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Abstract: Conventional multiple hypothesis tests use step-up, step-down, or closed testing meth-

ods to control the overall error rates. We will discuss marrying these methods with adaptive

multistage sampling rules and stopping rules to perform efficient multiple hypothesis testing in

sequential experimental designs. The result is a multistage step-down procedure that adaptively

tests multiple hypotheses while preserving the family-wise error rate, and extends Holm’s (1979)

step-down procedure to the sequential setting, yielding substantial savings in sample size with small

loss in power.
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1 Introduction

Multiple testing problems of the sequential or, more generally, multistage nature occur frequently

in statistics. For example, in sequential fault detection and diagnosis (Nikiforov, 1995; Lai, 2000),

after detecting that a change in the system has occurred at some time point, the task is to iso-

late this changepoint to one of k time intervals or diagnose it as one of k change types. An-

other area rich with examples is sequential clinical trials with multiple endpoints (e.g., Tang et al.,

1993; Tang and Geller, 1999) in which patients are accrued, treated, and evaluated sequentially

with regard to k different features, none of which may have priority. Some recent new areas

of applications are quantitative finance, in empirical tests of the profitability of trading strate-

gies (Romano and Wolf, 2005b), and genomics (Ge et al., 2003).

Based on data coming from a parametric family Fθ, θ ∈ Θ, of distributions, we will be concerned

with testing a set of hypotheses H1, . . . ,Hk ⊆ Θ. A hypothesis Hi is true if the true θ lies in Hi. If

I ⊆ {1, . . . , k} is the set of indices of the true hypotheses, then the family-wise error rate (FWE)

is defined as the probability

P (some Hi, i ∈ I, is rejected). (1.1)

Other and somewhat less stringent notions of error rate have been proposed (cf. Hochberg and Tamhane,

1987) but we focus here on FWE, the bounding of which is sometimes called strong error control,

because of its prominence in clinical research (Lehmacher et al., 1991) and other applications.

A set of hypotheses H1, . . . ,Hk is called closed if the set {H1, . . . ,Hk} is closed under inter-

section. Marcus et al. (1976) introduced a method of testing a closed set of hypotheses H1, . . . ,Hk

that controls the FWE by requiring that there be an α-level test of every intersection hypothesis

∩i∈JHi, J ⊆ {1, . . . , k}. Let H be the set of all such intersections, and note that closedness of

{H1, . . . ,Hk} is equivalent to it being equal to H. Beginning with the global hypothesis ∩k
i=1Hi,

Marcus et al.’s procedure tests the non-empty elements of H in order of decreasing dimension

(defined as the maximum number of Hi being intersected) by their corresponding α-level tests, and

proceeding by using the rule that H ∈ H is tested if and only if all elements of H contained in H

are tested and rejected. Multistage extension of closed tests is relatively straightforward because of

the nature of the hypotheses and the test statistic. It is essentially a repeated closed testing pro-

cedure, performing closed testing of the hypotheses not yet rejected at every stage; see Tang et al.

(1993) and Tang and Geller (1999).

When the set of hypotheses is not closed, Holm’s (1979) step-down procedure is commonly used

for fixed sample size problems. Beginning with a brief review of Holm’s (1979) procedure, Section 2

then proceeds to provide a multistage extension, which aims to capture the generality of Holm’s

procedure for controlling the FWE and to be able to take advantage of the closed testing structure

when it exists. A simulation study of the proposed procedure’s power and expected sample size is
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given in Section 3, and further applications and relation to the existing litertaure are discussed in

Section 4.

2 A Multistage Step-Down Procedure

Holm (1979) proposed the following general step-down method of testing H1, . . . ,Hk that does

not assume closedness. Although Holm’s procedure has been criticized for lack of power in some

settings, it does preserve the FWE without making any assumptions about the structure of the

hypotheses or correlations between the individual test statistics, only that for each hypothesis Hi

there is a computable p-value p̂i such that

P (p̂i ≤ α|Hi) ≤ α (2.1)

for all 0 < α < 1. The α-level Holm’s procedure proceeds as follows. Compute and order the

p-values p̂i(1) ≤ . . . ≤ p̂i(k). For j = 1, . . . , k, if

p̂i(j) ≥ α/(k − j + 1), (2.2)

then accept Hi(j), . . . ,Hi(k); otherwise, reject Hi(j) and move on to stage j +1 (if j < k). A simple

proof that the FWE of Holm’s procedure is bounded by α is given in Lehmann and Romano (2005).

