
Differential-difference equations associated with the

fractional Lax operators

V.E. Adler∗, V.V. Postnikov†

July 12, 2011

Abstract. We study integrable hierarchies associated with spectral prob-
lems of the form Pψ = λQψ where P,Q are difference operators. The cor-
responding nonlinear differential-difference equations can be viewed as in-
homogeneous generalizations of the Bogoyavlensky type lattices. While the
latter turn into the Korteweg–de Vries equation under the continuous limit,
the lattices under consideration provide discrete analogs of the Sawada–
Kotera and Kaup–Kupershmidt equations. The r-matrix formulation and
several simplest explicit solutions are presented.
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1 Introduction

The simplest example studied in this paper is the lattice equation

u,t = u2(u2u1 − u−1u−2)− u(u1 − u−1) (1)

where we use the shorthand notations

u = u(n, t), u,t = ∂t(u), uj = u(n+ j, t).

For the first time, this equation was derived by Tsujimoto and Hirota [1,
eq. (4.12)] as the continuous limit of the reduced discrete BKP hierarchy.
Recall that both equations

u,t′ = u(u1 − u−1) and u,t′′ = u2(u2u1 − u−1u−2) (2)

∗L.D. Landau Institute for Theoretical Physics, 1A Ak. Semenov, Chernogolovka
142432, Russia. E-mail: adler@itp.ac.ru
†Sochi Branch of Peoples’ Friendship University of Russia, 32 Kuibyshev str., 354000

Sochi, Russia. E-mail: postnikofvv@mail.ru

1

ar
X

iv
:1

10
7.

23
05

v1
  [

nl
in

.S
I]

  1
2 

Ju
l 2

01
1



are very well known integrable models: respectively, the Volterra lattice
[2, 3] and the modified Narita–Itoh–Bogoyavlensky lattice of the second or-
der [4, 5, 6]. One can easily verify that the flows ∂t′ and ∂t′′ do not commute,
that is, these equations belong to the different hierarchies. Hence, one should
not expect a priori that their linear combination remains integrable. Nev-
ertheless, this is the case: we will show that equation (1) admits the Lax
representation

L,t = [A,L]

with the operator L equal to a ratio of two difference operators, namely,
L = (T 2 + u)−1(uT 2 + 1)T where T denotes the shift operator uk → uk+1.

Equation (1) can be cast into the Hirota’s bilinear form which admits a
family of generalizations depending on a pair of integer parameters (l,m).
These generalizations were discovered by Hu, Clarkson and Bullough [7,
eq. (4)] who searched for bilinear equations admitting N -soliton solutions.
One of the goals of our paper is to demonstrate that this family of equations
is associated with the fractional Lax operators of the form

L = (Tm + u)−1(uTm + 1)T l. (3)

As usually, any such L is associated with a whole commutative hierarchy
of equations corresponding to the sequence of difference operators A of in-
creasing order. We denote this hierarchy dSK(l,m), since it can be viewed
as a discretization of the hierarchy containing the Sawada–Kotera equation
[8, 9]

U,τ = U5 + 5UU3 + 5U1U2 + 5U2U1 (SK)

where we denote

U = U(x, τ), U,τ = ∂τ (U), Uj = ∂jx(U).

For instance, equation (1) belongs to dSK(1,2). The concrete formula of the
continuous limit in this example is the following, at ε→ 0:

u(n, t) =
1

3
+
ε2

9
U
(
x− 4

9
εt, τ +

2ε5

135
t
)
, x = εn (4)

and an analogous formula exists for any (l,m). It should be noted that
each of equations (2) apart defines a discretization of the Korteweg–de Vries
(KdV) equation U,t = U3+6UU1 rather than the SK one. Moreover, it is well
known that actually all Bogoyavlensky type lattices serve as discretizations
of the KdV equation or its higher symmetries, so that an infinite family of
discrete hierarchies correspond to just one continuous. Quite analogously,
the whole family of dSK(l,m) hierarchies serve as discrete analogs of the SK
hierarchy. We hope that this observation makes clear the place of these
equations in the big picture of integrable systems.
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On the other hand, the differential and difference cases are not quite
parallel. First, Lax operator for the SK equation

L = D3 + UD = (D − f)(D + f)D

is not fractional. Lax operators given by the ratio of differential operators
were studied by Krichever [10], however it seems that these examples and
(3) are unrelated.

Second, let us consider the problem of discretization for another impor-
tant example, the Kaup–Kupershmidt equation [11, 12, 13]

U,τ = U5 + 5UU3 +
25

2
U1U2 + 5U2U1. (KK)

Recall that it is associated with the operator

L = D3 + UD +
1

2
U,x = (D + f)D(D − f)

and both SK and KK equations are connected through the Miura substitu-
tions obtained by factorization of Lax operators [14, 15]:

USK = f,x − f2, UKK = −2f,x − f2.

Despite of this close relation, it was noted that some properties of the SK
and KK equations are rather different, see e.g. [16]. It seems that distinc-
tions between the lattice analogs of these equations are even more deep. A
discretization of the KK equation is presented in section 4, however, we were
able to find just one operator L in this case comparing to infinite family (3)
in the SK case, and no discrete analog of Miura type substitution between
dSK and dKK is known.

