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Abstract

This work presents a systematic study of objective evaluations of abstaining classifications using Information-Theoretic
Measures (ITMs ). First, we define objective measures for which they do not depend on any free parameter. This defi-
nition provides technical simplicity for examining “objectivity” or “ subjectivity” directly to classification evaluations.
Second, we propose twenty four normalized ITMs, derived from either mutual information, divergence, or cross-
entropy, for investigation. Contrary to conventional performance measures that apply empirical formulas based on
users’ intuitions or preferences, the ITMs are theoretically more sound for realizing objective evaluations of classi-
fications. We apply them to distinguish “error types” and “reject types” in binary classifications without the need
for input data of cost terms. Third, to better understand andselect the ITMs, we suggest three desirable features
for classification assessment measures, which appear more crucial and appealing from the viewpoint of classification
applications. Using these features as “meta-measures”, we can reveal the advantages and limitations of ITMs from a
higher level of evaluation knowledge. Numerical examples are given to corroborate our claims and compare the dif-
ferences among the proposed measures. The best measure is selected in terms of the meta-measures, and its specific
properties regarding error types and reject types are analytically derived.
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1. Introduction

The selection of evaluation measures for classifications has received increasing attentions from researchers on var-
ious application fields [1] [2][3][4][5] [6][7]. It is well known that evaluation measures, or criteria, have a substantial
impact on the quality of classification performance. The problem of how to select evaluation measures for the overall
quality of classifications is difficult, and there appears no universal answer to this.

Up to now, various types of evaluation measures have been used in classification applications. Taking a binary
classification as an example, more than thirty metrics have been applied for assessing the quality of classifications
and their algorithms as given in Table 1 of Lavesson and Davidsson’s paper [5]. Most of the metrics listed in this
table can be considered a type of performance-based measures. In practice, other types of evaluation measures, such
as Information-Theoretic Measures (ITMs ), have also commonly been used in machine learning [8][9]. The typical
information-based measure used in classifications is the cross entropy [10]. In a recent work [11], Hu and Wang
derived an analytical formula of the Shannon-based mutual information measure with respect to a confusion matrix.
Significant benefits were derived from the measure, such as its generality even for cases of classifications with a reject
option, and its objectivity in naturally balancing performance-based measures that may conflict with one another (such
as precision and recall). The objectivity was achieved fromthe perspective that an information-based measure does
not require knowledge of cost terms in evaluating classifications. This advantage is particularly important in studies
of abstaining classifications [12][4] and cost sensitive learning [13][14], where cost terms may be required as input
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data for evaluations. Generally, if no cost terms are assigned to evaluations, it implies that the zero-one cost functions
are applied [15]. In such situations, classification evaluations without a reject option may still be applicable and useful
in class-balanced datasets. Problematic, or unreasonable, results will be obtained for evaluations in situations where
classes are highly skewed in the datasets [3] if no specific cost terms are given.

In this work, for simplifying discussions, we distinguish,or decouple, two study goals in evaluation studies,
namely, evaluation of classifiers and evaluation of classifications. The former goal concerns more about evaluation
of algorithms in which classifiers applied. From this evaluation, designers or users can select the best classifier. The
latter goal is to evaluate classification results without concerning which classifier is applied. This evaluation aims
more on result comparisons or measure comparisons. One typical example was demonstrated by Mackay [16] for
highlighting the difficulty in classification evaluations. He showed two specific confusion matrices,CD andCE, in
binary classifications with a reject option:

CD =

[

74 6 10
0 9 1

]

, CE =

[

78 6 6
0 5 5

]

, with C =
[

T N FP RN
FN T P RP

]

