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Abstract

This work presents a systematic study of objective evadnatof abstaining classifications using Information-T le¢ior
MeasuresITMs). First, we define objective measures for which they do npedd on any free parameter. This defi-
nition provides technical simplicity for examiningbjectivity’ or “ subjectivity directly to classification evaluations.
Second, we propose twenty four normalized ITMs, derivedhfeither mutual information, divergence, or cross-
entropy, for investigation. Contrary to conventional penfiance measures that apply empirical formulas based on
users’ intuitions or preferences, the ITMs are theordtiaalore sound for realizing objective evaluations of classi
fications. We apply them to distinguisierfor type$ and “reject typesin binary classifications without the need
for input data of cost terms. Third, to better understand saldct the ITMs, we suggest three desirable features
for classification assessment measures, which appear mmialand appealing from the viewpoint of classification
applications. Using these features asta-measuréswe can reveal the advantages and limitations of ITMs from a
higher level of evaluation knowledge. Numerical examplesgven to corroborate our claims and compare the dif-
ferences among the proposed measures. The best measueetsdsa terms of the meta-measures, and its specific
properties regarding error types and reject types are tcelly derived.
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1. Introduction

The selection of evaluation measures for classificatiosséweived increasing attentions from researchers on var-
ious application fields [1] [2][3][4][5]/[6][7]. It is well lnown that evaluation measures, or criteria, have a sulistant
impact on the quality of classification performance. Thebpgm of how to select evaluation measures for the overall
quality of classifications is licult, and there appears no universal answer to this.

Up to now, various types of evaluation measures have beahinsdassification applications. Taking a binary
classification as an example, more than thirty metrics haenlapplied for assessing the quality of classifications
and their algorithms as given in Table 1 of Lavesson and Baad's papel [5]. Most of the metrics listed in this
table can be considered a type of performance-based measugractice, other types of evaluation measures, such
as Information-Theoretic Measurd3 s ), have also commonly been used in machine learningl[8][8F fiypical
information-based measure used in classifications is thescentropyl[10]. In a recent work [11], Hu and Wang
derived an analytical formula of the Shannon-based mutfiafination measure with respect to a confusion matrix.
Significant benefits were derived from the measure, sucls geiterality even for cases of classifications with a reject
option, and its objectivity in naturally balancing perfante-based measures that may conflict with one another (such
as precision and recall). The objectivity was achieved ftbmperspective that an information-based measure does
not require knowledge of cost terms in evaluating clasgitioa. This advantage is particularly important in studies
of abstaining classifications [12][4] and cost sensitivarténg [13][14], where cost terms may be required as input

*Corresponding author. Address: NLRIAMA, Institute of Automation, Chinese Academy of Scies¢®eijing 100190, China. Tel+86-
10-62647318, Fax+86-10-62647458.
Email addresshubg@nlpr.ia.ac.cn (Bao-Gang Hu)

July 12, 2011


http://arxiv.org/abs/1107.1837v1

data for evaluations. Generally, if no cost terms are assigo evaluations, it implies that the zero-one cost fumstio
are applied [15]. In such situations, classification evidus without a reject option may still be applicable andfuke
in class-balanced datasets. Problematic, or unreasgomebldts will be obtained for evaluations in situations vehe
classes are highly skewed in the datasets [3] if no specifitteoms are given.

In this work, for simplifying discussions, we distinguistr, decouple, two study goals in evaluation studies,
namely, evaluation of classifiers and evaluation of clasgifins. The former goal concerns more about evaluation
of algorithms in which classifiers applied. From this evéilua designers or users can select the best classifier. The
latter goal is to evaluate classification results withoutaaning which classifier is applied. This evaluation aims
more on result comparisons or measure comparisons. Ormatypiample was demonstrated by Mackay [16] for
highlighting the dfficulty in classification evaluations. He showed two specificfasion matricesCp andCg, in
binary classifications with a reject option:

74 6 10 78 6 6
], cE—[ (1)
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where the confusion matrix is defined @sin eq. (1) , and TN", “TP", “FN”", “FP”, “RN’, “RP’ represent true
negativé , “true positivé, “ false negativg “ false positivg “ reject negativg “ reject positivé, respectively. For the
given data, users may aswhich measures will be proper for ranking therif directly applying “True Positive Rate-
False Positive Ratecurve (also called ROC) orPrecision-Recall curve, one may conclude that the performance
of Cg is better than that o€p . This conclusion is proper since the two sets of data sharesaéme reject rate
(=11%). Generally, Error-Reject curve is mostly adopted in abstaining classifications. é8iasn this evaluation
approach, one may consider the performances of two clagsiiis have no dierence because they show the same
error rate £6%) and reject rate. Mackaly [16] first suggested applyingualdinformation based measure in ranking
classifications, and through which Hu and Wang (referring58M6 in Table 3,[11]) observed th&p is better than
Ce. If reviewing the two matrices carefully with respect to iatdnced classes, one may agree with the observation
because the small class@yp receives more correct classifications than thatgn

We consider the example designed by Mackay [16] is quitewéting for study of abstaining classification
evaluations. The implications of the example form the naitons of the present work on addressing three related
open problems, which are generally overlooked in the stddyassification evaluations as follows:

}’ with C:[TN FP RN]’

FN TP RP

I. How to define proper’ measures in terms of high-level knowledge for abstainilagsification evaluations?
II. How to conduct an objective evaluation of classificatiavithout using cost terms?
lll. How to distinct or rank ‘error types and “reject typesin classification evaluations?

Conventional binary classifications usually distinguisb types of misclassification errors [15][16] if they result
in different losses in applications. For example, in medical aptins, Type | Error’ (or “false positivé) can be
an error of misclassifying a healthy person to be abnorroah sis cancer. On the contraryype Il Error’(or “ false
negativé) is an error where cancer is not detected in a patient. Toege Type Il Error’ is more costly than Type |
Error”. Based on the same reason for identifyiregror types in binary classifications, there is a need for considering
“reject typesif a reject option is applied. Of the existing measures, wasider information-theoretic measures to
be most promising in providingdbjectivity’ in classification evaluations. A detailed discussion oa definition of
“objectivity’ is given in Section 3. This work is an extension of our premictudy|[11]. However, the work aims at
a systematic investigation of information measures wittcefr focus on error types and “reject type& The main
contribution of the work is derived from the following thraspects:

I. We define the proper’ features, also calledmeta-measurés for selecting candidate measures in the con-
text of abstaining classification evaluations. These festwill assist users in understanding advantages and
limitations of evaluation measures from a higher level afktedge.

II. We examine most of the existing information measuressgpsiematic investigation o€fror type$ and “reject
types for objective evaluations. We hope that the more than tweméasures investigated are able to enrich
the current bank of classification evaluation measuresttéobest measure in terms of the meta-measures, we
present a theoretical confirmation of its desirable progeregarding error types and reject types.
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[ll. We reveal the intrinsic shortcomings of information asaires in evaluations. The discussions are intended to
be applicable to a wider range of classification problemsh s similarity ranking. In addition, we are able to
employ the measures reasonably in interpreting classditagsults.

To address classification evaluations with a reject optiaassume that the only basic data available for clas-
sification evaluations is a confusion matrix, without inplata of cost terms. The rest of this letter is organized as
follows. In Section 2, we present related work for the sébecof evaluation measures. For seekimpydper’ mea-
sures, we propose several desirable features in the caitetetssifications in Section 3. Three groups of normalized
information measures are proposed along with their intrissortcomings in Sections 4 to 6, respectively. Several
numerical examples, together with discussions, are giv&ection 7. Finally, in Section 8 we conclude the work.