The contents of the paper is the following. Section 2 contains some
necessary information on the lattices of Bogoyavlensky type, see also books
[17, 18]. Section 3 devoted to discretization of the SK equation contains
the main results of the paper. A general construction of the Lax pairs with
operator (3) is given in section 3.1. In section 3.3, the r-matrix approach
in the difference setting [19, 20, 18] is used to obtain explicit formulas for
the operator A and to prove the commutativity of the dSK(l,m) hierarchy.
The continuous limit, the bilinear representation, the simplest breather type
solutions are presented in sections 3.4, 3.5. Section 4 is devoted to discretiza-
tion of the KK equation and section 5 contains several examples of coupled
lattice equations associated with more general fractional Lax operators.
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2 Preliminaries

2.1 Definitions and notations

We consider differential-difference (lattice) equations of the evolutionary
form

u,t = f(um, . . . , u−m), u = u(n, t), u,t = ∂t(u), uj = u(n+ j, t). (5)

Such equations can be viewed as discrete analogs of continuous evolutionary
equations like KdV or SK

U,τ = F (Uk, . . . , U), U = U(x, τ), U,τ = ∂τ (U), Uj = ∂jx(U)

(the orders m and k may not coincide under the continuous limit). The
shift operator T : uj 7→ uj+1 plays the same role for equations (5) as the
total x-derivative D : Uj 7→ Uj+1 plays in the continuous case. Differential
operators are polynomials with respect to D, with the multiplication defined
by the Leibniz rule DA = D(A) + AD and the conjugation defined by the
rule D† = −D. In contrast, difference operators are in general Laurent
polynomials, that is contain powers of both T and T−1, and the rules for
the multiplication and the conjugation are TA = T (A)T and T † = T−1.
For short, we will use subscripts also for denoting action of T on operators,
Aj = T j(A).

A lattice equation
u,t′ = g(uk, . . . , u−k)

is called symmetry of (5) if the compatibility condition D,t(g) = D,t′(f) is
fulfilled, that is

[f, g]∗ :=
m∑

s=−m
∂us(f)T s(g)−

k∑
s=−k

∂us(g)T s(f) = 0. (6)

The lattice is called integrable if it admits an infinite sequence of symmetries
with the order k greater than any fixed number. The linear space of all
symmetries is called hierarchy. A conservation law is a relation of the form

D,t(ρ(uk, . . . , u)) = (T − 1)(σ(uk+m−1, . . . , u−m))

which holds true in virtue of equation (5). The discussion of these notions
and applications to the problem of classification of integrable lattice equa-
tions can be found in the review article by Yamilov [21].

2.2 Bogoyavlensky lattices

Understanding the structure of dSK(l,m) hierarchy is not possible without
understanding the homogeneous hierarchies of Bogoyavlensky type. A gen-
eral pattern of (local) equations from dSK(l,m) is given by the formula

u,tk = F (L+KM) + · · ·+ F (L+M) + F (L)
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where F (s) denotes a homogeneous polynomial of degree s with respect to
the variables uj and K,L,M are related somehow with the parameters l,m
and the order k of the flow. Moreover, the first and the last terms in the
sum always correspond to some (modified) lattices of Bogoyavlensky type
belonging to the different hierarchies.

This structure is explained by the following arguments, starting from
the Lax representation with the operator L (3). Let us consider the scaling
u → δ−mu, T → δT , then it is easy to see that the limit δ → ∞ sends L
to the operator L′ = u−mT

l + T l−m and the limit δ → 0 leads to L′′ =
Tm+l + u−1T l. Each of these operators corresponds to its own hierarchy of
homogeneous lattice equations. The total inhomogeneous equation contains
both of them together with the intermediate terms which are necessary for
preserving commutativity of the flows.

Let us consider the concrete example. One can check that the lattice

u,t′ = u
(
w1(w3 + w2 + w1 + w)− w−1(w + w−1 + w−2 + w−3)

− u1(w3 + w−1) + u−1(w1 + w−3)
)
, w := u(1− u1u−1) (7)

is a higher symmetry of equation (1). Collecting the homogeneous terms
yields

u,t = F (4) + F (2), u,t′ = G(7) +G(5) +G(3)

and the consistency condition of the flows splits to relations

[F (4), G(7)]∗ = 0, [F (4), G(5)]∗ + [F (2), G(7)]∗ = 0,

[F (4), G(3)]∗ + [F (2), G(5)]∗ = 0, [F (2), G(3)]∗ = 0

where commutator [, ]∗ is defined by equation (6). As it was already said
in Introduction, polynomials F (4) and F (2) correspond to the modified Bo-
goyavlensky and Volterra lattices. Polynomials G(7) and G(3) correspond to
their symmetries and the intermediate polynomial G(5) compensates incon-
sistency of the hierarchies.

The Bogoyavlensky hierarchy B(m) is associated with the operator L =
T + uT−m and we recall here several basic formulas regarding this case. A
detailed theory can be found in the books [6, 18]. More general operators
of the form L = T l + uT−m were considered recently in the paper [22].

The simplest equation from the B(m) hierarchy reads

ut = u(um + · · ·+ u1 − u−1 − · · · − u−m). (8)

This equations and its higher symmetries are associated with the difference
spectral problem

ψ1 + uψ−m = λψ

and admit the Lax representations

L,tk = [A(k), L], L = T + uT−m, A(k) = π+
(
L(m+1)k

)
(9)
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where π+ denotes the projection of any formal series A =
∑

j<∞ a
(j)T j onto

the linear space of polynomials with respect to T :

π+(A) =
∑

0≤j<∞
a(j)T j , π−(A) =

∑
j<0

a(j)T j .

