prime}\right) \\
=\lambda^{2}\left(-a \vdash_{i} y-a \dashv_{i} y-a \perp_{i} y+b \dashv_{i} y+a \vdash_{i} x+a \dashv_{i} x\right. \\
\left.\quad+a \perp_{i} x-b \vdash_{i} x-b \dashv_{i} x-b \perp_{i} x+b \vdash_{i} y+b \perp_{i} y\right) .
\end{gathered}
$$

Lemma 2. Let A be a di-Var-dendriform algebra. Then the map $R: \hat{A} \rightarrow \hat{A}$ defined by $R\left(a^{\prime}\right)=a, R(a)=0$ is a Rota-Baxter operator of weight $\lambda=0$ on \hat{A}.

The proof is completely analogous to the previous one.
The following statement is well-known (c.f. [1, 15, 35]), but we will state its proof for readers' convenience.

Proposition 5. Let B be an Ω-algebra with a Rota-Baxter operator R of weight $\lambda \neq 0$. Assume B belongs to Var. Then the same linear space B considered as $\Omega^{(3)}$-algebra with respect to the operations

$$
\begin{equation*}
x \vdash_{i} y=\frac{1}{\lambda} R(x) \circ_{i} y, \quad x \dashv_{i} y=\frac{1}{\lambda} x \circ_{i} R(y), \quad x \perp_{i} y=x \circ_{i} y \tag{12}
\end{equation*}
$$

is a tri-Var-dendriform algebra.
Proof. Let $u=u\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{F}(n)$ be a poly-linear Ω-monomial. The claim follows from the following relation in B :

$$
\begin{equation*}
u^{*}\left(x_{1}, \ldots, \dot{x}_{k_{1}}, \ldots, \dot{x}_{k_{l}}, \ldots, x_{n}\right)=\frac{1}{\lambda^{n-l}} u\left(R\left(x_{1}\right), \ldots, x_{k_{1}}, \ldots, x_{k_{l}}, \ldots, R\left(x_{n}\right)\right) \tag{13}
\end{equation*}
$$

i.e., in order to get a value of an $\Omega^{(3)}$-monomial in \hat{A} we have to replace every non-emphasized variable $x_{i}\left(i \notin H=\left\{k_{1}, \ldots, k_{l}\right\}\right)$ with $\frac{1}{\lambda} R\left(x_{i}\right)$.

Relation (13) is clear for $n=1,2$. In order to apply induction on n, we have to start with the case when $H=\emptyset$. Recall that $u^{*}\left(x_{1}, \ldots, x_{n}\right)$ stands for the expression obtained from u by means of replacing each \circ_{i} with $\vdash_{i}+\dashv_{i}+\perp_{i}$. Then

$$
\begin{equation*}
R\left(u^{*}\left(x_{1}, \ldots, x_{n}\right)\right)=\frac{1}{\lambda^{n-1}} u\left(R\left(x_{1}\right), \ldots, R\left(x_{n}\right)\right), \quad n \geq 2 \tag{14}
\end{equation*}
$$

in \hat{A}. Indeed, for $n=2$ we have exactly the Rota-Baxter relation. If $u=v \circ_{i} w$, $v=v\left(x_{1}, \ldots, x_{p}\right), w=w\left(x_{p+1}, \ldots, x_{n}\right)$, then, by induction,

$$
\begin{aligned}
R\left(u^{*}\right)= & R\left(v^{*} \vdash_{i} w^{*}+v^{*} \dashv_{i} w^{*}+v^{*} \perp_{i} w^{*}\right) \\
= & \frac{1}{\lambda} R\left(R\left(v^{*}\right) \circ_{i} w^{*}+v^{*} \circ_{i} R\left(w^{*}\right)+\lambda v^{*} \perp_{i} w^{*}\right)=\frac{1}{\lambda} R\left(v^{*}\right) \circ_{i} R\left(w^{*}\right) \\
= & \frac{1}{\lambda} \frac{1}{\lambda^{p-1}} v\left(R\left(x_{1}\right), \ldots, R\left(x_{p}\right)\right) \circ_{i} \frac{1}{\lambda^{n-p-1}} w\left(R\left(x_{p+1}\right), \ldots, R\left(x_{n}\right)\right) \\
& =\frac{1}{\lambda^{n-1}} u\left(R\left(x_{1}\right), \ldots, R\left(x_{n}\right)\right)
\end{aligned}
$$

Now, let us finish proving (13). If $u=v \circ_{i} w, \operatorname{deg} v=p, H=H_{1} \dot{\cup} H_{2}$ then there are three cases: (a) $H_{1}, H_{2} \neq \emptyset$; (b) $H_{1}=\emptyset$; (c) $H_{2}=\emptyset$.

