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ON EMBEDDING OF DENDRIFORM ALGEBRAS INTO

ROTA—BAXTER ALGEBRAS

V. YU. GUBAREV1), P. S. KOLESNIKOV2)

Abstract. Following a recent work by C. Bai, O. Bellier, L. Guo, X. Ni
(arXiv:1106.6080) we define what is a dendriform di- or trialgebra in an arbi-
trary variety Var of binary algebras (associative, commutative, Poisson, etc.).
We prove that every dendriform dialgebra in Var can be embedded into a
Rota—Baxter algebra of weight zero in the same variety, and every dendriform
trialgebra can be embedded into a Rota—Baxter algebra of nonzero weight.

1. Introduction

In 1960 Glen Baxter [7] introduced an identity defining what is now called Rota—
Baxter operator in developing works of F. Spitzer [33] in fluctuation theory. By
definition, a Rota—Baxter operator R of weight λ on an algebra A is a linear map
on A such that

R(x)R(y) = R(xR(y) +R(x)y) + λR(xy), x, y ∈ A,

where λ is a scalar from the base field.
Later, commutative associative algebras with such an operator were studied by

G.-C. Rota and others [10, 31]. In 1980s, these operators appeared in the context
of Lie algebras independently in works A. A. Belavin and V. G. Drinfeld [8] and
M. A. Semenov-Tian-Shansky [32] in research of solutions of classical Young—
Baxter equation named in the honour of physicists Chen Ning Yang and Rodney
Baxter.

For the present time, numerous connections of Rota—Baxter operators with
other areas of mathematics are found. The latter include quantum field theory,
Young—Baxter equations, operads, Hopf algebras, number theory etc. [2, 13, 14,
16, 24].

The notion of a Leibniz algebra introduced by J.-L. Loday [25] is originated
from cohomology theory of Lie algebras; this is a noncommutative analogue of Lie
algebras. Associative dialgebras (now often called diassociative algebras) emerged
in the paper by J.-L. Loday and T. Pirashvili [26], they play the role of universal
enveloping associative algebras for Leibniz algebras. Dendriform dialgebras were
defined by J.-L. Loday in 1999 [27] in his study of algebraic K-theory. Moreover,
they occur to be Koszul-dual to diassociative algebras. In 2001, J.-L. Loday and
V. Ronco [28] introduced a generalization of dialgebras—trialgebras and dual to
them dendriform trialgebras.

M. Aguiar in 2000 [1] was the first who noticed a relation between Rota—Baxter
algebras and dendriform algebras. He proved that an associative algebra with
a Rota—Baxter operator R of weight zero relative to operations a ≺ b = aR(b),
a ≻ b = R(a)b is a dendriform dialgebra. In 2002, K. Ebrahimi-Fard [15] generalized
this fact to the case of Rota—Baxter algebras of arbitrary weight and obtained
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as result both dendriform dialgebra and dendriform trialgebra. In the paper by
K. Ebrahimi-Fard and L. Guo [17] in 2007, universal enveloping Rota—Baxter
algebras of weight λ for dendriform dialgebras and trialgebras were defined.

The natural question: Whether an arbitrary dendriform di- or trialgebra can be
embedded into its universal enveloping Rota—Baxter algebra was solved positively
in [17] for free dendriform algebras only. In 2010, Y. Chen and Q. Mo proved that
any dendriform dialgebra over a field of characteristic zero can be embedded into an
appropriate Rota—Baxter algebra of weight zero [12] using the Gröbner—Shirshov
bases technique for Rota—Baxter algebras developed in [9].

To solve the problem for any dendriform dialgebra (or trialgebra) from a Rota—
Baxter algebra of arbitrary weight, C. Bai, L. Guo and K. Ni [4] introduced in 2010
a notion of O-operators, a generalization of Rota—Baxter operators and proved
that every dendriform di- or trialgebra can be explicitly obtained from an algebra
with a O-operator.

In a recent work [5], the results of Aguiar and Ebrahimi-Fard were extended to
the case of arbitrary operad of Rota—Baxter algebras and dendriform dialgebras
and trialgebras.

In the present work, we solve the following problem. Given a binary operad PVar

governing a variety Var of Ω-algebras (Ω is a set of binary operations), we define
what is a di- or tri-Var-dendriform algebra (following [5]). Then we construct a
Rota—Baxter Ω-algebra from the variety Var such that the initial dendriform di-
or trialgebra embeds into this Rota—Baxter algebra in the sense of Aguiar and
Ebrahimi-Fard (for trialgebras, we demand λ 6= 0).

The idea of the construction can be easily illustrated as follows. Suppose (A,≺,≻
, ·) is an (associative) dendriform trialgebra. Then the direct sum of two isomorphic

copies of A, the space Â = A⊕A′, endowed with a binary operation

a ∗ b = a ≺ b+ a ≻ b+ a · b, a ∗ b′ = (a ≻ b)′, a′ ∗ b = (a ≺ b)′, a′ ∗ b′ = (a · b)′

for a, b ∈ A, is an associative algebra. Moreover, the map R(a′) = a, R(a) = −a is

a Rota—Baxter operator of weight 1 on Â. The embedding of A into Â is given by
a 7→ a′, a ∈ A.

In this work, we also introduce and consider some modification of Loday’s notion
of trialgebras which we will call skew trialgebras (or s-trialgebras, for short). This
class of algebras appears from differential and Z-conformal algebras. Associative
skew trialgebras turn to be related with a natural noncommutative analogue of
Poisson algebras. Dendriform s-trialgebras are Koszul dual to s-trialgebras and
they are also connected with Rota—Baxter algebras in the same way as usual
dendriform dialgebras and trialgebras.

2. Operads for di- and trialgebras

Our main object of study is the class of dendriform di- or tri-algebras. In this
section, we start with objects from the “dual world” in the sense of Koszul duality.

The notion of an operad once introduced in [29] has been reincarnated in the
beginning of 2000s. We address the reader to either of perfect expositions of this
notion and its applications in universal algebra, e.g., [18, 23, 34].

Throughout this paper, k is an arbitrary base field. All operads are assumed
to be families of linear spaces, compositions are linear maps, and the actions of
symmetric groups are also linear.
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By an Ω-algebra we mean a linear space equipped with a family of binary linear
operations Ω = {◦i | i ∈ I}. Denote by F the free operad governing the variety of
all Ω-algebras. For every natural n > 1, the space F(n) can be identified with the
space spanned by all binary trees with n leaves labeled by x1, . . . , xn, where each
vertex (which is not a leaf) has a label from Ω.