In particular,
A(1) = Tm+1 + v, v := um + · · ·+ u

and equation (9) at k = 1 is equivalent to lattice (8). The check is easy:

L,t − [A(1), L] = u,tT
−m − [Tm+1 + v, T + uT−m]

= u,tT
−m − (um+1 − u+ v − v1)T − u(v − v−m)T−m, (10)

the terms with T cancel and the rest yields the equation.
In order to prove that equation (9) correctly defines the lattice for any

k, we have to check that all powers of T except for T−m vanish in the
commutator [A(k), L]. Since Lm+1 is a Laurent polynomial with respect
to Tm+1, hence A(k) is a polynomial with respect to Tm+1. Therefore the
commutator contains only powers of the form T (m+1)j+1, j ≥ −1. On the
other hand,

[A(k), L] = −[π−
(
L(m+1)k

)
, L],

so that the commutator does not contain positive powers of T and only one
possible power T−m remains.

It can be proven that equations (9) define a special reduction in the Lax
pair with a generic operator L = T + u(0) + u(1)T−1 + · · · + u(m)T−m. In
this case one can choose operators A in the form A = π+(Lk) with arbitrary
k. For instance, the Toda lattice hierarchy appears at m = 1. This type of
multi-field systems was studied, for instance, in papers [20, 22].

3 Discretizations of the Sawada–Kotera equation

3.1 Lax representation

Let us consider the difference spectral problem

uψm+l + ψl = λ(ψm + uψ) (11)

where m, l are integers. We assume that m, l are positive and coprime, with-
out loss of generality, since the general case can be obtained by refinement of
the mesh and/or change of its directions. It is less obvious that the numbers
m and l can be exchanged: spectral problem (11) is equivalent to

uϕm+l + ϕm = µ(ϕl + uϕ)
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under the change

ψ(n) = κnϕ(n), λ = −κl, µ = −κ−m. (12)

In the operator form, equation (11) reads

Pψ = λQψ, P = (uTm + 1)T l, Q = Tm + u. (13)

The isospectral deformations are defined by equation ψ,t = Aψ with some
difference operator A. The corresponding Lax equation

L,t = [A,L], L = Q−1P (14)

can be rewritten as the system

P,t = BP − PA, Q,t = BQ−QA (15)

where one of equations can be considered just as a definition of B. Let P,Q
be as in (13), then this system is equivalent to equations

u,t = B(Tm + u)− (Tm + u)A,

B(T 2m − 1) = AmT
2m −Al + uATm − uAm+lT

m. (16)

In order to resolve the latter we make the assumption that operator A is of
the form

A = F (Tm − T−m) (17)

then B is found as the difference operator

B = FmT
m − F1T

−m + u(F − Fm+1) (18)

while first equation (16) turns into

u,t = TmFu+uFT−m−uTmFl−FlT−mu+Fm−Fl+u(F −Fm+l)u. (19)

It is clear that the same evolution of the variable u is defined by the conju-
gated operator F † and, moreover, all terms T j , j - m can be thrown away.
This means that we can find F as a self-adjoint operator F = F † which is a
Laurent polynomial with respect to the powers Tm:

F = f (k)T km+· · ·+f (1)Tm+f (0)+T−mf (1)+· · ·+T−kmf (k), k ≥ 0. (20)

Certainly, the coefficients depend on k, l,m, so that it would be more rig-
orous to write f (j,k,l,m) instead of f (j), but we will consider these numbers
fixed at the moment.

Collecting the coefficients at T jm, j > 0, yields the relations

ujmf
(j−1)
m − uf (j−1)m+l = f

(j)
l − f

(j)
m + uujm(f

(j)
m+l − f

(j))

+ ujmf
(j+1)
l − uf (j+1), j = 1, . . . , k + 1, (21)

7



where it is assumed for convenience that f (j) = 0 at j > k. The coefficient
at T 0 gives an evolutionary equation for u:

u,t = 2u(f (1) − f (1)l ) + u2(f (0) − f (0)m+l) + f (0)m − f
(0)
l . (22)

System of equations (21), (22) defines the k-th flow in the hierarchy dSK(l,m).
If we are interested in the local evolution only then we require that all

f (j) can be recurrently found as functions of an finite set of variables ui. In
this case a certain restriction on the values of k appears and a part of the
flows is rejected. Indeed, consider equation (21) at j = k + 1,

u(k+1)mf
(k)
m = uf

(k)
m+l, (23)

or
(T l − 1)(log f (k)m ) = (T (k+1)m − 1)(log u).

It can be proven that it is solvable with respect to f (k) if and only if (k+1)m
is divisible by l and the solution is, up to a constant factor,

f (k) = u−mul−m · · ·u(s−1)l−m, (k + 1)m = sl. (24)

Since l and m are coprimes, hence the local flows may appear only if k =
pl − 1 and s = mp. The fact that the rest equations (21) for such k are
solvable indeed will be verified later in section 3.3. The case l = 1 is the
only one when there are no restrictions on k and the simplest choice k = 0
brings in this case to the following family of lattices.

Theorem 1. For any m > 0, the simplest equation in the hierarchy dSK(1,m)

u,t = u2(um · · ·u1 − u−1 · · ·u−m)− u(um−1 · · ·u1 − u−1 · · ·u1−m) (25)

possesses Lax representation (14) with the operators

P = uTm+1 + T, Q = Tm + u,

A = f(T−m − Tm), B = f1T
−m − fmTm + u(fm+1 − f)

where f = u−1 · · ·u−m.

