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In this brief presentation, we would like to present our attempts of detecting
chirality and mutations from Chern-Simons gauge theory. The results show
that the generalised knot invariants, obtained from Chern-Simons gauge the-
ory, are more powerful than Jones, HOMFLYPT and Kauffman polynomials.
However the classification problem of knots and links is still an open challeng-
ing problem.
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1. Introduction

The classification of three and four manifolds is one of the open questions

which has been addressed by both mathematicians and physicists. In par-

ticular, physicists have shown that a class of quantum field theories called

topological field theories provides an elegant approach to solve these prob-

lems.

The main idea in any quantum field theory is to represent the theory by

an action S which gives information about the particle content and their

interactions. The interaction strengths are given by coupling constants. For

capturing the topological features of knots or links as shown in Fig. 1, we

need a theory which does not change if we alter the shape or size of these

knots or links. One such theory is the Chern-Simons gauge theory where the

action S is explicitly metric independent. Hence, Chern-Simons field theory

provides a natural framework to study knots,links and three manifolds. The

action S defining the Chern-Simons theory on a three manifold M based

http://arxiv.org/abs/1107.2179v1


July 13, 2011 0:11 WSPC - Proceedings Trim Size: 9in x 6in knot2

2

Fig. 1. Both knots C (though different sizes) are trefoil knots

on a gauge group G is

S =
k

4π

∫

M

Tr

(

A ∧ dA+
2

3
A ∧A ∧ A

)

=
k

4π

∫

M

ǫµνλ d3x Tr

(

Aµ∂νAλ +
2

3
AµAνAλ

)

, (1)

where k is the coupling constant and Aµ’s are the gauge fields or connections

matrix-valued in group G.

The knots or links - for example, the trefoil knot C carrying represen-

tation R of the gauge group G are described by the expectation value of

Wilson loop operators WR(C) = Tr[Pexp
∮

Aµdx
µ]:

VR[C] = 〈WR(C)〉 =

∫

M
[DA] WR(C) exp(iS)

Z[M ]
, (2)

where

Z[M ] =

∫

M

[DA] exp(iS)

is the partition function and VR[C] are the knot invariants.

Witten’s pioneering work1 established a three-dimensional definition for

knots and links. In particular, Jones and HOMFLYPT polynomials and

their recursion relations were obtained from Chern-Simons gauge theory
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based on SU(2) and SU(N) gauge groups. We can relate coupling con-

stant k and the rank N to the polynomial variables of HOMFLYPT poly-

nomials. Similarly, the Jones’ polynomial variable q will be related as

q = exp (2πi/k + 2).

The two main ingredients which go into the evaluation of the polynomial

invariants VR[C] of knots and links are

(1) Connection between Chern-Simons theory on the three-dimensional

ball to the two-dimensional Wess-Zumino conformal field theory on

the boundary of the three-ball.

(2) Using Alexander’s theorem, any knot or link can be obtained as a clo-

sure of braid.

In Fig. 2(a), we illustrate Alexander’s theorem by re-drawing the trefoil

knot as a closure of two-strand braid with three crossings. Also, we have

diagrammatically shown in Fig. 2(b) that these knots or links in S3 can be

viewed as gluing two three-balls with oppositely oriented S2 boundaries. In

this particular trefoil knot example, the S2 boundary has four-punctures.

The connection between Chern-Simons theory and Wess-Zumino conformal

field theory states that the Chern-Simons functional integral over a three-

ball with a four-punctured S2 boundary corresponds to state |Ψ3〉 which

represents four-point correlator conformal block in the Wess-Zumino con-

formal field theory. The suffix 3 on the state is to indicate that the middle

two-strands are braided thrice. In fact, the punctures get exchanged when-

ever the middle two-strands get braided. We can denote the no-crossing

four-punctured boundary state as |Ψ0〉 and apply a braiding operator B

thrice to get the state |Ψ3〉:

|Ψ3〉 = B3|Ψ0〉 . (3)

Similarly, the state for the oppositely oriented boundary will be in the dual

space. For the above example in Fig. 2(b), the state is 〈Ψ0|. The knot

invariant is

VR[C] = 〈Ψ0|Ψ3〉 = 〈Ψ0|B
3|Ψ0〉 . (4)

In order to see the polynomial form, we need to expand the state |Ψ0〉 in

an eigenbasis of the braiding operator B. In general for the four-punctured

S2 boundary, the braiding can be either on the side two-strands or on the

middle two strands. For clarity, we will take the gauge group G = SU(2).

