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Abstract. We study a class of processes that are akin to the Wright-Fisher model, with transi-

tion probabilities weighted in terms of the frequency-dependent fitness of the population types.

Following an inverse numerical analysis approach, we obtain a family of partial differential equa-
tions (PDE) for the evolution of the probability density, and which will be an approximation of

the discrete process in the joint large population and weak selection limit. The equations in this

family can be purely diffusive, purely hyperbolic or of convection-diffusion type, with frequency
dependent convection, and the particular outcome will depend on the assumed scalings. The dif-

fusive equations are of the degenerate type; using a duality approach, we also obtain a frequency

dependent version of the Kimura equation without any further assumptions. We also show that
the convective approximation is related to the replicator dynamics and provide some estimate

of how good is the convective approximation. In particular, we show that the mode, but not
the expected value, of the probability distribution is modeled by the replicator dynamics. Some

numerical simulations that illustrate the results are also presented. Wright-Fisher process and

diffusion approximations and continuous limits and replicator equation [2000]92D15 and 92D25
and 35K57 and 35K67 and 35L65

1. Introduction

Evolution is naturally a multiscale phenomenon (Keller, 1999; Metz, 2011). The choice of right
scale to describe a particular problem has as much art as science. For some populations (e.g, with
non overlapping generations) a discrete time provides adequate description; for different exam-
ples, this is excessively simplifying. Large populations can be described as infinite (in order to
use differential equations, for example), but this imposes limitations in the time validity of the
model (Chalub and Souza, 2009b). On the other hand, some finite population effects, like for exam-
ple, the bottleneck effect, will be missing in any description relying in infinite populations (Hartle
and Clark, 2007).

In this vein, diffusion approximations, frequently used for large populations and long time scales,
enjoy a long tradition in population genetics. This tradition dates back as early as the work by
Feller (1951) and references there in. In particular, diffusion approximations were implicitly used
in the pioneering works of Wright (1938, 1937) and Fisher (1922, 1930). These efforts have been
further developed in a number of directions as, for instance, in the studies on multispecies models
in Sato (1976, 1983). also the review in Sato (1978). This led to a notable progress in the relevant
mathematics, as for instance reported in Strock and Varandhan (1997). This in turn led to a large
use of diffusion theory in the field, which can be verified in contemporary introductions to the
subject (see Ewens, 2004).

There is also a more general approach, called the Kramers-Moyal expansion, where the kernel
of the master equation of the stochastic process is fully expanded in a series. The diffusion
approximation consists in the Kramers-Moyal expansion truncated at order 2. Although it is
commonly claimed that the we need the full expansion to obtain a continuous approximation of
discrete processes, we will show that, in fact, the order 2 expansion provides an approximation
valid in all time scales. See (Van Kampen, 2001) for a discussion about this and other techniques
for continuous approximations of discrete processes.

A complimentary approach to the study of evolution, based on evolutionary game theory, has
also been developed (cf. Smith, 1982) with conclusions that are not always compatible with results
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from diffusion theory. As an example, diffusion models without mutation lead to the fixation of a
homogeneous population, while frequency dependent models associated to the replicator dynamics1

may lead to stable mixed populations. For an introduction to evolutionary game theory and
replicator dynamics, we refer the reader to Hofbauer and Sigmund (1998) and Weibull (1995).

Consistent interaction among these two modelling schools have been attempted by a number
of authors, with different degrees of success (see Traulsen et al., 2005; Lessard and Ladret, 2007;
Lessard, 2005; McKane and Waxman, 2007; Waxman, 2011). We will show that both descriptions
— the one based on the diffusion approximation and the one based on the replicator dynamics
— are both correct as models for the evolutionary dynamics of a given trait, but in different
time scales. As byproducts, we will provide a generalization of the Kimura equation valid for an
arbitrary number of types and general fitnesses; we will also prove that the replicator equation is
a model valid locally in time and that the solution of the replicator equation indicates the most
probable state (mode) to find a population, not the expected value of the trait.

1.1. Consistent approximations. In order to be able to study somewhat more general models,
we follow the approach used by the authors in Chalub and Souza (2009b). In particular, we are
interested not only in diffusion approximations, but in approximations that can be consistent with
the dynamics of the corresponding discrete process.

We begin with a definition:

Definition 1 (Dynamically Consistent Approximation). We shall say that a simplified modelM0

is a dynamically consistent approximation (DCA or, in short, an approximation) of the family of
detailed modelsMγ , γ > 0, in a sense χ (e.g., point wise, L2, L∞, etc) if the following holds true:

(1) Consider a certain family of initial conditions hI
γ such that limγ→0 h

I
γ = hI

0 in the sense
χ;

(2) Evolve through the model Mγ the initial condition hI
γ and through the model M0 the

initial condition hI
0 until the time tmax ∈ (0,∞] obtaining hγ(t) and h0(t) respectively, for

t < tmax;

If, for every time t < tmax, we have that limγ→0 hγ(t) = h0(t), in the sense χ, then we say that
the model Mγ converge in the limit γ → 0 until time tmax, in the sense χ, to the model M0.

If tmax 6=∞, we say that the model M0 approximates the initial dynamics (or locally in time)
of the detailed model Mγ0 , γ0 � 1; if tmax = ∞, we then say that M0 approximates the detailed
model Mγ0 , γ0 � 1 for all time scales (or globally in time).

Some examples of the relation between detailed and simplified models are listed in Table 1.
In general, some extra assumptions are frequently required. If, for example, there are more than

one small parameter in the detailed model, it is natural to assume a relationship among them,
called scaling, as, in general, the limit model will depend on how these parameters approaches
zero. Other assumptions may also be necessary, as it will be discussed in the next paragraph. The
process of taking the limit of a family of models, considering a given scaling, will be called “the
thermodynamical limit”; by extension, we shall also call the limit model the thermodynamical
limit. In this work, depending on the precise choice of the scaling, the limit equation can be of
drift-type (a partial differential equation fully equivalent to the replicator equation or system), of
purely diffusion type, or, in a delicate balance, of drift-diffusion type.

In what follows, an important and natural assumption that must be introduced in order that we
have as approximation in the DCA sence is the so-called weak selection principle, to be precisely
stated in equation (10). Generally speaking, we assume that the fitness of a given individual
(i.e., the probability of finding descendants of this individual in the next generation) decreases
to 1 when the time separation between two successive generations ∆t approaches zero. This is a
natural assumption when we consider that two successive generations collapses into a single one.
However, in most of the literature, the weak selection principle is assumed in the limit of N →∞,
where N is the population size. Although they are equivalent (as we shall assume a certain scaling
relation between N and ∆t), we consider our approach more natural.

1In this work, we will use the expressions “replicator dynamics”, “replicator equation” and “replicator system”
indistinctly.
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Detailed model Meaning of parameter γ Simplified model

Kinetic models mean free path hydrodynamical models

Othmer-Dumbar-Alt model mean free path Keller-Segel model
Quantum Mechanics rescaled Planck constant Classical Mechanics

Relativistic mechanics (rescaled light velocity)−1 Non-relativistic Mechanics
Moran process inverse of population size replicator-diffusion equation

Moran process inverse of population size replicator equation

Table 1. Detailed and reduced models. The last two lines state that both the
replicator equation and the replicator diffusion equation approximates the Moran
process, but in different time scales. References to these works are (Bardos et al.,
1991, 1993; Cercignani, 2002; Hillen and Othmer, 2000; Othmer and Hillen, 2002;
Chalub et al., 2004; Stevens, 2000; Hepp, 1974; Cirincione and Chernoff, 1981;
Bjorken and Drell, 1964; Chalub and Souza, 2009a,b).

1.2. Inverse numerical analysis. We shall show that the evolution given by the Wright-Fisher
process can be approximated for all time scales by a certain differential equation (the simplified
model), to be introduced, that we call the replicator-diffusion equation. The Wright-Fisher process
is an evolutionary process for an asexual population of N individuals, constant in size, divided
in n different types, that evolves according to a specific rule, with fixed time separation between
generations of ∆t > 0 (the detailed model in the discussion above, where γ is the inverse of the
population size — or, as we shall see, equivalently, the intergeneration time). If we are interested
only in the first time scale of the Wright-Fisher process, we shall assume different scalings and
obtain as simplified limit the replicator equation, a first order ordinary differential system.

In short, given a certain scaling and the weak selection principle, we find a certain partial-
differential equation of drift-diffusion type with degenerated coefficients as the thermodynamical
limit of the Wright-Fisher process (to be rigorously introduced and analyzed for finite populations
in section 3).

The derivation is made in four steps:

(1) The discrete process is studied and shown that its solution is convergent to a linear su-
perposition of homogeneous states for large times. We shall then say, in the language of
numerical analysis, that the discrete process is stable.

(2) An asymptotic expansion of the process in powers of 1/N is made, and we pick the
leading order term. This is then applied to a sufficient smooth function in a dense class.
The outcome will be a differential operator. Again, following the language of numerical
analysis, we shall say then that the discrete process is consistent with the differential
operator.

(3) We show that the discrete process has n linearly independent linear conservation laws and
we construct conservation laws at the continuous level that are natural extensions of the
conservation laws at the discrete level when N →∞.

(4) The differential operator together with the conservation laws is shown to define a well-
posed problem.

We are now in a position to invoke the celebrated Lax-Richtmyer equivalence theorem (Richtmyer
and Morton, 1967) which asserts, for linear problems, that a discrete process that is consistent
converges, if and only if, it is stable.

Remark 1. The process of obtaining a equation for which the discrete process is consistent will
be termed a continuation of the discrete process. Notice that, for a given discrete process, we can
have a number of different continuations that will be obtained in different scalings and valid in
different domains.

Remark 2. The inverse numerical analysis perspective offers a natural approach to introduce a
number of features in modelling, that are usually included by means of ad-hoc constructions.