In the case (a), $u^{*}\left(x_{1}, \ldots, \dot{x}_{k_{1}}, \ldots, \dot{x}_{k_{l}}, \ldots, x_{n}\right)=\Phi^{*}(n)\left(u^{H}\right)=\Phi^{*}(p)\left(v^{H_{1}}\right) \perp_{i}$ $\Phi^{*}(n)\left(w^{H_{2}}\right)$, and it remains to apply inductive assumption and the definition of \perp_{i} from (12).

In the case $(\mathrm{b}), \Phi^{*}(n)\left(u^{H}\right)=v^{*} \vdash_{i} \Phi^{*}(n-p)\left(w^{H}\right)$, so for any $a_{1}, \ldots, a_{n} \in B$ we can apply (14) to get

$$
\begin{array}{r}
{\left[\Phi^{*}(n)\left(u^{H}\right)\right]\left(a_{1}, \ldots, a_{n}\right)=\frac{1}{\lambda} R\left(v^{*}\left(a_{1}, \ldots, a_{p}\right)\right) \circ_{i}\left[\Phi^{*}(n-p)\left(w^{H}\right)\right]\left(a_{p+1}, \ldots, a_{n}\right)} \\
\quad=\frac{1}{\lambda^{p}} v\left(R\left(a_{1}\right), \ldots, R\left(a_{p}\right)\right) \circ_{i} \frac{1}{\lambda^{n-p-l}} w\left(R\left(a_{p+1}, \ldots, a_{k_{1}}, \ldots, a_{k_{l}}, \ldots, R\left(a_{n}\right)\right)\right. \\
\quad=\frac{1}{\lambda^{n-l}} u\left(R\left(a_{1}, \ldots, a_{k_{1}}, \ldots, a_{k_{l}}, \ldots, R\left(a_{n}\right)\right)\right.
\end{array}
$$

The case (c) is completely analogous.
Remark 1. Following [15], the dendriform operations on a Rota-Baxter algebra should be defined as

$$
\begin{equation*}
x \vdash_{i} y=R(x) \circ_{i} y, \quad x \dashv_{i} y=x \circ_{i} R(y), \quad x \perp_{i} y=\lambda x \circ_{i} y \tag{15}
\end{equation*}
$$

It is easy to see that for $\lambda \neq 0$ one should just re-scale these binary operations to get (12).

Proposition 6 ([1, 35]). Let B be an Ω-algebra with a Rota-Baxter operator R of weight $\lambda=0$. Assume B belongs to Var. Then the same linear space B considered as $\Omega^{(2)}$-algebra with respect to $x \vdash_{i} y=R(x) \circ_{i} y, x \dashv_{i} y=x \circ_{i} R(y)$ is a di-Vardendriform algebra.

The proof is analogous to the proof of the previous statement.
Theorem 1. The following statements are equivalent:
(1) A is a tri-Var-dendriform algebra;
(2) \hat{A} belongs to Var.

Proof. (1) Assume A is a tri-Var-dendriform algebra, and let S be the set of defining identities of Var. We have to check that every $f \in S$ holds on \hat{A}.

First, let us compute a monomial in $\hat{A}=A \oplus A^{\prime}$ when all its arguments belong to the first summand.