Proof. A direct computation (cf with (10)) proves that both equations (15)
with given P,Q,A,B are equivalent to relations

umfm = ufm+1, u,t = u2(fm+1 − f)− fm + f1.

The former defines the variable f (up to a constant factor) and the latter is
equivalent to lattice (25).
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In particular, equation (25) at m = 2 coincide with (1) and at m = 1 it
is just the modified Volterra lattice

u,t = u2(u1 − u−1).

It should be remarked that gauge equivalence (12) between the spectral
problems can be extended on the level of nonlinear equations and the same
flow (25) appears also as a member of dSK(m,1) hierarchy. However, op-
erator (20) is much more complicated in this case: it contains all powers
Tm−1, Tm−2, . . . , T 1−m comparing with just F = f (0) in dSK(1,m) case.

Computing of higher symmetries quickly becomes involved, because find-
ing of F requires (discrete) integration of rather bulky expressions. For in-
stance, the second flow in the hierarchy dSK(1,m) is, according to (22), of
the form

u,t′ = 2u(f (1) − f (1)1 ) + u2(f (0) − f (0)m+1) + f (0)m − f
(0)
1

where functions f (1), f (0) are defined by relations

u2mf
(1)
m = uf

(1)
m+1, umf

(0)
m − uf

(0)
m+1 = f

(1)
1 − f (1)m − uum(f (1) − f (1)m+1).

This yields, up to integration constants,

f (1) = um−1 · · ·u−m, f (0) = (w + · · ·+ w−2m+1)u−1 · · ·u−m,
w := (1− um−1u−1)um−2 · · ·u0

(at m = 2 equation (7) appears). One can check straightforwardly that the
obtained flow commutes with (25) indeed. A general proof and a way to
bypass the integration are given below in section 3.3.

Adopting nonlocal variables leads to some extension of the hierarchy. In
this case we consider equation (23) as a constraint which defines the variable
f (k) for any k. Then we arrive to the following system which generalizes (25)
for any l, making the picture more uniform. We will return to this system
in section 3.5.

Theorem 2. For any coprime m, l, the simplest system in the extended
dSK(l,m) hierarchy

umfm = ufm+l, u,t = u2(f − fm+l) + fm − fl (26)

possesses Lax representation (14) with operators

P = uTm+l + T l, Q = Tm + u,

A = f(T−m − Tm), B = flT
−m − fmTm + u(fm+l − f).

9



m = 2 : u,t = u2(u2u1 − u−1u−2)− u(u1 − u−1)
u = v1v v,t = v1v

3v−1(v2v1 − v−1v−2)− v2(v1 − v−1)

m = 3 : u,t = u2(u3u2u1 − u−1u−2u−3)− u(u2u1 − u−1u−2)
v = u1u v,t = v(v3v1 + v2v − vv−2 − v−1v−3)− v(v2 + v1 − v−1 − v−2)
u = v2v1v v,t = v2v

2
1v

4v2−1v−2(v3v2v1 − v−1v−2v−3)
− v1v3v−1(v2v1 − v−1v−2)

m = 4 : u,t = u2(u4u3u2u1 − u−1u−2u−3u−4)− u(u3u2u1 − u−1u−2u−3)
u = v2v v,t = v2v1v

3v−1v−2(v4v3v2v1 − v−1v−2v−3v−4)
− v1v2v−1(v3v2v1 − v−1v−2v−3)

Table 1. Examples of lattices (25) from dSK(1,m) and their modifications

3.2 Modified lattices

Equations under consideration can be rewritten in several ways by use of
difference substitutions. The simplest kind of substitution is introducing a
potential. Let A be a constant operator, then substitution u = A(v) maps
solutions of equation v,t = f [A(v)] into solutions of equation u,t = A(f [u]).
Table 1 contains several instances of such kind, up to the change u → eu,
v → ev.

Another kind of substitutions are Miura type transformations. Let ϕ be
a particular solution of spectral problem (11) corresponding to a value λ = α
of the spectral parameter. Then one readily finds that the ratio h = ϕ1/ϕ
is related with the potential u by formula

M− : u =
αhm−1 · · ·h− hl−1 · · ·h

hm+l−1 · · ·h− α
.

This defines a difference substitution, according to the following statement.

Theorem 3. Let u satisfies an equation (22) from dSK(l,m), then h = ϕ1/ϕ
also satisfies a lattice equation which can be written as a conservation law

(log h),t = (T − 1)S[h]. (27)

Proof. Since ϕ is governed by equation ϕ,t = Aϕ = F (ϕm − ϕ−m), hence

(log h),t = (T − 1)(logϕ),t = (T − 1)
( 1

ϕ
F (ϕm − ϕ−m)

)
.

10



Coefficients of the operator F are functions on the variables hj , being func-
tions on uj ’s. The ratios of the form ϕk/ϕ can be expressed through hj as
well and therefore an equation of the form (27) holds.

It is worth noticing that an infinite sequence of conservation laws for the
original lattice (22) can be obtained from (27) by use of the classical trick
with the inversion of Miura map u = M−(h, α) as a formal power series with
respect to α [23].

Second Miura map is obtained by replacing h → 1/h, α → 1/α which
results in the mapping

M+ : u =
αhm+l−1 · · ·hl − hm+l−1 · · ·hm

hm+l−1 · · ·h− α
.