, (1)

where the confusion matrix is defined asC in eq. (1) , and “TN”, “ TP”, “ FN”, “ FP”, “ RN”, “ RP” represent “true
negative” , “ true positive”, “ false negative”, “ false positive”, “ reject negative”, “ reject positive”, respectively. For the
given data, users may ask “which measures will be proper for ranking them”. If directly applying “True Positive Rate-
False Positive Rate” curve (also called ROC) or “Precision-Recall” curve, one may conclude that the performance
of CE is better than that ofCD . This conclusion is proper since the two sets of data share the same reject rate
(=11%). Generally, “Error-Reject” curve is mostly adopted in abstaining classifications. Based on this evaluation
approach, one may consider the performances of two classifications have no difference because they show the same
error rate (=6%) and reject rate. Mackay [16] first suggested applying mutual-information based measure in ranking
classifications, and through which Hu and Wang (referring toM5-M6 in Table 3, [11]) observed thatCD is better than
CE. If reviewing the two matrices carefully with respect to imbalanced classes, one may agree with the observation
because the small class inCD receives more correct classifications than that inCE.

We consider the example designed by Mackay [16] is quite stimulating for study of abstaining classification
evaluations. The implications of the example form the motivations of the present work on addressing three related
open problems, which are generally overlooked in the study of classification evaluations as follows:

I. How to define “proper” measures in terms of high-level knowledge for abstaining classification evaluations?

II. How to conduct an objective evaluation of classifications without using cost terms?

III. How to distinct or rank “error types” and “reject types” in classification evaluations?

Conventional binary classifications usually distinguish two types of misclassification errors [15][16] if they result
in different losses in applications. For example, in medical applications, “Type I Error” (or “ false positive”) can be
an error of misclassifying a healthy person to be abnormal, such as cancer. On the contrary, “Type II Error”(or “ false
negative”) is an error where cancer is not detected in a patient. Therefore, “Type II Error” is more costly than “Type I
Error”. Based on the same reason for identifying “error types” in binary classifications, there is a need for considering
“ reject types” if a reject option is applied. Of the existing measures, we consider information-theoretic measures to
be most promising in providing “objectivity” in classification evaluations. A detailed discussion on the definition of
“objectivity” is given in Section 3. This work is an extension of our previous study [11]. However, the work aims at
a systematic investigation of information measures with specific focus on “error types” and “reject types”. The main
contribution of the work is derived from the following threeaspects:

I. We define the “proper” features, also called “meta-measures” , for selecting candidate measures in the con-
text of abstaining classification evaluations. These features will assist users in understanding advantages and
limitations of evaluation measures from a higher level of knowledge.

II. We examine most of the existing information measures in asystematic investigation of “error types” and “reject
types” for objective evaluations. We hope that the more than twenty measures investigated are able to enrich
the current bank of classification evaluation measures. Forthe best measure in terms of the meta-measures, we
present a theoretical confirmation of its desirable properties regarding error types and reject types.
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III. We reveal the intrinsic shortcomings of information measures in evaluations. The discussions are intended to
be applicable to a wider range of classification problems, such as similarity ranking. In addition, we are able to
employ the measures reasonably in interpreting classification results.

To address classification evaluations with a reject option,we assume that the only basic data available for clas-
sification evaluations is a confusion matrix, without inputdata of cost terms. The rest of this letter is organized as
follows. In Section 2, we present related work for the selection of evaluation measures. For seeking “proper” mea-
sures, we propose several desirable features in the contextof classifications in Section 3. Three groups of normalized
information measures are proposed along with their intrinsic shortcomings in Sections 4 to 6, respectively. Several
numerical examples, together with discussions, are given in Section 7. Finally, in Section 8 we conclude the work.

2. Related Work

In classification evaluations, a measure based on classification accuracy has traditionally been used with some
success in numerous cases [15]. This measure, however, may suffer serious problems in reaching intuitively reasonable
results from certain special cases of real-world classification problems [3]. The main reason for this is that a single
measure of accuracy does not take into account error types.

