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Abstract

We study the optimal execution problem in the presence of market impact and give
a generalization of the main result of Kato [11]. Then we consider an example where
the security price follows a geometric Ornstein–Uhlenbeck process which has the so-
called mean-reverting property, and then show that an optimal strategy is a mixture of
initial/terminal block liquidation and intermediate gradual liquidation. When the secu-
rity price has no volatility, the form of our optimal strategy is the same as results of
Obizhaeva and Wang [13] and Alfonsi et al. [1], who studied the optimal execution in a
limit-order-book model.

Keywords : Optimal execution, Market impact, Liquidity problems, Ornstein–Uhlenbeck
process, Gradual liquidation

1 Introduction

The basic framework of the optimal execution (liquidation) problem was established in [5]
and the theory of optimal execution has been developed by [4], [8], [10], [16] and many others.
Such a problem often shows up in trading operations, where a trader tries to execute a large
amount of a security. In these cases, he/she should be careful about liquidity problems and
especially should be aware of the market impact (MI) which is important and can never be
ignored. MI means the effect of the investment behavior of traders on security prices.

To study MI for a trader’s execution policy, we consider a case where a trader sell his/her
shares of the security by predicting a decrease in price of the security. In a frictionless market,
a (risk-neutral) trader should sell all the shares as soon as possible, so his/her optimal strategy
is block liquidation at the initial time. However, in the real market a trader takes time to
liquidate. So it is significant to find out what factors cause such gradual liquidation. Although,
as shown in an example in [11], convexity of MI is one of the reasons to dissuade a trader from
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block liquidation, many traders in the real market execute their sales by taking time in spite
of recognizing that MI is not convex. Risk aversion of a trader’s utility function also affects
a trader’s execution policy providing an incentive to take more time for trading. In [15], the
authors consider an optimization problem in relation with a risk-averse utility function and
clarify the relation between a measure of risk aversion and the form of the optimal strategies.

Another important motive is that a security price may recover after downward movement
in price, due to the effect of MI. In this paper, to consider a price-recovery effect we focus
on the case where the process of a security price has the mean-reverting property, especially
when it follows a geometric Ornstein–Uhlenbeck (OU) process. We adopt the framework of
[11]: we first consider discrete-time models of an optimal execution problem and then derive
the continuous-time model as their limit. To treat the geometric OU process as a security
price process, we generalize the main results of [11] mathematically. Then we give an example
where a gradual liquidation is necessary even if there is a linear MI and the trader is risk-
neutral. We explicitly solve the optimization problem with (log-)linear MI and show that the
optimal strategy is a mixture of initial/terminal block liquidation and intermidiate gradual
liquidation.

Our result is strongly related to studies of the limit-order-book (LOB) model. In the
LOB model, a trader’s selling decreases buy limit orders, thus expanding the bid–ask spread
temporarily, and new buy limit orders appear and the bid–ask spread shrinks as time passes.
The minimization problem of expected execution cost in a block-shaped LOB model with
exponential resilience of MI is studied in [13]. A mathematical generalization of the results
of [13] is given in [1] and [14]. Moreover, the authors [12] treat a model of optimal execution
under stochastic liquidity. Our assumption about the price recovery effect plays a similar role
to the resilience of MI and the form of an optimal execution strategy in our model is quite
similar to the results in these papers.

This paper is organized as follows. In Section 2, we review our model of optimization
problems and list our assumptions. In Section 3, we give some generalizations of the results
of [11], in particular the convergence of the value functions. Section 4 is our main interest.
We give a representative example of our model. Section 5 gives a note on the positivity of
an optimal strategy and the possibility of price manipulation in our framework. Section 6
summarizes our studies. Section 7 gives the proofs of our results.

2 The Model

Our model is the same as in [11] except for some technical assumptions. Let (Ω,F ,
(Ft)0≤t≤1, P ) be a filtered space which satisfies the usual condition (that is, (Ft)t is right
continuous and F0 contains all P -null sets) and let (Bt)0≤t≤T be a standard one-dimensional
(Ft)t-Brownian motion.

First we consider the discrete-time model with time interval 1/n. We assume that trans-
action times are only at 0, 1/n, . . . , (n−1)/n for n ∈ N = {1, 2, 3, . . .}. We suppose that there
are only two assets in the market: cash and a security. The price of cash is always equal
to 1. We consider a single trader who has an endowment of Φ0 > 0 shares of the security.
This trader executes the shares Φ0 over a time interval [0, 1], but his/her sales affect the price
of the security. For l = 0, . . . , n, we denote by Snl the price of the security at time l/n and
Xn
l = log Snl . Let s0 > 0 be an initial price (i.e., Sn0 = s0) and X

n
0 = log s0. If a trader sells the
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amount ψnl at time l/n, the log-price changes to Xn
l −gn(ψ

n
l ), where gn : [0,∞) −→ [0,∞) is a

non-decreasing and continuously differentiable function which satisfies gn(0) = 0, and he/she
gets the amount of cash ψnl S

n
l exp(−gn(ψ

n
l )) as the proceeds of his/her execution. After the

trade at time l/n, Xn
l+1 and Snl+1 are given by

Xn
l+1 = Y

( l + 1

n
;
l

n
,Xn

l − gn(ψ
n
l )
)

, Snl+1 = exp(Xn
l+1), (2.1)

where Y (t; r, x) is a solution of the following stochastic differential equation (SDE)
{

dY (t; r, x) = σ(Y (t; r, x))dBt + b(Y (t; r, x))dt, t ≥ r,
Y (r; r, x) = x

(2.2)

and b, σ : R −→ R are Lipschitz continuous functions. We assume that the functions b,
σ, b̂ and σ̂ are linear growth, where σ̂(s) = sσ(log s), b̂(s) = s{b(log s) + σ(log s)2/2}. We
notice that b and σ are assumed to be bounded in [11], so the model in this paper is a slight
generalization of [11]. In our model, we remark that there is a unique solution of (2.2) for
each r ≥ 0 and x ∈ R.