1.3. Outline. In this paper we extend the study for the two-types Moran process in Chalub and
Souza (2009a,b) to the Wright-Fisher process with an arbitrary number of types. In Section 2,
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we introduce the basic notation and make an extended abstract of our main results. In section 3,
we will study in detail the discrete process (the finite population Wright-Fisher process). In
section 4, we find the continuation of the Wright-Fisher process. In particular, we derive the
replicator-diffusion equation; in section 5 we study the replicator-diffusion equation, showing the
main properties of its solutions; in particular, we sketch the proof of convergence of the solution
of the discrete model to the solution of the continuous model. Following Chalub and Souza
(2009a,b), we will present the more technical proofs elsewhere. We also show that the probability
distribution associated with all types in the population concentrates along the evolutionary stable
states. Additionally, in subsection 5.2, we obtain the backward equation as the proper dual of
the replicator-diffusion equation, providing a consistent generalization of the Kimura equation for
the n types and arbitrary fitness functions. In section 6, we show that the initial dynamics of the
replicator-diffusion equation is given by the replicator equation (or system), thus showing that in
the limit of short times and strong selection2 the Wright-Fisher process will be well approximate
by the trajectories of the replicator equation. In particular, we say that the replicator equation
is a dynamically consistent approximation of the Wright-Fisher process, but valid only locally in
time (while the replicator-diffusion equation is a DCA valid globally in time). It is important
to note that, for intermediate times, the replicator equation will approximate the mode of the
discrete evolution3, but not the expected value of a given trait, as will be numerically exemplified
in section 7. Conclusions are presented in section 8.

2. Preliminaries and main results

We begin by introducing the space of states for the evolution:

Definition 2. Let R+ = [0,∞). We define the n− 1 dimensional simplex

Sn−1 :=

{
x ∈ Rn

+

∣∣∣∣∣ |x| :=
n∑
i=1

xi = 1

}
.

We also define the set of vertexes of the simplex ∆Sn−1 := {x ∈ Sn−1|∃i, xi = 1}, its interior
intSn−1 := {x ∈ Sn−1|∀i, xi > 0} and its boundary ∂Sn−1 = Sn−1\intSn−1. The state of the
population is a vector x ∈ Sn−1. The elements of ∆Sn−1 are denoted ei, i = 1, . . . , n and called
“homogeneous states”. A vector x ∈ Sn−1\∆Sn−1 is a “mixed state”.

In what follows, we let p(x, t) to be the probability density of finding the population at state
x ∈ Sn−1 at time t ≥ 0.

Definition 3. We call the fitness of a given type a sufficiently smooth function ψ(i) : Sn−1 → R+,
and the average fitness in a given population is given by ψ̄(x) :=

∑n
i=1 xiψ

(i)(x). Note that we
consider the fitness function to not depend explicitly on time.

In this work, we introduce a family of detailed models described by a parabolic equation of drift-
diffusion type, with degenerated coefficients (DiBenedetto, 1993; Carrol and Schowalter, 1976),
defined in the simplex Sn−1, called the replicator-diffusion equation, namely:

(1)

 ∂tp = Ln−1,xp := κ
2

∑n−1
i,j=1 ∂

2
ij (Dijp)−

∑n−1
i=1 ∂i (Ωip) ,

Dij := xiδij − xixj ,
Ωi := xi

(
ψ(i)(x)− ψ̄(x)

)
,

with i, j = 1, . . . , n − 1, κ > 0, and where δij = 1 if i = j and 0 otherwise is the Kronecker
delta. The above equation has a solution in the classical sense (i.e., everywhere differentiable).
Furthermore, in the classical sense, it is a well posed problem, without any boundary conditions.
However, this classical solution is not the correct limit of the discrete process. In order to find the
correct limit, equation (1) is to be supplemented with n conservation laws. From now on, whenever
we refer to the replicator-diffusion equation (1), we are implicitly assuming these conservation laws.

Our main conclusions are:

2Strong selection in this context is not directly related or opposed to weak selection as introduced before.
3We call “mode” the most probable state in intSn−1, and not in Sn−1 (see definition 2).
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(1) An analysis of the equation (1) leads to a unique solution of measure type. This will
require definitions of appropriate functional spaces.

(2) This unique solution approximates, in the thermodynamical limit, the evolution of a dis-
crete population by the Wright-Fisher process in all time scales.

(3) A reduced model, obtained by setting κ = 0 in (1) (with only one conservation law), is
shown to be equivalent to the replicator dynamics. This will show that the replicator
dynamics approximates the discrete process only locally in time;

(4) Furthermore, the solution of the replicator equation models the time evolution of the mode
of the probability distribution associated to the discrete process (and not the expected
value of the same distribution);

(5) A frequency dependent generalization of the Kimura equation for an arbitrary number of
types is obtained by looking at the dual problem for (1).

Before going into the technical details, we explain the last paragraph a little further.
Equation (1) has two natural time scales, one for the natural selection (the mathematical drift

and, as we shall see, fully compatible with the replicator equation), the second for the genetic drift
(the mathematical diffusion). That is why we call equation (1) together with the conservation laws
to be introduced in subsection 4.2, the “replicator-diffusion equation”. More precisely, the solution
of the replicator-diffusion equation when κ = 0 (which is of hyperbolic type) is the leading order
term of the solution pκ of the replicator-diffusion equation for small κ (i.e., large fitness and/or
short times). The replicator-diffusion equation with zero diffusion (κ = 0) happens to be the
replicator equation (or system) (Hofbauer and Sigmund, 1998). In an appropriate sense, to be

made precise in section 6.3 (theorem 7), we have pκ
κ→0−→ p0, locally in time4.

This theorem cannot be made global in time, for general fitness functions and initial conditions,
as the Wright-Fisher process always converge in t → ∞ to a linear combination of homogeneous
states (while it is possible that the solution of the replicator equation converges to a stable mixed
state).

This is the mathematical formulation of a known principle in evolutionary biology that states
that “given enough time every mutant gene will be fixed or extinct.” (Kimura, 1962). This means
that the final state of the replicator-diffusion equation with any κ > 0 will be a linear combination
of Dirac deltas at the vertexes of the simplex Sn−1. Actually, for any positive time, the solution
of equation (1) with the conservation laws described above is a sum of a classical function in the
simplex plus a sum of singular measures over all the subsimplexes on ∂Sn−1 and, inductively,
on their boundaries subsimplexes. In particular, we shall have also Dirac measures supported on
the vertexes of the simplex. These measures appears immediately, i.e., for any t > 0. The full
evolution and the final states of the replicator-diffusion equation will be studied in section 5.

From the practical point of view, we are, however, often interested in transient states (“in the
long run, we are all dead”, said John Maynard Keynes), specially because the transient states
become more and more important for the discrete evolution as the population size increases.
Heuristically, when the population is large the stochastic fluctuations decreases in importance,
and therefore, its evolution is deterministic. The associated limit will be given by equation (1),
with κ = 0, i.e., the hyperbolic limit of equation (1). This equation does not develop finite-time
singularities. This is one more peculiarity of equation (1): diffusion seems to be a deregularizing
effect; the solution of the parabolic replicator-diffusion equation κ > 0 is less regular than the
solution of the hyperbolic null-diffusion limit κ = 0, contrary to most examples in the literature
(John, 1991; Folland, 1995). See, on the other hand, (Murray, 2003), for diffusion driven instability.

The relationships between the three models is summarized in Figure 1.

3. The discrete model

In this section, we study the discrete model, i.e., the Wright-Fisher model for constant pop-
ulation, arbitrary number of types and arbitrary fitnesses functions. We start, in subsection 3.1
with basic mathematical definitions; in subsection 3.2 we prove that a state is a stationary state

4Except for a special range of parameters (Chalub and Souza, 2011a).
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Figure 1. The boxes in the figure represents the solutions of three different
models: the Wright-Fisher process (finite population N), the replicator-diffusion
equation (positive diffusion κ) and the replicator equation. The vertical axis
indicates the arrow of time (top-down), and the horizontal axis indicates, first the
large population limit, secondly the no-diffusion limit. Note that the no-diffusion
limit of the replicator-diffusion equation for large times has no relation with the
solutions of the replicator equation at the same time; therefore, the replicator
equation should be valid only locally in time. Here tmax indicates the maximal
time for the approximation of the model by the replicator ODE, according to the
definition 1.

of the discrete evolution if and only if it is homogeneous; therefore, there are exactly n linearly
independent stationary state; finally, we prove that the final state is a linear superposition of these
independent stationary states, with coefficients that depend on the initial condition and that can
be calculated from a set of n linearly independent conservation laws. All these results will be
useful in the correct determination of the continuous process, to be done in sections 4 and 5. The
Wright-Fisher process was studied, with different level of details in, for example, (Ewens, 2004;
Nowak, 2006; Imhof and Nowak, 2006), but, to the best of our knowledge the conservation laws
associated to the process were overlooked.

The fact that the final state in the Wright-Fisher process, among others, for a finite population
is always homogeneous was also a matter of dispute with respect to the validity of the mod-
elling (Vickery, 1988; Smith, 1988). As we will shortly see in this work, this dispute is basically
a consequence of the existence of two different time scales hidden in the model: the non-diffusive
(drift) and the diffusive one.

3.1. Preliminaries. We consider a fixed size population of N individuals at time t consisting of
a fraction xi ∈ {0, 1

N ,
2
N , . . . , 1} of individuals of type i = 1, 2, · · · , n. The population evolves in

discrete generations with time-step separation of ∆t. We introduce the following notation:

Definition 4. The state of a population is defined by a vector in the N -discrete n−1-dimensional
simplex

Sn−1
N :=

{
x = (x1, · · · , xn)

∣∣|x| := n∑
i=1

xi = 1, xi ∈
{

0,
1

N
,

2

N
, · · · , 1

}}
.

We also define the set of vertexes of the n− 1-dimensional simplex

∆Sn−1
N := {x ∈ Sn−1

N |∃i, xi = 1} = {ei|i = 1, . . . , n} .
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The elements of ∆Sn−1
N are called the homogeneous states. To each type we attribute a function,

called fitness, Ψ
(i)
∆t : Sn−1

N → R. It is convenient to assume that Ψ
(i)
∆t is a discretization of a smooth

function on the simplex Sn−1; more assumptions on Ψ
(i)
∆t will be introduced in section 4.

A population at time t+ ∆t is obtained from the population at time t choosing N individuals
with probability proportional to the fitness. More precisely, we define the average fitness Ψ̄∆t(x) =∑n
i=1 xiΨ

(i)
∆t(x) and then the transition probability from a population at state y to a population

at state x is given by

(2) ΘN,∆t(y→ x) =
N !

(Nx1)!(Nx2)! · · · (Nxn)!

n∏
i=1

(
yiΨ

(i)
∆t(y)

Ψ̄∆t(y)

)Nxi
.