To overcome the problems of accuracy measures, researchershave developed many sophisticated approaches
for classification assessment[17][18]. Among these, two commonly-used approaches are ROC (Receiver Operating
Characteristic) curves and AUC (Area under Curve) measures[1][19]. ROC curves provide users with a very fast
evaluation approach via visual inspections, but this is only applicable in limited cases with specific curve forms (for
example, when one curve is completely above the other). AUC measures are more generic for ranking classifica-
tions without constraints on curve forms. In a study of binary classifications, a formal proof was given by Ling et
al. [1] showing that AUC is a better measure than accuracy from the definitions of both statistical consistency and
discriminancy. Sophisticated AUC measures were reported recently for improving robustness [6] and coherency [7]
of classifiers. Drummond and Holte [20] proposed a visualization technique called “Cost Curve”, which is able to
take into account of cost terms for showing confidence intervals on classifier’s performance. Japkowicz [3] presented
convincing examples showing the shortcomings of the existing evaluation methods, including accuracy, precision vs.
recall, and ROC techniques. The findings from the examples further confirmed the need for methods using measure-
based functions [21]. The main idea behind measure-based functions is to form a single function with respect to a
weighted summation of multiple measures. The measure function is able to balance a trade-off among the conflicting
measures, such as precision and recall. However, the main difficulty arises in the selection of balancing weights for the
measures [5]. In most cases, users rely on their preferencesand experiences in assigning the weights, which imposes
a strong degree of subjectivity on the evaluation results.

Classification evaluations become more complicated if a classifier abstains from making a prediction when the
outcome is considered unreliable for a specific sample. In this case, an extra class, known as the “reject” or “ unknown”
class, is added to the classification. In recent years, the study of abstaining classifiers has received much attention
[22][23][12][4][24]. With complete data of a full cost matrix, they were able to assess the classifications. If one term
of the cost matrix was missing, such as on a reject cost term, the approaches for classification evaluations generally
failed. Moreover, because in most situations the cost termsare given by users, this approach is basically a subjective
evaluation in applications. Vanderlooy et al. [25] furtherinvestigated the ROC isometrics approach which does not
rely on information from a cost matrix. This approach, however, is only applicable to binary classification problems.

A promising study of objective evaluations of classifications is attributed to the introduction of information theory.
Kvalseth [26] and Wickens [27] derived normalized mutual information (NMI ) measures in relation to a contingency
table. Further pioneering studies on the classification problems were conducted by Finn [28] and Forbes [29]. Forbes
[29] discussed the problem that NMI does not share a monotonic property with the other performance measures, such
as accuracy or F-measure. Several different definitions for information measures have been reported in studies of
classification assessment, such as information scores by Kononenko and Bratko [30] and KL divergence by Nishii
and Tanaka [31]. Yao, et al. [8] and Tan, et al. [32] summarized many useful information measures for studies of
associations and attribute importance. Significant efforts were made on discussing the desired properties of evaluation
measures [32]. Principe, et al. [9] proposed a framework of information theoretic learning (ITL ) that included
supervised learning as in classifications. Within this framework, the learning criteria were the mutual information

3



defined from the Shannon and Renyi entropies. Two quadratic divergences, namely, the Euclidean and Cauchy-
Schwartz distances were also included.

From the perspective of information theory, Wang and Hu [33]derived for the first time the nonlinear relations
between mutual information and the conventional performance measures (accuracy, recall and precision) for binary
classification problems. They [11] extended the investigation into abstaining classification evaluations for multiple
classes. Their method was based solely on the confusion matrix. For gaining the theoretical properties, they derived
the extremum theorems concerning mutual information measures. One of the important findings from the local mini-
mum theorem is the theoretic revelation of the non-monotonic property of mutual information measures with respect
to the diagonal terms of a confusion matrix. This property may cause irrational evaluation results from some data in
classifications. They confirmed this problem by examining specific numerical examples. Theoretical investigations
are still missed for other information measures, such as divergence-based and cross-entropy based ones.