Let Var be a variety of Ω-algebras defined by a family S of poly-linear identities
of any degree (which is greater than one). Denote by PVar the binary operad
governing the variety Var, i.e., every algebra from Var is a functor from PVar to the
multi-category Vec of linear spaces with poly-linear maps.

Denote by Ω(2) and Ω(3) the sets of binary operations {⊢i,⊣i| i ∈ I} and Ω(2) ∪
{⊥i| i ∈ I}, respectively. Similarly, let F (2) and F (3) stand for the free operads
governing the varieties of all Ω(2)- and Ω(3)-algebras, respectively.

We will need the following important operads.

Example 1. Operad Perm introduced in [11] is governing the variety of Perm-

algebras [39, p. 17]. Namely, Perm(n) = k
n with a standard basis e

(n)
i , i = 1, . . . , n.

Every e
(n)
i can be identified with an associative and commutative poly-linear mono-

mial in x1, . . . , xn with one emphasized variable xi.

Example 2. Operad CommTrias introduced in [36] is governing the variety of
associative and commutative trialgebras, see [39, p. 25]. Namely, CommTrias(n)

has a standard basis e
(n)
H , where ∅ 6= H ⊆ {1, . . . , n}. Such an element (corolla) can

be identified with a commutative and associative monomial with several emphasized
variables xj , j ∈ H .

The number of observations made, for example, in [37, 11, 22] lead to the fol-
lowing natural definition.

Definition 1. A di-Var-algebra is a functor from PVar ⊗ Perm to Vec, i.e., an
Ω(2)-algebra satisfying the following identities:

(x1 ⊣i x2) ⊢j x3 = (x1 ⊢i x2) ⊢j x3, x1 ⊣i (x2 ⊢j x3) = x1 ⊣i (x2 ⊣j x3), (1)

f(x1, . . . , ẋk, . . . , xn), f ∈ S, n = deg f, k = 1, . . . , n, (2)

where i, j ∈ I, and f(x1, . . . , ẋk, . . . , xn) stands for Ω(2)-identity obtained from f
by means of replacing all products ◦i with either ⊣i or ⊢i in such a way that all
horizontal dashes point to the selected variable xk.

Example 3. Let |Ω| = 1. The variety of diassociative algebras (or associative
dialgebras) [26] is given by (1) together with

x1 ⊣ (x2 ⊣ x3) = (x1 ⊣ x2) ⊣ x3, x1 ⊢ (x2 ⊣ x3) = (x1 ⊢ x2) ⊣ x3,

x1 ⊢ (x2 ⊢ x3) = (x1 ⊢ x2) ⊢ x3.
(3)

Example 4. Consider the class of Poisson algebras (|Ω| = 2), where ◦1 is an
associative and commutative product (we will denote x ◦1 y simply by xy) and ◦2
is a Lie product (x ◦2 y = [x, y]) related with ◦1 by the following identity:

[x1x2, x3] = [x1, x3]x2 + x1[x2, x3].

Then a di-Poisson algebra is a linear space equipped by four operations (· ∗ ·),
[· ∗ ·], ∗ ∈ {⊢,⊣} satisfying (1) and (2). Commutativity of the first product and
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anticommutativity of the second one allow to reduce these four operations to only
two, since (2) implies

(x1 ⊣ x2) = (x2 ⊢ x1), [x1 ⊣ x2] = −[x2 ⊢ x1].

With respect to the operations

xy := (x ⊢ y), [x, y] := [x ⊢ y],

the identities (1) and (2) are equivalent to the following system:

x1(x2x3) = (x1x2)x3, (x1x2)x3 = (x2x1)x3,

[x1, [x2, x3]]− [x2, [x1, x3]] = [[x1, x2], x3],

[x1x2, x3] = x1[x2, x3] + x2[x1, x3],

[x1, x2x3] = [x1, x2]x3 + x2[x1, x3].

In [27], a more general class was introduced (without assuming commutativity of
the associative product).

A similar approach works for trialgebras.

Definition 2. A tri-Var-algebra is a functor from PVar ⊗ CommTrias to Vec, i.e.,
an Ω(3)-algebra satisfying the following identities:

(x1 ∗i x2) ⊢j x3 = (x1 ⊢i x2) ⊢j x3, x1 ⊣i (x2 ∗j x3) = x1 ⊣i (x2 ⊣j x3),

∗ ∈ {⊢,⊣,⊥},
(4)

f(x1, . . . , ẋk1 , . . . , ẋkl
, . . . , xn),

f ∈ S, n = deg f, 1 ≤ k1 < · · · < kl ≤ n, l = 1, . . . , n.

where i, j ∈ I, and f(x1, . . . , ẋk1 , . . . , ẋkl
, . . . , xn) is the result of a procedure de-

scribed below. (It is somewhat similar to the tri-successor procedure from [5]).

Suppose u = u(x1, . . . , xn) ∈ F(n) is a non-associative Ω-monomial. Fix l indices
1 ≤ k1 < · · · < kl ≤ n, and denote the the monomial u with l emphasized variables
xkj

, j = 1, . . . , l, by uH , H = {k1, . . . , kl}. Now, identify uH with an element from
F(n)⊗ CommTrias(n) in the natural way:

uH ≡ u⊗ e
(n)
k1,...,kl

.

It can be considered as a binary tree from F(n) with l emphasized leaves.