This substitution relates the same equations as M−, due to invariance of
the spectral problem with respect to the change n→ −n, λ→ 1/λ. There-
fore, the composition M−(M+)−1 defines a Bäcklund transformation which
relates two copies of the dSK(l,m) hierarchy. Recall that Bäcklund transfor-
mation for the continuous SK equation was derived in [24].

A particular example at l = 2,m = 1 is given by substitutions

M− : u =
(α− h1)h
h2h1h− α

, M+ : u =
h2(α− h1)
h2h1h− α

which map solutions of the modified equation

h,t =
h(α− h)

h1hh−1 − α

(
h(α− h1)(α− h−1)(h2h1 − h−1h−2)

(h2h1h− α)(hh−1h−2 − α)
− h1 + h−1

)
into solutions of (1).

3.3 r-matrix formulation

In this section we prove that:
(i) if the constraint (23) is resolved by formula (24) then the further

recurrent relations (21) are solved in the local form as well, so that the
(local) hierarchy dSK(l,m) is correctly defined;

(ii) the flows corresponding to the different k commute.

In achieving this goal the r-matrix approach is an indispensable tool, see
e.g. [19, 20, 18]. Let us consider the Lie algebra of the formal Laurent series
with respect to the powers Tm of the shift operator:

g(m) =
{∑
j<∞

g(j)T jm
}

with the commutator [A,B] = AB −BA. It is easy to see that any element

G = g(k+1)T (k+1)m + g(k)T km + g(k−1)T (k−1)m + . . .

11



of this Lie algebra admits an unique decomposition of the form

G = F (Tm − T−m) +H (28)

where F = F † is a self-conjugated difference operator and H is a formal
series which contains only nonpositive powers of Tm. Each of the linear
spaces

g
(m)
+ =

{
F (Tm − T−m)| F = F †

}
, g

(m)
− =

{∑
j≤0

h(j)T jm
}

constitutes a Lie algebra: for g
(m)
− this is obvious and for g

(m)
+ we have

[F (Tm − T−m), F ′(Tm − T−m)] = (P + P †)(Tm − T−m)

where P = F (Tm − T−m)F ′.
Thus, formula (28) is the decomposition (in the vector space sense)

g(m) = g
(m)
+ ⊕ g

(m)
−

of the Lie algebra into the direct sum of two Lie subalgebras. This decom-

position defines the projections π± on the g
(m)
± component and the r-matrix

r = 1
2(π+ − π−). Now we can formulate the following theorem about Lax

equations (13), (14) with fractional L operator.

Theorem 4. Let l,m be coprime, P = (uTm + 1)T l, Q = Tm + u and let
L = Q−1P be expanded as a formal Laurent series. Then the flows

L,tp = [π+(Lpm), L] (29)

are correctly defined for all p = 1, 2, . . . , coincide with the dSK(l,m) flows
introduced by equations (21), (22) and commute with each other.

Proof. After expanding, L takes the form

L = (1− u−mT−m + (u−mT
−m)2 − . . . )(u−m + T−m)T l

= u−mT
l + (1− u−mu−2m)T l−m + . . . .

Differentiating this series turns (29) into an infinite system of equations for
a single variable u, and the correctness means that all these equations must
coincide. To prove this, we compare representation (29) with Lax equation
(14) in fractional form.

Notice that L itself does not belong to the Lie algebra g(m), but its power
G = Lpm does, so that the projection A = π+(G) = F (Tm − T−m) makes
sense. We denote the order of operator F as k = pl − 1, in agreement with

12



(20) and (24). The coefficients of F are uniquely computed from coefficients
of G accordingly to the recurrent relations

f (k+2) = f (k+1) = 0, f (j) = g(j+1) + f (j+2), j = k, k − 1, . . . , 0

so that all coefficients are local functions of uj (in particular, f (k) is given
by (24)). Moreover, the order of (29) right hand side is equal to l, because
[π+(G), L] = −[π−(G), L]. This proves that F provides a solution of the
recurrent relations (21) as well (which is unique up to integration constants).
Indeed, these relations were derived from the condition that terms with
T (k+1)m,. . . ,Tm in equation (19) cancel which is equivalent to cancellation
of the powers T (k+1)m+l,. . . ,Tm+l in the original Lax equation (14). Thus,
flow (29) coincides with a flow from dSK(l,m) which is, therefore, local. On
the other hand, this proves correctness of (29), since the whole infinite set
of equations turns out to be equivalent to the single equation (22).

The proof of the commutativity is standard. Let G′ = Lp
′m and A′ =

π+(G′) then

(L,tp),tp′ − (L,tp′ ),tp = [Atp′ −A
′
tp + [A,A′], L],

so it is sufficient to prove that

Atp′ −A
′
tp + [A,A′] = 0.

Since Atp′ = π+([A′, G]) and [G,G′] = 0, this is equivalent to

π+
(
[A′, G]− [A,G′] + [A,A′]

)
= π+

(
[G′ − π−(G′), G]− [G− π−(G), G′] + [G− π−(G), G′ − π−(G′)]

)
= π+

(
[π−(G), π−(G′)]

)
= 0

as required.