2. Related Work

In classification evaluations, a measure based on clag&ificaccuracy has traditionally been used with some
success in numerous cases [15]. This measure, howeveruffieyserious problems in reaching intuitively reasonable
results from certain special cases of real-world classifingproblems|[3]. The main reason for this is that a single
measure of accuracy does not take into account error types.

To overcome the problems of accuracy measures, reseatténegsdeveloped many sophisticated approaches
for classification assessmeni[17][18]. Among these, tworoenly-used approaches are ROC (Receiver Operating
Characteristic) curves and AUC (Area under Curve) meaqjgkd]. ROC curves provide users with a very fast
evaluation approach via visual inspections, but this iy aplplicable in limited cases with specific curve forms (for
example, when one curve is completely above the other). Alé@sures are more generic for ranking classifica-
tions without constraints on curve forms. In a study of bynaassifications, a formal proof was given by Ling et
al. [1] showing that AUC is a better measure than accuraay fitee definitions of both statistical consistency and
discriminancy. Sophisticated AUC measures were repogeently for improving robustness [6] and coherency [7]
of classifiers. Drummond and Holte [20] proposed a visutibratechnique calledCost Curvé, which is able to
take into account of cost terms for showing confidence imtisron classifier's performance. Japkowidz [3] presented
convincing examples showing the shortcomings of the exgstivaluation methods, including accuracy, precision vs.
recall, and ROC techniques. The findings from the examplglsduconfirmed the need for methods using measure-
based functions [21]. The main idea behind measure-basatidas is to form a single function with respect to a
weighted summation of multiple measures. The measureitumistable to balance a tradéf@among the conflicting
measures, such as precision and recall. However, the nfigutty arises in the selection of balancing weights for the
measures [5]. In most cases, users rely on their preferamecesxperiences in assigning the weights, which imposes
a strong degree of subjectivity on the evaluation results.

Classification evaluations become more complicated if asdfi@er abstains from making a prediction when the
outcome is considered unreliable for a specific sample.isrctse, an extra class, known as theect’ or “ unknowri
class, is added to the classification. In recent years, tity sif abstaining classifiers has received much attention
[22][23][12][4][24]. With complete data of a full cost matr they were able to assess the classifications. If one term
of the cost matrix was missing, such as on a reject cost tér@napproaches for classification evaluations generally
failed. Moreover, because in most situations the cost tam@gjiven by users, this approach is basically a subjective
evaluation in applications. Vanderlooy et al. |[25] furtirarestigated the ROC isometrics approach which does not
rely on information from a cost matrix. This approach, hoareis only applicable to binary classification problems.

A promising study of objective evaluations of classificaiés attributed to the introduction of information theory.
Kvalseth [26] and Wickens [27] derived normalized mutu&imation (NMI ) measures in relation to a contingency
table. Further pioneering studies on the classificatioblpras were conducted by Finn [28] and Forhes [29]. Forbes
[29] discussed the problem that NMI does not share a monopoperty with the other performance measures, such
as accuracy or F-measure. Severdladent definitions for information measures have been regart studies of
classification assessment, such as information scores bgriémko and Bratka [30] and KL divergence by Nishii
and Tanaka [31]. Yao, et al.|[8] and Tan, et al.|[32] summarizeny useful information measures for studies of
associations and attribute importance. Significéliores were made on discussing the desired properties ofatiatu
measures [32]. Principe, et al.| [9] proposed a frameworknédrimation theoretic learnindTL ) that included
supervised learning as in classifications. Within this fearork, the learning criteria were the mutual information
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defined from the Shannon and Renyi entropies. Two quadrat&rgences, namely, the Euclidean and Cauchy-
Schwartz distances were also included.

From the perspective of information theory, Wang and Hu [@3jived for the first time the nonlinear relations
between mutual information and the conventional perforteaneasures (accuracy, recall and precision) for binary
classification problems. They [11] extended the investigainto abstaining classification evaluations for mukipl
classes. Their method was based solely on the confusiolixmtr gaining the theoretical properties, they derived
the extremum theorems concerning mutual information meas®ne of the important findings from the local mini-
mum theorem is the theoretic revelation of the non-monatproperty of mutual information measures with respect
to the diagonal terms of a confusion matrix. This property wause irrational evaluation results from some data in
classifications. They confirmed this problem by examiningc#fir numerical examples. Theoretical investigations
are still missed for other information measures, such aargdence-based and cross-entropy based ones.

3. Objective Evaluations and Meta-Measures

This work focuses on objective evaluations of classificetio While Berger|[34] stressed four points from a
philosophical position for supporting objective Bayes#aralysis, it seems that few studies in the literature addres
the “objectivity’ issue in the study of classification evaluations. Someaeseers|[32] may call their measures to be
objective ones without defining them formally. Considettingt “objectivity’ is a more philosophical concept without
a well accepted definition, we propose a scheme for definihjettive evaluatiorifrom the viewpoint of practical
implementation and examination.

Definition 1. Objective evaluations and measuresAn objective evaluation is an assessment expressed by a
function that does not contain any free parameter. Thistfonés called an objective measure.

Remark 1. When a free parameter is used to define a measure, it usaatlgsa certain degree of subjectivity
in evaluations. Therefore, according to this definition,easure based on cost terms [15] as free parameters does not
lead to an objective evaluation. Definition 1 may be consamabut nevertheless, provides technical simplicity for
examining ‘bbjectivity’ or “ subjectivity directly with respect to the existence of free parametkrsome situations,
Definition 1 can be relaxed by including free parameters they all have to be determined solely from the given
dataset.

Definition 2. Datasets in classification evaluations with agject option. A reject option is sometimes considered
for classifications in which one may assign samples to atrejaenknown class. Evaluations of classification with a
reject option apply two datasets, namely, the output (odipt®n) datasetyi},_,, which is a realization of discrete
random variabl&/ valued on setl, 2, ..., m+1}; and the target datasg};_, € T valued on setl, 2, ..., m}; wheren
is the total number of samples, amds the total number of classes. A sample identified as a refass is represented
byyc=m+1.

Remark 2. The term ‘abstaining classifiefshas been widely used in classification problems with a teyetion
[12][4]. However, most studies of abstaining classificasioequired cost matrices for their evaluations. The dedimit
given above exhibits more generic scenarios in classificatvaluations, because it does not require knowledge of
cost terms for error types and reject types.

Definition 3. Augmented confusion matrix and its constrains [11]. An augmented confusion matrix includes
one column for the reject class, which is added to a conveatimonfusion matrix:

Ci1 Ci2 ... Cim Cim+1)
C C ... C C

C= 21 C22 om  Com+1) ’ @)
Cmi Cm2 ... Cmm Cmm+1)

wherec;; represents the sample number of iteclass that is classified as tfi# class. The row data corresponds to
the actual classes, while the column data corresponds fordutcted classes. The last column represents the reject
class. The relations and constraints of an augmented donfoeatrix are:

m+1
cj=2q,-, Ci>0 >0 i=12...m (3)
j=1
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whereC; is the total number for thigh class, which is generally known in classification proldem

Definition 4. Error types and reject types. Following the conventions in binary classificatior?s][ we denote
c12 andcy; by “Type | Error” and “Type Il Error’ respectively;ci3 andc,s by “Type | Rejectand “Type Il Reject
respectively.