Fig. 1
Example: uH = (x5 ◦1 (ẋ1 ◦3 x3)) ◦2 (ẋ2 ◦1 x4), H = {1, 2}. Emphasized leaves are

colored in black, others—in white.
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Now the task is to mark all vertices of uH with appropriate labels from Ω(3).
Define the family of maps

Φ(n) : F(n)⊗ CommTrias(n) → F (3)(n), n ≥ 1,

as follows. Given u ⊗ e
(n)
k1,...,kl

∈ F(n) ⊗ CommTrias(n), the structure of the tree
u as well as labels of leaves do not change. For n = 1, there is nothing to do.
If u = v ◦i w then the set H = {k1, . . . , kl} of emphasized variables splits into
two subsets, H = H1∪̇H2, where H1 consists of all kj such that xkj

appears in v.
Assume deg v = p, then degw = n− p. Set

Φ(n)(uH) =











Φ(p)(vH1 ) ⊥i Φ(n− p)(wH2 ), if H1, H2 6= ∅,

v⊢ ⊢i Φ(n− p)(wH), if H1 = ∅,

Φ(p)(vH) ⊣i w
⊣, if H2 = ∅,

where v⊢ (or w⊣) stands for the tree where each vertex label ◦j turns into ⊢j (⊣j).
One may extend Φ(n) by linearity, so, if f(x1, . . . , xn) =

∑

ξ

αξuξ ∈ F(n) then

f(x1, . . . , ẋk1 , . . . , ẋkl
, . . . , xn) :=

∑

ξ

αξΦ(n)(u
H
ξ ).

Fig. 2
Example: Φ(5)(uH) = (x5 ⊢1 (x1 ⊣3 x3)) ⊥2 (x2 ⊣1 x4) for u and H as on Fig. 1.
For each vertex which is not a leaf we assign ⊥ if both left and right branches
have emphasized leaves. If only left branch contains an emphasized leaf then we
assign ⊣ to this vertex and to all vertices of the right branch. Symmetrically, if

only right branch contains an emphasized leaf then we assign ⊢ to this vertex and
to all vertices of the left branch.

Example 5 (Tri-associative algebra). Let Var = As be the variety of associative
algebras. It has only one defining identity (x1, x2, x3) = x1(x2x3)− (x1x2)x3, that
turns into seven identities (5). Indeed, each nonempty subsetH ⊆ {1, 2, 3} gives rise
to an identity of Ω(3)-algebras, Ω(3) = {⊢,⊣,⊥}. If |H | = 1 then these are just the
identities of a di-As-algebra (3). For |H | = 2, we obtain three identities, e.g., if H =
{1, 3} then the corresponding identity (ẋ1, x2, ẋ3) is x1 ⊥ (x2 ⊢ x3)−(x1 ⊣ x2) ⊥ x3

If H = {1, 2, 3} then we obtain the relation of associativity for ⊥. Together with
(4), these are exactly the defining identities of triassociative algebras [39, p. 23].
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Example 6. Let A be an associative algebra. Then the space A⊗3 with respect to
operations

a⊗ b⊗ c ⊢ a′ ⊗ b′ ⊗ c′ = abca′ ⊗ b′ ⊗ c′, a⊗ b⊗ c ⊣ a′ ⊗ b′ ⊗ c′ = a⊗ b⊗ ca′b′c′,

a⊗ b ⊗ c ⊥ a′ ⊗ b′ ⊗ c′ = a⊗ bca′b′ ⊗ c′

is a triassociative algebra.

The following construction invented in [30] for dialgebras also works for trialge-
bras.

Let A be a 0-trialgebra, i.e., an Ω(3)-algebra which satisfies (4). Then A0 =
Span {a ⊢i b−a ⊣i b, a ⊢i b−a ⊥i b | a, b ∈ A, i ∈ I} is an ideal of A. The quotient
Ā = A/A0 carries a natural structure of an Ω-algebra. Consider the formal direct

sum Â = Ā⊕A with (well-defined) operations

ā ◦i x = a ⊢i x, x ◦i ā = x ⊣i a, ā ◦i b̄ = a ⊢i b, x ◦i y = x ⊥i y, (5)

ā, b̄ ∈ Ā, x, y ∈ A.

Proposition 1. A trialgebra A satisfying (4) is a tri-Var-algebra if and only if Â
is an algebra from the variety Var.

Proof. The claim follows from the following observation. If f(x1, . . . , xn) ∈ F(n)

then the value f(ā1, . . . , ān) in Ā ⊂ Â is just the image of [Φ(n)(fH)](a1, . . . , an)
in Ā for any subset H ; moreover, the value of f(x1, . . . , ẋk1 , . . . , ẋkl

, . . . , xn) on

a1, . . . , an ∈ A is equal to f(ā1, . . . , ak1 , . . . , akl
, . . . , ān) ∈ Â, i.e., one has to add

bars to all non-emphasized variables. �

Assuming x ⊥i y ≡ 0 for all x, y ∈ A, i ∈ I, we obtain the construction from [30].
This construction turns to be useful in the study of dialgebras (see, e.g., [20, 38]).
For a variety Var, let us denote by DVar and TVar the operads governing di- and
tri-Var-algebras, respectively.

The structure of a di-Var-algebra may be recovered from a structure of a Var-
pseudo-algebra over an appropriate bialgebra H . Let us recall this notion from [6].
Suppose H is a cocommutative bialgebra with a coproduct ∆ and counit ε. We will
use the Swedler notation for ∆, e.g., ∆(h) = h(1) ⊗ h(2), ∆

2(h) := (∆⊗ id)∆(h) =

(id ⊗ ∆)∆(h) = h(1) ⊗ h(2) ⊗ h(3), h ∈ H . The operation F · h = F∆n−1(h),
F ∈ H⊗n, h ∈ H , turns H⊗n into a right H-module (the outer product of right
regular H-modules).

A unital left H-module C gives rise to an operad (also denoted by C) such that

C(n) = {f : C⊗n → H⊗n ⊗H C | f is H⊗n-linear}.

For example, if dimH = 1 then what we obtain is just a linear space with poly-
linear maps. The composition of such maps as well as the action of a symmetric
group is defined in [6].

In these terms, if Var is a variety of Ω-algebras defined by a system of poly-linear
identities S then a Var-pseudo-algebra structure on an H-module C is a functor
from PVar to the operad C. Such a functor is determined by a family of H⊗2-linear
maps ∗i : C ⊗ C → H⊗2 ⊗H C satisfying the identities (c.f. [21])

f∗(x1, . . . , xn) = 0, f ∈ S, deg f = n,

where f∗ is obtained from f in the following way. Assume a poly-linear Ω-monomial
u in the variables x1, . . . , xn turns into a word xσ(1) . . . xσ(n), σ ∈ Sn, after removing
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all brackets and symbols ◦i, i ∈ I. Denote by u∗ the same monomial u with all ◦i
replaced with ∗i. Then u∗ can be considered as a map C⊗n → H⊗n ⊗H C, which
is not necessary H⊗n-linear. However, u(∗) = (σ ⊗H id)u∗ is H⊗n-linear. Finally,
if f =

∑

ξ

αξuξ, αξ ∈ k, then

f∗(x1, . . . , xn) =
∑

ξ

αξu
(∗)
ξ .