At the end of the time interval [0, 1], the trader has the amount of cash W n
n , where

W n
l+1 =W n

l + ψnl S
n
l exp(−gn(ψ

n
l )) (2.3)

for l = 0, . . . , n− 1 and W n
0 = 0. We define the space of a trader’s execution strategies An

k(ϕ)
as the set of (ψnl )

k−1
l=0 such that ψnl is Fl/n-measurable, ψnl ≥ 0 for each l = 0, . . . , k − 1, and

k−1
∑

l=0

ψnl ≤ ϕ.

The investor’s problem is to choose an admissible trading strategy to maximize the expected
utility E[u(W

n
n , ϕ

n
n, S

n
n)], where u ∈ C is his/her utility function and C is the set of non-

decreasing continuous functions on D = R × [0,Φ0] × [0,∞) which have polynomial growth
rate.

For k = 1, . . . , n, (w, ϕ, s) ∈ D and u ∈ C, we define a (discrete-time) value function
V n
k (w, ϕ, s; u) by

V n
k (w, ϕ, s; u) = sup

(ψn
l )

k−1

l=0
∈An

k (ϕ)

E[u(W
n
k , ϕ

n
k , S

n
k )]

subject to (2.1) and (2.3) for l = 0, . . . , k − 1 and (W n
0 , ϕ

n
0 , S

n
0 ) = (w, ϕ, s). (For s = 0, we

set Snl ≡ 0.) For k = 0, we put V n
0 (w, ϕ, s; u) = u(w, ϕ, s). Then our problem is the same as

V n
n (0,Φ0, s0; u). We consider the limit of the value function V n

k (w, ϕ, s; u) as n→ ∞.
Let h : [0,∞) −→ [0,∞) be a non-decreasing continuous function. We introduce the

following condition.

[A] lim
n→∞

sup
ψ∈[0,Φ0]

∣

∣

∣

d

dψ
gn(ψ)− h(nψ)

∣

∣

∣
= 0.

Let g(ζ) =

∫ ζ

0

h(ζ ′)dζ ′ for ζ ∈ [0,∞). The function g(ζ) means an MI function in the

continuous-time model. For t ∈ [0, 1] and ϕ ∈ [0,Φ0] we denote by At(ϕ) the set of (Fr)0≤r≤t-

progressively measurable process (ζr)0≤r≤t such that ζr ≥ 0 for each r ∈ [0, t],

∫ t

0

ζrdr ≤
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ϕ almost surely and sup
r,ω

ζr(ω) < ∞. For t ∈ [0, 1], (w, ϕ, s) ∈ D and u ∈ C, we define

Vt(w, ϕ, s; u) by

Vt(w, ϕ, s; u) = sup
(ζr)r∈At(ϕ)

E[u(Wt, ϕt, St)]

subject to

dWr = ζrSrdr, dϕr = −ζrdr, dSr = σ̂(Sr)dBr + b̂(Sr)dr − g(ζr)Srdr

and (W0, ϕ0, S0) = (w, ϕ, s). When s > 0, we obviously see that the process the log-price of
the security Xr = log Sr satisfies

dXr = σ(Xr)dBr + b(Xr)− g(ζr)dr. (2.4)

3 Derivation of the Continuous-Time Model

The following results are similar to the ones in [11].

Theorem 1. Assume [A]. For each (w, ϕ, s) ∈ D, t ∈ [0, 1] and u ∈ C,

lim
n→∞

V n
[nt](w, ϕ, s; u) = Vt(w, ϕ, s; u), (3.1)

where [nt] is the greatest integer less than or equal to nt.

Here we make the further assumption

[B] E[ sup
0≤t≤1

exp(Y (t; 0, x))] ≤ Cex for some C > 0.

Theorem 2. Assume [B]. For u ∈ C, the function Vt(w, ϕ, s; u) is continuous in (t, w, ϕ, s) ∈
(0, 1]×D. Moreover, if h(∞) < ∞, then Vt(w, ϕ, s; u) converges to Ju(w, ϕ, s) uniformly on

any compact subset of D as t ↓ 0, where

Ju(w, ϕ, s) =















sup
ψ∈[0,ϕ]

u
(

w +
1− e−h(∞)ψ

h(∞)
s, ϕ− ψ, se−h(∞)ψ

)

(h(∞) > 0)

sup
ψ∈[0,ϕ]

u(w + ψs, ϕ− ψ, s) (h(∞) = 0).

Theorem 3. Assume [B]. For each r, t ∈ [0, 1] with t + r ≤ 1, (w, ϕ, s) ∈ D and u ∈ C it

holds that Qt+ru(w, ϕ, s) = QtQru(w, ϕ, s).

Next we consider a sell-out condition, which is referred in Section 4 in [11]. We define some
spaces of admissible strategies with the sell-out condition as

An,SO
k (ϕ) =

{

(ψnl )l ∈ An
k(ϕ) ;

k−1
∑

l=0

ψnl = ϕ

}

,

ASO
t (ϕ) =

{

(ζr)r ∈ At(ϕ) ;

∫ t

0

ζrdr = ϕ

}

.
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Now we define value functions with the sell-out condition by

V n,SO
k (w, ϕ, s;U) = sup

(ψn
l )l∈A

n,SO
k (ϕ)

E[U(W
n
k )],

V SO
t (w, ϕ, s;U) = sup

(ζr)r∈ASO
t (ϕ)

E[U(Wt)]

for a continuous, non-decreasing and polynomial growth function U : R −→ R. By Theorem
1, 2, and similar arguments as in [11], we can show the following.

Theorem 4. It follows that V n,SO
[nt] (w, ϕ, s;U) −→ V SO

t (w, ϕ, s;U) = Vt(w, ϕ, s; u) as n→ ∞,

where u(w, ϕ, s) = U(w).

Under the assumptions of this paper, we also obtain all the lemmas in Section 7.1 of [11],
except Lemma 1 and Lemma 4. Instead, we have the following lemmas.