Definition 5. Normalized information measure A normalized information measure, denotedNdgT,Y) €
[0,1], is a function based on information theory, which représehe degree of similarity between two random
variablesT andY.

In principle, we hope that all NI measures satisfy the thnegdrtant properties, or axioms, of metrics![15][35],
supposing is another random variable:

PL:NI(T,Y)=1if T =Y (the identity axiom)
P2:NI(T,Y) + NI(Y, Z) = NI(T, Z) (the triangle inequality)
P3:NI(T,Y) = NI(Y, T) (the symmetry axiom)

Remark 3. Violations of properties of metrics are possible in reaghieasonable evaluations of classifications.
For example, the triangle inequality and symmetry propertian be relaxed without changing the ranking orders
among classifications if their evaluation measures ard@egpobnsistently. However, the identity property is indéch
only for the relationT =Y (assumindr is padded with zeros to make it the same siz&gsand does not guarantee
an exact solutiont{ = yi) in classifications (see Theorems 1 and 4 given later). Ifodatibn of metric properties
occurs, the Nis are referred to as measures, rather thaicsetr

For classification evaluations, we consider the generipgntées of metrics not to be as crucial in comparisons as
certain specific features. In this work, we focus on sped#fatidres that, though not mathematically fundamental, are
more necessary in classification applications. To seleettél’ measures for objective evaluations of classifications,
we propose the following three desirable features togetftartheir heuristic reasons.

Feature 1. Monotonicity with respect to the diagonal terms 6the confusion matrix. The diagonal terms of
the confusion matrix represent the exact classificationbemnfor all the samples. Or, they reflect the coincident
numbers betweethandy from a similarity viewpoint. When one of these terms changles evaluation measure
should change in a monotonous way. Otherwise, any non-rooimmeasure may fail to provide a rational result
for ranking classifications correctly. This feature is araly proposed for describing the strength of agreement (o
similarity) if the matrix is a contingency table [32].

Feature 2. Variation with reject rate. To improve classification performance, a reject optionfisroused in
engineering applications [12]. Therefore, we suggestdtmeasure should be a scalar function on both classification
accuracy and reject rates. Such a measure could be evahasted solely on a given confusion matrix from a single
operating point in the classification. This idférent to the AUC measures that are based orEarof-Reject curve
[16][24] from multiple operating points.

Feature 3. Intuitively consistent costs among error types ad reject types This feature is derived from the
principle of our conventional intuitions when dealing wétror types in classifications. It is also extended to reject
types. Two specific intuitions are adopted for binary clsaions. First, a misclassification or rejection from a Bma
class will cause a greater cost than that from a large claiss ifituition represents a property calledithin error
types and reject typ&sSecond, a misclassification will produce a greater cos th rejection from the same class,
which is called between error and reject typegroperty. If a measure is able to satisfy the intuitions,refer to its
associated costs as beingttitively consisterit Exceptions may exist to the intuitions above, but we cdesthem
as a very special case.

At this stage, it is worth discussing ombjectivity’ in evaluations because one may doubt correctness of the
intentions above and the terndésirablé or “intuitions’ in a study of objective evaluations. The three featuressee
to be ‘problemati¢ in terms of providing a general concept afljjectivity’, because no human bias should be applied
in the objective judgment of evaluation results. The follogudiscussions justify the proposal of requiring desieabt
proper, features for objective measures. On one hand, wgmnée that any evaluation will imply a certain degree of
“subjectivity, since evaluations exist only as a result of human judgmenmt examples, every selection of evaluation
measures, even of objective ones, will rely on possible cgsupf ‘subjectivity from users. On the other hand,
engineering applications do concern about objective e@mlns [29][32]. However, to the authors’ best knowledge,
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a technical definition, or criterion, seems missing for dataing objective or subjective measures in evaluations of
classifications. For overcoming possible confusion andigagss, we set Definition 1 as a practical criterion for
examining whether a classification evaluation holdbjectivity’ or does not. If a measure satisfies this definition,
it will always retain the property ofdbjective consistentyn evaluating the given classification results. The three
“desirablé features, though based oimtuitions’ with “ subjectivity, do not destroy the criterion ofdbjectivity in
classification evaluations. Therefore, it is logically remt to discussdesirablé features of objective measures as
long as the measures satisfy Definition 1 for keeping the ddfiabjectivity'.

Note that all desirable features above are derived fromrduitions on general cases of classification evaluations.
Other items may be derived for a wider examination of feauF®r example, Forbes [29] proposed siofistraints
on proper comparative measufeaamely, “statistically principled, readily interpretable, gendiable to k-class sit-
uations, not dferent to the special status, reflective of agreement, arehgitve to the segmentatibrHowever, we
consider the three features proposed in this work to be nroad, especially as Feature 3 has never been concerned
in previous studies of classification evaluations. Altho&gatures 2 and 3 may share a similar meaning, they are pre-
sented individually to highlight their specific concernse ¥én also call the desirable featuresta-measuréssince
these are defined to be qualitative and high-level measbims aneasures. In this work, we apply meta-measures in
our investigation of information measures. The examimatiith respect to the meta-measures enables clarification
of the causes of performancedtdirences among the examined measures in classificatioratiealst It will be helpful
for users to understand advantages and limitationsftéréint measures, either objective- or subjective-ones) &0
higher level of evaluation knowledge.

4. Normalized Information Measures based on Mutual Informaion

All NI measures applied in this work are divided into one afeth groups, namely, mutual-information based,
divergence based, and cross-entropy based groups. Irethtiers we focus on the first group. Each measure in this
group is derived directly from mutual information repretieg the degree of similarity between two random vari-
ables. For the purpose of objective evaluations, as suggybgtDefinition 1 in the previous section, we eliminate all
candidate measures defined from the Renyi or Jensen ergt{86i{9] since they involve a free parameter. Therefore,
without adding free parameters, we only apply the Shannto@nto information measures [37]:

H(Y) = - > p(y) log, p(y). (4)

y

whereY is a discrete random variable with probability mass funtiify). Then mutual information is defined as

[37]:
1Y) =3 S it y)log, XY ©)
Ty

P p(y)’

where p(t,y) is the joint distribution for the two discrete random vaites T andY, and p(t) and p(y) are called
marginal distributions that can be derived from:

p(t) = > p(t.y), p(Y) = D p(LY). (6)

y t

Sometimes, the simplified notations fp = p(t,y) = p(t = ti,y = y;) are used in this work. Table 1 lists the
possible normalized information measures within the mitinfarmation based group. Basically, they all make use of
Eq. (5) in their calculations. The mainfiirences are due to the normalization schemes. In applyénfpthulas for
calculatingN Iy, one generally does not have an exa(tty). For this reason, we adopt an empirical joint distribution
defined below for the calculations.

