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A heat kernel version of Hardy's theorem for the Laguerre

hypergroup
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(LMAM, School of Mathematical Sciences, Peking University, Beijing 100871)

Abstract: The uncertainty principle says that a function and its Fourier transform can't simultaneously
decay very rapidly at infinity. A classical version of uncertainty principle, known as Hardy's theorem,
was first proved by Hardy on R. The Hardy's theorem has been extended to various settings. More
results can be found in the book by Thangavelu and the references therein. Hardy's theorem is well
explained in terms of the heat kernel. In view of this point, Thangavelu proved a heat kernel version of
Hardy's theorem for the Heisenberg group. Thangavelu's result is remarkable because the heat kernel
with respect to the sublaplacian on the Heisenberg group decays as much slower than the heat kernel
for Euclidean space when the central variable t is concerned. In this paper, we prove a heat kernel
version of Hardy's theorem for the Laguerre hypergroup.
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0 Introduction

The uncertainty principle says that a function and its Fourier transform can't simultaneously
decay very rapidly at infinity. A classical version of uncertainty principle, known as Hardy's
theorem, was first proved by Hardy [1] on R. We state Hardy's theorem on R as follows.

Theorem 1. Suppose f is a measurable functionon R" and satisfies

| £(X) < C@+|x[?) e,

| f(y)[<C@+]y ) e™",

1 1 2
where a, b >0. Then f=0 whenever ab > 2 and when ab= 7 f(x)=P(x)e ",
where P is a polynomial of degree < 2K.
The Hardy's theorem has been extended to various settings. More results can be found in the

book [2] by Thangavelu and the references therein. We note that the heat kernel h, on R" is

givenby  h,(x) = (478) "2e 1) h (y) =e~ T,

Thus Hardy's theorem is well explained in terms of the heat kernel. In view of this point,
Thangavelu [3] proved a heat kernel version of Hardy's theorem for the Heisenberg group.
Thangavelu's result is remarkable because the heat kernel with respect to the sublaplacian on the

alt| altf?

Heisenberg group decays as € °"' much slower than e “" when the central variable t is
concerned. In this paper we will prove a heat kernel version of Hardy's theorem for the Laguerre
hypergroup.

Throughout the paper, we will use C to denote the positive constant, which is not necessarily
same at each occurrence.

1 Preliminaries

In this section, we set some notations and collect some basic results about the Laguerre
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hypergroup. For more about the Laguerre hypergroup we refer the reader to [4], [5], [6] and [7].
We also give Hardy's theorem for the Hankel transform, which we will use in the sequel.

40 Given a>0,let K =[0,00)x R equipped with the measure
1
a(a+1)
We simply write L°(K) instead of LP(k,dm,). For (X,t)eK, the generalized

dm_(x,t) = x**dxdt.

translation operators T, are defined by

Teof(y,s)= —I f(\/x +y%+2xycoséd,s+t+xysind)dd for =0 and

Too F (Y, s)——j If(\/x + Y% +2xyrcosd,s+t+ xyrsin@)r(1-r?)*"drdd

45
for o >0.
Let M, (K)denote the space of bounded Radon measures on K. The convolution on
M, (K) is defined by
(u=v)(f) =I Too F(y.s)du(x,t)dv(y,s).
50 It is easy to see that u*v=v*u. If f,gel'(K) and u= fm_,v=gm_, then

u*v=_f=*g)m_ ,where f =g istheconvolution of functions fand g defined by

frgxt) =] Ty f (1,5 9(y,~s)dm, (y,s).

(K ,*,1) is a hypergroup in the sense of Jewett (cf. [8], [9]), where i denotes the involution

defined by i(x,t)=(x,-t). If a =n—1 isa nonnegative integer, then the Laguerre hypergroup
55 K can be identified with the hypergroup of radial functions on the Heisenberg group H"

The dilations on K are defined by &, (X,t) = (rx,r’t),r > 0.
It is clear that the dilations are consistent with the structure of hypergroup. Let

=[f

1K) 1K)"