As noted above, when closedness exists it is unnecessary to use the step-down correction (2.2),

or any Bonferroni-type correction for that matter. However, it is illuminating to now consider how

the step-down procedure is related to closed testing procedures. When closedness exists, Marcus

et al.’s (1976) procedure can be viewed as a special case of Holm’s step-down procedure in the

following sense. Assume that the p-values “respect” the closedness in the sense that

Hi ⊆ Hj ⇒ p̂i ≤ p̂j. (2.3)

In this case Holm’s procedure will test the elements of H = {H1, . . . ,Hk} in order of decreasing

dimension (provided we agree to use dimension to break any “ties”). Assuming that closedness

and (2.3) hold, we make two slight modifications of Holm’s procedure to utilize these properties.

First, upon rejection of Hi(j), we accept any of the remaining hypotheses whose complements

are implied by Hi(j), i.e., accept any Hi(j+1), . . . ,Hi(k) containing Hc
i(j), the complement of Hi(j).

This does not change the FWE ≤ α bound since (2.3) guarantees that the intersection of all true

hypotheses, denoted by G, is the first true hypothesis tested. Otherwise, if G has already been

accepted, then all true hypotheses are subsequently accepted according to this rule. Next, note

that the Bonferroni-type correction in (2.2) is now unnecessary, i.e., the right-hand-side of (2.2)

may be replaced by α while maintaining FWE ≤ α, since, letting jG denote the rank of the p-value
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associated with G,

FWE = P (G rejected)

≤ P (p̂i(jG) < α)

≤ α.

We now introduce a multistage generalization of Holm’s (1979) step-down procedure. As

with the original version of Holm’s procedure, we make no assumptions about the structure of

the set of hypotheses H1, . . . ,Hk to be tested, and the only assumptions are about the family of

available tests of the individual hypotheses through their significance levels, following the approach

of Romano and Wolf (2005a). That this procedure satisfies FWE ≤ α is proved in Theorem 1.

For each hypothesis Hi, assume there is a sequential test statistic Ti,n, a (non-random) critical

value function Cn(ρ) that is non-increasing in ρ ∈ (0, 1), and a set N of possible sample sizes such

that

sup
θ∈Hi

Pθ

(
sup
n∈N

[Ti,n − Cn(ρ)] ≥ 0

)
≤ ρ (2.4)

for all 0 < ρ < 1. This requirement is the multistage analog of (2.1). The existence of such a family

of sequential test statistics may at first seem restrictive, but in many settings there are natural

choices for the Ti,n; see the examples in Sections 3 and 4. The use of the set N of possible sample

sizes allows for the possibilities of fully sequential (e.g., N = {1, 2, 3, . . .}) or group sequential (e.g.,

N = {m, 2m, 3m, 4m, 5m} for some m) in both the truncated and non-truncated settings.

The α-level multistage step-down procedure with no more than k stages is defined as follows.

Let I1 = {1, . . . , k}, n0 = 0, and let | · | denote set cardinality. For j = 1, . . . , k:

1. Sample up to

nj = inf

{
n ∈ N : n > nj−1 and max

i∈Ij
Ti,n ≥ Cn(α/|Ij |)

}
. (2.5)

2. Order the test statistics

Ti(j,1),nj
≥ Ti(j,2),nj

≥ . . . ≥ Ti(j,|Ij|),nj
.

3. Reject Hi(j,1), . . . ,Hi(j,mj), where

mj = max

{
m ≥ 1 : min

1≤ℓ≤m

[
Ti(j,ℓ),nj

− Cnj

(
α

|Ij | − ℓ+ 1

)]
≥ 0

}
. (2.6)

4. Stop if j = k, if nj = supN , or if all remaining hypotheses contain the complement of

some rejected hypothesis. Otherwise, let Ij+1 be the indices of the remaining hypotheses and

continue on to stage j + 1.
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Theorem 1. The multistage step-down procedure satisfies FWE ≤ α.