For the four-punctured S2 boundary, we can chose eigenbasis |φs〉 if the



July 13, 2011 0:11 WSPC - Proceedings Trim Size: 9in x 6in knot2

4

2S
Oppositely oriented

boundary

S3

ψ
3

0
ψ

Fig. 2. (a) Trefoil in S3 drawn as a closure of braid ≡ (b) gluing of two three-balls with
oppositely oriented S2 boundaries

R R RR
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s

φs φ
t

t

Fig. 3. eigenbasis when braiding (a) side two-strands (b) middle two-strands.

braiding is in the side two-strands. That is,

B1|φs〉 = λs(R,R)|φs〉 , (5)

where the suffix 1 on the braiding operator denotes the braiding between

first and the second strands and the eigenvalue is λs(R,R). The basis is

shown diagrammatically in Fig. 3(a) where R denotes the SU(2) represen-

tation placed on the strands. From the picture, the representation s will be

an element in the tensor product R⊗R. Similarly, for braiding middle two

strands, we choose the basis |φ̂t〉 as shown in Fig. 3(b) where t ∈ R ⊗ R.

Clearly, these two basis states must be related by a duality matrix:

|φ̂t〉 = ats

[

R R

R R

]

|φs〉 . (6)

When the four strands carry the same representation, we can write in short-
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hand notation the duality matrix as

ats

[

R R

R R

]

≡ ats . (7)

These duality matrices turns out to be proportional to quantum Racah co-

efficients. The explicit form of SU(2)q Racah coefficients and their identities

satisfied are available in Ref. 2. See also papers3–5 . In this example, the

braiding involves middle two strands. Hence the state |Ψ0〉 can be expanded

in the middle-strand basis |Φ̂t〉:

|Ψ0〉 =
∑

t

µt |Φ̂t〉 . (8)

Interestingly, the coefficients µt has to satisfy

µt =
√

Vt[U ] =
√

S0t/S00 ≡
√

dimqt , (9)

so that two equivalent knots share the same polynomial invariant. Here,

Vt[U ] denotes the polynomial invariant for unknot carrying representation

t whose form can be written as the ratio of elements of the modular trans-

formation matrix S in Wess-Zumino conformal field theory or in terms of

quantum dimensions of the representation t of the quantum group as indi-

cated in the above equation. The knot invariant (4) will be

VR[C] = 〈Ψ0|B
3|Ψ0〉 =

∑

t

dimqt(λt(R,R))3 . (10)

So far, we have not introduced orientation on the strands. In general, the

braiding eigenvalue depends on the framing and also on the relative orien-

tation on the two braiding strands. Two conventional framing are standard

framing and blackboard framing. Standard framing is one where the self-

linking number of the knot with its frame is zero. This is useful to obtain

ambient isotopy invariants. The self-linking number matches the crossing

number in the blackboard framing. Hence the braiding eigenvalue in the

blackboard framing is useful to obtain regular isotopy invariants. In the tre-

foil example, we could place parallel orientation in the middle two-strands.

As the crossing sign due to braiding is positive, we called such a braiding

as right-handed braiding. Similarly, an inverse braiding leading to mirror

of trefoil (T ∗) will be called left-handed braiding.

For parallely oriented strands, the right-handed braiding eigenvalue in

standard framing is

λ
(+)
t (R,R) = (−1)ǫq2CR−Ct/2, q = e

2πi

k+Cv . (11)
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where CR, Ct, Cv denotes the quadratic casimirs in the respective R, t and

adjoint representation. ǫ will be ±1 depending on the representation t ap-

pears symmetrically or antisymmetrically in the tensor product R⊗R. Sim-

ilarly, the left-handed braiding eigenvalue for antiparallely oriented strands

is

λ
(−)
t (R,R) = (−1)ǫqCt/2, q = e

2πi

k+Cv . (12)

Now using the appropriate braiding eigenvalues, the knot invariants can be

written as polynomials in the variable q. The method for a four-punctured

S2 boundary is generalisable for r such four-punctured S2 boundaries as

shown in Fig. 4. We will see in the next section that this building block will

be useful to redraw knots like knot 942 and knot 1071 as gluing of three-balls

with one or more four-punctured S2 boundaries. The basis state for such a

r-S2 boundaries is

νr =
∑

Rs

|φ
(1)side
Rs

〉|φ
(2)side
Rs

〉 · · · |φ
(r)side
Rs

〉

(dimqRs)
r−2
2

, (13)

where Rs ∈ Ri ⊗Ri+1 for any i. Sometimes, it is useful to keep S2 bound-

aries with more than four-puctures. Then the basis state for a S2 boundary

with n puctures will be a n-point conformal block. For braiding B2i+1’s

and B2i’s, we choose the basis shown in Fig. 5(a) and (b) respectively. The

procedure we elaborated for the trefoil obtained from gluing two three-balls

each with a four-punctured S2 boundary is generalisable for any knot. That

is, using the building blocks in Fig. 4 or three-balls with n-punctured S2

boundaries, it is not difficult to see that any knot can be obtained either

from gluing two three-balls each with a n-punctured S2 boundaries or from

gluing many three-balls with one or more r four-puctured S2 boundaries.