The evolutionary process given by a Markov chain with transition probabilities given by equa-
tion (2) is called the (frequency dependent) Wright-Fisher process.

Let P(t) = (P (x, t))x∈Sn−1
N

, with

P ∈ Υ := {P : Sn−1
N × R+ → R+|

∑
x∈Sn−1

N

P (x, ·) = 1},

where P (x, t) is the probability of finding the population at a given state x ∈ Sn−1
N at time t.

Then, the evolution is given by

(3) P (x, t+ ∆t) = (T P(t))(x) :=
∑

y∈Sn−1
N

ΘN,∆t(y→ x)P (y, t) .

.
The probability conservation is a consequence of the definition (2) and reads

(4)
∑

x∈Sn−1
N

ΘN,∆t(y→ x) = 1, ∀y ∈ Sn−1
N .

3.2. Stationary states, final states and conservation laws. We call an homogeneous popu-
lation a population of a single type, i.e., P (x, t) = P̂v(x) for v ∈ ∆Sn−1

N , where

P̂x(y) =

{
1 , y = x ,
0 , y 6= x .

From the fact that it is always possible to have a homogeneous population in a single step, we also
have that

(5)
∑

x∈Sn−1
N \∆Sn−1

N

ΘN,∆t(y→ x) < 1 , ∀y ∈ Sn−1
N .

Furthermore, we suppose there is no mutation in the evolutionary process, more precisely, for
y ∈ Sn−1

N , with yi = 0, for a certain i, then for any vector x ∈ Sn−1
N such that xi 6= 0, we have

that ΘN,∆t(y→ x) = 0. In particular

(6) ΘN,∆t(y→ x) =

{
1 if x = y ∈ ∆Sn−1

N ,
0 if x 6= y ∈ ∆Sn−1

N .

In the remainder of this section, we will consider a function f : Sn−1
N → R+ also as a vector

in the non-negative cone of a Euclidean space of sufficiently high dimension K, where K is the
number of points in Sn−1

N ; i.e. f : {1, . . . ,K} → R+. The order of this set is irrelevant to the
sequel. Therefore, the transition operator given by equation (2) can be seen as a transition matrix
in RK which preserves the non-negative cone RK+ .

Lemma 1. Let f : Sn−1
N → R+ be such that there is x ∈ Sn−1

N \∆Sn−1
N , such that f(x) > 0. Then,∑

x∈Sn−1
N \∆Sn−1

N

(T f)(x) <
∑

x∈Sn−1
N \∆Sn−1

N

f(x) .
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Proof.∑
x∈Sn−1

N \∆Sn−1
N

(T f)(x) =
∑

x∈Sn−1
N \∆Sn−1

N

y∈Sn−1
N \∆Sn−1

N

ΘN,∆t(y→ x)f(y) +
∑

x∈Sn−1
N \∆Sn−1

N

y∈∆Sn−1
N

ΘN,∆t(y→ x)f(y)

=
∑

y∈Sn−1
N \∆Sn−1

N

x∈Sn−1
N \∆Sn−1

N

ΘN,∆t(y→ x)f(y) (from equation (6))

<
∑

y∈Sn−1
N \∆Sn−1

N

f(y) (from equation (5)) .

� �

This immediately implies the following Theorem:

Theorem 1. A function f defined in Sn−1
N is a fixed state of the operator T if, and only if, f is

a linear combination of homogeneous states. In particular, T has exactly n linearly independent
eigenfunctions associated to the eigenvalue λ = 1.

Proof. From equation (6) it is clear that all homogeneous states are stationary states. From
Lemma 1 it is clear that no non-homogeneous state can be a stationary state. It is immediate
that the algebraic and geometric multiplicities of λ = 1 are equal. Suppose, by contradiction, that
there is a generalized eigenvector f of T . Therefore, there is an homogeneous state v ∈ ∆Sn−1

N

such that ∑
y∈Sn−1

N

f(y) =
∑

x,y∈Sn−1
N

ΘN,∆t(y→ x)f(y) =
∑

x∈Sn−1
N

(T f) (x)

=
∑

x∈Sn−1
N

[
f(x) + P̂v(x)

]
=

∑
x∈Sn−1

N

f(x) + 1 .

� �

A convenient eigenbase can be obtained by considering one vector for each homogeneous state.
More precisely, consider the states given by P̂x. Immediately

〈P̂x, P̂y〉 =

{
1 , x = y ,
0 , x 6= y ,

where

〈v, w〉 :=
∑

x∈Sn−1
N

v(x)w(x) .

From equation (4) it is clear that all eigenvalues λ are such that |λ| ≤ 1. The set {P̂e1 , P̂e2
, . . . , P̂en}

is a complete set of eigenvectors associated to λ = 1 and from lemma 1 all other eigenvectors are
such that its associated eigenvalue is |λ| < 1. This implies the existence of

T ∞f = lim
k→∞

T kf , f(x) ≥ 0 , ∀x ∈ Sn−1
N .

Therefore, we state:

Corollary 1. For all non-negative initial condition P I, the final result is a linear combination of
homogeneous states,

P∞ := lim
t→∞

P (·, t) =

n∑
i=1

ci
[
P I
]
P̂ei .

Definition 5. We define a linear conservation law as one given by a linear functional over the
functions of Sn−1

N . A set of linear conservation laws is linearly independent, if the only linear
combinations providing a trivial conservation law is the trivial one.
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Now, consider the adjoint evolution operator T †. There are n linearly independent eigenvectors
associated to the eigenvalue λ = 1. To each of them, we obtain a linear conservation law for the
evolution given by T . In effect, let w be one of these eigenvectors.

(7) 〈P(t+ ∆t), w〉 = 〈T P(t), w〉 = 〈P(t), T †w〉 = 〈P(t), w〉 .

As there are n linearly independent eigenvectors, there are n linear linearly independent conser-
vation laws associated to the direct evolution given by equation (3).

Now, we consider a particular set of eigenvectors, associating conservation laws and the fixation

probabilities of the n different types. Given any initial condition P ∈ Υ, we define F
(i)
P as the

fixation probability of the type i in a population initially in the state P . From the fact that

T ∞P =

n∑
i=1

F
(i)
P P̂ei

we find

(8) F
(i)
P = (T ∞P ) (ei) = 〈T ∞P, P̂ei〉 = 〈P,

(
T †
)∞

P̂ei〉 .

In particular ∑
x∈Sn−1

N

F
(i)

P̂x
P̂x =

∑
x∈Sn−1

N

〈P̂x,
(
T †
)∞

P̂ei〉P̂x.

Finally, (
T †
)∞

P̂ei =
∑

x∈Sn−1
N

F
(i)

P̂x
P̂x .

Therefore, by defining

(9) F(i) =
∑

x∈Sn−1
N

F
(i)

P̂x
P̂x , i = 1, . . . , n ,

we have n eigenvectors of T †, one for each i = 1, . . . , n. In fact

T †F(i) = T †
(
T †
)∞

P̂ei =
(
T †
)∞

P̂ei = F(i) .

In particular,

F(i)(ej) = 〈
(
T †
)∞

P̂ei , P̂ej 〉 = 〈P̂ei , T ∞P̂ej 〉 = 〈P̂ei , P̂ej 〉 = δij .

The set {F(1), . . . ,F(n)} provides n linear different conservation laws; however none of them is the
conservation of probability, the most natural conservation law associated to a Markov process.
Indeed, for any x ∈ Sn−1

N
n∑
i=1

F(i)(x) =

n∑
i=1

F
(i)

P̂x
= 1 .

In order to have the conservation of probability as one of the conservation laws of our system, we
define G such that G(x) = K−1 where the real positive constant K is such that

∑
x∈Sn−1

N
K−1 = 1

and prove that

Lemma 2. The set {F(i)}i=1,...,n−1 ∪ G is linearly independent.

Proof. Assume that α0G +
∑n−1
i=1 αiF

(i) = 0, i.e., for every x ∈ Sn−1
N ,

α0G(x) +

n−1∑
i=1

αiF
(i)(x) = 0 .

For x = en we find α0 = 0 and for x = ei we find αi = −K−1α0 = 0, i = 1, . . . , n− 1. � �

Lemma 2 and equation (9) provide n distinguished linearly independent conservation laws.
These laws will be instrumental to obtain the correct notion of solution in the continuous model.
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4. Continuations of the discrete model

The aim of this section is to obtain a differential equation that approximates the discrete evo-
lution, when the population is large (N →∞) and there is no time-separation between successive
generations (∆t→ 0). The relevant variables, x ∈ Sn−1 and t > 0 will be forced to be continuous.
The correct heuristics to understand the procedure of taking the limit is the one described in
section 1, the dynamically consistent approximation.

We begin in subsection 4.1 developing three models, based on partial differential equations
formally obtained from the Wright-Fisher process, when N →∞ and ∆t→ 0 (see equations (14),
(15) and (1’), respectively). There is no “right choice” of the simplified model. As we could
expect, models valid locally in time are simpler than models that are valid globally in time. For
example, the model given by equation (14) is equivalent to a system of a ordinary differential
equations; actually, it is exactly equivalent to the well-know replicator dynamics (see Hofbauer
and Sigmund, 1998). On the other hand, the diffusive approximation, given by equation (15), is
a parabolic partial differential equation that is much simpler to solve than the full model; in fact,
explicit solutions are know using Gegenbauer polynomials (Ewens, 2004). Our focus will be on
the global in time approximation, equation (1’).

Results known for the Wright-Fisher process, and stated in section 3 will guide the formal
derivation, i.e., the choice of the right thermodynamical limit. After the formal step, it is necessary
to prove directly all required mathematical properties for the continuous model, without reference
to the discrete model.

For the benefit of exposition and for a presentation geared more towards the biological applica-
tion, we have chosen not to include a number of mathematical details in the present work, which
will be presented elsewhere5. Nevertheless, see section 5.1 for some results.

We shall enforce that for every conservation law of the discrete process (described in Lemma 2)
should correspond a conservation law in the continuous model. This will be done in subsection 4.2
referring to the discrete case. The conservation laws can also be derived directly in the continuous
case, restricting the functional space of interest properly; see remark 7. As a by product, the final
state of the continuous model shall be a linear superposition of homogeneous states (see corollary 1
and compare it with theorem 2).

4.1. Formal derivation. We start the formal construction of a differential equation that ap-
proximates the discrete evolution given by (3) when N is large. First, we define the density of
probability

pN :=
P

1/N
.