Proof. Let I be the indices of the true hypotheses. If an error occurs, then for some Ij ⊇ I and

index ℓ such that |Ij | − ℓ+ 1 ≥ |I|,

max
i∈I

Ti,nj
≥ Cnj

(
α

|Ij | − ℓ+ 1

)
≥ Cnj

(α/|I|),

which implies that

max
i∈I

sup
n∈N

[Ti,n − Cn(α/|I|)] ≥ 0.

Then, using the Bonferroni inequality and (2.4),

FWE ≤ P

(
max
i∈I

sup
n∈N

[Ti,n − Cn(α/|I|)] ≥ 0

)

≤
∑

i∈I

P

(
sup
n∈N

[Ti,n − Cn(α/|I|)] ≥ 0

)

≤
∑

i∈I

α/|I| = α.

We point out additionally that the procedure may stopped at Step 4 at any point as long as

the remaining hypotheses are accepted, since this action can only serve to decrease the FWE. This

feature may be of use in clinical trial applications; see the last paragraph of Section 4.2.

Theorem 1 holds regardless of the structure of the Hi or the joint distribution of the test

statistics Ti,n. When the Hi are closed, the above multistage step-down procedure can be modified

slightly to take advantage of this additional structure, analogous to the discussion in the second

paragraph of this section for the fixed-sample case. To this end, assume that the set H1, . . . ,Hk is

closed, and that the test statistics respect the closedness in the sense that

Hi ⊆ Hj ⇒ Ti,n ≥ Tj,n for all n ∈ N . (2.7)

As in the fixed-sample case, this guarantees that the hypotheses are analyzed by decreasing dimen-

sion. First, we modify the multistage step-down procedure by changing Step 3 to:

3.′ For ℓ = 1, . . . ,mj : RejectHi(j,ℓ),nj
and accept any remaining hypotheses containingHc

i(j,ℓ),nj
.

Next, we replace the fractions of α in (2.5)-(2.6) by α. These modifications do not cause violation

of FWE ≤ α by the same proof given in the second paragraph of this section, proving the following.

Theorem 2. If the set of hypotheses H1, . . . ,Hk is closed and the test statistics Ti,n satisfy (2.7),

then the multistage step-down procedure with Step 3 replaced by 3′ and α as the argument of Cn

in (2.5)-(2.6) satisfies FWE ≤ α.
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3 Power and Expected Sample Size

The Holm step-down procedure’s attractive quality is its generality, i.e., no assumptions about

the structure of the hypotheses H1, . . . ,Hk or the individual test statistics, other than (2.1), are

necessary. This generality is provided by the Bonferroni-type adjustment (2.2) which also can cause

Holm’s procedure to be conservative, in terms of FWE and power, relative to procedures that take

into account correlations between the individual test statistics. This conservativeness is shared

by the multistage step-down procedure because of its use of an analogous step-down rule (2.6).

However, as pointed out above, the utility of either the multistage or fixed sample step-down

procedure lies in cases where such correlations are difficult to model.