The method presented here enables direct evaluation of any knot/link poly-

nomial directly without going through the recursive procedure.

Though we have concentrated on the gauge group SU(2), it is straight-

forward to generalise for any compact semi-simple gauge group.6 The rep-

resentation R must be replaced by conjugate representation R̄ (R ≡ R̄

for SU(2)) depending on the oriented strand is outgoing from or incoming

to a S2 boundary as shown in Fig. 4. Thus, we can place any representa-

tion R of any compact semi-simple gauge group on the knot and obtain

generalised knot invariants. If we place the defining representation on

the strands, we recover some of the well-known polynomials as tabulated

below:
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Fig. 4. Three-ball with r S2 boundaries each with four-punctures.

Gauge Group Polynomial

SU(2) Jones’

SU(N) Two-variable HOMFLYPT

SO(N) Two-variable Kauffman
We know that these well-known polynomials do not solve the classification

problem. Apart from these special cases, Chern-Simons field theory gives a

huge pool of generalised polynomials depending on placing representation

R of any gauge group other than the defining representation on the strands.

We believe that at least one of these generalised Chern-Simons invariant will

be able to distinguish two inequivalent knots which are not distinguished

by the well-known polynomials.

Knot theory literature gives a list of chiral knots and mutant knots
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Fig. 5. Basis states for a n-punctured S2 boundary.

which are not distinguished by Jones’, HOMFLYPT and Kauffman. We

tried to check the ability of generalised knot invariants, from Chern-Simons

field theory, to detect chirality and mutations. We address the chirality

detection in the following section.

2. Chirality Detection

Upto 10 crossings, there are two knots : knot 942 and knot 1071 which are

chiral but their chirality is not detected by the well-known polynomials. In

Fig. 6, we have drawn knot 942 in two equivalent ways. Clearly, the knot

942 can be obtained as gluing of five building blocks as shown in Fig. 7.

For G = SU(2), Rn =

✛ ✲n

(spin n/2 representation) placed

on knot, the states for the building blocks can be written down following

the methods presented in the previous section and also using the properties

of the duality matrix.3–5 The states for these five building blocks are7
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( a ) ( b )

Fig. 6. Chiral Knot 942
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Fig. 7. Gluing of five building blocks

ν1(P1) =
n
∑

l1=0

√

[2l + 1](−1)3(n−l1)q−3/2[n(n+2)−l1(l1+1)]|φ
(1)
l1

〉

ν1(P4) =

n
∑

l5=0

(−1)n−l5q−1/2[n(n+2)−l5(l5+1)]|φ
(1)
l5

〉

ν2(P1;P2) =

n
∑

i1,j1,l2,r=0

al1raj1ral2r
√

[2l2 + 1]
√

[2r + 1]
× qn(n+2)−l2(l2+1)|φ

(1)
i1

〉|φ
(2)
j1

〉

ν2(P2;P3) =

n
∑

l3=0

ql3(l3+1)|φ
(1)
l3

〉|φ
(2)
l3

〉

ν2(P3;P4) =

n
∑

i2,j2,l4=0

(−1)l4q−l4(l4+1)/2al4i2al4j2 |φ
(1)
i2

〉|φ
(2)
j2

〉 .
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Here Pi’s denote the S2 boundaries as indicated in Fig. abg:fig7. Using the

above states, the knot invariant is

Vn[942] = (−1)nq
−3
2 [n(n+2)]

∑

r,l1,l2,j1,j2=0

√

[2l1 + 1]×

√

[2l2 + 1]
√

[2j2 + 1]al1ral2raj1raj1j2 ×

(−1)l1q
3
2 [l1(l1+1)]q

3
2 [j1(j1+1)]q−l2(l2+1)qj2(j2+1)

We checked the general result for the special cases. That is, n = 1 gives

Jones’ polynomial and n = 2 gives Akutsu-Wadati/Kauffman polynomial.8

Interestingly, for n = 3, the polynomial is

V3[942] = q45/2 − q41/2 − q39/2 + q35/2 + q23/2 + q21/2 − q19/2

−q17/2 + q13/2 − q9/2 + q5/2 + q3/2 + q−3/2 + q−5/2

−q−13/2 − q−15/2 + q−21/2 + 2q−23/2 − q−27/2 + 2q−31/2

−3q−35/2 − q−37/2 + q−39/2 + q−41/2 .