3.4 Continuous limit

Here we compute the continuous limit for the basic flow of the extended
hierarchy dSK(l,m) defined by equation (26). There is a certain technical
difficulty in the prolongation of the continuous limit on the variable f which
is not local at l 6= 1. In order to solve the constraint, this variable should
be considered as a series with respect to the small parameter. Up to this
complication the continuous limit is very similar to example (4) from Intro-
duction. We postulate that, at ε→ 0, the variables u, f are of the form

u(n, t) = a+ abε2U(x+ cεt, τ + dε2t),

f(n, t) = 1 +
∞∑
s=2

εsYs(x+ cεt, τ + dε2t), x = εn (30)

13



with undetermined coefficients a, b, c, d. Functions Ys are expressed through
the function U and its partial derivatives with respect to x after substituting
into first equation (26) and taking the Taylor expansion about ε = 0 (clearly,
one can neglect the dependence on t here). We find, omitting the unessential
integration constants:

Y2 =
mb

l
U,

Y3 = −m(m+ l)b

2l
U1,

Y4 =
m(m+ l)(2m+ l)b

12l
U2 +

m(m− l)b2

2l2
U2,

Y5 = −m
2(m+ l)2b

24l
U3 −

m(m2 − l2)b2

2l2
UU1,

Y6 =
m(m+ l)(2m+ l)(3m2 + 3ml − l2)b

720l
U4 +

m(m2 − l2)(3m+ 2l)b2

24l2
U2
1

+
m(m2 − l2)(2m+ l)b2

12l2
UU2 +

m(m− l)(m− 2l)b3

6l3
U3.

This is enough, since we need only terms up to ε7 when substituting into
second equation (26). The coefficients a, c are found from the requirement
that the low order terms vanish while the coefficients b, d are responsible for
the scaling of U and t and can be chosen arbitrarily. Finally, we come to
the following statement.

Theorem 5. Continuous limit (30) with the values of parameters

a =
m− l
m+ l

, b =
ml

6
, c = 2m, d =

m3(l2 −m2)

180

sends systems (26) into the Sawada–Kotera equation

U,τ = U5 + 5UU3 + 5U1U2 + 5U2U1.

The higher flows of the SK hierarchy can be derived analogously from
suitable linear combinations of the dSK(l,m) flows. However, the general
formulas become rather complicated and we restrict ourselves by the fol-
lowing concrete example corresponding to the local hierarchy dSK(1,2). Let
u,t = 88u,t1 + 27u,t2 where the flows ∂t1 and ∂t2 are defined by equations (1)
and (7) respectively, then the formula

u(n, t) =
1

3
+
ε2

9
U
(
x− 200

9
εt, τ − 16ε7

189
t
)
, x = εn

defines the continuous limit to the 7-th order symmetry of SK equation

U,τ = U7 + 7UU5 + 14U1U4 + 21U2U3 + 14U2U3

+ 42UU1U2 + 7U3
1 +

28

3
U3U1.

14



It is well known that there are gaps in the sequence of orders k of equations
from the SK hierarchy, namely, the restrictions k - 2, 3 are fulfilled, so that
the next higher symmetry is of 11-th order. The natural question appears,
how this agrees with relations (20)–(22) or (29) which show that in the
discrete case there are no gaps multiple 3. It turns out that their appearance
is an artefact of the continuous limit. A straightforward computation shows
that if we consider a linear combination with the next dSK(1,2) flow u,t =
u,t1 + αu,t2 + βu,t3 and set

u(n, t) = a+ bε2U(x+ cεt, τ + dε9t), x = εn

then all parameters are uniquely determined by the condition of vanishing
the terms up to ε10, however then the coefficients at ε11 cancel automatically
and only the trivial flow U,τ = 0 appears.

3.5 Bilinear equations

The constraint (23) can be solved by introducing additional variables and
this leads to a convenient representation of the basic system (26) of the
extended dSK(l,m) hierarchy. Let

u =
vl
v
, f =

v

v−m

then first equation (26) is satisfied identically and the second one is equiva-
lent to

(T l − 1)
v,t
v

= (Tm − 1)
( v

vl−m
− vl
v−m

)
.

Further substitutions

v =
wm
w

⇒ u =
wm+lw

wmwl
, f =

wmw−m
w2

bring to the bilinear equation

wl,tw − wlw,t = wmwl−m − w−mwl+m. (31)

For the first time, it appeared in paper [7], in a slightly more general form

wl,tw − wlw,t = wmwl−m − αw−mwl+m + βwwl

which is reduced to (31) by the point change w̃(n, t) = eβtαn
2
w(n, t). In

particular, it was proven in [7] that this equation admits N -soliton solutions.
Here, we consider in more details a specification of 2-soliton formula which
leads to the breather solution.

The substitution of the 2-soliton Ansatz

w(n, t) = 1 + e1 + e2 +A12e1e2, ei = qni exp(−ωit+ δi) (32)
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Figure 1. The values of q = ρeiϕ inside the bounded domains in C
correspond to the regular potentials u(n, t). The values along the dashed

lines correspond to the potentials periodic in t.

into (31) gives us the dispersion relation and the phase shift:

ωi = qmi − q−mi , Aij =
(qli − qlj)(qmi − qmj )

(1− qliqlj)(1− qmi qmj )
. (33)

The direct check proves that then the 3-soliton Ansatz

w = 1 + e1 + e2 + e3 +A12e1e2 +A13e1e3 +A23e2e3 +A12A13A23e1e2e3

satisfies (31) automatically. It is interesting to compare these formulas with
their counterparts for the continuous SK equation [8, 9, 25, 26]

ei = exp(κix− ωit+ δi), ωi = κ5
i , Aij =

(κi − κj)2(κ2
i − κiκj + κ2

j )

(κi + κj)2(κ2
i + κiκj + κ2

j )
.
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Figure 2. A moving and a stable breathers. The values of parameters:
ρ = 1.2, ϕ = 2π/3 (left); ρ = 1.6, ϕ = 3π/4 (right); in both cases l = 1,

m = 2, α = β = 0.