Example 7 (c.f. [6]). Consider an Ω-algebra A, a cocommutative bialgebra H ,
and define C = H⊗A. Then C is an pseudo-algebra with respect to the operations

(f ⊗ a) ∗i (h⊗ b) = (f ⊗ h)⊗H (a ◦i b), f, h ∈ H, a, b ∈ A, i ∈ I.

Such a pseudo-algebra is denoted by CurA (current pseudo-algebra). If A belongs
to Var then, obviously, CurA is a Var-pseudo-algebra over H .

Given a pseudo-algebra C with operations ∗i, i ∈ I, one may define operations
⊢i, ⊣i on the same space C as follows: if a ∗i b =

∑

ξ

(hξ ⊗ fξ)⊗H dξ then

a ⊢i b =
∑

ξ

ε(hξ)fξdξ, a ⊣i b =
∑

ξ

hξε(fξ)dξ. (6)

Proposition 2. Let C be a Var-pseudo-algebra. Then C(0) is a di-Var-algebra.

Proof. It is enough to check that (1) and (2) hold on C(0). Indeed, if a ∗i b =
∑

ξ

(hξ ⊗ fξ)⊗H dξ, dξ ∗j c =
∑

η

(h′
η ⊗ f ′

η)⊗H eη then

(a ⊢i b) ∗j c =
∑

η





∑

ξ

ε(hξ)fξdξ



 ∗j c =
∑

η,ξ

(ε(hξ)fξh
′
η ⊗ f ′

η)⊗H eη.

Hence,

(a ⊢i b) ⊢j c =
∑

η,ξ

ε(hξfξh
′
η)f

′
ηeη.

On the other hand,

(a ⊣i b) ∗j c =
∑

η





∑

ξ

hξε(fξ)dξ



 ∗j c =
∑

η,ξ

(hξε(fξ)h
′
η ⊗ f ′

η)⊗H eη,

so (a ⊢i b) ⊢j c = (a ⊣i b) ⊢j c for all a, b, c ∈ C. The second identity in (1) can be
proved in the same way.

Consider a poly-linear identity f ∈ S. This is straightforward to check (c.f. [22])
that if

f (∗)(a1, . . . , an) =
∑

ξ

(h1ξ ⊗ · · · ⊗ hnξ)⊗H cξ

then f(a1, . . . , ȧk, . . . , an) =
∑

ξ

h1ξ . . . ε(hkξ) . . . hnξcξ in C(0). It is clear that if f (∗)

vanishes in C then C(0) satisfies the identity (2). �

In particular, if B is a Var-algebra then (CurB)(0) is a di-Var-algebra.

Proposition 3. If H contains a nonzero element T such that ε(T ) = 0 then every

di-Var-algebra A embeds into (Cur Â)(0).
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Proof. Recall that Â = Ā⊕A, Cur Â = H ⊗ Â. Define

ι : A → H ⊗ Â, ι(a) = 1⊗ ā+ T ⊗ a. (7)

This map is obviously injective, and

ι(a)∗i ι(b) = (1⊗1)⊗H (1⊗a ⊢i b)+(T ⊗1)⊗H (1⊗a ⊣i b)+(1⊗T )⊗H (1⊗a ⊢i b).

Since a ⊢i b = a ⊣i b in Â, we have

ι(a) ⊢i ι(b) = 1⊗ a ⊢i b+ T ⊗ a ⊢i b = ι(a ⊢i b),

ι(a) ⊣i ι(b) = 1⊗ a ⊣i b+ T ⊗ a ⊣i b = ι(a ⊣i b).

�

3. Dendriform di- and trialgebras

The operad Dend of associative dendriform algebras is known to be Koszul dual
(see [18] for details of Koszul duality) to the operad Dias = DAs of diassociative
algebras. Since Dias ≃ As ⊗ Perm and it was noticed in [37] that for Perm (as
well as for CommTrias) the Hadamard product ⊗ coincides with the Manin white

product ◦, we have Dend := (As ⊗ Perm)! = As • PreLie, where As! = As, PreLie
is the operad of pre-Lie algebras which is Koszul dual to Perm, • stands for the
Manin black product of operads [18].

In general, for a binary operad P the successor procedure described in [5] gives
rise to what is natural to call defining identities of di- or tri-P-dendriform algebras.
In addition, if P is quadratic then these P-dendriform algebras are dual to the
corresponding di- or tri-P !-algebras. In this case, obviously, (P ! ⊗ Perm)! = P •
PreLie for dialgebras, and (P !⊗CommTrias)! = P !•PostLie, where PreLie = Perm!

PostLie = CommTrias!. This is closely related with Proposition 4 below.
In terms of identities, we do not need P to be quadratic (in fact, it is easy to

generalize the successor procedure even for algebras with n-ary operations, n ≥ 2).
Usually, the operations in a dendriform di- or trialgebra are denoted by ≺, ≻,

and ·. We will use ⊣, ⊢, and ⊥ instead.
Suppose Var is a variety of Ω-algebras defined by a family S of poly-linear iden-

tities, as above.

Definition 3. A tri-Var-dendriform algebra is an Ω(3)-algebra satisfying the iden-
tities

f∗(x1, . . . , ẋk1 , . . . , ẋkl
, . . . , xn), f ∈ S, n = deg f, 1 ≤ k1 < · · · < kl ≤ n, (8)

for all l = 1, . . . , n, where f∗(x1, . . . , ẋk1 , . . . , ẋkl
, . . . , xn) is obtained from f by

means of the following procedure.

If u is a non-associative monomial, u = vw, H = {k1, . . . , kl}, deg v = p, H =
H1∪̇H2 as above, then

Φ∗(n)(uH) =











Φ∗(p)(vH1) ⊥i Φ
∗(n− p)(wH2 ), if H1, H2 6= ∅,

v∗ ⊢i Φ
∗(n− p)(wH), if H1 = ∅,

Φ∗(p)(vH) ⊣i w
∗, if H2 = ∅,

where v∗ stands for the linear combination of trees obtained when we replace each
label ◦j in v with ⊢j + ⊣j + ⊥j).