Table 1: A 3-Endpoint Trial

Procedure (µ1, µ2, p) EM P (rej. H1) P (rej. H2) P (rej. H3) FWE

H 105 1.7% 1.7% 0.8% 4.0%

Mult (0, 0, .5) 104.7 1.6% 1.6% 1.8% 4.9%

MultH 104.6 1.5% 1.5% 2.0% 4.8%

H 105 2.3% 2.3% 76.0% 4.4%

Mult (0, 0, .75) 98.4 1.7% 1.7% 79.9% 3.2%

MultH 98.3 2.1% 2.1% 80.7% 4.2%

H 105 2.5% 95.7% 2.1% 4.4%

Mult (0, .65, .5) 96.9 1.6% 94.5% 1.9% 3.4%

MultH 96.9 2.2% 94.6% 2.9% 4.9%

H 105 4.3% 82.9% 83.9% 4.3%

Mult (0, .5, .75) 92.8 1.5% 76.3% 80.3% 1.5%

MultH 92.3 3.2% 79.9% 85.2% 3.2%

H 105 83.4% 83.4% 3.8% 3.8%

Mult (.5, .5, .5) 93.5 76.3% 76.3% 1.8% 1.8%

MultH 93.1 79.6% 79.6% 2.7% 2.7%

H 105 70.9% 70.9% 86.8% NA

Mult (.4, .4, .75) 89.9 55.3% 55.3% 80.2% NA

MultH 89.3 64.7% 64.7% 85.4% NA

H 105 88.6% 88.6% 90.0% NA

Mult (.5, .5, .75) 87.2 76.4% 76.4% 80.0% NA

MultH 86.1 84.4% 84.4% 87.0% NA

5



Consider a multistage step-down procedure with maximum sample size n = maxN . Relative to

the fixed-sample Holm step-down procedure of size n, the multistage procedure will have a reduction

in expected sample size, provided the set N is chosen reasonably. But, by the Neyman-Pearson

lemma, the power of the multistage procedure for rejecting a given false hypothesis cannot exceed

the power of the fixed-sample Holm procedure. However, as shown by the following simulation

study, this loss in power is usually slight while the savings in expected sample size tends to be

substantial.

Consider a three-endpoint clinical trial where two of the endpoints concern continuous data

and the third concerns probability of a certain binary outcome. For example, let the data be

Xi = (Xi1,Xi2,Xi3), i = 1, 2, . . ., where for j = 1, 2, the Xji are i.i.d. normal random variables

with unknown mean µj and variance 1, and the X3i are independent Bernoulli random variables

where p = P (X3i = 1) is unknown. Suppose the Xi represent clinical treatment outcomes for three

endpoints of interest, and it is desired to test efficacy of the treatment in the form of the three

one-sided null hypotheses

H1 : µ1 ≤ 0, H2 : µ2 ≤ 0, H3 : p ≥ 1/2.

In cases such as this, the correlation between the components of Xi is likely to be unknown or

difficult to model. In the following simulation study we compare the performance of the mul-

tistage step-down procedure with two other procedures in the three cases of independent, posi-

tively correlated, and negatively correlated components of Xi. Table 1 contains the results for

the independent case; the other two are discussed below. Whatever the correlation between the

components, the three procedures evaluated are equally applicable since they do not depend on

the correlation structure of the individual hypotheses. For Holm’s step-down procedure, we use

standard α = .05-level likelihood ratio tests of H1,H2,H3 of size n = 35 to have power around 90%

at (µ1, µ2, p) = (.5, .5, .75). For the multistage step-down procedure, we use the same test statis-

tics in one-sided group sequential tests with N = {26, 29, 35} and use a normal approximation for
∑

iX3i to compute Cn(ρ) to satisfy (2.4). Table 1 contains the expected sample size, probability

of rejecting each Hi, and FWE (when ∪3
i=1Hi is true) for the Holm procedure (denoted by H)

and the multistage step-down procedure (denoted by MultH). To see the effects of the step-down

rule (2.5)-(2.6), we also include the multistage test (denoted by Mult) identical to MultH but with

α divided by k = 3 in place of the larger fractions of α in (2.5)-(2.6); see the first paragraph of

the Section 4.1. Each entry in Table 1 is computed from 50,000 simulation runs. The last six

FWE entries are marked NA (not applicable) because none of the null hypotheses are true for

those parameter values. The multistage procedures Mult and MultH show substantial savings in

expected size sample over the Holm procedure’s fixed sample size of 105 at significant deviations

from the “worst-case” null (µ1, µ2, p) = (0, 0, .5). The expected sample size of Mult and MultH are

nearly identical, the former being somewhat larger due to its larger critical values in (2.5)-(2.6).
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For the same reason MultH has slightly higher power than Mult; in particular, see the last six rows

of Table 1. Although the power of MultH is lower than H due to its multiple looks, this difference is

slight, usually within a few percentage points. This relative relationship does not change when the

components of Xi are correlated, it simply tends to decrease slightly in magnitude when positively

correlated, and increase when negatively correlated. For example, when (µ1, µ2, p) = (0, .5, .75) and

the two normal components have a correlation coefficient of .75, P (reject H1) increases to 4.5%,

2.0%, and 3.6% for H, Mult, and MultH, respectively, while the power P (reject H2) decreases to

80.7%, 73.4%, and 77.0%, respectively. Here Mult and MultH have expected sample size of 94.7

and 94.2.