60 =r @9t Ly Thenwe have |5, 1
rr

0> 2a+10 Ly 0

Let us consider the partial differential operator L = —(— — —
ox’ X OX ot
60 L is positive and symmetric in L (K), and is homogeneous of degree 2 with respect
to the dilations defined above. When « =n—1, L is the radial part of the sublaplacian on t
he Heisenberg group H" . We call L the generalized sublaplacian.
Let L7 be the Laguerre polynomial of degree m and order « defined in terms of the
1 _x
generating function by ZS L (x) = me s,
=0 1-5)
X2
65 set @(x)=¢e 2L(x?). (1)
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Lemma 1. Forany A =0, the system (L)”2 @D A1) :me N
rm+ea+

forms an orthonormal basis of the space L ([0, ), x***dx).
For (A,m)e RxN, we put

Voo (X,1) = (%)Me‘w) WIZX).

Lemma 2. The functions v/, ., satisfy that
=¥ ,.m(0,0)=1,

(b) T(Z,I)V/(l,m)(y’ s) = V/(/I,m)(x’t)w(/lvm)(y’ s),
© Lyom=21412M+a+ly ..

@ |Wem),.

Let f e L*(K), the generalized Fourier transform of f is defined by

f(A,m)= jK F (X, 8) W m (X 1)dM, (X, 1).
We note that

] ml () 2a+1
Fm) = e h 0o (AR, @

Where f*(x) = J‘ f(x,t)e""dt is the Fourier transform of f(x,t) in the t-variable.

Let dy, be the positive measure defined on Rx N by

J. otmdy, (my =3 LEetD)

A,m)| A7 dA.
> mier jg( )

write  LP(K) instead of L"(Rx N,dy,).We have the following

N

Plancherel formula | f|| ... =|f  f e N(K) N L2 (K).

L2(K)

L*(K)
We also have the inverse formula of the generalized Fourier transform.

Fo =] F My (xtdy, (4,m).
Let {H Sis> 0}= {e’SL S > 0} be the heat semigroup generated by L.
There is an unique smooth function h((X,t),s) = h,(x,t) on K x[0,0)

suchthat H°®f(x,t)= f *h,(x,t). h, is called the heat kernel associated to L.

By the definition of the generalized Fourier transform and Lemma 2, it is easy to know that

5 F(AmM) = F(rPAm), LE (1,m) = 2|4 [(@m+a +1) f (4,m)

fxg(4,m)=f(41,m)g(4,m).
Therefore

hs(ﬂ,m) — efz|ﬁ|(2m+a+1)s’ hsl*hsz(l:m):h

S1+S, !

http://www.paper.edu.cn
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h(xt)—s(“*z)h(\/_ )

Although the heat kernel h,(X,t) is not explicitly known, we do have the explicit
expression of h(x), from which the estimate for h, (X,t) is obtained (cf. [4]).

A —lﬂcoth(Ms)xz
Lemma 3. h/(X) =27(——————)""e 2
2sinh(24s)
Lemma 4. There exists A>0 such that

A2
A+
0<h(xt)<s e s :

Now we turn to the Hankel transform. For z € C, the Bessel function of first kind and
order « is defined by

o (afzetaen gage
kZF(k+l)F(k+a+l) x/_l“(a+1)'[ e”(1-5%)" dS

In this paper we only concern about the case « >0 althoughJ (z) are well defined for all

aeC.
We refer the reader to Watson's book [10] for the reference about the Bessel function. Here
we point out that

di(z“Ja(z)) =-2"J_.,(2), (3)
z

1
|J,(it)[< Ct 2¢',t>0. (4)

Then the Hankel transform of order o of f e L'([0,00)) is defined by

(H, ) = [[ F0070D et

(xy)”
The functions ¢, (X) defined by (1) are the eigenfunctions of the Hankel transform, i.e.,
(H,2,)(X) =(=1)" ¢, (x) (5)

(cf. [11], P. 42). It follows that H_* = H . Also we have

(H, f(r)(y) =r2?(H,f )(%), F>0. (6)

We state Hardy's theorem for the Hankel transform as follows.