We shall assume that pN → p weakly. Then, with appropriate scalings for ∆t(N), there will be a
continuous equation for the evolution of the density probability p, defined in the simplex Sn−1.

Using the Stirling formula x! ≈
√

2πxxxe−x we write

N !

(Nx1)!(Nx2)! · · · (Nxn)!
≈ (2π)

1−n
2

Nn−1

N
n−1
2

(x1x2 · · ·xn)
1
2xx1N

1 xx2N
2 · · ·xxnNn

.

We also assume the so called weak selection principle

(10) Ψ
(i)
∆t(y) = 1 + (∆t)

ν
ψ(i)(y),

and then

Ψ̄∆t(y) = 1 + (∆t)
ν
ψ̄(y) ,

5As for instance in (Chalub and Souza, 2011c)
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where ν > 0 is a parameter to be defined6. Keeping only order 1 terms in (∆t)
ν
, we find(

yiΨ
(i)
∆t(y)

Ψ̄∆t(y)

)Nxi
≈ exp

{
Nxi

[
log yi + log

(
1 + (∆t)

ν
ψ(i)(y)

)
− log

(
1 + (∆t)

ν
ψ̄(y)

)]}
≈ yNxii exp

[
xi

(
ψ(i)(y)− ψ̄(y)

)]
.

Finally, we have

ΘN,∆t(y→ x) ≈ 1

Nn−1
Λ(y,x, N−

1
2 ) (1 + Ξ(y,x, N,∆t) + o(1)) ,

where

Λ(y,x, z) :=
(2π)

1−n
2 z1−n

(x1x2 · · ·xn)
1
2

n∏
i=1

(
yi
xi

) xi
z2

Ξ(y,x, N,∆t) :=

n∑
i=1

[
N (∆t)

ν
xi

(
ψ(i)(y)− ψ̄(y)

)]
.

Note that Ξ is associated to the drift generated by the fitness; i.e., in the neutral case (ψ(i)

independent of i), we have that Ξ(y,x, N,∆t) = 0.

We introduce the new variables τi = yi
√
N and z = 1√

N
.

Lemma 3. For large N (and then small z) the neutral transition probability Λ scales as

Λ(x− zτ ,x, z) ≈ (2π)
1−n
2 z1−n

(x1x2 · · ·xn)
1
2

exp

(
−1

2
Q(τ , τ )

)
,

where Q is a quadratic form with associated eigenvalues σ1, · · · , σn−1. These eigenvalues are the
eigenvalues of the matrix F = (Fij), i, j = 1, · · · , n−1, defined by Fii = x−1

i +x−1
n and Fij = x−1

n ,
for i 6= j, i.e., σ1 · · ·σn−1 = (x1 · · ·xn)−1. This implies that∫

Rn−1

exp

(
−1

2
Q(τ , τ )

)
dτ = (2π)

n−1
2
√
x1 · · ·xn .

Proof. We first write

n∏
i=1

(
xi − yi
xi

)Nxi
=

[
n−1∏
i=1

(
xi − yi
xi

)xi (xn +
∑n−1
i=1 yi

xn

)x
n

]N

= exp

N
n−1∑
i=1

xi log

(
1− yi

xi

)
+ xn log

1 +
1

xn

n−1∑
j=1

yj

 .

The maximum happens when yi = 0, and note that

n−1∑
i=1

xi log

(
1− yi

xi

)
+ xn log

1 +
1

xn

n−1∑
j=1

yj

 ≈ −1

2

n−1∑
i=1

y2
i

xi
+

1

xn

n−1∑
j=1

yj

2


= −1

2

n−1∑
i=1

(
1

xi
+

1

xn

)
y2
i +

2

xn

n−1∑
i<j=1

yiyj

 = −1

2
Q(y,y) = − 1

2N
Q(τ , τ ) ,

� �

6See also the discussion on the weak selection principle and the choice of ∆t (and not N) in its expansion
in Chalub and Souza (2009b).
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Lemma 4. For large N (and then small z) the neutral transition probability Λ has the following
first moments:

zn−1

∫
Rn−1

Λ(x,x + zτ , z)dτ =

∫
Sn−1

Λ(x,x + y, z)dy = 1 ,

zn
∫
Rn−1

τiΛ(x,x + zτ , z)dτ = 0 ,

zn+1

∫
Rn−1

τiτjΛ(x,x + zτ , z)dτ = O(z3) + z2 × (xiδij − xixj) .

where δij = 1 if i = j and 0 otherwise is the Kronecker delta.

Proof. The first one is a simple consequence of normalization. The second one indicates that the
average displacement in the neutral case is identically zero. The last one can be directly computed
using Lemma 3. Note that the first two equations are exact, while the third one has order three
corrections in z. � �

The evolution equation for large N , with dy = 1
Nn−1 is given by

p(x, t+ ∆t) =
∑

{y|x−y∈Sn−1}

ΘN,∆t(x− y→ x)p(x− y, t)

≈
∫
{y|x−y∈Sn−1}

[1 + Ξ(x− y,x, z,∆t)] Λ(x− y,x, z)p(x− y, t)dy +O(N−2)

=

∫
{τ |x−zτ∈Sn−1}

[1 + Ξ(x− zτ ,x, z,∆t)] Λ(x− zτ ,x, z)p(x− zτ , t)zn−1dτ +O(z4)

≈
∫
Rn−1

[1 + Ξ(x− zτ ,x, z,∆t)] Λ(x− zτ ,x, z)p(x− zτ , t)zn−1dτ +O(z4) .

It is clear that {τ ∈ Sn−1|x− zτ ∈ Sn−1} ≈ Rn−1 when z is sufficiently small. Furthermore, we
always can impose that the transition probability for a state not in the simplex Sn−1 is identically
zero. From the previous equation, we multiply by an appropriate test function g and integrate
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over the simplex to obtain the following equation7:

∫
Sn−1

p(x, t+ ∆t)g(x, t)dx

≈ zn−1

∫∫
Rn−1×Sn−1

[1 + Ξ(x− zτ ,x, z,∆t)] Λ(x− zτ ,x, z)p(x− zτ , t)g(x, t)dτdx

= zn−1

∫∫
Rn−1×Sn−1

[1 + Ξ(x,x + zτ , z,∆t)] Λ(x,x + zτ , z)p(x, t)g(x + zτ , t)dτdx

≈ zn−1

∫∫
Rn−1×Sn−1

[
1 + zN (∆t)

ν
n∑
i=1

τi

(
ψ(i)(x)− ψ̄(x)

)]
Λ(x,x + zτ , z)p(x, t)

×

g(x, t) + z

n−1∑
j=1

τj∂xjg(x, t) +
z2

2

n−1∑
k,l=1

τkτl∂
2
xkxk

g(x, t)

dτdx

≈ zn−1

∫∫
Rn−1×Sn−1

Λ(x,x + zτ , z)p(x, t)g(x, t)dτdx

+ zn
∫∫

Rn−1×Sn−1

p(x, t)

N (∆t)
ν

n∑
i=1

(
ψ(i)(x)− ψ̄(x)

)
τi +

n−1∑
j=1

τj∂xjg(x, t)


× Λ(x,x + zτ , z)dτdx

+ zn+1

∫∫
Rn−1×Sn−1

p(x, t)

[
n−1∑
k,l=1

τkτl
2
∂2
xkxl

g(x, t)

+

n∑
i=1

n−1∑
j=1

N (∆t)
ν
∂xjg(x, t)(ψ(i)(x)− ψ̄(x))τiτj

]
× Λ(x,x + zτ , z)dτdx .

We analyze each term in the integrand using lemma 4. The first one is simply

zn−1

∫∫
Rn−1×Sn−1

Λ(x,x + zτ , z)p(x, t)g(x, t)dτdx =

∫
Sn−1

p(x, t)g(x, t)dx .

The second one is identically zero. Now, we obtain the last one, dividing it in two parts:

zn+1
n−1∑
k,l=1

∫∫
Rn−1×Sn−1

p(x, t)
[τkτl

2
∂2
xkxl

g(x, t)
]

Λ(x,x + zτ , z)dτdx

≈ z2

2

∫
Sn−1

n−1∑
k=1

(
xk(1− xk)∂2

xk
g(x, t)

)
p(x, t)dx

− z2

2

∫
Sn−1

p(x, t)

n−1∑
k,l=1,k 6=l

(
xkxl∂

2
xkxl

g(x, t)
)

dx ,

7To avoid confusion, over this section we shall write explicitly the variable under differentiation, i.e., ∂xi instead

of ∂i.
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and

zn+1
n∑
i=1

n−1∑
j=1

∫∫
Rn−1×Sn−1

p(x, t)∂xjg(x, t)(ψ(i)(x)− ψ̄(x))τiτjΛ(x,x + zτ , z)dτdx

≈ z2
n−1∑
j=1

n∑
i=1

∫∫
Rn−1×Sn−1

p(x, t)∂xjg(x, t)
(
ψ(i)(x)− ψ̄(x)

)
(xiδij − xixj) dx

= z2
n−1∑
j=1

∫
Sn−1

p(x, t)∂xjg(x, t)
(
ψ(j)(x)− ψ̄(x)

)
dx

− z2
n−1∑
j=1

n−1∑
i=1

∫
Sn−1

p(x, t)∂xjg(x, t)
(
ψ(i)(x)− ψ̄(x)

)
xixjdx .

From the fact that
∑n
i=1 xi

(
ψ(i)(x)− ψ̄(x)

)
= 0 we conclude that the last integral is zero and

then

N (∆t)
ν
zn+1

n∑
i=1

n−1∑
j=1

∫∫
Rn−1×Sn−1

p(x, t)∂xjg(x, t)(ψ(i)(x)− ψ̄(x))τiτjΛ(x,x + zτ , z)dτdx

= N (∆t)
ν
z2

∫
Sn−1

n−1∑
j=1

[
xj

(
ψ(j)(x)− ψ̄(x)

)
∂xjg(x, t)

]
p(x, t)dx .

Hence, on using that z = 1/
√
N , we obtain that∫

Sn−1

(p(x, t+ ∆t)− p(x, t)) g(x, t) dx

=
1

2N

∫
Sn−1

p(x, t)

 n−1∑
i,j=1

xi(δij − xj)∂2
ijg(x, t)

 dx

+ (∆t)
ν
∫
Sn−1

p(x, t)

n−1∑
j=1

xj

(
ψ(j)(x)− ψ̄(x)

)
∂jg(x, t)

dx +O(N−2).