Definition 6. Empirical joint distribution and empirical ma rginal distributions [11]. An empirical joint
distribution is defined from the frequency means for the gigenfusion matrixC, as:

1 . .
Pe(t,y) = (Pij)e = ﬁCij, i=12....m j=212....,m+1 (7a)
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wheren = Y C;, denotes the total number of samples in the classificatibhe. subscript &' is given for denoting
empirical terms. The empirical marginal distributions:are

Pe(t_t)_9 i=12....m (7b)

1 .
Pe(yz)/j):ﬁzcij, j=12,....m+1 (70)
i=1

Definition 7. Empirical mutual information [11] . The empirical mutual information is given by:

m m+l

0= 33 P iog, P =Y. > 2o oo

i=1 j=1

). 8
' _J
i= l n

Definitions 6 and 7 provide users with a direct means for @pglinformation measures through the given data
of the confusion matrix. For the sake of simplicity of an&yand discussion, we adopt the empirical distributions,
or pij ~ Pij, for calculating all NIs and deriving the theorems, but reing their associated subscrig’™ Note that
the notation oN I, in Table 1 ditfers from the others for calculating mutual information, welg, (T, Y) is defined as
“modified mutual informatidn The calculation of (T, Y) is carried out based on the intersection of T and Y. Hence,
when using Eqg. (8), the intersection requires IRg(T, Y) incorporate a summation gfover 1 tom, instead ofn+ 1.
This definition is beyond mathematical rigor, tut, has the same properties of metricsNis. It was originally
proposed to overcome the problem of unchanging values iif Kdgections are made within only one class (referring
to M9-M10 in Table 3,/[11]). The following three theorems degived for all Nls in this group.

Theorem 1 Within all NI measures in Table 1, wheMiI(T, Y) = 1, the classification without a reject class may
correspond to the case of either an exact classificayipg (), or a specific misclassification# tx). The specific
misclassification can be fully removed by simply exchangdatgls in the confusion matrix.

Proof. If NI(T,Y) = 1, we can obtain the following conditions from Eq. (8) foraddications without a reject
class:

Ci - .
pij = p(t =t) ~ Pe(t = t) = o and p;j=0, i,bk=12....m k=i (9)
These conditions describe the specific confusion matrixe/baly one non-zero term appears in each column (with
the exception of the lastr(+ 1)th column). Wherj =i, C is a diagonal matrix for representing an exact classificatio
(yx = t). Otherwise, a specific misclassification exists for whidtisgonal matrix can be obtained by exchanging
labels in the confusion matrix (referring to M11 in Tablel#1]). ¢

Remark 4. Theorem 1 describes that NI(T¥) presents a necessary, but naffisient, condition of an exact
classification.

Theorem 2 For abstaining classification problems, whel(T, Y) = 0, the classifier generally reflects a misclas-
sification. One special case is that all samples are corsiderbe one o classes, or be a reject class.

Proof. For NlIs defined in Table INI(T,Y) = 0 iff I(T,Y) = 0. According to information theory [37], the
following conditions can hold based on the given marginairiiutions (or the empirical ones if a confusion matrix
is used):

I(T.Y)=0, iff p(t.y) = p(t)py)- (10)

The conditional part in Eq. (10) can be rewritten in the fapm= p(t = t;)p(y = y;). From the constraints in (3),
pt=1t)>0(@ =1,2,...,m) can be obtained. For classification solutions, there shexiist at least one term for
ply=vy;) >0(j =1,2,...,m+ 1). Therefore, at least one non-zero termgr> O (i # j) must be obtained. This
non-zero term corresponds to th-diagonal term in the confusion matrix, which indicates thanisclassification
has occurred. When all samples have been identified as ohe ofasses (referring to M2 in Table 4, [11}) = 0
should be obtained:

Remark 5. Eq. (10) gives the statistical reason for zero mutual imfation, that is, the two random variables are
“statistically independehtTheorem 2 demonstrates an intrinsic reason for local ménin NIs.
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Theorem 3 The NI measures defined by the Shannon entropy generallgtdaxhibit a monotonic property with
respect to the diagonal terms of a confusion matrix.

Proof. Based on/[11], we arrive at simpler conditions for the laoédima about (T, Y) for the given confusion
matrix:

0 0 ..
0 Cij Cij 0 . Cii Cii+1
C= i i+l ,if LI > . 11
0 Cu1i GCitisz O Ci+ti  Cislis1 (1)
0 0

The local minima are obtained because the four given nooteems in Eq. (11) produce zero (or the minimum)
contribution tol (T, Y). Suppose a generic form is given fai(T,Y) = g(I(T,Y)), whereg(-) is a normalization
function. From the chain rule of derivatives, it can be sd®x the conditions do not change for reaching the local
minima. ¢

Remark 6. The non-monotonic property of the information measuregligs that these measures mayfsu
from an intrinsic problem of local minima for classificatiomnkings (referring to M19-M20 in Table 4, [11]). Or,
according to Feature 1 of the meta-measures, a rationdt festhe classification evaluations may not be obtained
due to the non-monotonic property of the measures. Thigatming has not been theoretically derived in previous
studies ([28][29][32]).

5. Normalized Information Measures based on Information Dvergence

In this section, we propose normalized information measbesed on the definition of information divergence.
In Table 2, we summarize the commonly-used divergence messwhich are denoted &(T, Y) and represents
dissimilarity between the two random variablesandY. In Sections 5 and 6, we apply the following notations for
defining marginal distributions:

P2 =p(t=2 =p(t), and R =ply=2 = py). (12)

wherez is a possible scalar value thiabr y can take. For a consistent comparison with the previous alired
information measures, we adopt the following transfororatin Dy [31]:

NIy = exp(=Dy). (13)

This transformation provides both inverse and normalizdiinctionalities. It does not introduce any extra param-
eters, and presents a high degree of simplicity, as in daivéor examining the local minima. Two more theorems
are derived by following a similar analysis to that in theyioes section.

Theorem 4. For all NI measures in Table 2, whé&h(T,Y) = 1, the classifier corresponds to the case of either
an exact classification, or a specific misclassification. &gy, the misclassification in the latter case can not be
removed by switching labels in the confusion matrix.

Proof. Whenpy(2) = pi(2), it is always the case th&tl(T, Y) = 1. However, general conditions can be given for
py(2) = pi(2) as follows:

py=z)=mt=2), or > pi=>p, i=12...m (14)
i j

Eq. (14) implies two cases of classifications By(T, Y) = 0,k = 10,..., 20, One of these corresponds to an exact
classification (otyx = tx), while the other is the result of a specific misclassifiatiobat shows the relationship of
Yk # t, butpy(2) = p(2). In the latter case, switching labels in the confusion irdtr remove misclassification
generally destroys the relation fpy(2) = pi(2) at the same time. Considering the relation is a necessaditian for
a perfect classification, the misclassification cannot beoreed through a label switching operatien.

Remark 7. Theorem 4 suggests the caution should be applied in expdpihe classification evaluations when
NI(T,Y) = 1. The maximum of the NIs from the information divergence sugas only indicates the equivalence
between the marginal probabilities,(2) = p:(2), but this is not always true for representing exact classins (or
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Yk = t). Theorem 4 reveals an intrinsic problem when using an Nl m&asure for similarity evaluations between
two datasets, such as in image registration.

Theorem 5 The NI measures based on information divergence genetallyot exhibit a monotonic property
with respect to the diagonal terms of confusion matrix.

Proof. The theorem can be proved by examining the existence ofiptfaulhaxima for NI measures based on
information divergence. Here we use a binary classificatisan example. The local minima Bf; are obtained
when the following conditions exist for a confusion matrix:

c=| & . dy Czd_l 0 8 and d = dp, (15)
whered; andd, are integer numbers-(0) for misclassified samples. The confusion matrix in Eq) (I®duces zero
divergenceDy and thereforel I, = 1. However, changing frordy # d, always results ilN Il < 1. ¢

Remark 8. Theorem 5 indicates another shortcoming of Nis in the imfation divergence group from the view-
point of monotonicity. The reason is once again attributethe usage of marginal distributions in calculations of
divergence. The shortcoming has not been reported in prswwestigations|([31][35]).