Now, extend Φ∗(n) by linearity and set
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f∗(x1, . . . , ẋk1 , . . . , ẋkl
, . . . , xn) :=

∑

ξ

αξΦ
∗(n)(uH

ξ )

for f(x1, . . . , xn) =
∑

ξ

αξuξ ∈ F(n), αξ ∈ k, H = {k1, . . . , kl}.

To get the definition of a di-Var-dendriform algebra, it is enough to set x ⊥ y = 0
and consider |H | = 1 only.

Denote by dendDVar and dend TVar the operads governing di- and tri-Var-dend-
riform algebras.

Proposition 4. Suppose |Ω| < ∞. If PVar is a binary quadratic operad with

PVar(1) = k then (DVar)
! = dendDVar! and (TVar)

! = dend TVar! , where Var! stands
for the class of algebras governed by the Koszul dual operad P !

Var.

Proof. We consider trialgebra case in details since it covers the dialgebra case.
Suppose PVar = P(E,R) is a binary quadratic operad, i.e., a quotient operad

of F , F(2) = E, with respect to the operad ideal generated by S3-submodule
R ⊆ F(3), see [18] for details.

The space E is spanned by µi : x1⊗x2 7→ x1 ◦i x2 and µ
(12)
i : x1 ⊗x2 7→ x2 ◦i x1,

i ∈ I. Without loss of generality, we may assume that µi, i ∈ I, are linearly
independent and

µ
(12)
k =

∑

i∈I

αikµi, k ∈ I ′ ⊆ I, αik ∈ k,

are the only defining identities of Var of degree two, |I ′| = d ≥ 0 (if chark 6= 2,
these are just commutativity and anti-commutativity). Denote by N = 2|I|−d the
dimension of E.

The space F(3) can be naturally identified with the induced S3-module kS3⊗kS2

(E ⊗ E), where E ⊗ E is considered as an S2-module via (µ ⊗ ν)(12) = µ ⊗ ν(12),
µ, ν ∈ E. Namely, the basis of F(3) consists of expressions

σ ⊗kS2 (µ⊗ ν), σ ∈ {e, (13), (23)},

µ and ν range over a chosen basis of E. Therefore, dimF(3) = 3N2.
In terms of monomials (or binary trees), for example, e⊗kS2 (µi⊗µj) corresponds

to (x1 ◦j x2) ◦i x3, e⊗kS2 (µ
(12)
i ⊗ µj) to x3 ◦i (x1 ◦j x2). A permutation σ ∈ S3 in

the first tensor factor permutes variables, e.g., (13)⊗kS2 (µ
(12)
i ⊗µ

(12)
j ) corresponds

to x1 ◦i (x2 ◦j x3).
Recall that E∨ denotes the dual space to E considered as an S2-module with

respect to sgn-twisted action: 〈ν(12), µ〉 = −〈ν, µ(12)〉, ν ∈ E∨, µ ∈ E. If F∨ is the
free binary operad generated by E∨ then (F(3))∨ ≃ F∨(3) = kS3 ⊗kS2 (E

∨ ⊗E∨).
The Koszul-dual operad P !

Var is the quotient of F
∨ by the operad ideal generated

by R⊥ ⊂ F∨(3), the orthogonal space to R.
By the definition, the operad TVar governing the variety of tri-Var-algebras is

equal to P(E(3), R(3)), where the initial data E(3), R(3) are defined as follows. The
space E(3) is spanned by µ∗

i , (µ
∗
i )

(12), i ∈ I, ∗ ∈ {⊢,⊣,⊥}, with respect to the
relations

(µ⊢
k )

(12) =
∑

i∈I

αikµ
⊣
i , (µ⊣

k )
(12) =

∑

i∈I

αikµ
⊢
i

(µ⊥
k )

(12) =
∑

i∈I

αikµ
⊥
i , k ∈ I ′.
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The S3-module R(3) is generated by the defining identities of tri-Var-algebras, i.e.,

R(3) = {Φ(3)(fH) | f ∈ R, ∅ 6= H ⊆ {1, 2, 3}}⊕O(3),

and O(3) is the S3-submodule of F (3) generated by

µ⊢
j ⊗ µ⊣

i − µ⊢
j ⊗ µ⊢

i , µ⊢
j ⊗ µ⊥

i − µ⊢
j ⊗ µ⊢

i ,

(µ⊣
i )

(12) ⊗ µ⊢
j − (µ⊣

i )
(12) ⊗ µ⊣

j , (µ⊣
i )

(12) ⊗ µ⊥
j − (µ⊣

i )
(12) ⊗ µ⊥

j ,

i, j ∈ I.

(9)

This is easy to calculate that dimE(3) = 3N , dimF (3)(3) = 27N2, dimO(3) = 6N2,

so dimR(3) = 6N2 + 7dimR. Denote by O
(3)
+ the S3-submodule of F (3) generated

by the first summands of all relations from (9).
Suppose f ∈ F(3), g ∈ F∨(3), and let H1, H2 ⊆ {1, 2, 3} be nonempty subsets.

It follows from the definition of Φ(3) that 〈Φ(3)(fH1),Φ(3)(gH2)〉 = 0 if H1 6= H2.
For H1 = H2 = H , orthogonality of f and g implies 〈Φ(3)(fH),Φ(3)(gH)〉 = 0 as

well. Moreover, for every f ∈ F(3) we have 〈Φ(3)(fH), O
(3)
+ 〉 = 0 since neither of

terms from O
(3)
+ appears in images of Φ(3).

This is now easy to see that if g ∈ R⊥ ⊆ F∨(3) then 〈f,Φ∗(3)(gH)〉 = 0 for
every f ∈ R(3). Hence,

(R⊥)(3∗) := {Φ∗(3)(gH) | g ∈ R⊥, ∅ 6= H ⊆ {1, 2, 3}} ⊆ (R(3))⊥.