Lemma 1. For each m ∈ N there is a constant C > 0 depending only on b, σ and m such that

E[Ẑ(s)
m] ≤ C(1 + sm), where Ẑ(s) = sup

0≤t≤1
Z(t; 0, s).

Lemma 2. Let t ∈ [0, 1], ϕ ≥ 0, x ∈ R, (ζr)0≤r≤t ∈ At(ϕ) and let (Xr)0≤r≤t be given by (2.4)
with X0 = x. Then there is a constant C > 0 depending only on b and σ such that

E
[

sup
r∈[r0,r1]

∣

∣

∣
Xr −Xr0 +

∫ r

r0

g(ζv)dv
∣

∣

∣

4]

≤ C(r1 − r0)
2{1 + (r1 − r0)

3

∫ r1

r0

E[g(ζv)
4]dv} (3.2)

for each 0 ≤ r0 ≤ r1 ≤ t.

Unlike the case where b is bounded, the right-hand side of (3.2) depends on (ζr)r. However,
this makes no essential problem for proving similar results to [11], except the continuity of the
continuous-time value function at t = 0 when h(∞) = ∞. Thus we can complete the proofs
of Theorems 1–3 similarly to [11].

4 Example: Geometric OU Process

In this section we consider an example which is our main interest in this paper. Let β, σ ≥ 0
and F ∈ R. We set b(x) = β(F −x) and σ(x) ≡ σ. In this case the solution Y of (2.2) is called
an Ornstein–Uhlenbeck process and we can write the explicit form of the log-price (Xr)r as

Xr = e−βrx+ (1− e−βr)F − e−βr
∫ r

0

eβvg(ζv)dv + e−βr
∫ r

0

eβvdBv.

We notice that the condition [B] is fulfilled.
We consider the case where MI is linear and the trader is risk-neutral, that is, g(ζ) = αζ

for some α > 0 and u(w, ϕ, s) = uRN(w, ϕ, s) = w. For brevity we set y = σ2/(4β) and
z = log s−F . We assume z > 2y(≥ 0) so that the security price goes down to the fundamental
value eF as time passes. Then the trader in a fully liquid market should sell all the securities
at the initial time i.e., the optimal strategy is an initial block liquidation. In fact, if ϕ is small
enough, the trader’s optimal policy is almost the same.

5



Theorem 5. If ϕ ≤ (z − 2y)/α, then it holds that

Vt(w, ϕ, s; uRN) = w +
1− e−αϕ

α
s. (4.1)

The form of (4.1) is the same as in Theorem 8 of [11]. The trader’s (nearly) optimal
strategy is given by ζ̂I,δr = ϕ1[0,δ](r)/δ with δ → 0. We call such a strategy an “almost block
liquidation” at the initial time.

When ϕ is not so small, the assertion of the above theorem is not always true. The trader’s
selling accelerates the speed of decrease of the security price, and a quick liquidation is not
always appropriate when we consider the effect of MI. Moreover, if the trader’s execution
makes the price go under eF transitorily, the price will recover to eF by delaying the sale. This
gives a trader an incentive to liquidate gradually. Our purpose in the rest of this section is to
derive a (nearly) optimal execution strategy explicitly.

Let P (x) = e−αx(1−αx). Since the function P is strictly decreasing on (−∞, 2/α], we can
define its inverse function P−1 : [−e−2,∞) −→ (−∞, 2/α]. Moreover we define the function
H(λ) = Ht,ϕ(λ) on [0,∞) by

H(λ) = α exp

(

αβ

∫ t

0

P−1
(

exp(−e−2βry)λ/α
)

dr − αϕ+ z − y

)

− λ,

We assume the following condition

ϕ >
max{z, 1 + β}

α
. (4.2)

This condition means that the amount of the trader’s security holdings is large enough. We
see that H is non-increasing on [0,∞) and (4.2) implies

H
(

αe−y
)

< 0 < H(0).

Then the equation H(λ) = 0 has the unique solution λ∗ = λ∗(t, ϕ) ∈
(

0, αe−y
)

. The next
theorem is the main result in this section.

Theorem 6. Let t ∈ (0, 1], (w, ϕ, s) ∈ D and assume (4.2). Then

Vt(w, ϕ, s; uRN) = w +
s

α

(

1− exp

(

−αϕ+ αβ

∫ t

0

ξ∗rdr

))

+β

∫ t

0

ξ∗r exp
(

F − αξ∗r + (1 + e−2βry)
)

dr, (4.3)

where ξ∗r = P−1(exp(−e−2βry)λ∗/α).

We can construct a nearly optimal strategy as follows (with δ ↓ 0):

ζ̂δr =
p∗

δ
1[0,δ](r) + ζ∗r +

q∗

δ
1[t−δ,t](r), (4.4)

6



Almost block liquidation

Gradual liquidation

(not constant speed)

Figure 1: The form of a nearly optimal strategy (ζδr )r (the left graph) and the corresponding
process of the amount of the security holdings (the right graph) when σ > 0. Horizontal axis
is the time r.

where p∗ = ξ∗0 + (z − 2y)/α and

ζ∗r = βξ∗r +
2βλ∗e−2βry exp(αξ∗r − e−2βry)

α2(αξ∗r − 2)
+

2βy

α
e−2βr

= βξ∗r +
2βye−2βr

α(2− αξ∗r )
,

q∗ = ϕ− β

∫ t

0

ξ∗rdr − ξ∗t −
z

α
+
y

α
(1 + e−2βt).