Lemma 3. Suppose $u=u\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{F}(n)$ is a poly-linear Ω-monomial of degree n. Then in the Ω-algebra \hat{A} we have

$$
\begin{equation*}
u\left(a_{1}, \ldots, a_{n}\right)=\sum_{H} \Phi^{*}(n)\left(u^{H}\right)\left(a_{1}, \ldots, a_{n}\right), \quad a_{i} \in A \tag{16}
\end{equation*}
$$

where H ranges over all nonempty subsets of $\{1, \ldots, n\}$.
Proof. By the definition of multiplication in $\hat{A}, u\left(a_{1}, \ldots, a_{n}\right)=u^{*}\left(a_{1}, \ldots, a_{n}\right)$, where u^{*} means the same as in the definition of $\Phi^{*}(n)$. In particular, for $n=1,2$ the statement is clear. Proceed by induction on $n=\operatorname{deg} u$. Assume $u=v \circ_{i} w$,
and, without loss of generality, $v=v\left(x_{1}, \ldots, x_{p}\right), w=w\left(x_{p+1}, \ldots, x_{n}\right)$. Then

$$
\begin{align*}
& u\left(a_{1}, \ldots, a_{n}\right)=v^{*}\left(a_{1}, \ldots, a_{p}\right) \vdash_{i}\left(\sum_{H_{2}} \Phi^{*}(n-p)\left(w^{H_{2}}\right)\left(a_{p+1}, \ldots, a_{n}\right)\right) \\
& +\left(\sum_{H_{1}} \Phi^{*}(p)\left(v^{H_{1}}\right)\left(a_{1}, \ldots, a_{p}\right)\right) \perp_{i}\left(\sum_{H_{2}} \Phi^{*}(n-p)\left(w^{H_{2}}\right)\left(a_{p+1}, \ldots, a_{n}\right)\right) \\
& +\left(\sum_{H_{1}} \Phi^{*}(p)\left(v^{H_{1}}\right)\left(a_{1}, \ldots, a_{p}\right)\right) \dashv_{i} w^{*}\left(a_{p+1}, \ldots, a_{n}\right) \tag{17}
\end{align*}
$$

where H_{1} and H_{2} range over all nonempty subsets of $\{1, \ldots, p\}$ and $\{p+1, \ldots, n\}$, respectively. It is easy to see that the overall sum is exactly the right-hand side of (16): The first (second, third) group of summands in (17) corresponds to $H=$ $H_{2} \subseteq\{p+1, \ldots, n\},\left(H=H_{1} \cup H_{2}, H=H_{1} \subseteq\{1, \ldots, p\}\right.$, respectively $)$.

Next, assume that $l>0$ arguments belong to A^{\prime}.
Lemma 4. Suppose $u=u\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{F}(n)$ is a poly-linear Ω-monomial of degree $n, H=\left\{k_{1}, \ldots, k_{l}\right\}$ is a nonempty subset of $\{1, \ldots, n\}$. Then in the Ω algebra \hat{A} we have

$$
\begin{equation*}
u\left(a_{1}, \ldots, a_{k_{1}}^{\prime}, \ldots, a_{k_{l}}^{\prime}, \ldots, a_{n}\right)=\left(\Phi^{*}(n)\left(u^{H}\right)\left(a_{1}, \ldots, a_{n}\right)\right)^{\prime} \tag{18}
\end{equation*}
$$

Proof. For $n=1,2$ the statement is clear. If $u=v \circ_{i} w$ for some $i \in I$ as above then we have to consider three natural cases: (a) $H \subseteq\{1, \ldots, p\}$; (b) $H \subseteq\{p+1, \ldots, n\}$; (c) variables with indices from H appear in both v and w.

In the case (a), the inductive assumption implies

$$
\begin{aligned}
& u\left(a_{1}, \ldots, a_{k_{1}}^{\prime}, \ldots, a_{k_{l}}^{\prime}, \ldots, a_{n}\right) \\
& =v\left(a_{1}, \ldots, a_{k_{1}}^{\prime}, \ldots, a_{k_{l}}^{\prime}, \ldots, a_{p}\right) \dashv_{i} w^{*}\left(a_{p+1}, \ldots, a_{n}\right) \\
& =\left(\Phi^{*}(p)\left(v^{H}\right)\left(a_{1}, \ldots, a_{p}\right) \dashv_{i} w^{*}\left(a_{p+1}, \ldots, a_{n}\right)\right)^{\prime},
\end{aligned}
$$

and it remains to recall the definition of $\Phi^{*}(n)$. Case (b) is analogous.
In the case (c), $H=H_{1} \dot{\cup} H_{2}$ as above and