Formula (32) allows us to obtain the breather-type solutions as well, if we
choose

q1 = ρeiϕ, q2 = ρe−iϕ, δ1 = α+ iβ, δ2 = α− iβ.

The regularity of the potential u(n, t) is achieved under certain restrictions
on the value of q. In order to show this, rewrite relations (33) as follows:

ω = µ+ iν, µ = (ρm − ρ−m) cosmϕ, ν = (ρm + ρ−m) sinmϕ,

A12 = −4ρm+l sin lϕ sinmϕ

(1− ρ2l)(1− ρ2m)
,

then a simple algebra brings (32) to the form

w = 1 + 2z cos y +A12z
2, y = ϕn− νt+ β, z = ρneα−µt.

In particular, if ϕ = 2k+1
2m π then µ = 0 and solution u is periodic in t. The

necessary and sufficient condition for u to be regular is that the function
w does not vanish at any n, t. In the generic case the variables y, z are
independent and then this is equivalent to the condition that the trinomial
1 + 2z +A12z

2 does not vanish at real z, that is

(ρl − ρ−l)(ρm − ρ−m) + 4 sin lϕ sinmϕ < 0.

Thus, we see that already two-phase solutions in these models exhibit a
nontrivial zone structure of the spectrum. The corresponding domains in
the plane q = ρeiϕ are shown on fig. 1, and the examples of solutions u(n, t)
are shown on fig. 2.
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4 A discrete analog of the Kaup–Kupershmidt equa-
tion

The Kaup–Kupershmidt equation

U,τ = U5 + 5UU3 +
25

2
U1U2 + 5U2U1

is associated with the spectral problem Lψ = λψ where L is the skew-
symmetric ordinary differential operator of third order

L = D3 + UD +
1

2
U,x = (D − f)D(D + f), U = 2f,x − f2.

When we find a discrete analog, a difficulty is that a symmetric or skew-
symmetric difference operator can be of even order only. A way to overcome
this is to consider a 6th order difference problem, but on the odd nodes of the
lattice only, so that effectively it is of 3rd order with respect to the double
shift T 2 (however, the coefficients may depend on the variables associated
with the even nodes as well). Let us consider the spectral problem

u−3ψ−3 + ψ−1 = λ(ψ1 + uψ3) (34)

or, in the operator form, denoting K = uT 3 + T :

K†ψ = λKψ.

The Lax equation for the operator L = K−1K† can be written in the form
of system (15). It admits the reduction B = −A† which yields the equation

K,t +A†K +KA = 0. (35)

The operator A is found as a Laurent polynomial with respect to the even
powers of T ,

A = a(k)T 2k + · · ·+ a(−k)T−2k,

and a direct analysis of equation (35) at k = 1, 2 proves the following state-
ment.

Theorem 6. Equation (35) with K = uT 3 +T is equivalent to the nonlocal
lattice equation

u,t1 = u(f2u2 − f1u1 + f−1u−1 − f−2u−2) + f1 − f−1, f3u = f−1u2

under the choice

A = −fT 2 + f−2u−2 − f−1u−1 + f−3T
−2;

and it is equivalent to the local lattice equation

u,t2 = u(v3 − v2 + v1 − v−1 + v−2 − v−3 − u2 + u−2), v := u1uu−1 (36)
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under the choice

A = u1T
4 − u−4T−4 + (1− u−1u−2)(T 2 − T−2)

+u−1 − u−2 − v + v−1 − v−2 + v−3.

It is worth noticing that, alternatively, one can use the following pair of
operators (cf with the gauge equivalence (12)):

K̃ = uT 3+T−1, Ã = −u1u−1T 4+u−2u−4T
−4−v+v−1−v−2+v−3. (37)

The continuous limit to the KK equation is of the same general form as
before, namely, for the flow (36) it reads

u(n, t2) =
1

3
+

4

9
ε2U

(
x− 8

9
εt2, τ +

64ε5

135
t2

)
, x = εn.

5 Examples related to generic operators

Recall that, according to [20], the Bogoyavlensky type lattices can be viewed
as reductions of more general multi-field models associated with the spec-
tral problems Lψ = λψ for generic difference operators L = u(m)Tm +
u(m−1)Tm−1 + · · · + u(1−l)T 1−l + u(−l)T−l. Here m, l are any positive in-
tegers, and one can adopt the normalization u(m) = 1 or u(l) = 1 without
loss of generality. A part of the flows from the corresponding hierarchy is
consistent with the constraints u(m−1) = · · · = u(1−l) = 0 and this reduc-
tion brings to the Bogoyavlensky lattices. A detailed study of some other
reductions can be found in [22].

The lattices introduced in the previous sections are related with the
spectral problems Pψ = λQψ where operators P,Q are binomial. It is
natural to expect that these lattices also define reductions for some multi-
field equations related with more general operators P,Q. The study of such
models is beyond the scope of the present paper and we restrict ourselves
by three typical examples.

Example 1. First, let us consider the Lax equations P,t = BP − PA, Q,t =
BQ−QA for the binomial operators P,Q with different potentials:

P = uT 3 + T, Q = T 2 + v.