4 Applications and Discussion

4.1 Sequential k-Hypothesis Testing

A straightforward application of (2.4) to sequential testing of k null hypotheses is to use Bonferroni’s

inequality so that the k hypotheses can be treated separately by setting ρ = α/k in (2.4). This

approach to sequential multiple testing has been taken by many authors. Paulson (1964) noticed

that further sample size savings might be possible by eliminating (rejecting) some hypotheses during

the course of the experiment, similar to the test Mult in the preceding section. We have refined the

multistage rejection of hypotheses by using Holm’s step-down procedure to sharpen the Bonferroni

bounds. In fact, when the set of hypotheses is closed, a slight modification of our multistage test

can dispense with Bonferroni bounds, as shown in Theorem 2.

Sequential multiple hypothesis testing dated back to Sobel and Wald (1949) in deciding which

of three simple hypotheses H1 : θ = −d, H2 : θ = 0, or H3 : θ = d is true about a normal

mean θ, for a fixed value d > 0. This is basically a classification problem. The Sobel-Wald test

combines two sequential probability ratio tests (SPRTs) for different pairs of the three hypotheses,

the comparison of H1 versus H3 being superfluous. Armitage (1950) generalized the Sobel-Wald

problem to k hypotheses, corresponding to an error matrix αij = Pi(̂i = j) for i 6= j, where Pi

denotes the probability measure underHi and î is the hypothesis chosen by the test. Armitage’s test

combines the corresponding
(
k
2

)
SPRTs for the k hypotheses, which leads to stopping boundaries

with slope ±1/2 in the (n, Sn/d)-plane, where Sn =
∑n

i=1Xi is the sum of the first n i.i.d. normal

observations. Simons (1967) considered a generalization of a special case of Armitage’s test for

k = 3 in which the stopping boundaries’ slopes can be chosen arbitrarily. Whereas the Sobel-

Wald, Armitage, and Simons tests stop and decide on a hypothesis Hj when all the component

SPRTs simultaneously prefer Hj to all other alternatives, Lorden (1972, 1976) introduced various

multistage tests that decide on Hj only when all other hypotheses can be rejected, based on
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generalized likelihood ratios. Lorden’s work was extended to composite hypotheses by Pavlov

(1988). Eisenberg (1991) gives a detailed summary of these problems.

Paulson (1963) introduced another generalization of the Sobel-Wald test, considering k ≥ 2

intervals (−∞, θ1), (θ1, θ2), . . ., (θk−1,∞) and testing sequentially to which interval θ belongs. In

its symmetric form, Paulson’s test stops the first time the interval (un, vn) is contained in one of

the intervals (−∞, θ1 + δ), (θk−1 − δ,∞), or (θi − δ, θi+1 + δ), i = 1, . . . , k − 2, where δ > 0 is a

chosen parameter and

un = max
1≤m≤n

ũm = max
1≤m≤n

(Sm/m− δ/2 −A/m) (4.1)

vn = min
1≤m≤n

ṽm = min
1≤m≤n

(Sm/m+ δ/2 +A/m) (4.2)

in which A > 0 is a critical value that can be chosen to give desired coverage probability. Paul-

son’s procedure can be viewed as a special case of the multistage step-down procedure, as follows.

Defining H
(i)
0 : θ = θi − δ and H

(i)
1 : θ = θi (1 ≤ i ≤ k− 1), the one-sided SPRT of H

(i)
0 versus H

(i)
1

stops sampling and rejects H
(i)
0 if

Sn − n[(θi − δ) + θi]/2 ≥ A, (4.3)

for some critical value A > 0. Dividing both sides of (4.3) by n and rearranging terms gives

A/n ≤ Sn/n − (θi − δ/2) = Sn/n− δ/2 − (θi − δ),

which by (4.1) is equivalent to ũn ≥ θi − δ. Similarly, the one-sided SPRT of H̃
(i)
0 : θ = θ + δ

versus H
(i)
1 stops sampling and rejects H̃

(i)
0 if ṽn ≤ θi+ δ. Hence running the multistage step-down

procedure until a coherent classification is made is precisely Paulson’s procedure. In the small-

probability event that no coherent classification is made – say, if at some stage a hypothesis is

rejected containing the complement of a previously rejected hypothesis – classification based on

Sn/n or randomization can be used, as Paulson (1963) suggests.