3. Objective Evaluations and Meta-Measures

This work focuses on objective evaluations of classifications. While Berger [34] stressed four points from a
philosophical position for supporting objective Bayesiananalysis, it seems that few studies in the literature address
the “objectivity” issue in the study of classification evaluations. Some researchers [32] may call their measures to be
objective ones without defining them formally. Consideringthat “objectivity” is a more philosophical concept without
a well accepted definition, we propose a scheme for defining “objective evaluations” from the viewpoint of practical
implementation and examination.

Definition 1. Objective evaluations and measures. An objective evaluation is an assessment expressed by a
function that does not contain any free parameter. This function is called an objective measure.

Remark 1. When a free parameter is used to define a measure, it usually carries a certain degree of subjectivity
in evaluations. Therefore, according to this definition, a measure based on cost terms [15] as free parameters does not
lead to an objective evaluation. Definition 1 may be conservative, but nevertheless, provides technical simplicity for
examining “objectivity” or “ subjectivity” directly with respect to the existence of free parameters.In some situations,
Definition 1 can be relaxed by including free parameters, butthey all have to be determined solely from the given
dataset.

Definition 2. Datasets in classification evaluations with a reject option. A reject option is sometimes considered
for classifications in which one may assign samples to a reject or unknown class. Evaluations of classification with a
reject option apply two datasets, namely, the output (or prediction) dataset{yk}nk=1, which is a realization of discrete
random variableY valued on set{1, 2, . . . ,m+1}; and the target dataset{tk}nk=1 ∈ T valued on set{1, 2, . . . ,m}; wheren
is the total number of samples, andm is the total number of classes. A sample identified as a rejectclass is represented
by yk = m+ 1.

Remark 2. The term “abstaining classifiers” has been widely used in classification problems with a reject option
[12][4]. However, most studies of abstaining classifications required cost matrices for their evaluations. The definition
given above exhibits more generic scenarios in classification evaluations, because it does not require knowledge of
cost terms for error types and reject types.

Definition 3. Augmented confusion matrix and its constraints [11]. An augmented confusion matrix includes
one column for the reject class, which is added to a conventional confusion matrix:

C =





























c11 c12 . . . c1m c1(m+1)

c21 c22 . . . c2m c2(m+1)

. . .

cm1 cm2 . . . cmm cm(m+1)





























, (2)

whereci j represents the sample number of theith class that is classified as thejth class. The row data corresponds to
the actual classes, while the column data corresponds to thepredicted classes. The last column represents the reject
class. The relations and constraints of an augmented confusion matrix are:

C j =

m+1
∑

j=1

ci j , Ci > 0, ci j ≥ 0, i = 1, 2, . . . ,m, (3)
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whereCi is the total number for theith class, which is generally known in classification problems.
Definition 4. Error types and reject types. Following the conventions in binary classifications [? ], we denote

c12 andc21 by “Type I Error” and “Type II Error” respectively;c13 andc23 by “Type I Reject” and “Type II Reject”
respectively.

Definition 5. Normalized information measure. A normalized information measure, denoted asNI(T,Y) ∈
[0, 1], is a function based on information theory, which represents the degree of similarity between two random
variablesT andY.

In principle, we hope that all NI measures satisfy the three important properties, or axioms, of metrics [15][35],
supposingZ is another random variable:

P1: NI(T,Y) = 1 iff T = Y (the identity axiom)

P2: NI(T,Y) + NI(Y,Z) ≥ NI(T,Z) (the triangle inequality)

P3: NI(T,Y) = NI(Y,T) (the symmetry axiom)

Remark 3. Violations of properties of metrics are possible in reaching reasonable evaluations of classifications.
For example, the triangle inequality and symmetry properties can be relaxed without changing the ranking orders
among classifications if their evaluation measures are applied consistently. However, the identity property is indicated
only for the relationT = Y (assumingT is padded with zeros to make it the same size asY), and does not guarantee
an exact solution (tk = yk) in classifications (see Theorems 1 and 4 given later). If a violation of metric properties
occurs, the NIs are referred to as measures, rather than metrics.