$$
\begin{aligned}
& u\left(a_{1}, \ldots, a_{k_{1}}^{\prime}, \ldots, a_{k_{l}}^{\prime}, \ldots, a_{n}\right) \\
& \quad=\Phi^{*}(p)\left(v^{H_{1}}\right)\left(a_{1}, \ldots, a_{p}\right) \perp_{i} \Phi^{*}(n-p)\left(w^{H_{2}}\right)\left(a_{p+1}, \ldots, a_{n}\right)
\end{aligned}
$$

that proves the claim.
Finally, suppose $f \in S$ is a poly-linear identity of degree n. Then $\Phi^{*}(n)\left(f^{H}\right)$ is an identity on the $\Omega^{(3)}$-algebra A, so Lemmas 3 and 4 imply f to hold on \hat{A}.
(2) The map $\iota: A \rightarrow \hat{A}, \iota(a)=a^{\prime}$, is an embedding of the $\Omega^{(3)}$-algebra A into \hat{A} equipped with operations (12). By Proposition 5, \hat{A} is a tri-Var-dendriform algebra, therefore, so is A.

Remark 2. Since $\lambda \neq 0$, we may conclude that every tri-Var-dendriform algebra A embeds into a Rota-Baxter algebra $B \in \operatorname{Var}$ of weight λ in the sense of Aguiar [1] (see (15)): It is sufficient to re-scale the product on B.

If $\lambda=0$ then the simple reduction of Theorem 1 by means of Lemma 2 leads to

Theorem 2. Suppose A is an $\Omega^{(2)}$-algebra, and let \hat{A} stands for an Ω-algebra defined by (11) with $x \perp_{i} y \equiv 0$. Then the following statements are equivalent:
(1) A is a di-Var-dendriform algebra;
(2) \hat{A} belongs to Var.

Remark 3. It is interesting to note that A is a simple di-Var-dendriform algebra if and only if \hat{A} is a simple Rota-Baxter algebra.

The standard reasoning allows to conclude the following.
Corollary 1 (c.f. [12]). Every di-Var-dendriform algebra embeds into its universal enveloping Rota-Baxter Var-algebra of weight $\lambda=0$.

Corollary 2. Every tri-Var-dendriform algebra embeds into its universal enveloping Rota-Baxter Var-algebra of weight $\lambda \neq 0$.

Remark 4. All results of this section remain valid for algebras over a commutative ring K if we replace the condition $\lambda \neq 0$ with $\lambda \in K^{*}$, where K^{*} is the set of invertible elements of K.

5. Skew trialgebras and Rota-Baxter algebras

Consider a slightly modified analogue of trialgebras which we shortly call strialgebras.
Definition 4. A s-tri-Var-algebra is an $\Omega^{(3)}$-algebra satisfying the identities (1), (5).

In other words, we exclude the identities $x_{1} \dashv_{i}\left(x_{2} \perp_{j} x_{3}\right)=x_{1} \dashv_{i}\left(x_{2} \dashv_{j} x_{3}\right)$, $\left(x_{1} \perp_{i} x_{2}\right) \vdash_{j} x_{3}=\left(x_{1} \vdash_{i} x_{2}\right) \vdash_{j} x_{3}$ from the definition of a tri-Var-algebra.

For any $\Omega^{(3)}$-algebra A satisfying the identities (1) we can also construct (as in the dialgebra case) the Ω-algebra $\hat{A}=\bar{A} \oplus A$ as follows (similar to (5)): $\bar{A}=$ $A / \operatorname{Span}\left\{a \vdash_{i} b-a \dashv_{i} b \mid a, b \in A, i \in I\right\}, \bar{a} \circ_{i} \bar{b}=\overline{a \vdash_{i} b}, \bar{a} \circ_{i} b=a \vdash_{i} b, a \circ_{i} \bar{b}=a \dashv_{i} b$, $a \circ_{i} b=a \perp_{i} b$. An analogue of Proposition 1 holds for this construction, i.e., it gives an equivalent definition of a s-tri-Var-algebra.

It turns out that s-tri-Var-algebras are closely related with Γ-conformal algebras introduced in [19]. These systems appeared as "discrete analogues" of conformal algebras defined over a group Γ. From the general point of view, these are pseudoalgebras over the group algebra $H=\mathbb{k} \Gamma$ considered as a Hopf algebra with respect to canonical coproduct $\Delta(\gamma)=\gamma \otimes \gamma$ and counit $\varepsilon(\gamma)=1, \gamma \in \Gamma$.