Remark 3. If one is willing to assume differentiability of p with respect to t, then one may divide
the last equation by ∆t, and it is straightforward to show that, in the limit ∆t→ 0, the left hand
side converges to ∫

Sn−1

∂tp(x, t)g(x, t) dx.

Then, on integrating in t and performing an integration by parts, one arrives at a weak formulation
for the ∂tp, which seems to be completely unnecessary in this case. Alternatively, we are left
with the options of either obtaining a mixed strong-weak formulation, or by switching to a strong
formulation in space, at the expense of loosing the conservative property of the weak formulation.
For a derivation without any regularity assumption, see appendix A.

On imposing the scaling relationship N−1 = κ (∆t)
µ
, we find that∫

Sn−1

p(x, t+ ∆t)− p(x, t)
∆t

g(x, t) dx

=
(∆t)

µ−1

2

∫ ∞
0

∫
Sn−1

p(x, t)

 n−1∑
i,j=1

xi(δij − xj)∂2
ijg(x, t)

 dx dt

+ (∆t)
ν−1

∫ ∞
0

∫
Sn−1

p(x, t)

n−1∑
j=1

xj

(
ψ(j)(x)− ψ̄(x)

)
∂jg(x, t)

dx +O(∆t).
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With the above scalings, for µ < 1 or ν < 1, after multiplication by (∆t)
min{µ,ν}−1

, we obtain
stationary approximations. Thus, in order to allow for time evolution, we need µ ≥ 1, ν ≥ 1.
However, if both µ, ν > 1 we also have stationary solutions given by the initial condition.

The other cases are as follows:

µ > 1, ν = 1: This is the convective or drift approximation:

−
∫ ∞

0

∫
Sn−1

p(x, t)∂tg(x, t) dx dt−
∫
Sn−1

p(x, t0)g(x, t0) dx

=

∫ ∞
0

∫
Sn−1

p(x, t)

n−1∑
j=1

xj

(
ψ(j)(x)− ψ̄(x)

)
∂jg(x, t)

dx.(11)

µ = 1, ν > 1: This is the diffusive approximation

−
∫ ∞

0

∫
Sn−1

p(x, t)∂tg(x, t) dx dt−
∫
Sn−1

p(x, t0)g(x, t0) dx

=
κ

2

∫ ∞
0

∫
Sn−1

p(x, t)

 n−1∑
i,j=1

xi(δij − xj)∂2
ijg(x, t)

 dx dt.(12)

µ = 1, ν = 1: In this case there is a maximal balance of selection and genetic drift, and we
find the Replicator-diffusion equation

−
∫ ∞

0

∫
Sn−1

p(x, t)∂tg(x, t) dx dt−
∫
Sn−1

p(x, t0)g(x, t0) dx

=
κ

2

∫ ∞
0

∫
Sn−1

p(x, t)

 n−1∑
i,j=1

xi(δij − xj)∂2
ijg(x, t)

 dx dt(13)

+

∫ ∞
0

∫
Sn−1

p(x, t)

n−1∑
j=1

xj

(
ψ(j)(x)− ψ̄(x)

)
∂jg(x, t)

dx.

Equations (11), (12) and (13) are written in the weak form. In population dynamics, and
in others contexts as well, they are used casted into the strong formulation (or standard PDE
formulation) as follows (see, however, remark 5):

• If µ > 1 and ν = 1, the convective of drift approximation:

(14) ∂tp = −
n−1∑
i=1

∂i

[
xi

(
ψ(i)(x)− ψ̄(x)

)
p
]
.

This equation is equivalent to the replicator dynamics, showing that the Wright-Fisher
process will be equivalent to the the replicator dynamics, in the limit of large population
and small time-steps, if the population increases faster than the time-step decreases.

• If µ = 1 and ν > 1, the diffusive approximation

(15) ∂tp =
κ

2

n−1∑
i,j=1

∂ij ((xiδij − xixj)p) ,

which is relevant when the time-step decreases faster than the increase in population size.
• When there is a perfect balance between population size and time step, i.e., µ = ν = 1, we

find the replicator-diffusion approximation, given by equation (1), which we repeat here
for convenience:

(1’) ∂tp =
κ

2

n−1∑
i,j=1

∂ij ((xiδij − xixj)p)−
n−1∑
i=1

∂i

[
xi

(
ψ(i)(x)− ψ̄(x)

)
p
]
.

We shall focus on the last equation and on its weak formulation (13).
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Remark 4. The formal derivation carried out in this section used only general and abstract
properties of the kernel ΘN,∆t. Therefore the thermodynamical limit of much more general discrete
evolutionary processes but sharing the same asymptotic properties in the kernel will be the same.

Remark 5. We shall see below that the weak and the PDE formulations are not exactly equivalent,
and that the more appropriate formulation is actually the weak one. Also, we have been quite
cavalier about the nature of the test function. For now, it is sufficient to assume that g is sufficient
regular so that we have all the differential expressions in the weak formulation continuous over the
whole simplex Sn−1.

4.2. Conservation laws from the discrete process. The conservation laws given by equa-
tion (7) now become

(16)
d

dt

∫
Sn−1

p(t, x)ϕ(x)dx = 0,

where ϕ satisfies

(17)
κ

2

n−1∑
i,j=1

Dij∂
2
ijϕ+

n−1∑
i=1

Ωi∂iϕ = 0.,

Heuristically, this can be seen as follows: we define, in the weak sense,

ρi := lim
N→∞

F(i)

1/N
.

These functions are left eigenfunctions of the evolution operator, that is, they must be a solution
of equation (17). The values of ρi on the vertexes are ρi(ej) = δij , and as we will shortly see, this
is enough to properly define functions ρi. Then we impose that solutions of (1’) should respect
the following n conservation laws:

(18)
d

dt

∫
Sn−1

ρi(x)p(x, t)dx = 0 , i = 1, · · · , n .

These functions can be obtained directly from the continuous problem. In particular, consider
the stationary solutions of the adjoint equation (17). The limit of each of the vectors NF(i),
i = 1, . . . n − 1, is a solution of the equation (17) such that ρi(ej) = δij . The function ρi(x0)
describes the final fixation probability of type i of a population initially in the state x0. This can
be seen by the following argument. We will prove in Theorem 2 that the final state is given by

p∞[pI] = lim
t→∞

p(·, t) =

n∑
i=1

πi[p
I]δei ,

where δei is a Dirac measure supported on the vertex ei ∈ Sn−1
N :∫

δei(x)φ(x)dx = φ(ei) .

Clearly, πi[p
I] is the fixation probability of type i in a population initially described by a probability

distribution pI. Therefore,

πi[δx0 ] =

∫
ρi(x)p∞(x)dx =

∫
ρi(x)pI(x)dx =

∫
ρi(x)δx0(x)dx = ρi(x0).

Finally, the limit of G is the constant function; this happens because G is the constant vector (the
vector with the same value in all coordinates) and describes the conservation of probability at the
discrete level. The constant vector ρ0(x) = 1 has the same role in the continuous case. It is clear
the ρ0 satisfies equation (17).

Remark 6. In the neutral case, i.e., ψ(i)(x) = ψ(j)(x) for all i, j = 1, . . . , n and x ∈ Sn−1, we
define the neutral fixation probability πN

i [δx] = xi, which follows from the fact that in the neutral
case, ρi(x) = xi.
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Remark 7. There is a subtle point in the derivation above, in the sense that (17) should have an
infinite-dimensional kernel, thus implying in an infinite number of linear conservation laws, while
the discrete model yields only n linearly independent such laws. We shall see in a forthcoming
work that with an appropriate definition of sufficient regular solutions, (17) has an n dimensional
kernel. See (Chalub and Souza, 2011c) for further details.

5. The Replicator-Diffusion approximation

We now discuss the nature of solutions p to (1’) together with the conservation laws (18). The
main result of this section is theorem 2. This must be understood as the continuous counterpart
of the corollary 1. We do not refer to the continuous model to prove this result. Our approach is
based solely in the properties of the partial differential equation (1’), the restriction of the domain
to the domain of interest, and the associated conservation laws (18). The complete proof is more
technical and will be postponed to a different result. We will, however, present the main features
of the result.

An outline of the proof of theorem 2 is as follows:

(1) p can be divided in a smooth part (classical solution) defined in the simplex, plus a singular
part supported on the boundary; (the classical solution was previously studied, for the case
n = 2 and constant fitnesses functions in Feller (1951);)

(2) the classical solution satisfies the equation (1’) but not the conservation laws, therefore it
cannot be the correct limit of the discrete process;

(3) the classical solution vanishes with time, and therefore after a long time the (non-classical)
solution will be supported on the boundary of the simplex; the solution will indicate,
therefore, one extinction;

(4) if we consider the evolution with one type less (i.e., the evolution on the faces of the
simplex Sn−1, which are (homotopical to) simplexes Sn−2 all the ideas above apply again
and after a long time the solution will be supported on the faces of the faces of the simplex;

After n− 2 applications of the above technique, we conclude our main theorem which states that
the solution of the replicator-diffusion equation converges when t→∞ to a linear combination of
Dirac deltas supported on the vertexes of the simplex. For the reader uninterested in the details,
this is the essence of the first section.

We finally provide two applications. In subsection 5.2, we study the dual equation. This will
be the continuous limit of the evolution by the dual equation (backward equation) of the discrete
process and therefore its solution f(k, t) gives the fixation probability of a given type (to be pre-
scribed by the boundary conditions in the dual process) for a population initially at state k at
time t. This gives a generalization for an arbitrary number of types and for arbitrary fitnesses of
the celebrated Kimura equation with reversed time (Kimura, 1962). In the sequel, subsection 5.3,
we will show that if one type dominates all other types then, for any initial condition, the fixation
probability of this type will be larger than the neutral fixation probability. This shows, in par-
ticular, that for large populations, the most probable type to fixated will be the one playing the
Nash-equilibrium strategy of the game (assuming the identity between fitness and pay-offs, which
is standard in this framework). This is not true in general for small populations (Nowak, 2006).