For classification evaluations, we consider the generic properties of metrics not to be as crucial in comparisons as
certain specific features. In this work, we focus on specific features that, though not mathematically fundamental, are
more necessary in classification applications. To select “better” measures for objective evaluations of classifications,
we propose the following three desirable features togetherwith their heuristic reasons.

Feature 1. Monotonicity with respect to the diagonal terms of the confusion matrix. The diagonal terms of
the confusion matrix represent the exact classification numbers for all the samples. Or, they reflect the coincident
numbers betweent andy from a similarity viewpoint. When one of these terms changes, the evaluation measure
should change in a monotonous way. Otherwise, any non-monotonic measure may fail to provide a rational result
for ranking classifications correctly. This feature is originally proposed for describing the strength of agreement (or
similarity) if the matrix is a contingency table [32].

Feature 2. Variation with reject rate. To improve classification performance, a reject option is often used in
engineering applications [12]. Therefore, we suggest thata measure should be a scalar function on both classification
accuracy and reject rates. Such a measure could be evaluatedbased solely on a given confusion matrix from a single
operating point in the classification. This is different to the AUC measures that are based on an “Error-Reject” curve
[16][24] from multiple operating points.

Feature 3. Intuitively consistent costs among error types and reject types. This feature is derived from the
principle of our conventional intuitions when dealing witherror types in classifications. It is also extended to reject
types. Two specific intuitions are adopted for binary classifications. First, a misclassification or rejection from a small
class will cause a greater cost than that from a large class. This intuition represents a property called “within error
types and reject types”. Second, a misclassification will produce a greater cost than a rejection from the same class,
which is called “between error and reject types” property. If a measure is able to satisfy the intuitions, werefer to its
associated costs as being “intuitively consistent”. Exceptions may exist to the intuitions above, but we consider them
as a very special case.

At this stage, it is worth discussing on “objectivity” in evaluations because one may doubt correctness of the
intentions above and the terms “desirable” or “ intuitions” in a study of objective evaluations. The three features seem
to be “problematic” in terms of providing a general concept of “objectivity”, because no human bias should be applied
in the objective judgment of evaluation results. The following discussions justify the proposal of requiring desirable, or
proper, features for objective measures. On one hand, we recognize that any evaluation will imply a certain degree of
“subjectivity”, since evaluations exist only as a result of human judgment. For examples, every selection of evaluation
measures, even of objective ones, will rely on possible sources of “subjectivity” from users. On the other hand,
engineering applications do concern about objective evaluations [29][32]. However, to the authors’ best knowledge,
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a technical definition, or criterion, seems missing for determining objective or subjective measures in evaluations of
classifications. For overcoming possible confusion and vagueness, we set Definition 1 as a practical criterion for
examining whether a classification evaluation holds “objectivity” or does not. If a measure satisfies this definition,
it will always retain the property of “objective consistency” in evaluating the given classification results. The three
“desirable” features, though based on “intuitions” with “ subjectivity”, do not destroy the criterion of “objectivity” in
classification evaluations. Therefore, it is logically correct to discuss “desirable” features of objective measures as
long as the measures satisfy Definition 1 for keeping the defined “objectivity”.

Note that all desirable features above are derived from our intuitions on general cases of classification evaluations.
Other items may be derived for a wider examination of features. For example, Forbes [29] proposed six “constraints
on proper comparative measures”, namely, “statistically principled, readily interpretable, generalizable to k-class sit-
uations, not different to the special status, reflective of agreement, and insensitive to the segmentation”. However, we
consider the three features proposed in this work to be more crucial, especially as Feature 3 has never been concerned
in previous studies of classification evaluations. Although Features 2 and 3 may share a similar meaning, they are pre-
sented individually to highlight their specific concerns. We can also call the desirable features “meta-measures”, since
these are defined to be qualitative and high-level measures about measures. In this work, we apply meta-measures in
our investigation of information measures. The examination with respect to the meta-measures enables clarification
of the causes of performance differences among the examined measures in classification evaluations. It will be helpful
for users to understand advantages and limitations of different measures, either objective- or subjective-ones, from a
higher level of evaluation knowledge.