We consider the case when $\Gamma=\langle\mathbb{Z},+\rangle, H=\mathbb{k}\left[t, t^{-1}\right]$. If C is a pseudo-algebra over H, i.e., a \mathbb{Z}-conformal algebra with operations $*_{i}, i \in I$, then for every $a, b \in C$ their pseudo-product $a *_{i} b \in H^{\otimes 2} \otimes_{H} C$ can be presented as

$$
a *_{i} b=\sum_{n \in \mathbb{Z}}\left(t^{-n} \otimes 1\right) \otimes_{H} c_{n},
$$

where almost all c_{n} are zero. It is convenient to denote c_{n} by $a_{(n)} b$ [19]. These operations provide an equivalent definition of a \mathbb{Z}-conformal algebra: This is a linear space with bilinear operations $\left\{\left({ }_{(n)} \cdot\right) \mid n \in \mathbb{Z}\right\}$ and with a linear invertible mapping t such that the following axioms are satisfied:
(Z1) $a_{(n)} b=0$ for almost all $n \in \mathbb{Z}$;
(Z2) $t a_{(n)} b=a_{(n+1)} b$;
(Z3) $t\left(a_{(n)} b\right)=t a_{(n)} t b$.

A \mathbb{Z}-conformal algebra C is associative if $a_{(n)}\left(b_{(m)} c\right)=\left(a_{(n-m)} b\right)_{(m)} c$ for all $n, m \in \mathbb{Z}, a, b, c \in C$.

Proposition 2 implies that every di-Var-algebra can be embedded into a current \mathbb{Z}-conformal algebra over an algebra from Var (one may consider, e.g., $T=1-t$). For s-trialgebras, a similar statement holds.

Example 8. Let C be an associative \mathbb{Z}-conformal algebra. Then, with respect to the operations \dashv, \vdash from (6) and $a \perp b=a_{(0)} b$, the vector space C is a s-triassociative algebra. Let us denote it also by $C^{(0)}$.

There is an interesting question: Whether a trialgebra or s-trialgebra A can be embedded into $C^{(0)}$ for some \mathbb{Z}-conformal algebra C. We have a positive answer for Loday trialgebras and only for char $\mathbb{k}=2$. Then the mapping ϕ from (7) realizes this embedding of A into Cur \hat{A}.

Example 9. A vector space A endowed with two binary operations \vdash, \perp belongs to the variety sCommTrias (skew commutative tri-associative algebras) if both operations are associative, \perp is commutative and they also satisfy the following identities:

$$
x_{1} \vdash\left(x_{2} \perp x_{3}\right)=\left(x_{1} \vdash x_{2}\right) \perp x_{3}, \quad\left(x_{1} \vdash x_{2}\right) \vdash x_{3}=\left(x_{2} \vdash x_{1}\right) \vdash x_{3} .
$$

This is easy to derive from the definition that free sCommTrias $[X]$ algebra is nothing but Perm $\langle\operatorname{Comm}[X]\rangle$, its linear basis consists of words

$$
u_{1} \vdash u_{1} \vdash \ldots \vdash u_{k} \vdash u_{0}, \quad u_{1} \leqslant \ldots \leqslant u_{k}
$$

where u_{i} are basic monomials of the polynomial algebra Comm $[X]$ with respect to the operation \perp and some linear ordering \leqslant.
Example 10. Let $\langle A, \cdot\rangle$ be an associative algebra with a derivation d such that $d^{2}=0$. Defining $a \vdash b=d(a) b, a \dashv b=a d(b)$ we obtain s-tri-associative algebra $(A, \vdash, \dashv, \cdot)$.
Example 11. An associative s-trialgebra A with respect to the operations $[x, y]=$ $x \dashv y-x \vdash y$ and $x \cdot y=x \perp y$ turns into a dialgebra analogue of a Poisson algebra: The operation $[\cdot, \cdot]$ satisfies the Leibniz identity and \cdot is associative. Moreover, the Poisson identity holds:

$$
[x y, z]=x[y, z]+[x, z] y
$$

In [28, the same operations $[\cdot, \cdot]$ and \cdot were considered for ordinary triassociative algebra (in the sense of Definition 2). The noncommutative analogue of a Poisson algebra obtained in this way satisfies one more identity $[x, y z-z y]=[x,[y, z]]$ which does not appear in the case of s-tri-associative algebras.