6. Normalized Information Measures based on Cross-Entropy

In this section, we propose normalized information meashased on cross-entropy, which is defined for discrete
random variables as [10]:

HT:Y) == p@log, py@, o H(Y;T)=->" py(2)log, pi(@. (16)
z z
Note thatH(T; Y) differs from joint-entropy (T, Y) with respect to both notation and definition, and is give{8a$
H(T,Y) = —ZZ p(t, y) log,p(t. y). (17)
y
In fact, from Eq. (16), one can derive the relation betweerditlergence (see Table 2) and cross-entropy:

H(T;Y) = H(T) + KL(T,Y), or H(Y;T)=H(Y)+ KL(Y, T). (18)

If H(T) is considered as a constant in classification since thettdagaset is generally known and fixed, we can
observe from Eq. (18) that cross-entropy shares a similanmg as KL divergence for representing dissimilarity
betweenT andY. From the conditionsl > 0 andKL > O, we are able to realize the normalization for cross-egtrop
shown in Table 3. Following similar discussions as in thevjanes section, we can derive that all information measures
listed in Table 3 will also satisfy Theorems 4 and 5.

7. Numerical Examples and Discussions

This section presents several numerical examples togeftteassociated discussions. All calculations for the
numerical examples were done using the open source sofSveiledl] and a specific toolbd® The detailed imple-
mentation of this toolbox is described [n [38]. Table 4 lisits numerical examples in binary classification problems
according to the specific scenarios of their confusion roasti We adopt the notations from/[39] for the terrosrtect
recognition rate (CR) “error rate (E}', and “reject rate (Rej) and their relation:

CR+E+Rej=1 (29)

In addition, we definedccuracy rate (A)as

Thttp://www.scilab.org
2 The toolbox is freely available as the filednfmatrix2ni.zip at (http: //www. openpr . org. cn).
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CR
A= CR+E’
The first four classifications (or models) M1-M4 are providedhow the specific éfierences with respect to error
types and reject types. In this work, we do not concern diassiapplied (say, neural networks or support vector
machines) for evaluations, but only the resulting evatretifrom these classifiers. In real applications, it is commo
to encounter ranking classification results as in M1 to Md4e Titst two classifications of M1 and M2 share the same
values for the correct recognition and accuracy rafdR £ A = 99%). The other two classifications, for M3 and
M4, have the same reject ratdRgj = 1%) and correct recognition rateSR = 99%). The accuracy rates for M3
and M4 are also the samA & 100%). This definition is consistent with the conventionthia study of Accuracy-
Reject curves [16]. If neglecting the specific application baakgnds, users generally have a ranking order for the
four classifications so that thdést one is selected. The data from other conventional meassueb adPrecision
RecallandF1, are also given in Table 4. Without using extra knowledgriathe cost of dterent error types or reject
types, the conventional performance measures are nobpssirank the four classifications, M1-M4, properly.
According to the intuitions of Feature 3 proposed in SecBpone can gain two sets of ranking orders for the four
classifications M1 to M4 in forms of:

(20)

R(M2) > R(M1), R(M4)> R(M3), (21- a)

R(M4) > R(M2), R(M3) > R(M1), (21— b)

where we denot& (e) to be a ranking operator, so tH{M;) > R(M;) expressed/; is better tharM; in ranking.
From eg. (21), one is unable to tell the ranking order betwéd2rand M3. For a fast comparison, a specific letter is
assigned to the ranking order of each model in Table 4 based.of21):

R(M4) = A, R(M3) = B, R(M2) = B, R(M1) = C. (22)

The top rank “A” indicates thelfest classification (M4 in this case) of the four models. Tableogsl not distinguish
ranking order between M2 and M3. However, numerical ingegtbns using information measures will provide the
ranking order from the given data. The other two models, Mb B, are also specifically designed for the purpose
of examining information measures on Theorems 3 and 5 (duFea), respectively.

Tables 5 and 6 present the results on information measurdsifvi6, where the ranking orders among M1-M4
is based on the calculation results of NIs with the giventdigirhe following observations are achieved from the
solutions to the examples.

1) When normalization functions include the tekHY) for the mutual information group, the associated NI pro-
duces the desirable feature of a variation in reject réé&; is efective for this feature even if it only uses
H(T) for its normalization. The féectiveness is attributed to the definitionlgf(T, Y) for calculating mutual
information based on the intersectionoaindy.

2) The results of M5 and M6 confirm, respectively, Theorem3ldoal minima and Theorem 5 for maxima of
NlIs. The existence of multi extrema indicates the non-mamictproperty with respect to the diagonal terms of
the confusion matrix, thereby exhibiting an intrinsic dsoming of the information measures.

3) For classifications M1 to M4, the meta-measure of Featuweggests ranking orders as shown in eqgs. (21) or
(22). However, of all the measures in the three groups biipyshows any consistency with the intuitions from
the given examples (Tables 5 and 6). This result indicatesReature 3 seems to be dhdiult property for
most information measures.

4) None of the performance or information measures invatgijin this work fully satisfy the meta-measures.
Examining data distinguishability in M1 through M4, we cates the information measures from the mutual-
information group to be more appropriate than those of tinerogjroups (sayNl;2 and Nl,, do not show
significant distinguishability, or value flierences, to the four models).

10



The fourth observation supports the proposal of meta-mmeador a higher level of classification evaluations.
The meta-measures provide users with a simple guidelinglectng ‘proper’ measures from their specific concerns
of applications. For example, the performance measureh @sA, E, CR F1, or AUC) satisfy Feature 1, but fall
directly to distinguish error types and reject types in ajective evaluation. When Feature 2 or 3 is a main concern,
the information measures exhibited to be mdfeaive, despite them not being perfect.

Of all the information measures investigat®, is shown to be theblest for the given examples in terms of
Feature 3. Therefore, more detailed studies, from bothréieal and numerical ones, were made on this promising
measure. The theoretical properties of this measure wagedan Appendix A. While Theorem Al confirms that
NI, satisfy Feature 3 around the exact classifications, The@2imdicates that this measure is able to adjust the
ranking order between a misclassification of a large cladsaamejection of a small class. Table 7 shows two sets of
confusions matrices which are similar to M1-M4 in Table 4.e@an observe the changes of ranking orders among
them. These changes numerically confirm Theorem A2 andiitsatpoint, or cross-over pointl = C;/n = 0.942),
for the given data.

Further investigations were carried out on three-clasblprms. Although some Nis could be removed directly
based on their poor performance with respect to the metaunes (such alll; andNlg on Feature 2), they were
retained to demonstrate pros and cons in the applicatiohshi®\stage, we extend the concepts of error types and
reject types to multiple classes. Nine examples are spaityfitesigned in Table 8. The ranking order for each model
is shown in Table 8, which is derived from the intuitions obkee 3. From Tables 9 and 10, it is interesting to see
that N1, is still the most appropriate measure for classificatioruatins. Using this measure, we can select the
“best and “worst’ classifications consistent with our intuition. All otheremsures perform below our satisfactions
for distinguishing error types and reject types properly.