Clearly, V3[942](q) 6= V3[942](q
−1) indicating that SU(2) Chern-Simons spin

3/2 (n = 3 in representation Rn) knot polynomial is powerful to detect

chirality. Similar exercise was performed for knot 1071 by gluing the four

building blocks as shown in Fig. 8. The knot invariant7 is

Vn[1071] = (−1)nq
n(n+2)

2

∑

i,r,s,u,m=0

√

[2r + 1][2s+ 1][2u+ 1]

[2m+ 1]
aim

amsarmaiu(−1)s q−i(i+1)qm(m+1)q−r(r+1)qu(u+1)q
3
2 s(s+1) .

For n = 3, we have checked that V3[1071](q) 6= V3[1071](q
−1) confirming the

ability of generalised Chern-Simons invariant in detecting chirality. With

such positive results for chiral knots, we attempted to check whether gen-

eralised Chern-Simons invariant is capable of detecting mutation operation

which we shall present in the following section.

3. Mutation and mutant knots

Remove a two-tangle region from any knot and do a rotation by π about any

of the three perpendicular axis. Replace the rotated two-tangle back with

suitable reversal of orientation of the strands to give another knot. This

operation is called mutation and the two knots are said to be mutants. In

Fig. 9, we have indicated the three mutation operation γi’s. An example for

the mutant knots is the well-known eleven-crossing Kinoshita-Terasaka and

Conway knots. We can formally represent mutant knots shown in Fig. 10 as
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I

II

III

IV

Fig. 8. Chiral Knot 1071 obtained from gluing the building blocks

gluing two three-balls with the two-tangle rooms as shown in Fig. 11. That

is, gluing Fig. 11(d) with any of the Fig. 11(a),(b) and (c) gives mutant

knots. Interestingly, the states (a), (b), (c) in Fig. 11 can be obtained by

gluing Fig. 11(a) with the two-boundary states (a), (b) and (c) in Fig. 12

respectively. Clearly, ν2 and ν3 represent mutation γ1 and γ2 respectively

in Fig. 9 respectively. As braid words, Fig. 12 (a), (b), (c) are different but



July 13, 2011 0:11 WSPC - Proceedings Trim Size: 9in x 6in knot2

12

γ
1

2
γ

γ

γ
R

R

γ γ
2

3

1

3

Fig. 9. Mutation Operation
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3

( a ) ( b ) ( c )

Fig. 10. Mutant Knots

the states νi’s are same:

ν2 =
∑

l

|φ
side(1)
l 〉b1b

−1
3 |φ

side(2)
l 〉 = Cν1 . (14)
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Fig. 11. Building blocks

1

2

1
1

22

( a ) ( b ) ( c )

Fig. 12. state (a) ν1 (b) ν2 and (c) ν3 .

where we have used

b1|φ
side
l 〉 = b3|φ

side
l 〉 = λ

(−)
l (R, R̄)|φside

l 〉 ,

and the operator C interchanges the representations on the first and second,

the third and fourth punctures in that basis. Similarly, we can show

ν3 =
∑

l

|φ
side(1)
l 〉b1b2b1b3b2b1|φ

side(2)
l 〉 = Cν1 . (15)
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So, the generalised invariants of the mutants L1, L2, L3 obtained by

gluing Fig. 11(a),(b) and (c) with (d) are same.

It appears that the identities of the states for four-punctured bound-

aries play a crucial role in making the states representing the mutation

operation (ν2, ν3) to be similar to identity braid ν1. In order to go beyond

four-punctured boundary state, we studied composite braiding9 . Using the

representation theory of composite braids, we showed that the composite

invariant for knots are sum of the generalised knot invariants. This implies

composite invariants cannot detect mutations in knots. However, some mu-

tant links can be distinguished by composite invariants.

4. Summary and Discussion

In this article, we have briefly presented the direct evaluation of gener-

alised invariants of knots and links from Chern-Simons field theory. For

SU(2) gauge group in Chern-Simons theory, we get the the colored Jones’

polynomials for the knots and links carrying higher dimensional SU(2) rep-

resentations. There is a huge pool of generalised Chern-Simons invariants

for other gauge groups like SU(N), SO(N) etc with knots and links carry-

ing arbitrary representations. The hope is that at least one of the invariants

will be able to distinguish two inequivalent knots.

We showed that the chiral knots upto 10 crossings are distinguished by

the Chern-Simons field theory invariants. However, we gave a proof that

the process of mutation cannot be detected within the Chern-Simons field

theoretic framework. The proof is for knots and links carrying arbitrary

representation of any compact semi-simple gauge group.

Discussions during the knot theory conference revealed that there are

approaches from quantum groups10 and Floer homology11 whose invariants

does distinguish 11-crossing Kinoshita-Terasaka and Conway mutant knot.

It will be interesting to to check whether this method distinguishes other

mutant knots.
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