Let us define a class of "skew" dendriform algebras associated with a variety Var of algebras.
Definition 5. A s-tri-Var-dendriform algebra is an $\Omega^{(3)}$-algebra satisfying

$$
\left(x_{1} \perp_{i} x_{2}\right) \vdash_{j} x_{3}=0, \quad x_{1} \dashv_{i}\left(x_{2} \perp_{j} x_{3}\right)=0, \quad i, j \in I,
$$

and the analogues of identities (8) with the following difference: to define v^{*} one should replace \circ_{j} with $\dashv_{j}+\vdash_{j}$.

As above, the class of s-tri-Var-dendriform algebras is Koszul dual to the class of s-tri-Var!-algebras.

We can prove the statement about an embedding of s-trialgebras into corresponding Rota-Baxter algebras.

Theorem 3. For every s-tri-Var-dendriform algebra A there exists an algebra $\hat{A} \in$ Var with a Rota-Baxter operator R of weight zero and an injective map $\iota: A \rightarrow \hat{A}$ such that $\iota\left(a \vdash_{i} b\right)=R(\iota(a)) \circ_{i} \iota(b), \iota\left(a \dashv_{i} b\right)=\iota(a) \circ_{i} R(\iota(b))$, and $\iota\left(a \perp_{i} b\right)=$ $\iota(a) \circ_{i} \iota(b)$.

Proof. To prove the statement, define Eilenberg construction for A as $\hat{A}=A \oplus A^{\prime}$ by (11), but also with one difference: $a \circ_{i} b=a \dashv_{i} b+a \vdash_{i} b$. This is a Rota-Baxter algebra with an operator R from Lemma 2, Other steps of the proof of Theorem 1 remain the same.

The work is supported by RFBR (project 09-01-00157), Integration Project SB RAS No.94, and the Federal Target Grant "Scientific and educational staff of innovation Russia" for 2009-2013 (contracts 02.740.11.5191, 02.740.11.0429, and 14.740.11.0346).