The numerical study supports the viewpoint that no unidrsaperior measure exists. For example, in com-
paring with information measuril,, the conventional accuracy measure satisfies Feature Holestnot qualify
to Feature 3. Thus, any measure, either performance-basefonation-based, should be designed and evaluated
within the context of the specific applications. It is evitémt the desirable features in the specific applications
become more crucial (optoper’) for evaluation measures than some generic mathematiopkpties. For example,
information measures (such as KL divergence), that mayatistfg a metric's properties (say, symmetry), are able to
process classification evaluations including a rejectompfi hey provide more applicable power than the conventiona
performance measures in abstaining classifications. Henwee still need a complete picture about information mea-
sures with respect to their advantages as well as limitatidhe examples in Tables 4, 7, and 8 only present limited
scenarios for variations in confusion matrices. Using themsource toolbox from_[38], one is able to test more
scenarios for numerical investigations.

8. Summary

In this work, we investigated objective evaluations of sifisations by introducing normalized information mea-
sures. We reviewed the related works and discussed objgaivd its formal definition in evaluations. Objective
evaluations may be required undefidient application background. In classifications, for eplemexact knowledge
of misclassification costs is sometimes unknown in evabnati Moreover, cases of ignorance regarding reject costs
appear more often in scenarios of abstaining classificatidm these cases, although subjective evaluations can be
applied, the user-given data of the unknown abstentiorsagiditlead to a much higher degree of uncertainty or in-
consistency. We believe that an objective evaluation caadiétable solution, as well as a complementary, approach
to subjective evaluations. In some situations, an obje&ialuation is considered useful despite the subjectiakiev
ations being reasonable for the applications. The resuts both objective and subjective evaluations give users an
overall quality of classification results.

Considering that abstaining classifications are becomiagerpopular, we focused on the distinctions of error
types and reject types within objective evaluations of sifastions. First, we proposed three meta-measures for
assessing classifications, which seem more relevant apeiptiean the properties of metrics in the context of clas-
sification applications. The meta-measures provide uséhsuseful guidelines for a quick selection of candidate
measures. Second, we tried systematically to enrich aifitag®n evaluation bank by including commonly used
information measures. Contrary to the conventional perfarce measures that apply empirical formulas, the infor-
mation measures are theoretically more sound for objeetiatiations of classifications. The key advantage of these
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measures over the conventional ones is their ability to leamdilti-class classification evaluations with a reject op-
tion. Third, we revealed theoretically the intrinsic stlornings of the information measures. These have not been
formally reported before in studies of image registratif@ature selection, or similarity ranking. The discovery of
these shortcomings is very important for users to intergst results correctly when applying those measures.
Based on the principle of thé\b Free-Lunch TheorehfiL5], we recognize that there are norfiversally superict
measures [5]. Itis not our aim to replace the conventiondbpmance measures, but to explore information measures
systematically in classification evaluations. The theoa¢tstudy demonstrates the strength and weakness of the
information measures. Numerical investigations, conellicin binary and three-class classifications, confirmed that
objective evaluations are not an easy topic in the study ehina learning. One of the most challenging tasks will be
an exploration of novel measures that satisfy all meta-omeass well as the metric properties in objective evalaatio
of classifications. It is also necessary to define ttamKing ordef intuitions among error types and reject types in
generic classifications, which will form the basis of the witative meta-measures. However, this task becomes more
difficult if classifications are beyond two classes.
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Appendix A. Theorems and Sensitivity Functions ofN |, for Binary Classifications

Theorem Al: For a binary classification defined by:

TN FP RN
C= EN TP RPI’ and (Al-a)
Ci=TN+FP+RNC;=FN+TP+RRC;+C;=n (Al -Db)

NI, satisfies Feature 3 on the property regarding error typesajact types around the exact classifications. Specifi-
cally for the four confusion matrices below:

<G 0 0 [ Ci-d d O
Mi=l g c-d o M= o ¢, of "2
Mo = C 0 0 M = C,-d 0 d
3710 C-d d|” ™| 0 C of
the following relations will be held:
NI2(M1) < NI2(Mz) and  Nb(Mg) < Ni2(Ma), (A3-2a)
N|2(M1) < N|2(M3) and N|2(M2) < N|2(M4), (A3 - b)
where G >C,>d>0. (A3-0¢)
Proof. For a binary classificatiom |, is defined by the modified mutual information:
NI, = lh‘I-I(Z:I:)Y)’ and
Im(T, Y)FE T log % + i log % (A4)
+T |092 m + " |092 m
Let Mg be a confusion matrix corresponding to the exact classificat
| C 0 O
Mo_[o C, 0] (A5)
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Based on the definition dfy in (A4), one can calculate the mutual informatiorfeliences between two models.
ConsideringMp to be a baseline, we obtain the analytical results belowhi@four models:

Alg = Im(M1) = Im(Mg) = —(C1I092 CC + dlog, i d d) (A6 —a)
Mlzo = 1(Ms) I (Mo) = +(Calog, o 2 + dlog, =), (A6 - b)
Alzg = Im(M3) — Im(Mo) = ﬁ(|092 %), (A6 -c)
Alao = (M) ~ 1u(Mo) = S(tog, . (A6 - d)

For the given assumptioB; > C, > d > 0, all Als above are negative values so that their abstracts reptégen
absolute costs in classifications. One can directly proagatizol > |Al4g| from (A6-c) and (A6-d). The procedures
for the proof of|Al1o| > |Alyg| are given below. First, one needs to confirm the following furmctions to be strictly

decreasingXi < Xz, g(x1) > 9(x2)):
Gu(x) = (ﬁxd *and g9 = (- )d for x>0,d>0. (A7 - a)
Then, from the monotonically decreasing property of (A7ese can derive the following relations:

C1>Co > (e er)c1 (C2+d)Cz <1 and (C d_)d < (C2+d)d <1
— 1|Czlog, g% + dlog, 351 < £IC1log, %5 + dlog, 4| (A7 - b)
— |Al20 < |Alygl

The relations in (A3-a) are achieved flll, because its normalization terdd(T), is a constant for the gived; and
C,. One therefore confirms the satisfaction of Feature 3 on topepty of the within error types and reject types
around the exact classifications, respectively.

Then itis a proof of the relation (A3-b), which suggests thatisclassification gter a higher cost than a rejection
for the same class. Feature 3 considers this relation asi@apraperty in classifications for the between error and
reject types. The procedures for the proof are:

Ci>C,— C1C2 + Cld > (Cl + Cz)d =nd

—»1>%> & - |Iogz( 1)| ’logZ(Cerd)'

(A8 -a)
— 1]dlog,(2)| < log, ijd +dlog, z45
— |Algo| <Al
Ci+d<n—CyCi+d)+nd<Cin+nd— Clgcl%f)d;“d <1
C
_’FI+C+d<1 c+d<_<1—>“092 |<Iogzﬁ (A8 b)

1
— 1|dlog, | < 2
— |Algol < |A|10|

Iog2 &) cag +d Iog2 Grd

Theorem A2: For the given conditions (A1)-(A2) ar@; > C, > d > 0, NI, will satisfy the following relations:
N|2(M4) > N|2(M3) > N|2(M2) > N|2(M1) for 05< P1 < Q<1 (Ag— a)

N|2(M4) > N|2(M2) > N|2(M3) > N|2(M1) for 05<Q< p1<1 (A9— b)

where we sep; = C1/n, andQ is an upper boundary for the validation of (A9-a).
Proof. The first relation describes that the ranking order in (A®savalid only for a certain range gf;. The
lower boundary is resulted from the assumptiorCefto be a large class. The upper boundayjs determined by
13



Figure Al.: Plots of Al vs. p1(%)” whenn = 100 andd = 1.(Black-Solid= Al1, Black-Dask-Al g, Blue-Solid=Al 30, Blue-DaskAl 40)

the cross-over point between the functions of (A-6b) and{)\- For better understanding of the relations (A9), we
present the plots ofAl vs. p;” whenn = 100 andd = 1 (Fig. Al).