Here the second equality of the definition of ζ∗r comes from P (ξ∗r) = exp(−e−2βry)×λ∗/α. By
the inequalities (4.2), z ≥ 2y, and 0 ≤ ξ∗r ≤ ξ∗0 ≤ 1/α, we see that p∗, ζ∗r and q

∗ are all positive.
The strategy (ζ̂δr )r consists of three terms. The first term in the right-hand side of (4.4)

corresponds to “initial (almost) block liquidation.” The trader should sell p∗ shares of the
security at the initial time by dividing infinitely to avoid a decrease in the proceeds. The
second term means “gradual liquidation.” The trader executes the selling gradually until the
time horizon. The speed of the execution becomes slower as time passes. Then the trader
completes his/her liquidation by selling the rest of the shares by “terminal (almost) block
liquidation” as the final third term. So the nearly optimal strategy is a mixture of both block
liquidation and gradual liquidation, and especially we point out that the gradual liquidation is
necessary in this case. Figure 1 expresses the image of an optimal strategy of the trader. Using
these notations, we can rewrite the value function (4.3) as sums of an initial cash amount and
proceeds of initial/intermidiate/terminal liquidation:

Vt(w, ϕ, s; uRN)

= w +
1− e−αp

∗

α
s+ s

∫ t

0

e−αη
∗

r (dη∗r + βξ∗rdr) +
1− e−αq

∗

α
se−αη

∗

t , (4.5)

where η∗t = ξ∗t − (1 + e−2βt)y/α+ z/α.
Here we consider the special case of σ = 0 for a while. In this case the form of the value

function and its nearly optimal strategy becomes simple and we can weaken the assumption
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Almost block liquidation

Gradual liquidation

(constant speed)

Figure 2: The forms of a nearly optimal strategy (ζδr )r (the left graph) and the corresponding
process of the amount of the security holdings (the right graph) when σ = 0. Horizontal axis
is the time r.

(4.2) to ϕ > z/α. We define the function C(p) = Ct,ϕ(p), x ∈ R, by

Ct,ϕ(p) = eαp−zHt,ϕ(αP (xp− z/α))/α

= exp(α(tβ + 1)p− αϕ− tβz) + αp− z − 1.

Since C(p) is strictly increasing and C(z/α) < 0 < C ((ϕ− z/α)/(1 + βt)), the equation
C(p) = 0 has a unique solution p∗ = p∗(t, ϕ) ∈ (ϕ − z/α, (ϕ − z/α)/(1 + βt)). We have the
following.

Corollary 1. Let t ∈ (0, 1], (w, ϕ, s) ∈ D and assume ϕ > z/α. Then it holds that

Vt(w, ϕ, s; uRN) = w +
1− e−α(p

∗+q∗)

α
s+ tse−αp

∗

ζ∗, (4.6)

where ζ∗ = ζ∗(t, ϕ) and q∗ = q∗(t, ϕ) are given by

ζ∗ = β(p∗ − z/α), q∗ = ϕ− p∗ − tζ∗.

We see easily that p∗, ζ∗, q∗ > 0. A nearly optimal strategy is

ζδr =
p∗

δ
1[0,δ](r) + tζ∗ +

q∗

δ
1[t−δ,t](r).

In this case we also decompose a nearly optimal strategy into three parts: initial (almost)
block liquidation, gradual liquidation, and terminal (almost) block liquidation. Moreover the
speed of the gradual liquidation ζ∗ is constant. The image of their form is in Figure 2. In
fact, the security price is equal to se−αp

∗

and is also constant on (δ, 1− δ).
This result is quite similar to [1] and [13], despite the fact that there is a little difference

between their models and ours. We consider the geometric OU process for a security price.
On the other hand [1] and [13] assumed that the process of a security price follows arithmetic
Brownian motion (or a martingale) and there is exponential (or some more general shape of)
resilience for MI in LOB model. The relation between the mean-reverting property of an OU
process and the resilience of MI causes the similarity of results.
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5 A Note on Price Manipulation

In a viable execution model, the absence of price manipulation should be guaranteed and
an optimal strategy should always be non-negative (i.e., a selling strategy should not include
purchasing.) The conditions for viability in a LOB model are studied in [2], [3], [6], [7], [9]
and others.

In this section we extend the definition of admissible strategies of our model to permit
purchasing and consider the possibility of a price manipulation strategy. We consider the
following optimization problem

V ex
t (w, ϕ, s; uRN) = sup

(ζr)r∈Aex
t (ϕ)

E[Wt], (5.1)

where Aex
t (ϕ) is the set of “real-valued” progressively measurable processes (ζr)r such that

∫ t

0

ζrdr ≤ ϕ. We note that this extended value function is not always derived from corre-

sponding discrete-time value functions, since our convergence theorem (Theorem 1) is based
on the assumption that an execution strategy takes non-negative values.

In fact, the assumption (4.2) is needed only to guarantee p∗, ζ∗r , q
∗ > 0 and the proof of

Theorem 6 itself also works without (4.2). Let (ζ̂δr )r be given by (4.4) and let (Ŵ δ
r )r be the

corresponding process of the cash amount. The proof of Theorem 6 in Section 7.2 implies that

V ex
t (w, ϕ, s; uRN) ≥ lim

δ→0
E[Ŵ

δ
t ] = lim sup

n→∞
V n,ex
[nt] (w, ϕ, s; uRN),

where V n,ex
[nt] (w, ϕ, s; uRN) is defined similarly to V ex

t (w, ϕ, s; uRN). Then we have the following.

Theorem 7. Assume z ≥ 2y. Then for each ϕ ∈ R the function V ex
t (w, ϕ, s; uRN) is not less

than the right-hand side of (4.5).

We remark that the equation H(λ) = 0 has the unique solution

λ∗ ∈

(

0, αe−yP

(

αϕ− z

α(1 + βt)

))

(5.2)

even if ϕ ≤ z/α. In this case p∗, ζ∗r and q∗ are not always positive.
As a special case of (5.1), we consider the value function V ex

t (0, 0, s; uRN). Following [9],
we call an admissible strategy (ζr)r ∈ Aex

t (0) a round-trip and we define a price manipulation
strategy as a round-trip such that the corresponding expected profit at the time horizon is
positive. The following theorem indicates that we can construct a price manipulation strategy
when the initial security price s is much larger than the fundamental value eF .

Theorem 8. For large enough z there is a price manipulation strategy.

Proof. The equation H(λ∗) = 0 implies

exp

(

αβ

∫ t

0

ξ∗rdr

)

= ey−zλ∗/α.