5.1. Solution of the replicator-diffusion equation. We now study in more detail the features
of the solution to (13) and show two important results: first that in the interior of the simplex,
the solution must satisfy (1’) in the classical sense; second, no classical solution to (1’) can satisfy
the conservation laws.

Lemma 5. Let p be a solution to (13). Let K ⊂ Sn−1 be a proper compact subset. Then, in K,
p satisfies (1’) in the classical sense. In particular, p is C∞(K).

Proof. Let g ∈ C∞c (K), we have then the standard weak formulation of (1’) in K. On the other
hand, (1’) is uniformly parabolic in any proper subset. Hence the weak and strong formulations
coincide—c.f. (Evans, 2010; Taylor, 1996). � �

We now obtain some more information about this solution on Sn−2.
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Lemma 6. Let p be a classical solution to (1’) over the interior of Sn−1. Then

lim
t→∞

p(x, t) = 0, x ∈ K.

Proof. We write the drift part as Ω = 1
2∇φ + b, define µ(x) = x1x2 · · ·xn (such that µ(x) ≥ 0

in Sn−1 with µ = 0 if and only if x ∈ ∂Sn−1. In the new variable u = µe−φp and after some
manipulations, we find

∂tu = ω−1
n−1∑
i=1

∂i

ω
1

2

n−1∑
j=1

Dij∂ju− xi

β(i) −
n−1∑
j=1

xjβ
(j)

u


=

1

ω
∇ ·
[
ω

(
1

2
D∇u−Bu

)]
,(19)

with ω = eφ/µ and Bi = xi

(
bj −

∑n−1
j=1 xjb

j
)

.

We shall now study the eigenvalue problem

(20) ∇ ·
[
ω

(
1

2
D∇ϕ+ sΦϕ

)]
= λωϕ, ϕ = 0 in ∂Sn.

We first prove that λ = 0 cannot be an eigenvalue of the operator in the left hand side of equa-
tion (20). Consider any proper subset V ⊂ Sn−1 and apply the maximum principle to equa-
tion (20); we conclude that the maximum of ϕ occurs at the boundary. But as ∂V approaches
∂Sn−1, this maximum can be made arbitrarily small; we conclude by continuity that ϕ = 0.

When s = 0, the left hand side of equation (20) is clearly negative-definite. Since the eigenvalues
must be continuous functions of s, we have the (20) is negative for any finite s. Moreover, this
also shows that there exists α > 0, such that

1

2
∂t

∫
Sn−1

u2ωdV =

∫
Sn−1

∇ ·
[
ω

(
1

2
D∇u−Bu

)]
udV < −α

∫
Sn−1

u2ω dV.

Therefore ∫
p2e−φµdx =

∫
u2ωdx

t→∞→ 0 ,

� �

Lemma 7. Equation (19) has a unique solution u ∈ C(Sn−1) ∩ C∞
(
intSn−1

)
Proof. Let

Dε
i,j = Di,j + ε, and νε = ν + ε.

For ε > 0, (19) is uniformly parabolic, and hence it has a unique solution with the required
regularity.

We write (19) in weak form as∫ ∞
0

∫
Sn−1

u(t, x)
∂tφ(t, x)

ω
dxdt+∫ ∞

0

∫
Sn−1

ω

(
1

2
D∇u−Bu

)
· ∇φ(t, x)dxdt+

∫
Sn−1

u(0, x)φ(0, x)dxdt.

Notice that uε ∈W 2,1
0 (Sn−1), hence by Rellich Theorem (Evans, 2010), we can select εk → 0 such

that uεk → u∗ in L2(Sn−1. This allows us to pass the limit in the last integral. For the first
integral, Sn−1 is bounded, we have that L2(Sn−1) ⊂ L1(Sn−1), hence uεk converges in L1(Sn−1).
Thus the first integral converges, by the monotone convergence theorem.

The remaining integral can be seen to converge by compactness of Sobolev inclusions.
Finally, the maximum principle can be used to show uniqueness, and regularity follows from

analogous arguments. � �

This last theorem has an important consequence

Corollary 2. No solution to (1’) in the classical sense can satisfy the required conservation laws.



THE FREQUENCY-DEPENDENT WRIGHT-FISHER MODEL: DIFFUSIVE AND NON-DIFFUSIVE APPROXIMATIONS.19

Proof. Since (1’) is uniformly parabolic for any proper set of Sn−1, it is possible to show that
p ∈ C(Sn−1). Given ε > 0, choose K $ Sn−1 such that the µ(Sn−1 − K) < ε, µ being the

Lebesgue measure in Sn−1. Also, let p0 ∈ BM+(Sn−1) and ψ be a conservation law. Then∫
Sn−1

p0(x)ψ(x) dx = α > 0,

and ∫
Sn−1

p(x, t)ψ(x) dx =

∫
Sn−1−K

p(x, t)ψ(x) dx +

∫
K

p(x, t)ψ(x) dx

≤ Cε+

∫
K

p(x, t)ψ(x) dx ≤ Cε,

for sufficient large t. Hence there is no conservation. � �

Theorem 2 (Final State). Assume that

p∞(x) = lim
t→∞

p(x, t)

exists. Then p∞ is a linear combination of point masses at the vertexes of Sn−1,i.e,

(21) p∞ =

n∑
i=1

πi
[
pI
]
δei .

Proof. By Lemma 6, p∞ has support only in the boundary of Sn−1
N . If we look at the reduced

problem at each face and solve the corresponding problem with p∞, appropriately restricted, as
the initial condition, we then see that p∞ cannot have support at the faces either. Proceeding
inductively, we see that p∞ can possibly have support only at the vertexes. Because of probability
conservation, p∞ actually is composed only of point masses. � �

5.2. Duality and the Kimura equation. The formal adjoint of equation (1) (changing the
flow of time from forward to backward) provides a generalization of the celebrated Kimura equa-
tion (Kimura, 1962), both including more types and allowing frequency dependent fitness:

(22) ∂tf = L†n−1,kf :=
κ

2

n−1∑
i,j=1

Dij∂
2
ijf +

n−1∑
i=1

Ωi∂if .

In diffusion theory this equation is associated with a martingale problem for the diffusive contin-
uous process. In genetics, the meaning of equation (22) is seldom made clear and depends on the
boundary conditions imposed. One possible and common interpretation is as follows: given an
homogeneous state ei ∈ ∆Sn−1, let fi(k, t) be the probability that given a population initially in a
well-defined state k ∈ Sn−1 (i.e., pI(x) := p(x, 0) = δk(x)) we find the population fixed at the ho-
mogeneous state ei at time t (or before), i.e., fi(k, t) is the probability of having p(x, t) = δei(x)
from the initial condition δk(x), given by 〈p(·, t), δei〉. In this case, we need to find consistent
boundary conditions. See Maruyama (1977).

This follows from the interpretation of the discrete adjoint evolution:

Q(k, t+ ∆t) =
∑

k′∈Sn−1
N

ΘN,∆t(k→ k′)Q(k′, t) ,

which reads as follows: “the fixation probability after a time interval t + ∆t of a given type,
for a population initially at state k is equal to the sum over all possible states k′ of the fixation
probability after a time interval t of a population initially at state k′ times the transition probability
from k to k′”.

Let us study the fixation of type 1, represented by the state e1. Let us now call Vi the face of
the simplex with xi = 0 (type i is absent). Then, fi

∣∣
V1

= 0. For i 6= 1, fi
∣∣
Vi

is the solution of

∂tf = L†n−2,kf , where the type i was omitted from the equation. As the faces of the simplex are

invariant under the adjoint evolution (one more fact to be attributed to lack of mutations in the
model), this represent the same problem in one dimension less. We continue this procedure until
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we find the evolution in the edge from vertex 1 to vertex i 6= 1, L1i. In this case, we have that
f
∣∣
L1i

: [0, 1]→ R, the restriction of fi to this edge, with k the fraction of type 1 individuals, is the

solution of

(23) ∂tf =
κ

2
k(1− k)∂2

kf + k(1− k)
(
ψ(1)

∣∣
L1i

(k)− ψ(i)
∣∣
L1i

(k)
)
∂kf

with boundary conditions given by f(0) = 0 and f(1) = 1 and ψ(j)
∣∣
L1i

is the restriction of

ψ(j) to the edge L1i. The forward and backward versions of Equation (23) are fully studied in
the references (Chalub and Souza, 2009a,b). For ψ(1)

∣∣
L1i
− ψ(i)

∣∣
L1i

constant this is the Kimura

equation.

5.3. Strategy dominance. Let us assume that ψ(1)(x) ≥ ψ(i)(x) for all x ∈ Sn−1. This happens,
for example, if we identify fitness functions with pay-offs in game theory, types with strategists,
and if strategist 1 plays the Nash-equilibrium strategy.

Therefore, we prove

Theorem 3. If, for all states x ∈ Sn−1, and all types i = 1, . . . , n, ψ(1)(x) ≥ ψ(i)(x), then the
fixation probability of the first type is not less than the neutral fixation probability for any initial
condition pI; i.e,

π1[pI] ≥ πN
1 [pI] .

Proof. First note that it is enough to prove that π1[δx] ≥ πN
1 [δx] = x1 for all x ∈ Sn−1. The

difference ρ1(x)− x1 satisfy

κ

2

n−1∑
i,j=1

Dij∂
2
ij (ρ1(x)− x1) +

n−1∑
i=1

Ωi∂i (ρ1(x)− x1) = −Ω1 = −x1

(
ψ(1)(x)− ψ̄(x)

)
≤ 0 ,

with vertex conditions ρ1(ei) − x1(ei) = 0 for i = 1, . . . , n. Now, we proceed by induction in n.
For the case n = 2, the proof is in (Chalub and Souza, 2009b, section 4.3); we reproduce it here
only for completeness.

We write explicitly the equation for ρ1:

κ

2
x(1− x)∂2

xρ1 + x
(
ψ(i)(x)− ψ̄(x)

)
∂xρ1 = 0

with ρ1(0) = 0 and ρ1(1) = 1. We simplify the equation using the fact that ψ(1)(x) − ψ̄(x) =
(1− x)

(
ψ(1)(x)− ψ(2)(x)

)
and the solution is given by

ρ1(x) =

∫ x
0

exp
[
− 2
ε

∫ x̄
0

(
ψ(1)(¯̄x)− ψ(2)(¯̄x)

)
d¯̄x
]

dx̄∫ 1

0
exp

[
− 2
ε

∫ x̄
0

(
ψ(1)(¯̄x)− ψ(2)(¯̄x)

)
d¯̄x
]

dx̄
.