On the other hand, dimR⊥ = 3N2 − dimR, so dim(R⊥)(3∗) = 21N2 − 7 dimR.
Therefore, dim(R⊥)(3∗) + dimR(3) = 27N2 and (R⊥)(3∗) = (R(3))⊥. It remains to
recall that, by definition, dendTVar = P(E(3), (R⊥)(3∗)). �

4. Embedding into Rota—Baxter algebras

Suppose B is an Ω-algebra. A linear map R : B → B is called a Rota—Baxter
operator of weight λ ∈ k if

R(x) ◦i R(y) = R(x ◦i R(y) +R(x) ◦i y + λx ◦i y) (10)

for all x, y ∈ B, i ∈ I.
Let A be an Ω(3)-algebra. Consider the isomorphic copy A′ of the underlying

linear space A (assume a ∈ A is in the one-to-one correspondence with a′ ∈ A′),

and define the following Ω-algebra structure on the space Â = A⊕A′:

a ◦i b = a ⊢i b+ a ⊣i b+ a ⊥i b, a ◦i b
′ = (a ⊢i b)

′,

a′ ◦i b = (a ⊣i b)
′, a′ ◦i b

′ = (a ⊥i b)
′,

(11)

for a, b ∈ A, i ∈ I.

Lemma 1. Given a scalar λ ∈ k, the linear map R : Â → Â defined by R(a′) = λa,

R(a) = −λa (a ∈ A) is a Rota—Baxter operator of weight λ on the Ω-algebra Â.

Proof. It is enough to check the relation (10). Straightforward computation shows

R(a+ b′) ◦i R(x+ y′) = λ2(−a+ b) ◦i (−x+ y)

= λ2(a ⊢i x+ a ⊣i x+ a ⊥i x− a ⊢i y − a ⊣i y − a ⊥i y

− b ⊢i x− b ⊣i x− b ⊥i x+ b ⊢i y + b ⊣i y + b ⊥i y).
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On the other hand,

R((a+ b′) ◦i R(x+ y′) +R(a+ b′) ◦i (x+ y′) + λ(a+ b′) ◦ (x + y′))

= λR((a+ b′) ◦i (−x+ y) + (−a+ b) ◦i (x+ y′) + (a+ b′) ◦ (x+ y′))

= λR(−a ⊢i x− a ⊣i x− a ⊥i x+ a ⊢i y + a ⊣i y + a ⊥i y

− (b ⊣i x)
′ + (b ⊣i y)

′ − a ⊢i x− a ⊣i x− a ⊥i x+ b ⊢i x+ b ⊣i x+ b ⊥i x

− (a ⊢i y)
′ + (b ⊢i y)

′ + a ⊢i x+ a ⊣i x+ a ⊥i x+ (a ⊢i y)
′ + (b ⊣i x)

′ + (b ⊥i y)
′)

= λ2(−a ⊢i y − a ⊣i y − a ⊥i y + b ⊣i y + a ⊢i x+ a ⊣i x

+ a ⊥i x− b ⊢i x− b ⊣i x− b ⊥i x+ b ⊢i y + b ⊥i y).

�

Lemma 2. Let A be a di-Var-dendriform algebra. Then the map R : Â → Â
defined by R(a′) = a, R(a) = 0 is a Rota—Baxter operator of weight λ = 0 on Â.

The proof is completely analogous to the previous one.
The following statement is well-known (c.f. [1, 15, 35]), but we will state its

proof for readers’ convenience.

Proposition 5. Let B be an Ω-algebra with a Rota—Baxter operator R of weight
λ 6= 0. Assume B belongs to Var. Then the same linear space B considered as
Ω(3)-algebra with respect to the operations

x ⊢i y =
1

λ
R(x) ◦i y, x ⊣i y =

1

λ
x ◦i R(y), x ⊥i y = x ◦i y. (12)

is a tri-Var-dendriform algebra.

Proof. Let u = u(x1, . . . , xn) ∈ F(n) be a poly-linear Ω-monomial. The claim
follows from the following relation in B:

u∗(x1, . . . , ẋk1 , . . . , ẋkl
, . . . , xn) =

1

λn−l
u(R(x1), . . . , xk1 , . . . , xkl

, . . . , R(xn)),

(13)

i.e., in order to get a value of an Ω(3)-monomial in Â we have to replace every
non-emphasized variable xi (i /∈ H = {k1, . . . , kl}) with

1
λ
R(xi).

Relation (13) is clear for n = 1, 2. In order to apply induction on n, we have
to start with the case when H = ∅. Recall that u∗(x1, . . . , xn) stands for the
expression obtained from u by means of replacing each ◦i with ⊢i + ⊣i + ⊥i. Then

R(u∗(x1, . . . , xn)) =
1

λn−1
u(R(x1), . . . , R(xn)), n ≥ 2, (14)

in Â. Indeed, for n = 2 we have exactly the Rota—Baxter relation. If u = v ◦i w,
v = v(x1, . . . , xp), w = w(xp+1, . . . , xn), then, by induction,

R(u∗) = R(v∗ ⊢i w
∗ + v∗ ⊣i w

∗ + v∗ ⊥i w
∗)

=
1

λ
R(R(v∗) ◦i w

∗ + v∗ ◦i R(w∗) + λv∗ ⊥i w
∗) =

1

λ
R(v∗) ◦i R(w∗)

=
1

λ

1

λp−1
v(R(x1), . . . , R(xp)) ◦i

1

λn−p−1
w(R(xp+1), . . . , R(xn))

=
1

λn−1
u(R(x1), . . . , R(xn)).
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Now, let us finish proving (13). If u = v ◦i w, deg v = p, H = H1∪̇H2 then there
are three cases: (a) H1, H2 6= ∅; (b) H1 = ∅; (c) H2 = ∅.

In the case (a), u∗(x1, . . . , ẋk1 , . . . , ẋkl
, . . . , xn) = Φ∗(n)(uH) = Φ∗(p)(vH1) ⊥i

Φ∗(n)(wH2 ), and it remains to apply inductive assumption and the definition of ⊥i

from (12).
In the case (b), Φ∗(n)(uH) = v∗ ⊢i Φ

∗(n− p)(wH), so for any a1, . . . , an ∈ B we
can apply (14) to get

[Φ∗(n)(uH)](a1, . . . , an) =
1

λ
R(v∗(a1, . . . , ap)) ◦i [Φ

∗(n− p)(wH)](ap+1, . . . , an)

=
1

λp
v(R(a1), . . . , R(ap)) ◦i

1

λn−p−l
w(R(ap+1, . . . , ak1 , . . . , akl

, . . . , R(an))

=
1

λn−l
u(R(a1, . . . , ak1 , . . . , akl

, . . . , R(an)).