9



Then, using Theorem 7 and the relations (5.2) and ξ∗r ≤ 1/α, we get

V ex
t (0, 0, s; uRN) ≥ lim

δ→0
E[Ŵ

δ
t ]

=
s

α

{

1− (1 + βt)ey−zλ∗/α+ βey−z
∫ t

0

exp(e−2βry − αξ∗r)dr

}

>
s

α
L(z), (5.3)

where

L(z) = 1− (1 + βt+ z) exp

(

−
βtz

1 + βt

)

+ βte−z−1.

Since lim
z→∞

L(z) = 1, the right-hand side of (5.3) is not less than zero. Then we see that (ζ̂δr )r

is a price manipulation strategy for small enough δ. �

In a LOB model, the possibility of price manipulation is varied by a little difference in the
frameworks of the models. In [2], there is no price manipulation strategy in both linear and
non-linear MI and exponential resilience, but the result of [6] asserts that price manipulation
is possible under exponential resilience unless the MI function is linear. Theorem 8 implies
the possibility of price manipulation in our framework, although the function (5.1) is only a
formal generalization of our continuous-time value function.

6 Concluding Remarks

In this paper we gave a tiny generalization of the results of [11] and we solved the optimal
execution problem in the case where a security price follows a geometric Ornstein–Uhlenbeck
process. This case is important in the sense that a security price has a mean-reverting property.
We showed that a (nearly) optimal strategy is the mixture of initial/terminal block liquidation
and intermediate gradual liquidation when the initial amount of the security holdings is large.
When the volatility is equal to zero, our result has the same form as the ones in [1] and [13]. In
this case a trader should sell at the same speed until the time horizon. When the volatility is
positive, the speed of gradual liquidation is not constant and the form of our optimal strategy
is similar to the one in [12].

Our example gives us a case where MI causes gradual liquidation. In the real market a
trader sells his/her shares of a security gradually to avoid an MI cost because he/she expects a
recovery of the price. This situation is strongly related to the case of considering resilience of
MI. We also notice that examples in [11] also suggest that strictly convex MI causes a gradual
liquidation. Convexity (or non-linearity) and a price recovery effect are both important factors
in the construction of an MI model.

In Section 5, we considered the optimization problem when the trader is permitted to buy
the security and we showed the possibility of price manipulation. It is important to construct
a viable market model of execution, and it is intended, in future work, to find out conditions
for the non-existence of price manipulation. To make the arguments in Section 5 strict, we
need to derive the corresponding convergence theorem such as Theorem 1 and this is another
remaining task.
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7 Appendix

7.1 Proof of Theorem 5

It is easy to see that Vt(w, ϕ, s; uRN) = w + eF+yf(t) holds, where

f(t) = sup
(ζr)r∈Adet

t (ϕ)

f̃((ζr)r), (7.1)

f̃((ζr)r) =

∫ t

0

ζr exp

(

e−βrz − e−2βry − αe−βr
∫ r

0

eβvζvdv

)

dr.

So it suffices to consider the maximization problem (7.1).
By a straightforward calculation, we get

f(t) ≥ lim
δ→0

f̃((ζ̂I,δr )r) =
1− e−αϕ

α
ez−y.

Moreover, for any (ζr)r ∈ Adet
t (ϕ) we have

f̃((ζr)r) ≤

∫ t

0

ζr exp
(

e−βrz − e−2βry − αe−βrηr
)

dr,

where ηr =

∫ r

0

ζvdv. From the relation z − 2y ≥ αϕ ≥ αηr, we have

{z − y − αηr} − {e−βrz − e−2βry − αe−βrηr}

= (1− e−βr)(z − (1 + e−βr)y − αηr) ≥ 0.

Thus

f̃((ζr)r) ≤

∫ t

0

exp(z − y − αηr)dηr ≤
1− e−αϕ

α
ez−y.

Then f(t) ≤ (1− e−αϕ)ez−y/α and this completes the proof of Theorem 5. �

7.2 Proof of Theorem 6

In this section we present the proof of Theorem 6. It follows the outline of [1].
We fix w, ϕ, s for a while. For brevity we assume t = 1 until the end of this section. We

define a function fn(n) by

fn(n) =
1

α
sup

(ψn
k )k∈A

n,det
n (ϕ)

f̃n(ψn0 , . . . , ψ
n
n−1), (7.2)

where An,det
k (ϕ) is the set of admissible strategies in An

k(ϕ) which are deterministic (we also

define An,det,SO
k (ϕ) similarly),

f̃n(x)

= α

n−1
∑

k=0

exp

(

cknz − c2kn y − α

k−1
∑

l=0

ck−ln xl

)

∫ (k+1)/n

k/n

nxk exp(−α(nr − k)xk)dr

=
n−1
∑

k=0

exp

(

cknz − c2kn y − α
k−1
∑

l=0

ck−ln xl

)

(1− e−αxk), x = (x0, . . . , xn−1) ∈ R
n

11



and cn = e−β/n. Since the function f̃n(x0, . . . , xn−1) is non-decreasing in xn−1, we can replace
An,det
k (ϕ) in (7.2) with An,det,SO

k (ϕ). We have the following proposition.

Proposition 1. It holds that w + eF+yfn(n) −→ V1(w, ϕ, s; u) with n→ ∞.

Proof. Let f̂n(n) = e−F−y(V n
n (w, ϕ, s; u)− w). We easily have f̂n(n) ≤ fn(n) and Theorem

1 implies V1(w, ϕ, s; u) ≤ w + eF+y lim inf
n→∞

fn(n). On the other hand, by the same arguments

as in the proof of Proposition 2 of [11], we can show the inequality w + eF+y lim sup
n→∞

fn(n) ≤

V1(w, ϕ, s; u). Then we have the assertion. �

By the above proposition, we may solve the optimization problem fn(n) (and taking n→
∞) instead of calculating Vt(w, ϕ, s; uRN) (or f(t)) itself.