Although we have used H
(i)
0 and H̃

(i)
0 to denote null hypotheses for combining SPRTs above,

there is no natural notion of a “null” hypothesis in the actual classification problem. We could have

populated our list of hypotheses to test in any way that suited our needs. Thus it is also perhaps

interesting to consider what closed testing has to say about the Sobel-Wald-Paulson problem. In

particular, for the case k = 3 in the Paulson problem, let H1 : θ < θ1, H2 : θ > θ1, H3 : θ < θ2,

and H4 : θ > θ2. The set {H1,H2,H3,H4} is not closed, but adding H5 = H2 ∩ H3 = (θ1, θ2)

to the list of hypotheses completes its closure H = {H1,H2,H3,H4,H5}. Since all intersections

of dimension 3 or higher are empty, the closed testing principle suggests beginning by testing the

hypotheses of dimension 2, namely H1 = H1 ∩ H3 = (−∞, θ1), H4 = H2 ∩ H4 = (θ2,∞), and

H5 = (θ1, θ2), which is of course the original Paulson problem with k = 3. Hence it seems that the

closed testing principle does not give any new insight into the Paulson problem.
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A closely related problem to sequential k-hypothesis testing is selecting the one of k normal

populations with the largest mean. Bechhofer (1954) considered this problem when the variance of

the observations is known, and proposed a fixed sample procedure that compares the sample means

of the individual populations. For unknown variance, Bechhofer et al. (1954) proposed a two-stage

procedure, and Robbins et al. (1968) proposed a sequential procedure with improved efficiency,

also based on sample means. The special case of when the mean is an integer was considered by

Robbins (1970), and later generalized by McCabe (1973). Robbins (1970) introduced the notion of

“distinguishability” of a family of populations, and Khan (1973) studied the asymptotic efficiency

of stopping rules that distinguish within such families. Mukhopadhyay (1983) proposed likelihood-

based methods for the largest mean problem, and used Khan’s results to show asymptotic efficiency.

Likelihood-based methods were shown to be useful in a number of related selection problems as well;

see Mukhopadhyay and Solanky (1994). Further references are given in Section 2 of Chan and Lai

(2005).

4.2 Multiple Endpoint Clinical Trials

The multistage step-down procedure provides a general method of testing multiple endpoints in

clinical trials. The adaptive rejection times (2.5) and rejection rule (2.6) have the effect of adaptively

“dropping” (i.e., rejecting) hypotheses when enough information has accumulated to do so, to focus

on the statistically most interesting endpoints. As discussed above, when closedness exists, closed

testing methods should be used since they are are in general more powerful than step-down methods

(simulations verifying this were conducted by Lehmacher et al. (1991) and Tang and Lin (1997))

because they forgo the need for Bonferroni-type corrections, such as in (2.2), (2.5), and (2.6).

The multistage step-down method could be useful in cases where closedness does not exist. For

example, in clinical trials for AIDS treatments, it is common (e.g., Fischl et al., 1987) to have

multiple endpoints of both the continuous and categorical types, like CD4 (T-cell) level, which

is commonly modeled as a normal random variable, and the binary indicator of opportunistic

infectious disease like a cold, modeled as a Bernoulli random variable. Moreover, if one or some

subset of the endpoints is of primary interest, the multistage step-down procedure can be used as

a pilot or screening phase with the option of immediately stopping and proceeding to secondary

testing when one of the primary hypotheses is rejected. That this does not increase the FWE is

pointed out following the proof of Theorem 1. The multistage step-down procedure provides a

general framework that can be applied to multiple testing in these clinical trials.
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