The case (c) is completely analogous. �

Remark 1. Following [15], the dendriform operations on a Rota—Baxter algebra
should be defined as

x ⊢i y = R(x) ◦i y, x ⊣i y = x ◦i R(y), x ⊥i y = λx ◦i y. (15)

It is easy to see that for λ 6= 0 one should just re-scale these binary operations to
get (12).

Proposition 6 ([1, 35]). Let B be an Ω-algebra with a Rota—Baxter operator R of
weight λ = 0. Assume B belongs to Var. Then the same linear space B considered
as Ω(2)-algebra with respect to x ⊢i y = R(x) ◦i y, x ⊣i y = x ◦i R(y) is a di-Var-
dendriform algebra.

The proof is analogous to the proof of the previous statement.

Theorem 1. The following statements are equivalent:

(1) A is a tri-Var-dendriform algebra;

(2) Â belongs to Var.

Proof. (1) Assume A is a tri-Var-dendriform algebra, and let S be the set of defining

identities of Var. We have to check that every f ∈ S holds on Â.
First, let us compute a monomial in Â = A⊕ A′ when all its arguments belong

to the first summand.

Lemma 3. Suppose u = u(x1, . . . , xn) ∈ F(n) is a poly-linear Ω-monomial of

degree n. Then in the Ω-algebra Â we have

u(a1, . . . , an) =
∑

H

Φ∗(n)(uH)(a1, . . . , an), ai ∈ A, (16)

where H ranges over all nonempty subsets of {1, . . . , n}.

Proof. By the definition of multiplication in Â, u(a1, . . . , an) = u∗(a1, . . . , an),
where u∗ means the same as in the definition of Φ∗(n). In particular, for n = 1, 2
the statement is clear. Proceed by induction on n = deg u. Assume u = v ◦i w,



ON EMBEDDING OF DENDRIFORM ALGEBRAS INTO ROTA—BAXTER ALGEBRAS 13

and, without loss of generality, v = v(x1, . . . , xp), w = w(xp+1, . . . , xn). Then

u(a1, . . . , an) = v∗(a1, . . . , ap) ⊢i

(

∑

H2

Φ∗(n− p)(wH2 )(ap+1, . . . , an)

)

+

(

∑

H1

Φ∗(p)(vH1 )(a1, . . . , ap)

)

⊥i

(

∑

H2

Φ∗(n− p)(wH2 )(ap+1, . . . , an)

)

+

(

∑

H1

Φ∗(p)(vH1)(a1, . . . , ap)

)

⊣i w
∗(ap+1, . . . , an), (17)

where H1 and H2 range over all nonempty subsets of {1, . . . , p} and {p+1, . . . , n},
respectively. It is easy to see that the overall sum is exactly the right-hand side
of (16): The first (second, third) group of summands in (17) corresponds to H =
H2 ⊆ {p+ 1, . . . , n}, (H = H1 ∪H2, H = H1 ⊆ {1, . . . , p}, respectively). �

Next, assume that l > 0 arguments belong to A′.

Lemma 4. Suppose u = u(x1, . . . , xn) ∈ F(n) is a poly-linear Ω-monomial of
degree n, H = {k1, . . . , kl} is a nonempty subset of {1, . . . , n}. Then in the Ω-

algebra Â we have

u(a1, . . . , a
′
k1
, . . . , a′kl

, . . . , an) =
(

Φ∗(n)(uH)(a1, . . . , an)
)′
. (18)

Proof. For n = 1, 2 the statement is clear. If u = v◦iw for some i ∈ I as above then
we have to consider three natural cases: (a) H ⊆ {1, . . . , p}; (b) H ⊆ {p+1, . . . , n};
(c) variables with indices from H appear in both v and w.

In the case (a), the inductive assumption implies

u(a1, . . . , a
′
k1
, . . . , a′kl

, . . . , an)

= v(a1, . . . , a
′
k1
, . . . , a′kl

, . . . , ap) ⊣i w
∗(ap+1, . . . , an)

=
(

Φ∗(p)(vH)(a1, . . . , ap) ⊣i w
∗(ap+1, . . . , an)

)′
,

and it remains to recall the definition of Φ∗(n). Case (b) is analogous.
In the case (c), H = H1∪̇H2 as above and

u(a1, . . . , a
′
k1
, . . . , a′kl

, . . . , an)

= Φ∗(p)(vH1 )(a1, . . . , ap) ⊥i Φ
∗(n− p)(wH2 )(ap+1, . . . , an)

that proves the claim. �

Finally, suppose f ∈ S is a poly-linear identity of degree n. Then Φ∗(n)(fH) is

an identity on the Ω(3)-algebra A, so Lemmas 3 and 4 imply f to hold on Â.

(2) The map ι : A → Â, ι(a) = a′, is an embedding of the Ω(3)-algebra A into Â

equipped with operations (12). By Proposition 5, Â is a tri-Var-dendriform algebra,
therefore, so is A. �

Remark 2. Since λ 6= 0, we may conclude that every tri-Var-dendriform algebra
A embeds into a Rota—Baxter algebra B ∈ Var of weight λ in the sense of Aguiar
[1] (see (15)): It is sufficient to re-scale the product on B.

If λ = 0 then the simple reduction of Theorem 1 by means of Lemma 2 leads to
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Theorem 2. Suppose A is an Ω(2)-algebra, and let Â stands for an Ω-algebra
defined by (11) with x ⊥i y ≡ 0. Then the following statements are equivalent:

(1) A is a di-Var-dendriform algebra;

(2) Â belongs to Var.

Remark 3. It is interesting to note that A is a simple di-Var-dendriform algebra

if and only if Â is a simple Rota—Baxter algebra.

The standard reasoning allows to conclude the following.

Corollary 1 (c.f. [12]). Every di-Var-dendriform algebra embeds into its universal
enveloping Rota—Baxter Var-algebra of weight λ = 0.

Corollary 2. Every tri-Var-dendriform algebra embeds into its universal envelop-
ing Rota—Baxter Var-algebra of weight λ 6= 0.

Remark 4. All results of this section remain valid for algebras over a commutative
ring K if we replace the condition λ 6= 0 with λ ∈ K∗, where K∗ is the set of
invertible elements of K.

5. Skew trialgebras and Rota—Baxter algebras

Consider a slightly modified analogue of trialgebras which we shortly call s-
trialgebras.

Definition 4. A s-tri-Var-algebra is an Ω(3)-algebra satisfying the identities (1),
(5).