Let Ξn(ϕ) = {(x0, . . . , xn−1) ∈ R
n ; x0 + · · ·+ xn−1 = ϕ}. We remark that An,det,SO

k (ϕ) ⊂

Ξn(ϕ). We set Q̃n
k(x) =

l
∑

m=0

cl−mn xm and Qn
l (x) = −zcln + yc2ln + αQ̃n

k(x).

Lemma 3. It holds that min
k=0,...,n−1

Qn
k(x) −→ −∞ as |x| → ∞ on Ξn(ϕ).

Proof. It suffices to show that min
k=0,...,n−1

Q̃n
k(x) −→ −∞. Take any M > 0. Let x ∈ Ξn(ϕ) be

such that min
k=0,...,n−1

Q̃n
k(x) ≥ −M . Then we have

xk + cnxk−1 + · · ·+ cknx0 ≥ −M, k = 0, . . . , n− 1. (7.3)

Substituting the equality xn−1+ · · ·+x0 = ϕ from (7.3) with k = n−1 and dividing by 1− cn,
we have

n−2
∑

k=0

(

n−2−k
∑

l=0

cln

)

xk ≤
M + ϕ

1− cn
. (7.4)

By (7.4) and (7.3) with k = n− 2, we have

n−3
∑

k=0

(

n−3−k
∑

l=0

cln

)

xk ≤

(

1

1− cn
+ 1

)

(M + ϕ).

Calculating inductively, we get

k′
∑

k=0

(

k′−k
∑

l=0

cln

)

xk ≤

(

1

1− cn
+ n− 2− k′

)

(M + ϕ) ≤ an(M + ϕ) (7.5)

for k = 0, . . . , n− 2, where an = {(1− cn)
−1 + n}.

By (7.3) and (7.5) with k = 0, we have −M ≤ x0 ≤ anM . Similarly, by (7.3) and (7.5)
with k = 1, we have −(1 + cnC0,n)M ≤ x1 ≤ (an + 1 + cn)M . By an inductive calculation
we have |xk| ≤ Cn(M + ϕ), k = 0, . . . , n − 2 and moreover the relation x ∈ Ξn(ϕ) implies
|xn−1| ≤ Cn(M + ϕ) for some positive constant Cn.

The above arguments tell us that “if a sequence (x(N))N ⊂ Ξn(ϕ) satisfies lim
N→∞

min
k
Q̃n
k(x

(N))

6= −∞, then (x(N))N is bounded,” which is the contrapositive of our assertion. �
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Lemma 4. It holds that f̃n(x0, . . . , xn−1) −→ −∞ as |x| → ∞ on Ξn(ϕ).

Proof. Let An(p) = e−cnp+y − e−p, p ∈ R. Then we have

f̃n(x) =

n−1
∑

k=0

(e−cnQ
n
k−1

(x)+yc2k−1
n (1−cn) − e−Q

n
k (x))

≤ ez−y − e−Q
n
n−1

(x) +

n−2
∑

k=0

An(Q
n
k(x))

for any x = (x0, . . . , xn−1) ∈ R
n. We easily see that the function An has an upper bound CA,n.

Thus

f̃n(x) ≤

{

ez−y − exp(−min
k
Qn
k(x)) + CA,nn, if Qn

n−1(x) = min
k
Qn
k(x),

ez−y + An(min
k
Qn
k(x)) + CA,n(n− 1), otherwise.

Since lim
p→−∞

An(p) = −∞, we have the assertion by Lemma 3. �

Lemma 5. For each k = 0, . . . , n− 2, it holds that

∂

∂xk
f̃n(x0, . . . , xn−1)

= cn
∂

∂xk+1
f̃n(x0, . . . , xn−1) + α(1− cn) exp(−c

2k
n y)F

n
k

(

k
∑

l=0

ck−ln xl − cknz/α

)

,

where

F n
k (x) =

exp(−αx)− cn exp(−αcnx− c2kn (c2n − 1)y)

1− cn
.

Proof. For brevity, set d(k)n = cknz − c2kn y. A straightforward calculation gives

∂

∂xk
f̃n(x0, . . . , xn−1) = α exp

(

d(k)n − α
k
∑

l=0

ck−ln xl

)

−α

n−1
∑

k′=k+1

ck
′−k
n exp

(

d(k
′)

n − α

k′−1
∑

l=0

ck
′−l
n xl

)

(1− e−αxk′ ). (7.6)

Replacing k with k + 1, we get

∂

∂xk+1
f̃n(x0, . . . , xn−1) = α exp

(

d(k+1)
n − α

k+1
∑

l=0

ck+1−l
n xl

)

−α

n−1
∑

k′=k+2

ck
′−k−1
n exp

(

d(k
′)

n − α

k′−1
∑

l=0

ck
′−l
n xl

)

(1− e−αxk′ )

= −
1

cn
α

n−1
∑

k′=k+1

ck
′−k
n exp

(

d(k
′)

n − α

k′−1
∑

l=0

ck
′−l
n xl

)

(1− e−αxk′ )

+α exp

(

d(k+1)
n − α

k
∑

l=0

ck+1−l
n xl

)

. (7.7)
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By (7.6) and (7.7), we get the assertion. �

We notice that F n
k is non-increasing on En

k and we can define the (non-increasing) inverse
function F n,−1

k on [0,∞), where

En
k =

(

−∞,−
1

α

(

c2kn (cn + 1)y +
log cn
1− cn

)]

.

Now we define the function Hn(λ) by

Hn(λ) = α exp

(

α(1− cn)
n−2
∑

k=0

F n,−1
k (exp(c2kn y)λ/α)− αϕ+ z − c2(n−1)

n y

)

− λ.

We consider the convergence of Hn. Let γ
n
k (x), R

n
k(x) and G

n
k(x) be

γnk (x) = αx+ (1 + cn)c
2k
n y,

Rn
k(x) =

∫ 1

0

exp(v(1− cn)γ
n
k (x))(1− v)dv(γnk (x))

2,

Gn
k(x) = βe−αx(αx+ (2 + cn)c

2k
n y − cnR

n
k(x)).