References

[1] M. Aguiar, Pre-Poisson algebras, Lett. Math. Phys. 54 (2000) 263-277.
[2] G. E. Andrews, L. Guo, W. Keigher, K. Ono, Baxter algebras and Hopf algebras, Trans. Amer. Math. Soc. 355 (2003) 4639-4656.
[3] H. Ataguema, A. Makhlouf, Notes on cohomologies of ternary algebras of associative type, J. Gen. Lie Theory Appl. 3 (2009) no 3, 157-174.
[4] C. Bai, L. Guo, X. Ni, \mathcal{O}-operators on associative algebras and dendriform algebras, arXiv:1003.2432v2 [math.RA] (March 2010).
[5] C. Bai, O. Bellier, L. Guo, X. Ni, Splitting of operations, Manin products, and Rota-Baxter operators, arXiv:1106.6080v1 [math.QA] (June 2011).
[6] B. Bakalov, A. D'Andrea, V. G. Kac, Theory of finite pseudoalgebras, Adv. Math. 162 (2001) no. 1, 1-140.
[7] G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math. 10 (1960) 731-742.
[8] A. A. Belavin, V. G. Drinfeld, Solutions of the classical Yang-Baxter equation for simple Lie algebras, Funct. Anal. Appl. 16 (1982) 159-180.
[9] L. A. Bokut, Y. Chen, X. Deng, Gröbner-Shirshov bases for Rota-Baxter algebras, Siberian Mathematical Journal 51 (2010) no. 6, 978-988.
[10] P. Cartier, On the structure of free Baxter algebras, Advances in Math. 9 (1972) 253-265.
[11] F. Chapoton, Un endofoncteur de la catégorie des opérades, Dialgebras and related operads. Springer-Verl., Berlin, 2001, pp. 105-110. (Lectures Notes in Math., vol. 1763).
[12] Y. Chen, Q. Mo, Embedding dendriform algebra into its universal enveloping Rota-Baxter algebra, Proc. Amer. Math. Soc., 2011.
[13] A. Connes, D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem., Comm. Math. Phys. 210 (2000) no. 1, 249-273.
[14] A. Connes, D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem. II. The L-function, diffeomorphisms and the renormalization group., Comm. Math. Phys. 216 (2001) no. 1, 215-241.
[15] K. Ebrahimi-Fard, Loday-type algebras and the Rota-Baxter relation, Lett. Math. Phys. 61 (2002) 139-147.
[16] K. Ebrahimi-Fard, L. Guo, Quasi-shuffles, Mixable Shuffles and Hopf Algebras, J. Algebraic Combinatorics 24 (2006) 83-101.
[17] K. Ebrahimi-Fard, L. Guo, Rota-Baxter algebras and dendriform algebras, Jour. of Pure and Appl. Algebra 212 (2008) no. 2, 320-339.
[18] V. Ginzburg, M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994) no. 1, 203-272.
[19] M. I. Golenishcheva-Kutuzova, V. G. Kac, Г-conformal algebras, J. Math. Phys. 39 (1998) no. 4, 2290-2305.
[20] V. Gubarev, P. Kolesnikov, The Tits-Kantor-Koecher construction for Jordan dialgebras. Comm. Algebra 39 (2011) no. 2, 497-520.
[21] P. Kolesnikov, Identities of conformal algebras and pseudoalgebras. Comm. Algebra 34 (2006), no. 6, 1965-1979.
[22] P. Kolesnikov, Varieties of dialgebras and conformal algebras (Russian), Sib. Mat. Zh. 49 (2008) no. 2, 323-340. arXiv:math/0611501v3 [math.QA] (August 2007).
[23] T. Leinster, Higher operads, higher categories, Cambridge: Cambridge University Press, 2004 (London Mathematical Society Lecture Note Series, vol. 298).
[24] P. Leroux, Construction of Nijenhuis operators and dendriform trialgebras, Int. J. Math. Math. Sci. 52 (2004) no. 40, 2595-2615.
[25] J.-L. Loday, Une version non commutative des algébres de Lie: les algébres de Leibniz, Enseign. Math. 39 (1993) 269-293.
[26] J.-L. Loday, T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann., 296 (1993) 139-158.
[27] J.-L. Loday, Dialgebras, Dialgebras and related operads. Springer-Verl., Berlin, 2001, pp. 161. (Lectures Notes in Math., vol. 1763).
[28] J.-L. Loday, M. Ronco, Trialgebras and families of polytopes, in "Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory", Comtep. Math. 346 (2004) 369-398.
[29] J.-P. May, Geometry of iterated loop spaces, Springer-Verl., New York, 1972. (Lecture Notes in Math., vol. 271).
[30] A. Pozhidaev, 0-dialgebras with bar-unity, Rota-Baxter and 3-Leibniz algebras, in Groups, Rings and Group Rings, ed. A. Giambruno et al. (Providence, RI: American Mathematical Society (AMS), 2009) pp. 245-256.
[31] G.-C. Rota. Baxter algebras and combinatorial identities I, II, Bull. Amer. Math. Soc. 75 (1969) 325-329, 330-334.
[32] M. A. Semenov-Tian-Shansky, What is a classical r-matrix? Funct. Anal. Appl., 17 (1983) no. 4, 259-272.
[33] F. Spitzer, A combinatorial lemma and its application to probability theory, Trans. Amer. Math. Soc. 82 (1956) 323-339.
[34] J. Stasheff, What Is...an Operad? Notices of the American Mathematical Society 51 (2004) no. 6, 630-631.
[35] K. Uchino, Derived bracket construction and Manin products, Lett. Math. Phys. 90 (2010), 37-53.
[36] B. Vallette, Homology of generalized partition posets, J. Pure Appl. Algebra 208 (2007) no. 2, 699-725.
[37] B. Vallette, Manin products, Koszul duality, Loday algebras and Deligne conjecture, J. reine angew. Math. 620 (2008), 105-164.
[38] V. Yu. Voronin, Special and exceptional Jordan dialgebras, arXiv:1011.3683 [math.RA] (May 2010).
[39] G. W. Zinbiel, Encyclopedia of types of algebras 2010, arXiv:1101.0267v1 [math.RA] (December 2010).
${ }^{1)}$ Novosibirsk State University, Novosibirsk, Russia
E-mail address: vsevolodgu@mail.ru
${ }^{2)}$ Sobolev Institute of Mathematics, Novosibirsk, Russia
E-mail address: pavelsk@math.nsc.ru