For examining the validation range of (A9-a), one needslimutate the cross-over point from solving the equation
below:

C, dn
f=Alyp—Alg= —(C2|092 Cot + dl 0g, Cot d) =0. (AlO)

There exists no closed-form solution@ Based on the monoton|C|ty of the related functions andicgla in (A3),
one is able to confirm the conditions in (A9-a) and (A9-b)pexgtively. Fig. Al depicts numerically that only a single
cross-over point appears to the rang@of 0.5(orCy > Cy). ¢

Remark Al: We can denot€(n, d) to be the cross-over point obtained frdmwith two independent variables
n andd. The value ofQ increases witm, but decreases with. A numerical solution ta2 should be engaged.
The physical interpretation @& is a critical point at which a rejection within a small classshthe same cost with
a misclassification within a large class. This situationegalty does not occur except for classifications of largely-
skewed classes (say; >> C,). Therefore, we call the ranking order in (A9-a) is a geneaaking order, and one in
(A9-b) is a largely-skewed-class ranking order.

Sensitivity functions: The sensitivity functions are given as the conventionati®for delivering approximation
analysis ofl y:

gy 1] n TN

TN - [Iog2 ) + (Iog2 NS FN)an(T N)}, (A11-a)

a1

oy 1 n EN

9FN ~ n ['ng C, (|092 FN +TN)anFN)]’ (All-c)

6|M _ 1 FP

9FP  n ['092 C: ('092 FP+ TP) anFP)}’ (Al1-d)
v _ o al Ao

ORN dTN  OFP’
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olm 0l ol
ORP~ OFN TP
wheresgn(.) is a sign function for satisfying the definition Bifl0) = 0. Only four independent variables describe the
sensitivity functions due to the two constraints in (A1-Hence, a chain rule is applied for deriving the functions of
(All-e) and (A11-f)o
Remark A2: Using eq.(Al11), we failed to reach the reasonable conmhssas those in Theorems Al for the
reason that the first-orderftirentials may be not fiicient for the analysis around the exact classifications. For
example, we got the results for:

(A11-f)

1(My) — 1(Mo) ~ (T Py — TPo)2llo)  (FN; — F Np) 2us(Mo)

Al2-a
= —Zlog,(L) + dlog,(&) = 0. ( )

_ ~ _ 8w (Mo) _ 8w (Mo)
1(Ms) |((|jv|0) (TN — TNo)2ulMa) | (Fp; — Fpg)Zulio) (A12b)

= ~dlog,(&) + dlogy(&) = 0.

This observation suggests that one needs to be cautiouswshensensitivity function for approximation analysis on
Im (or N |2).
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Table 1: NI measures within the mutual-information basexligr

No. Name [Reference] Formula oy

1 Nl based on mutual information [28N14(T, Y) = %

2 Nl based on mutual information [11N1,(T,Y) = '“ﬁfq')y)

3 Nibased on mutual information [2815(T, Y) = =

4 Nl based on mutual information ~ NI4(T,Y) = %[% + %
5 NI based on mutual information [26N1s(T,Y) = H(T'BI'J(Y)

6 NI based on mutual information [40N1¢(T, Y) = ‘/%

7 Nl based on mutual information [41N17(T, Y) = ,LJ(TT—}

8 Nl based on mutual information [26)1g(T,Y) = maxq:(}%H 5

9 NI based on mutual information [2619(T,Y) = m

17
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Table 2: Information measures within the divergence basedm

No. Name oD [Reference] Formula oBy (Nl = exd—Dy))
10 ED-Quadratic Divergence [9] Dio = QDep(T,Y) = 3 ((2) - py(2)?
o ’ 2@ L @
11 CS-Quadratic Divergence [9] Di1 = QDcs(T,Y) = log, m
12 KL Divergence [42] D1 = KL(T,Y) = z p(2) |og2 glyg
13  Bhattacharyya Distance [43] D3 = Dg(T,Y) = Iogzz Vr@p,@
14  x2 (Pearson) Divergence [44] Diys=x3(T,Y) =3 (p((z)pyg(z))Z
15  Hellinger Distance [44] Dis = HY(T,Y) = ZZ(\/W - 0(D)?
16  Variation Distance [44] Dis = V(T,Y) = sz(z) - py(2
17  Jdivergence j [45] Dy = J(T,Y) = Z:l (2 log, g‘y(é; +3 n,(2) log, ;Vg))
18 L (or JS) divergence [45] Dig = L(T,Y) = KL(T, M) + KL(Y, M) M = @ »E)
19  Symmetrig/? Divergence [46] Dig = x3(T.Y) = D) (p‘(zgg(z))z +2 (py(zg)t(g)‘(z))z
20  Resistor Average Distance [43] Do = Dra(T, Y) = SELOKLED)

KL(T.Y)+KL(Y.T)




Table 3: NI measures within the cross-entropy based group.

No. Name Formula o,
21 NI based on cross-entropy Nlp;, = Hﬂ(TIYL) H(T;Y) = - 3 p(@ log, py(2)
! z

22 Nibased on cross-entropy Nlx = i, H(Y; T) = - % py(2) log, pi(2)
’ z
23 NI based on cross-entropy Nl,3 =

1(_H(T H(Y
p (Hg:v) + A
24 Nl based on cross-entropy Nl = —HD+H®_

H(T;Y)+H(Y;T)

Table 4: Numerical examples in Binary Classifications(M4-&hd M6:C; = 90,C, = 10; M5: C; = 95Cy = 5). (R)= ranking order for the
model, where R= A,B, ..., in descending order from the top.

Model M1 M2 M3 M4 M5 M6
(Ranking) (C) (B) (B) (A)
c 90 0 o”sg 1 ngo 0 o”sg 0 1”57 38 oHsg 1 o]
1 9 0j][]0 120 0] 0 9 1|/ 0 10 O[3 2 0|1 9 0
CR 0.990 0.990 0.990 0.990 0.590 0.980
Rej 0.000 0.000 0.010 0.010 0.000 0.000
Precision 0.989 1.000 1.000 1.000 0.950 0.989
Recall  1.000 0.989 1.000 1.000 0.600 0.989
F1 0.994 0.994 1.000 1.000 0.735 0.989

19
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Table 5: Results for the models in Table 4 on information messfrom mutual-information and cross-entropy group3=(Rnking order for the model, where-RA,B, ..., in descending order

from the top.