Moreover we define

I(q) =
d

dq
P−1(q) =

exp(αP−1(q))

α(αP−1(q)− 2)

and Jnk (q) = − exp(−2c2kn y)I(exp(−2c2kn y)q)G
n
k(F

n,−1
k (q)). Then we have the following.

Lemma 6. It holds that

max
k=0,...,n−1

sup
x∈En

k∩K

∣

∣n(F n
k (x)− P (x) + 2e−αxc2kn y)−Gn

k(x)
∣

∣ −→ 0, n→ ∞

for each compact set K ⊂ R.

Proof. For brevity we denote c̃n = 1− cn. Using Taylor’s theorem, we get

F n
k (x) = e−αx

{

1 +
cn
c̃n
(1− ec̃nγ

n
k (x))

}

= e−αx {1− cn(γ
n
k (x)− c̃nR

n
k(x))}

= P (x)− 2e−αxc2kn y + c̃nG
n
k(x)/β.

Thus it holds that

∣

∣n(F n
k (x)− P (x) + 2e−αxc2kn y)−Gn

k(x)
∣

∣ ≤ |nc̃n/β − 1| · |Gn
k(x)|.

Since we have nc̃n −→ β as n→ ∞ and

|Gn
k(x)| ≤ 2βe2α|x|+2y(α|x|+ α2|x|2 + 3y + 4y2), (7.8)

we obtain the assertion. �
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Let εnk(q) = F n,−1
k (q)− P−1(exp(−2c2kn y)q) + 2c2kn y/α.

Lemma 7. It holds that

(i) max
k=0,...,n−1

sup
0≤q≤M

|εnk(q)| −→ 0,

(ii) max
k=0,...,n−1

sup
0≤q≤M

|nεnk(q)− Jnk (q)| −→ 0

as n→ ∞ for each M > 0.

Proof. The assertion (i) is a direct consequence of the assertion (ii), so we will prove only (ii).
Take any q ∈ [0,M ] and let xnk = F n,−1

k (q). Since F n
k (x) is non-decreasing with respect to n

and k for each fixed x, we get xnk ∈ KM for any n and k, where

KM =

[

F 1,−1
0 (M),

β

α(1− e−β)

]

.

Let R̃n
k(x) = F n

k (x)− P (x) + 2e−αxc2kn y. By the relation

P (xnk)− 2e−αx
n
k c2kn y + R̃n

k(x
n
k) = q,

we get

P (xnk + 2c2kn y/α) = exp(−2c2kn y)(q − R̃n
k(x

n
k)).

Since Lemma 6 implies

max
k=0,...,n−1

sup
x∈KM∩En

k

|R̃n
k(x)| −→ 0, n→ ∞, (7.9)

we see that exp(−2c2kn y)(q−R̃
n
k(x

n
k)) > −e−3/2/2 > −e−2 for large enough n and k = 0, . . . , n−

1, and we get

xnk − P−1(exp(−2c2kn y)q) + 2c2kn y/α

= P−1(exp(−2c2kn y)q)− P−1(exp(−2c2kn y)(q − R̃n
k(x

n
k))).

Since it follows that

−2e3/2/α ≤ I(q) < 0 <
d

dq
I(q) ≤ 12e3/α

for each x ≥ −e−3/2/2, we have

|n(xnk − P−1(exp(−2c2kn y)q) + 2c2kn y/α)− Jnk (q)|

≤

∣

∣

∣

∣

∫ 1

0

I(exp(−2c2kn y/α)(q − vR̃n
k(x

n
k)))dvnR̃

n
k(x

n
k)− I(exp(−2c2kn y)q))G

n
k(x

n
k)

∣

∣

∣

∣

≤
2e3/2

α
|nR̃n

k(x
n
k)−Gn

k(x
n
k)|+

12e3

α
|R̃n

k(x
n
k)| · |G

n
k(x

n
k)|.

By Lemma 6, (7.8), and (7.9), we obtain the assertion (ii). �

By Lemma 7, we get the following proposition.
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Proposition 2. Hn converges to H uniformly on any compact set in R.

By Proposition 2 and the fact that Hn is strictly decreasing on [0,∞), we can take n large
enough so that there is a unique solution λ̂n of Hn(λ) = 0 on (0, 2λ∗). Moreover it follows
that λ̂n converges to λ∗ as n→ ∞.

We set ψ̂nk = Tk(λ̂
n), k = 0, . . . , n− 1, where

T0(λ) = F n,−1
0 (exp(y)λ/α) + z/α,

Tk(λ) = F n,−1
k (exp(c2kn y)λ/α)− cnF

n,−1
k−1 (exp(c2(k−1)

n y)λ/α), k = 1, . . . , n− 2,

Tn−1(λ) = ϕ− (1− cn)

n−3
∑

k=0

F n,−1
k (exp(c2kn y)λ/α)

−F n,−1
n−2 (exp(c2(n−2)

n y)λ/α)− z/α.

Lemma 8. It holds that |ψ̂n0 − p∗|+ max
k=1,...,n−2

|nψ̂nk − ζ∗k/n|+ |ψ̂nn−1 − q∗| −→ 0 as n→ ∞.

Proof. By Lemma 7, we have

|ψ̂n0 − p∗|+ max
k=1,...,n−2

|nψ̂nk − ζ∗k/n|+ |ψ̂nn−1 − q∗|

≤ C

{

|n(1− cn)− β|+ εn + ε̃n

+ max
k=0,...,n−1

∣

∣

∣

∣

J

(

k

n
, exp(c2kn y)λ̂

n/α

)

− J

(

k − 1

n
, exp(c2(k−1)

n y)λ̂n/α

)
∣

∣

∣

∣

}

for some positive constant C depending only on α, β, y, and z, where

J(r, q) = exp(−2e−βry)I(exp(−2e−βry)q)G(r, F̃ (r, q)),

G(r, x) = βe−αx(αx+ 3e−2βry − (αx+ 2e−2βry)2/2),

F̃ (r, q) = P−1(exp(−e−2βry)q)− 2e−2βry/α

and εn (respectively, ε̃n) is the left-hand side of Lemma 7(i) (respectively, (ii).) Since J is
continuous on [0, 1]× [0,∞), we get the assertion. �

Lemma 8 and the relations p∗, ζ∗r , q
∗ > 0 imply the following lemma.