Proposition 1. Suppose f € L*([0,0)) and satisfies

| £ ()< C@+| e,

|(H, )(y) [<C+]y[P)e™",

where a, b >0. Then f=0 whenever ab>% and when ab—z f(x) = P(x)e

where P is a polynomial of degree < 2K.
Proposition 1 is a special case of Hardy's theorem for the Ch\'ebli-Trim\'eche transform (cf.
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[12]).
2 Hardy's theorem in terms of heat kernel

First, we prove the following theorem.
Theorem 1. Suppose f is a measurable function on K and satisfies

125 | f(x,t) |€ C(L+ | x P)*h, (x,1),

| f(A,m)|[<C@A+2|A|(2m+ o +1))< g 2HE@m+a+bb
where a, b are positive constants. Then f(x, t)=0 whenever a<b.
Proof: By Lemma 4,

| f () Cr | xPye s

130 For any x>0, f*(X)can be extended to a holomorphic function of A in the strip

A
{i eC:Imi —}. We choose & > 0such thata(e®® +e ) < 2b.We will prove that
a

f*(X)=0 for 0<A<J.Thismeansthat f*(x)=0 forall A< R .Therefore f(x,t)=0.
It is clear that

2

| f (x)|<.[|f(xt)|dt<C(l+x)e4a . @)
135 By Lemma 1 and (2),
fA(x)=27| A" Zf(i M) (/] 2 |x).

Take the Hankel transform on both sides of the above equality, by (5), we get

(H, T7)(x) = 27f|/1|“”2f(/1 m)(D)* g (| A7 x).

Hence we have
140 [(H, f)(X) I< CZ(1+ 2| 1|(2m+« +1))k 2(zma+1)b |¢)“’) (2 |’1’2 X)|.
For 0< j<k,A#0,letus consider

g; (x) = 2(2 [A|(2m+a +1)) g AAl(@m+a-1)b | (o(a)(l 1 |—1/2 X)|.

We have
1
(X)<C|/1| : (27)(2|/1|(2m+Of+1))2”‘"e*“““zm””l’b(co“"(l/1I*“2 X))*)?,
145  Where j, >a +1. Let
E(t g 2M@ma Dt @) (1 7 112 y)y2
0= e (P 21 %)

Then we have

_lo o 1
g;(x) <C|2| 2[FE R (2p)[2.
Applying the identity (cf.[13])
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0 ) _a 2sr 2|S\/_
z I’

m= OW(L‘Z (S)) —(l—r) (—S r) e s rJ (

We get
ix?
J.Co )
_coth(ut)xz o
F(t) = (sinh(2[ A[1)) e~ ﬂi?WZAU.
(isinh(z/it))

Differentiating F(t) and making use of (3) and (4), we obtain the estimate
tanh(2.4b) 2

|F@I)(2p) < C, (1+ x*)*"e 2

155 Here and below we denote by C, a positive number which depends only on 4. So

_tanh(24b) X2
g;(x)<C,1+x*)'e 2
It follows that there exists K,  such that
7tanh(2/1b)x2
[(H f)()<C 1+ x) e 2 . (8)
2b tanh(2.1b)
e2bﬂ, + e72b/1 < 22{ )
160 By (7), (8) and Proposition 1, we get f “(X) =0 for 0 <A < &. This proves Theorem 2.

When 0< A<, a<

Now we deal with the case a=b.

Theorem 3. Suppose f e L'(K) and satisfies
| £400 [< C@+ [ x ) hy (%),

165 | i (A, M IECA+2| 2| (2m+ o + 1))k dHEmratia
where a is a positive constant. Then f (X,t) =q*, h,(X,t), where q(x,t) is a distribution
with
q*(x) are polynomials of degree <2k in the variable x and * stands for the usual

convolution in the variable t. In particular, when k=0, g(x,t)=q(t) is a distribution on R and its
170  Fourier transform is bounded.
Proof: Because

[ f(A,mKCA+2|A1|(2Mm+a +1))k g 2Hl(2mra+la
we have, in view of (8),

tanh(24b) ,
|(H, fY00IC, A+ x2)oe 24 ©
175 By Lemma 3,
lﬂcoth(Zaﬂ)x
| () I<C, @+ x[) e : (10)

From (9), (10) and Proposition 1,
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W) coth( 2ai)x?

f*(x)=P*(x)e 2 :
where Pﬂ(x) is polynomials of degree <2k in the \variable x.

Then f*(x) = q*(x)h/ (),

where q*(x) =i( A

—— = )*'P*(X). Theorem3is proved. W
27 "2sinh(2aA)
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