As ψ(1)(x) ≥ ψ(2)(x), we conclude that

1

x

∫ x

0

exp

[
−2

ε

∫ x̄

0

(
ψ(1)(¯̄x)− ψ(2)(¯̄x)

)
d¯̄x

]
dx̄

≥
∫ 1

0

exp

[
−2

ε

∫ x̄

0

(
ψ(1)(¯̄x)− ψ(2)(¯̄x)

)
d¯̄x

]
dx̄ .

In particular, ρ1(x) ≥ x.
Now, assume that ρ1(x) − x1 ≥ 0 for all x ∈ ∂Sn−1. (Note that ∂Sn−1 is an union of a

finite number of n− 2 dimensional simplexes, where by the principle of induction we assume the
result valid.) Finally, we use the maximum principle for subharmonic functions to conclude that
the minimum cannot be in the interior of the simplex (Courant and Hilbert, 1989). Therefore
ρ1(x) ≥ x1 for all x ∈ Sn−1. � �
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6. The Replicator Dynamics

We showed in previous sections that the evolution of a large, but finite, population can be well
approximated in all time scales by a partial differential equation of drift-diffusion type. Now, we
show that locally in time, the dynamics can be approximated (in the DCA sense) by the much
simpler equation (14). We start in subsection 6.1 showing that the equation (14) is formally equiv-
alent to the replicator system. Afterwards, in subsection 6.2 we answer a central question: what
exactly is the replicator equation modelling? In particular, we will show, using a simple argument,
that the replicator equation does not model the evolution of the expected value (of a given trait)
in the population, but the evolution of the most common trait (the mode of the probability dis-
tribution). Finally, we show, in subsection 6.3 that the replicator ordinary differential equation is
a good approximation for the initial dynamics of the Wright-Fisher process, when the population
is large.

6.1. The replicator ODE and PDE. We shall now study in more detail the equation (14),
which has a close connection with the replicator dynamics as shown below:

Theorem 4. Let Φt(x) the flow map of

(24)
dx

dt
= Ω(x(t)).

and let

Q(x, t) = −
∫ t

0

(∇ · Ω)(Φs−t(x))ds.

then the solution to (14) with a C1 initial condition p0 is given by

(25) p(x, t) = eQ(x,t)p0 (Φ−t(x)) .

Proof. Clearly Q(x, 0) = 0, and Φ0(x) = x. Hence the initial condition is satisfied.
Let

R(z, t) := e−Q(Φt(z),t)p(t,Φt(z))

On one hand, (25) shows that

R(z, t) = p0(z)

Therefore
dR

dt
(z, t) = 0.

On the other hand, one can compute

dR

dt
(z, t) = e−Q(Φt(z),t) (∂tp+∇p · ẋ + (∇ · Ω) p) = e−Q(Φt(z),t) (∂tp+∇ · (pΩ)) .

We then conclude that p(x, t) is the solution of equation (14). � �

6.2. Peak and average dynamics. We start by showing that the dynamics of the average in
the Wright-Fisher process, even in the thermodynamical limit, is not governed by the replicator
equation. Consider for example, a population of n types, evolving according to the replicator-
diffusion equation with fitness functions given by ψ(i) : Sn−1 → R+.

From the fact that the final state of the the replicator-diffusion equation is given by equa-
tion (21), the coefficients πi[p

I], i = 1, . . . , n can be calculated in two ways:∫
ρi(x)pI(x)dx =

∫
ρi(x)p∞(x)dx = πi[p

I] =

∫
xip
∞(x)dx =: 〈p∞〉i .

Therefore the average of the probability distribution will converge to a certain point of the simplex
depending on the initial condition. This is completely different from the replicator dynamics, as
its solution converges to a single attractor, periodic orbits, chaotic attractors, etc (Hofbauer and
Sigmund, 1998).

Now, we show that the probability distribution concentrates in the ESS; this shows that the
peak will behave in manner similar to the solutions of the replicator dynamics.
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Recall that (Hofbauer and Sigmund, 1998), that an ESS that lies in interior of Sn−1 must be a
globally stable point of (24). We have then the following result

Theorem 5. Assume pI(x) is smooth, and assume that (24) has an ESS x∗. Then the solution
of equation (14) is such that

lim
t→∞

p(t,x) = δx∗ .

Proof. Since x∗ is a globally stable equilibrium, for any given δ > 0, we can find T > 0, such that,
for t > T , we have that for any proper compact subset K ⊂ Sn−1.

Φt(K) ⊂ Bδ(x∗).

Let ψ(x) be a continuous function with support contained in K. Then, for t > T , we have that∫
Sn−1

p(t,x)ψ(x) dx =

∫
Bδ(x1)

p(t,x)ψ(x) dx.

But, let ε > 0 be given. Since ψ is continuous, possibly with a smaller δ > 0, we must have

(26) ψ(x∗)− ε ≤
∫
Bδ(x1)

p(t,x)ψ(x) dx ≤ ψ(x∗) + ε,

Now take (δk, εk) ↓ 0 such that (26) is satisfied. This yields a sequence of times Tk such that
Tk →∞ and

lim
k→∞

∫
Sn−1

p(Tk,x) dx = ψ(x∗).

Since Φs(K) ⊂ Φt(K), for s > t, the claim follows. � �

The previous result shows that, for sufficient large time, the support of the solution of the
replicator PDE, equation (14), will be concentrated in sufficient small neighborhoods of x∗. In
particular, this will be true for the maximum. For the replicator-diffusion equation (1) this cannot
be valid for any value of κ > 0 (as it was proved in theorem 2); however, the initial dynamics
given by the replicator diffusion equation is similar to the one given by the replicator ODE; in
the language of the DCA, we say that the replicator ODE approximate the initial dynamics of
the replicator-diffusion equation (and, by extension, the discrete Wright-Fisher process). This is
justified by theorem 6. We start with:

Lemma 8. Let x∗ ∈ Sn−1 be the only ω-limit of the replicator dynamics (24). Then, there exists
a (sufficiently small) set V ∈ Sn−1 such that x∗ ∈ V and∫

∂V

Ω · n̂dS < 0 ,

where ∂V is the boundary of V , n̂ its exterior normal and dS the surface element.

Proof. We divide the proof in two cases: when x∗ ∈ intSn−1 and when x∗ ∈ ∂Sn−1. For the first
case, the field vector Ω points to x∗ for points close enough; for the second case, it is clear that
Ω · n̂

∣∣
∂Sn−1 = 0 and the result follows considering the decomposition V = (V ∩ intSn−1) ∪ (V ∩

∂Sn−1). � �

Theorem 6. Let x∗ ∈ Sn−1 be the only ω-limit of the replicator dynamics (24), and consider a
constant initial condition pI. Let pκ be the solution of equation (1’). Then there is a time t∗ > 0
and V 3 x∗ such that

∂t

∫
V

pκdx > 0 , ∀t < t∗ .

Proof. Note that

∂tp0 = −∇ · Ωp0 − Ω · ∇p0 .

Initially, ∇pI = 0 and thus with V 3 x∗ sufficiently small, we have from lemma 8

(27) lim
t→0

∂t

∫
V

p0dx = −
∫
V

∇ · ΩpIdx = −pI

∫
∂V

Ω · n̂dS > 0 .
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On the other hand, pκ converges locally in time to p0 weakly, and therefore

lim
t→0

∂t

∫
V

pκdx > 0

for κ < κ0 > 0. From the conservation of probability, it is clear that

lim
t→0

∂t

∫
Sn−1\V

pκdx < 0 .

We conclude that for an initial constant distribution, pκ will concentrate initially near the ω-limits
of the replicator dynamics. � �

Remark 8. If, instead of a uniform distribution, we consider a distribution with a peak and
symmetric around the peak, we sill have, for small enough V

∂t

∫
V

p0dx ≈ −
∫
V

∇ · Ωp0dx = −p0

∣∣
∂V

∫
∂V

Ω · n̂dS > 0 ,

and, following the same arguments as above, the peak will move from its initial location to x∗.
This movement will be along the lines that maximize

∫
∂V

Ω · n̂dS for small V . Obviously, a small
asymmetry around the peak will not be able to invert the previous inequality.

6.3. Local in time convergence. Let

0 < ε� 1.

For sake of simplicity, we shall consider uniform strong selection, i.e

(28) ψ̃(i) = ε−1ψ(i),

and a fast time scale

(29) t̃ = ετ.

If we perform a regular asymptotic expansion, i.e., if we write pε ≈ p(0) + εp(1) + · · · , then we find
, for times τ � ε−1, that the leading order dynamics is given by

(30) ∂τp+∇ · (pΩ) = 0.

This asymptotic Ansatz can be made rigorous by a recast of a similar result for the Moran
dynamics in Chalub and Souza (2011a)

Theorem 7. Assume that the fitness are C2(Sn−1) functions, and that the initial condition pI is
also C2(Sn−1). Let pε be the solution of (1), with ε ≥ 0. Then p0 is C2(Sn−1), and satisfies the
conservation law (18). Moreover, given ε and K positive, there exits a C such that, for τ ≤ C,
we have

‖pε(τ, ·)− p0(τ, ·)‖∞ ≤ Cε
and

‖∂2
xp0(τ, ·)‖∞ < K

Thus p0 is the leading order asymptotic approximation to pε, for t < εC.

Proof. The statements about p0 follows straightforward by obtaining the solution by the method
of characteristics.

Let wε = pε − p0. Then wε satisfies

∂τwε =
ε

2

n−1∑
i=1

∂2
i (xiwε)−

ε

2

n−1∑
i,j=1

∂2
ij (xixjwε)−

n−1∑
i=1

∂i

(
xi

(
ψ(i)(x)− ψ̄(x)

)
wε

)
+
ε

2
g0(τ, x)

with null initial condition, where

g0(τ, x) =

n−1∑
i=1

∂2
i (xip0)−

n−1∑
i,j=1

∂2
ij (xixjp0) .

Notice that, because of the assumptions on p0, we have that g0 is uniformly bounded in time.
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The solution for such a problem is given by Duhammel principle. Let S(t, t0) be associated
solution operator. We have that

wε(τ,x) =
κ

2

∫ τ

0

S(τ, s)g0(s, x)ds.