Lemma 9. It holds that ψ̂nk > 0, k = 0, . . . , n− 1 for large enough n.

Now we define an (n+ 1)-variable function Ln(x0, . . . , xn−1, λ) by

Ln(x0, . . . , xn−1, λ) = f̃n(x0, . . . , xn−1) + λ(ϕ− x0 − · · · − xn−1).

Then we have the following.

Lemma 10. When n is large enough, the vector (ψ̂n0 , . . . , ψ̂
n
n−1, λ̂

n) is the unique solution of

∂

∂x0
Ln = · · · =

∂

∂xn−1
Ln =

∂

∂λ
Ln = 0. (7.10)
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Proof. Suppose that a vector (x̃0, . . . , x̃n−1, λ̃) is a solution of (7.10). Then we have x̃0+ · · ·+
x̃n−1 = ϕ and Lemma 5 implies

λ̃ = cnλ̃+ α(1− cn) exp(−c
2k
n y)F

n
k

(

k
∑

l=0

ck−ln x̃l − cknz/α

)

,

thus

k
∑

l=0

ck−ln x̃l = F n,−1
k (exp(c2kn y)λ̃/α) + cknz/α, k = 0, . . . , n− 2. (7.11)

Then we see that x̃k = Tk(λ̃), k = 0, . . . , n− 1. Then we have

0 =
∂

∂xn−1

Ln(x̃0, . . . , x̃n, λ̃)

= α exp

(

cn−1
n z − c2(n−1)

n y − α

n−1
∑

l=0

cn−1−l
n x̃l

)

− λ̃ = Hn(λ̃).

Since λ̂n is the unique solution of Hn(λ) = 0, we have λ̃ = λ̂n. This equality also imples
x̃k = Tk(λ̂

n) = ψ̂nk , k = 0, . . . , n − 1. Thus the solution of (7.10) is unique. The above
arguments also tell us that (ψ̂n0 , . . . , ψ̂

n
n−1, λ̂

n) satisfies (7.10). �

Now we have the following proposition.

Proposition 3. It holds that fn(n) = f̃n(ψ̂n0 , . . . , ψ̂
n
n−1)/α for enough large n.

Proof. By Lemma 4, we can find M > 0 large enough so that f̃n(x) < 0 holds for x ∈
Ξn(ϕ) with |x| ≥ M . Then f̃n has at least one local maximum point on (−M,M)n (x̃ =
(x̃0, . . . , x̃n−1), say.) By the Lagrange multiplier method, we see that there is some λ̃ ∈ R such
that (7.10) holds at (x̃, λ̃). Then Lemma 10 implies x̃k = ψ̂nk for k = 0, . . . , n− 1. This means
that (ψ̂1, . . . , ψ̂n−1) is the unique local maximum, which is inevitably the global maximum of
f̃n on Ξn(ϕ). �

Now we prove Theorem 6. We divide f̃n(ψ̂n0 , . . . , ψ̂
n
n−1) into the following three parts:

f̃n(ψ̂n0 , . . . , ψ̂
n
n−1) = ez−y(1− e−αψ̂

n
0 )

+

n−2
∑

k=1

exp

(

cknz − c2kn y − α

k−1
∑

l=0

ck−ln ψ̂nl

)

(1− e−αψ̂
n
k )

+ exp

(

cn−1
n z − c2(n−1)

n y − α

n−2
∑

k=0

cn−1−k
n ψ̂nk

)

(1− e−αψ̂
n
n−1)

= Ãn + B̃n + C̃n.

By Lemma 8, we easily get

Ãn −→ ez−y(1− e−αp
∗

), n→ ∞. (7.12)
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Using the relation (7.11) and Lemmas 7–8, we have

C̃n = exp
(

(cn−1
n − cn−2

n )z − c2(n−1)
n y − αF n,−1

n−2 (exp(c2(n−1)
n y)λ̂n/α)

)

×(1− e−αψ̂
n
n−1)

−→ exp
(

e−2βy − αP−1(exp(e−2βy)λ∗/α)
)

(1− e−αq
∗

)

= ez−ye−αη
∗

1 (1− e−αq
∗

). (7.13)

To calculate the limit of B̃n we set

B̂n =
α

n

n−2
∑

k=1

exp
(

c2kn y − αξ∗k/n
)

ζ∗k/n.

Then we have

|B̃n − B̂n| ≤ ez

{

n−2
∑

k=1

∣

∣

∣
e−αψ̂

n
k − e−αζ

∗

k/n
/n
∣

∣

∣
+

n−2
∑

k=1

∣

∣

∣

∣

1− e−αζ
∗

k/n
/n −

αζ∗k/n
n

∣

∣

∣

∣

}

+
α

n

n−2
∑

k=1

∣

∣

∣
exp(−c2kn y − αF n,−1

k (exp(c2kn y)λ̂
n/α)− exp(c2kn y − αξ∗k/n)

∣

∣

∣
ζ∗k/n

−→ 0, n→ ∞ (7.14)

by virtue of (7.11) and Lemmas 7–8. Moreover we have

lim
n→∞

B̂n = α

∫ 1

0

exp(e−2βry − αξ∗r)ζ
∗
r dr = αez−y

∫ 1

0

e−αη
∗

r

(

βξ∗r +
d

dr
η∗r

)

dr

= αβez−y
∫ 1

0

e−αη
∗

r ξ∗rdr + ez−y(e−αp
∗

− e−αη
∗

1 ). (7.15)

By (7.12)–(7.15), we see that w + eF+y(Ãn + B̃n + C̃n) converges to the right-hand side of
(4.5). Then we obtain the assertion by Proposition 1. �
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