In other words, we exclude the identities x1 ⊣i (x2 ⊥j x3) = x1 ⊣i (x2 ⊣j x3),
(x1 ⊥i x2) ⊢j x3 = (x1 ⊢i x2) ⊢j x3 from the definition of a tri-Var-algebra.

For any Ω(3)-algebra A satisfying the identities (1) we can also construct (as

in the dialgebra case) the Ω-algebra Â = Ā ⊕ A as follows (similar to (5)): Ā =
A/Span {a ⊢i b−a ⊣i b | a, b ∈ A, i ∈ I}, ā◦i b̄ = a ⊢i b, ā◦ib = a ⊢i b, a◦i b̄ = a ⊣i b,
a ◦i b = a ⊥i b. An analogue of Proposition 1 holds for this construction, i.e., it
gives an equivalent definition of a s-tri-Var-algebra.

It turns out that s-tri-Var-algebras are closely related with Γ-conformal algebras
introduced in [19]. These systems appeared as ”discrete analogues” of conformal
algebras defined over a group Γ. From the general point of view, these are pseudo-
algebras over the group algebra H = kΓ considered as a Hopf algebra with respect
to canonical coproduct ∆(γ) = γ ⊗ γ and counit ε(γ) = 1, γ ∈ Γ.

We consider the case when Γ = 〈Z,+〉, H = k[t, t−1]. If C is a pseudo-algebra
over H , i.e., a Z-conformal algebra with operations ∗i, i ∈ I, then for every a, b ∈ C
their pseudo-product a ∗i b ∈ H⊗2 ⊗H C can be presented as

a ∗i b =
∑

n∈Z

(t−n ⊗ 1)⊗H cn,

where almost all cn are zero. It is convenient to denote cn by a(n)b [19]. These
operations provide an equivalent definition of a Z-conformal algebra: This is a
linear space with bilinear operations {(·(n)·) | n ∈ Z} and with a linear invertible
mapping t such that the following axioms are satisfied:

(Z1) a(n)b = 0 for almost all n ∈ Z;
(Z2) ta(n)b = a(n+1)b;
(Z3) t(a(n)b) = ta(n)tb.
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A Z-conformal algebra C is associative if a(n)(b(m)c) = (a(n−m)b)(m)c for all
n,m ∈ Z, a, b, c ∈ C.

Proposition 2 implies that every di-Var-algebra can be embedded into a current
Z-conformal algebra over an algebra from Var (one may consider, e.g., T = 1− t).
For s-trialgebras, a similar statement holds.

Example 8. Let C be an associative Z-conformal algebra. Then, with respect
to the operations ⊣, ⊢ from (6) and a ⊥ b = a(0)b, the vector space C is a s-tri-

associative algebra. Let us denote it also by C(0).

There is an interesting question: Whether a trialgebra or s-trialgebra A can be
embedded into C(0) for some Z-conformal algebra C. We have a positive answer for
Loday trialgebras and only for chark = 2. Then the mapping φ from (7) realizes

this embedding of A into Cur Â.

Example 9. A vector space A endowed with two binary operations ⊢, ⊥ belongs to
the variety sCommTrias (skew commutative tri-associative algebras) if both opera-
tions are associative, ⊥ is commutative and they also satisfy the following identities:

x1 ⊢ (x2 ⊥ x3) = (x1 ⊢ x2) ⊥ x3, (x1 ⊢ x2) ⊢ x3 = (x2 ⊢ x1) ⊢ x3.

This is easy to derive from the definition that free sCommTrias[X ] algebra is
nothing but Perm〈Comm[X ]〉, its linear basis consists of words

u1 ⊢ u1 ⊢ . . . ⊢ uk ⊢ u0, u1 6 . . . 6 uk,

where ui are basic monomials of the polynomial algebra Comm[X ] with respect to
the operation ⊥ and some linear ordering 6.

Example 10. Let 〈A, ·〉 be an associative algebra with a derivation d such that
d2 = 0. Defining a ⊢ b = d(a)b, a ⊣ b = ad(b) we obtain s-tri-associative algebra
(A,⊢,⊣, ·).

Example 11. An associative s-trialgebra A with respect to the operations [x, y] =
x ⊣ y−x ⊢ y and x ·y = x ⊥ y turns into a dialgebra analogue of a Poisson algebra:
The operation [·, ·] satisfies the Leibniz identity and · is associative. Moreover, the
Poisson identity holds:

[xy, z] = x[y, z] + [x, z]y.

In [28], the same operations [·, ·] and · were considered for ordinary triassociative
algebra (in the sense of Definition 2). The noncommutative analogue of a Poisson
algebra obtained in this way satisfies one more identity [x, yz−zy] = [x, [y, z]] which
does not appear in the case of s-tri-associative algebras.

Let us define a class of ”skew” dendriform algebras associated with a variety Var
of algebras.

Definition 5. A s-tri-Var-dendriform algebra is an Ω(3)-algebra satisfying

(x1 ⊥i x2) ⊢j x3 = 0, x1 ⊣i (x2 ⊥j x3) = 0, i, j ∈ I,

and the analogues of identities (8) with the following difference: to define v∗ one
should replace ◦j with ⊣j + ⊢j .

As above, the class of s-tri-Var-dendriform algebras is Koszul dual to the class
of s-tri-Var!-algebras.

We can prove the statement about an embedding of s-trialgebras into corre-
sponding Rota—Baxter algebras.
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Theorem 3. For every s-tri-Var-dendriform algebra A there exists an algebra Â ∈
Var with a Rota—Baxter operator R of weight zero and an injective map ι : A → Â
such that ι(a ⊢i b) = R(ι(a)) ◦i ι(b), ι(a ⊣i b) = ι(a) ◦i R(ι(b)), and ι(a ⊥i b) =
ι(a) ◦i ι(b).

Proof. To prove the statement, define Eilenberg construction for A as Â = A⊕A′

by (11), but also with one difference: a◦ib = a ⊣i b+a ⊢i b. This is a Rota—Baxter
algebra with an operator R from Lemma 2. Other steps of the proof of Theorem 1
remain the same. �

The work is supported by RFBR (project 09–01–00157), Integration Project
SB RAS No.94, and the Federal Target Grant “Scientific and educational staff of
innovation Russia” for 2009–2013 (contracts 02.740.11.5191, 02.740.11.0429, and
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