By the maximum principle applied to the semigroup S(t2, t1), we have that ‖S(τ, s)g0(s, x)‖ ≤Ms,
and by the uniform bound on g0, we have that there exists a constant M such that Ms ≤ M .
Thus, we find that

‖S(τ, s)g0(s, x)‖∞ ≤M.

Hence, for τ < C, we have a constant M ′ such that

‖wε(τ, ·)‖∞ ≤ εM ′.
� �

Remark 9. It should be also possible to have asymptotic results valid for τ ∼ ε−1, but this will be
discussed elsewhere. Nevertheless, we notice that for the Moran process such results can be found
in Chalub and Souza (2011a).

7. Numerical results

We show, in this section, numerical results for two variants of the Rock-Scissor-Paper game (Hof-
bauer and Sigmund, 1998); i.e., fitness are identified with the pay-off from game theory. In sub-
section 7.1, we study the evolution of the discrete evolution numerically in time, and show that
the peak of distribution behaves accordingly to the replicator equation while the average value
of the same distribution converges to a point which is not the ESS. In subsection 7.2 we obtain
explicitly the fixation probability of a given type for the symmetric Rock-Scissor-Paper game. A
full animation is available in the website indicated in the caption of figure 2.

7.1. Forward equation. We use evolutionary game theory (Smith, 1982; Hofbauer and Sigmund,
1998) to define the fitness function. More precisely, we define a pay-off matrix M = (Mij)i,j=1,··· ,n
such that Mij is the gain (in fitness) of the i type against the j type. The fitness of the i type in
a population at state x is

(31) ψ(i)(x) =

n∑
j=1

Mijxj = (Mx)j .

The replicator dynamics is given by the system of differential equation ẋi = xi(ψ
(i)(x) − ψ̄(x)),

where ψ̄(x) = x ·Mx.
We consider in Figure 2 the evolution of a discrete population of N = 150 individuals with the

pay-off matrix given by

(32) M =

 30 81 29
6 30 104

106 4 30

 .

This is know as the generalized Rock-Scissor-Paper game and presents an evolutionary stable
state (ESS) (x∗, y∗, z∗) =

(
1
3 ,

1
3 ,

1
3

)
. Furthermore, the flow of the replicator dynamics converges

in spirals to the ESS. The vertexes as well as (x∗, y∗, z∗) are equilibrium points for the continuum
dynamics. See Hofbauer and Sigmund (1998) for the choice of values of the matrix M.

Note that the peak moves in inward spirals around the central equilibrium, following the tra-
jectories of the replicator dynamics, while all the mass diffuses to the boundary.

The green spot indicates the average value for x and y; at first it moves in spirals close to the
trajectories of the replicator dynamics. After a time depending on the value of N it starts to
move in the direction of its final point (x∞, y∞, z∞) = (π1[pI], π2[pI], π3[pI]). This point can be
calculated using equation (21) and the n = 3 independent conservation laws. Effectively, let xi
denote a given vertex of the simplex

lim
t→∞
〈xi〉(t) = lim

t→∞

∫
xip(t, x)dx = πi[p

I] ,
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Figure 2. Solution for short times (1,3,6,10,15,21,28,35,44,54,65,77) of the
Wright-Fisher evolution for a population of 150 individuals of two given types,
with fitness given by equations (31) and (32) for a distribution initially con-
centrated in an interior non-stationary point. The value of the distribution
P (x, y, t) is in logarithmic scale. Note that the cyan spot, marking the interior
peak of the probability distribution rotates and converges to the ESS

(
1
3 ,

1
3 ,

1
3

)
(along characteristics of the PDE or, equivalently, the trajectories of the replica-
tor dynamics). At the same time, the green spot marks the mean value of the
probability distribution and also rotates initially. After a long time, it moves
toward its final position, given by x∞ := (c1[pI], c2[pI], 1 − c1[pI] − c2[pI]) ≈
(0.331, 0.227, 0.442). For a full animation, also for different population sizes N ,
see http://dl.dropbox.com/u/11325424/WFsim/RSPFinal.html

where πi[p
I] is the fixation probability of type i associated to the initial condition pI.

7.2. Backward equation and the decay of the interior L1-norm. The stationary state of
the backward equation (22) represents the fixation of probability of a given type. This type is
specified by the associated boundary conditions. Let us consider, as an example, that n = 3, the
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Figure 3. Fixation probability of the third type, in a Rock-Scissor-Paper
game. This is the numerical solution of the stationary state of the equation
22, simulated by a Wright-Fisher process with N = 150 and pay-off matrix
([[20, 0, 40], [40, 20, 0], [0, 40, 20]]). Note that higher values of the fixation prob-
ability “rotates” around the center of the simplex (the stationary state of the
replicator dynamics).

evolution is given by the Rock-Scissor-Paper game defined by the matrix

(33) M =

 0 40 20
20 0 40
40 20 0

 ,

and we study the fixation probability of the third type. An exact solution is difficult to obtain,
as it would be necessary to solve an hierarchy of equations, representing boundary conditions of
larger sets; however, a numerical solution is extremely easy to compute, as the Wright-Fisher
process is a natural discretization of the (forward as well as the) backward equation. This is
probably computationally inefficient, and different processes can be compatible with the same
limit equations. See figure 3 for an illustration.

In figure 4, we plot the L1 norm in the interior of the simplex and all subsimplexes, showing
that that the probability mass flows from the simplex Sn−1 to the faces (which are equivalent to
the simplexes Sn−2); the solution behaves on the faces as the solution of the replicator-diffusion
problem with one dimension less. The probability flows to the “faces of the faces”, i.e., to simplexes
Sn−3 until it reaches the absorbing state ei (simplexes S0) for i = 1, . . . , n. We may think in a
stochastic process reaching and sticking to the faces of the simplex until they reach their final
spot, the vertexes.

8. Conclusions

The use of ordinary differential equations in population dynamics is widespread. However, as
they are valid only for infinite populations, and real populations are always finite, the precise
justification of its use and the precise meaning of its solution is seldom made clear. In this paper,
we showed, in a limited framework, but expanding results from previous works (Chalub and Souza,
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Figure 4. Evolution of the probability mass, for the Rock-Scissor-Paper game
given by matrix (33) and with initial condition concentrated in the ESS, pI =
δ( 1

3 ,
1
3 ). The red line indicates the mas (L1-norm) in the interior of the simplex;

the blue line, the mass in the interior any of the faces, and the black line, the
mass in any of the vertexes.

2009a,b), that ODEs can be justifiably used to model the evolution of a population. However, the
validity of the modeling is necessarily limited in time (increasing with the population size), and
the solution of the differential equation models the most probable state of the system (therefore,
the differential equation would give answers compatible with the most likelihood method, but not
necessarily compatible with other estimators).

We also overcame the limitations of the use of ODEs, obtaining a partial differential equation
that approximates the evolution of the discrete process in all time scales. The price to pay is that
this equations requires sophisticated techniques in its analysis, as it is a degenerated drift-diffusion
equation without boundary conditions. We guarantee however the existence and uniqueness of
solution in a restricted class of functions; this unique solution is the right limit of the Wright-Fisher
process — in order to obtain the right class of functions, we imposed a set of conservation laws
which comes directly from the discrete process.

The technique developed here was initially dedicated to obtain continuous limits from the Moran
processes with two types. The case for the Wright-Fisher process with arbitrary number of types
turned out to be far more sophisticated. This is consequence of the fact that arbitrarily large
jumps in the population size are allowed in a single step (although the probability decreases with

e−σ
2

, where σ is the size of the jump) and from the fact that the topology of a higher dimensional
simplex is far more complicated than the [0, 1] interval, specially with respect to the boundaries.

We are currently applying a similar technique to epidemiological models; in this case it is
necessary to impose boundary conditions in part of the boundary (as an homogeneous population
of infected individual is not stationary, as infected individuals become, with time, removed or
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even susceptible) and it is impossible to impose boundary conditions in part of the boundary
(a population of susceptible remains in this state for ever). Early results were already published
in Chalub and Souza (2011b). The same problem, regarding the imposition of boundary conditions
is true if we include mutations in the Moran or Wright-Fisher model. This is work in progress.
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Appendix A. Weak formulation in time

In order to obtain a truly weak formulation, without any requirement upon the regularity of
p, we observe that the equation above is valid for any time tk = t0 + k∆t. Hence, if we also let
T = (m+ 1)∆t in the equation above, and sum over k, we obtain that

m∑
k=0

∫
Sn−1

(p(x, tk+1)− p(x, tk)) g(x, tk) dx

=

m∑
k−0

1

2N

∫
Sn−1

p(x, tk)

 n−1∑
i,j=1

xi(δij − xj)∂2
ijg(x, tk)

 dx

+

m∑
k=0

(∆t)
ν
∫
Sn−1

p(x, tk)

n−1∑
j=1

xj

(
ψ(j)(x)− ψ̄(x)

)
∂jg(x, tk)

dx +O(N−2).

On summing by parts the left hand side, we obtain

−
m−1∑
k=0

∫
Sn−1

p(x, tk) (g(x, tk+1)− g(x, tk)) dx

−
∫
Sn−1

p(x, t0)g(x, t0) dx +

∫
Sn−1

p(x, T )g(x, T ) dx

=

m∑
k−0

1

2N

∫
Sn−1

p(x, tk)

 n−1∑
i,j=1

xi(δij − xj)∂2
ijg(x, tk)

 dx

+

m∑
k=0

(∆t)
ν
∫
Sn−1

p(x, tk)

n−1∑
j=1

xj

(
ψ(j)(x)− ψ̄(x)

)
∂jg(x, tk)

dx +O(N−2).

Now, let us take g to be C1 in t, with support on [t0, T ]. Assuming ∆t is sufficient small, we may
write the previous equation as

−
∫ ∞

0

∫
Sn−1

p(x, t)∂tg(x, t) dx dt−
∫
Sn−1

p(x, t0)g(x, t0) dx

=
(∆t)

−1

2N

∫ ∞
0

∫
Sn−1

p(x, t)

 n−1∑
i,j=1

xi(δij − xj)∂2
ijg(x, t)

 dx dt

+ (∆t)
ν−1

∫ ∞
0

∫
Sn−1

p(x, t)

n−1∑
j=1

xj

(
ψ(j)(x)− ψ̄(x)

)
∂jg(x, t)

dx +O(N−1).
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