If v = u then operators A,B are given by formulas (18), (20) with a self-
adjoint operator F which contains only even powers of T 2. In the general
case two sets of operators A,B appear, containing positive or negative pow-
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ers of T 2. The simplest operators and corresponding flows are the following:

A− = v−2v−1T
−2 + f−3 + f−2, B− = v−1vT

−2 + f−1 + f,

u,t− = u(f−1 − f1),
v,t− = v(f + f−1 − f−2 − f−3 − v1 + v−1), f := uv1v2;

A+ = u−2u−1T
2 + g−1 + g, B+ = uu1T

2 + g + g1,

u,t+ = u(g + g1 − g2 − g3 − u−1 + u1),

v,t+ = v(g1 − g−1), g := u−2u−1v.

The flows ∂t− and ∂t+ commute, and the flow ∂,t = ∂t− − ∂t+ admits the
reduction v = u which brings to the dSK equation (1). It should be noted
that the same flows can be obtained starting from the gauge equivalent
operators P = uT 3 + T 2, Q = T + v.

Example 2. Now let us consider trinomial operators

P = uT 3 + pT 2 + T, Q = T 2 + qT + v.

In this case operators A,B contain the odd powers of T as well. The simplest
operators and the corresponding flows are of the form

A− = v−1T
−1 + v−1p−2, B− = vT−1 + v1p,

u,x− = u(u−1q − u1q2 − p+ p1),

p,x− = p(u−1q − uq1) + u− u−1,
v,x− = v(u−1q − u−2q−1),
q,x− = uv1 − u−2v;

A+ = u−2T + u−2q−1, B+ = uT + u−1q,

u,x+ = u(v1p− v2p1),
p,x+ = u−1v − uv2,
v,x+ = v(v1p− v−1p−2 + q−1 − q),
q,x+ = q(v1p− vp−1) + v − v1.

Example 3. Let us consider the following generalization of the spectral prob-
lem (37):

K†ψ = λKψ, K = uT 3 + v−1T + T−1.

The isospectral deformations are defined by the operators A = a(k)T 2k +
a(k−1)T 2k−2 + · · ·+ a(−k)T−2k. The simplest case k = 1 results in

A = u−1T
2 − u−2T−2 + u−1v−1 − u−2v−2
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and equation K,t +A†K +KA = 0 is equivalent to the lattice

u,t = −u(u2v2 − u1v1 + u−1v−1 − u−2v−2 − v1 + v−1),

v,t = −v(u1v1 − u−1v−1) + u2u1 − u−1u−2 + u1 − u−1.

The higher symmetry corresponding to k = 2 is too bulky and we do not
write it down, however one can check that it admits the reduction v = 0 to
the dKK equation (36). In contrast, the flow ∂t itself does not admit this
reduction.

6 Conclusion

In this article we introduced a family of integrable lattice hierarchies associ-
ated with fractional Lax operators. In particular, these hierarchies contain
equations found earlier in [1, 7] by use of the Hirota bilinear formalism.
We proved that these equations serve as semi-discrete analogs of SK and
KK equations. An important question which remains open is about the
Hamiltonian structure of the presented equations. As usually, the existence
of Lax representation allows to obtain a set of conserved quantities which
presumably are Hamiltonians, and moreover, the applicability of r-matrix
approach suggests that some more or less standard Poisson bracket should
exist. However, no explicit answer is found yet. Another intriguing question
is about possible relations with the models introduced in [27, 28] within the
theory of the lattice W algebras.
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[24] J. Satsuma, D.J. Kaup. A Bäcklund transformation for a higher order
Korteweg–de Vries equation. J. Phys. Soc. Japan 43 (1977) 692–697.

[25] E. Date, M. Jimbo, M. Kashiwara, T. Miwa. KP hierarchies of orthog-
onal and symplectic type. Transformation groups for soliton equations.
VI. J. Phys. Soc. Japan 50 (1981) 3813–3818.

[26] A. Parker. A reformulation of the ‘dressing method’ for the Sawada–
Kotera equation. Inverse Problems 17:4 (2001) 885–895.

[27] Ya.P. Pugay. Lattice W algebras and quantum groups. Theor. Math.
Phys. 100 (1994) 900–911.

[28] K. Hikami. Generalized lattice KdV type equation reduction of the
lattice W3 algebra. J. Phys. Soc. Japan 68 (1999) 46–50.

23

http://dx.doi.org/10.1063/1.530807
http://dx.doi.org/10.1088/0305-4470/39/45/R01
http://dx.doi.org/10.1088/1751-8113/44/16/165206
http://dx.doi.org/10.1063/1.1664701
http://dx.doi.org/10.1143/JPSJ.43.692
http://dx.doi.org/10.1143/JPSJ.50.3813
http://dx.doi.org/10.1088/0266-5611/17/4/321
http://dx.doi.org/10.1007/BF01017329
http://dx.doi.org/10.1143/JPSJ.68.46

	1 Introduction
	2 Preliminaries
	2.1 Definitions and notations
	2.2 Bogoyavlensky lattices

	3 Discretizations of the Sawada–Kotera equation
	3.1 Lax representation
	3.2 Modified lattices
	3.3 r-matrix formulation
	3.4 Continuous limit
	3.5 Bilinear equations

	4 A discrete analog of the Kaup–Kupershmidt equation
	5 Examples related to generic operators
	6 Conclusion