Model NI; Nl Nl3  NI4  Nls  Nlg NIz Nlg Nlg Nz Nz Nlpg Nl
M1 0.831 0.831 0.893 0.862 0.860 0.861 0.755 0.831 0.893 80.90.998 0.998 0.998
(©) G ® ® ® ® ® ® ®B ©® »B» B & &
M2 0.897 0.897 0841 0.869 0.868 0.869 0.767 0.841 0.897 80.90.998 0.998 0.998
(B) © © ® © © © © © © ® 0 B ©®O
M3 1000 0.929 0.909 00955 0.952 0.953 0.909 0.909 1.000 90.96.000 0.484 0.000
(B) w B ® A& A B’ A A AN B B © (B
M4 1.000 0.997 0.855 00928 0922 0.925 0.855 0.855 1.000 00.96.000 0.485 0.000
(A) w ®w © ® ® 6 B ®; ® (© 6 B (B
M5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 40.33.548 0.461 0.495
M6 0.731 0731 0731 0.731 0.731 0.731 0.576 0.731 0.731 01.00.000 1.000 1.000
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Table 6: Results for the models in Table 4 on information raessfrom divergence group.=Singularity which cannot be removed. ERjyanking order for the model, where RA/B, ...,

descending order from the top.

Model Nlio Nlgq Nl Nl3 N4 Nlis Nl Nly7 Nlg Nlig Nlsg

M1 0.9998 0.9998 0.9991 0.9998 0.9988 0.9997 0.9802 0.9983996 0.9977 0.9996
© (A) (A) (B) (A) (B) (A) (A) ®B) (A) ®) (A)

M2 0.9998 0.9998 0.9992 0.9998 0.9990 0.9997 0.9802 0.998®996 0.9979 0.9996
(B) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

M3 0.9998 0.9996 0.9849 0.9926 0.9890 0.9898 0.9802 S 0.9897 S

(B) (A) ©) (D) ©) ©) (D) (A) ©)

M4 0.9998 0.9998 0.9856 0.9928 0.9899 0.9900 0.9802 S 0.9980 S

(A) (A) (A) © © © © (A) ©

M5 0.7827 0.6473 0.6189 0.8540 0.6002 0.8129 0.4966 0.2775550 0.0455 0.7406
M6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000@00@ 1.0000 S

in
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Table 7: Numerical examples in Binary Classificatiors@0). (R)}= ranking order for the model, where=RA,B, ..., in descending order from the top.
Model Mla M2a M3a M4a M1b M2b M3b M4b
c 94 0 O 93 1 0 94 0 O 93 0 1 9%5 0 O 94 1 O 95 0 O 94 0 1
1 50 0 6 O 0 5 1 0 6 O 1 4 0 0 50 0 4 1 0 5 0
CR 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
(Rejection) (0.00) (0.00) (0.01) (0.01) (0.00) (0.00) ©.0 (0.01)
NI, 0.756 0.874 0.876 0.997 0.720 0.864 0.849 0.997
(Ranking) ©) © (B) (A) D) (B) © (A)
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Table 8: Classification examples in three clagsgsf 80C, = 15C3 = 5).(R)= ranking order for the model, whereRA,B, ..., in descending order from the top.

Model M7 M8 M9 M10 M11
(Ranking)  (C) (©) (B) (B) (B)
80 0 0 O 80 0 0 O 80 0 0 O 80 0 0 O 80 0 0 O
C 015001015001015001 11400}01410}
1 0 40 0 1 40 0 0 41 0 0 50 0 0 50
CR 0.99 0.99 0.99 0.99 0.99
Rej 0.00 0.00 0.01 0.00 0.00
Model M12 M13 M14 M15
(Ranking)  (B) (B) (B) (A)
80 0 0 O 79 1 0 0 79 0 1 0 79 0 0 1
C 01401l 01sool omoollo 1500}
0 0 50 0 0 50 0 0 50 0 0 50
CR 0.99 0.99 0.99 0.99
Rej 0.01 0.00 0.00 0.01
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Table 9: Results for the models in Table 8 on information messfrom mutual-information and cross-entropy groupssiggularity which cannot be removed. éRjanking order for the model,

where R= A,B, ..., in descending order from the top.

Model NIy NI, Nl3 Nl Nls Nlg NI, Nlg Nlg Nlz1 NIz Nlpz Nl
M7 0912 0912 0.957 0935 0.934 0934 0.876 0.912 0.957 80.90.998 0.998 0.998
A B B © © © © B ¢H B O © © «©
M8 0939 0939 0.958 0949 0.949 0.949 0902 0.939 0.958 80.90.998 0.998 0.998
A ® B ® ©® ® ©® ©® ® O® O © © ©
M9 1.000 0.951 0.961 0980 0980 0.980 0.961 0.961 1.000 20.96.000 0.491 0.000
© W O ® B @A ®w W AN A © © O ©
M10 0912 0912 0.938 0925 0925 0.925 0.860 0.912 0.938990.90.999 0.999 0.999
® B B ©® 0 0 0O H H © W @’ @& @A
M11 0.956 0.956 0.941 0948 0.948 0.948 0.902 0.941 0.956980.90.998 0.998 0.998
® ©® © & ® B ® ©® © & 6 © (© «©
M12 1.000 0.969 0.943 0972 0971 0.971 0.943 0.943 1.000830.90.000 0.492 0.000
® ® ® © ® ® ® B B @ M © © ©
M13 0939 0939 0915 0927 0.927 0.927 0.863 0.915 0.939990.90.999 0.999 0.999
© ® & 00 B H H © © B BN A @B @
M14 0956 0956 0.916 0936 0935 0.936 0.879 0.916 0.956980.90.998 0.998 0.998
® © © H B B G & ® B © © © ©
M15 1.000 0.996 0.919 0960 0.958 0.959 0.919 0.919 1.000840.90.000 0.492 0.000
W ®w ®w © © © © © ® ® & © © ©
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Table 10: Results for the models in Table 8 on information sness from divergence group=S8ingularity which cannot be removed. &janking order for the model, where RA,B, ...,

descending order from the top.

Model Nlio Nlgq Nl Nl3 N4 Nlis Nl Nly7 Nlg Nlig Nlsg

M7 0.9998 0.9998 0.9982 0.9996 0.9974 0.9994 0.9802 0.996899R2 0.9953 0.9992
F) (A) (A) (D) © E) (&) (A) (&) G) (E) ©)

M8 0.9998 0.9996 0.9979 0.9995 0.9969 0.9993 0.9802 0.9959990 0.9942 0.9990
F) (A) (E) (E) ©) F) (E) (A) () ) () )

M9 0.9998 0.9996 0.9840 0.9924 0.9876 0.9895 0.9802 S 0.9893 S

© (A) E) (H) ©) ) (H) (A) (H)

M10 0.9998 0.9997 0.9994 0.9999 0.9992 0.9998 0.9802 0.998%997 0.9984 0.9997
E) (A) © (A) (A) (A) (A) (A) (B) (A) © (A)

M1l 0.9998 0.9996 0.9982 0.9995 0.9976 0.9994 0.9802 0.9964€991 0.9950 0.9991
(E) (A) E) (&) ©) ©) (D) (A) (E) E) () (E)

M12 0.9998 0.9996 0.9852 0.9927 0.9893 0.9899 0.9802 S 8.989 S

(B) (A) (E) (©) F) (H) (©) (A) (H)

M13 0.9998 0.9997 0.9994 0.9999 0.9992 0.9998 0.9802 0.998%997 0.9985 0.9997
©) (A) © (A) (A) (A) (A) (A) (A) (A) (A) (A)

M14 0.9998 0.9997 0.9986 0.9996 0.9982 0.9995 0.9802 0.990B993 0.9961 0.9993
©) (A) © © © © © (A) © © (&) ©
M15 0.9998 0.9998 0.9856 0.9928 0.9899 0.9900 0.9802 S 0.998 S

(A) (A) (A) (F) (E) ) (F) (A) )

in
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