4. Normalized Information Measures based on Mutual Information

All NI measures applied in this work are divided into one of three groups, namely, mutual-information based,
divergence based, and cross-entropy based groups. In this section, we focus on the first group. Each measure in this
group is derived directly from mutual information representing the degree of similarity between two random vari-
ables. For the purpose of objective evaluations, as suggested by Definition 1 in the previous section, we eliminate all
candidate measures defined from the Renyi or Jensen entropies [36][9] since they involve a free parameter. Therefore,
without adding free parameters, we only apply the Shannon entropy to information measures [37]:

H(Y) = −
∑

y

p(y) log2 p(y), (4)

whereY is a discrete random variable with probability mass function p(y). Then mutual information is defined as
[37]:

I (T,Y) =
∑

t

∑

y

p(t, y) log2
p(t, y)

p(t)p(y)
, (5)

where p(t, y) is the joint distribution for the two discrete random variablesT andY, and p(t) and p(y) are called
marginal distributions that can be derived from:

p(t) =
∑

y

p(t, y), p(y) =
∑

t

p(t, y). (6)

Sometimes, the simplified notations forpi j = p(t, y) = p(t = ti , y = y j) are used in this work. Table 1 lists the
possible normalized information measures within the mutual-information based group. Basically, they all make use of
Eq. (5) in their calculations. The main differences are due to the normalization schemes. In applying the formulas for
calculatingNIk, one generally does not have an exactp(t, y). For this reason, we adopt an empirical joint distribution
defined below for the calculations.

Definition 6. Empirical joint distribution and empirical ma rginal distributions [11] . An empirical joint
distribution is defined from the frequency means for the given confusion matrix,C, as:

Pe(t, y) = (Pi j )e =
1
n

ci j , i = 1, 2, . . . ,m, j = 1, 2, . . . ,m+ 1, (7a)
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wheren =
∑

Ci , denotes the total number of samples in the classifications.The subscript ”e” is given for denoting
empirical terms. The empirical marginal distributions are:

Pe(t = ti) =
Ci

n
, i = 1, 2, . . . ,m. (7b)

Pe(y = y j) =
1
n

m
∑

i=1

ci j , j = 1, 2, . . . ,m+ 1. (7c)

Definition 7. Empirical mutual information [11] . The empirical mutual information is given by:

Ie(T,Y) =
∑

t

∑

y

Pe(t, y) log2
Pe(t, y)

Pe(t)Pe(y)
=

m
∑

i=1

m+1
∑

j=1

ci j

n
log2(

ci j

Ci

m
∑

i=1

ci j

n

). (8)

Definitions 6 and 7 provide users with a direct means for applying information measures through the given data
of the confusion matrix. For the sake of simplicity of analysis and discussion, we adopt the empirical distributions,
or pi j ≈ Pi j , for calculating all NIs and deriving the theorems, but removing their associated subscript ”e”. Note that
the notation ofNI2 in Table 1 differs from the others for calculating mutual information, where IM(T,Y) is defined as
“modified mutual information”, The calculation ofIM(T,Y) is carried out based on the intersection of T and Y. Hence,
when using Eq. (8), the intersection requires thatIM(T,Y) incorporate a summation ofj over 1 tom, instead ofm+ 1.
This definition is beyond mathematical rigor, butNI2 has the same properties of metrics asNI1. It was originally
proposed to overcome the problem of unchanging values in NIsif rejections are made within only one class (referring
to M9-M10 in Table 3, [11]). The following three theorems arederived for all NIs in this group.

Theorem 1. Within all NI measures in Table 1, whenNI(T,Y) = 1, the classification without a reject class may
correspond to the case of either an exact classification (yk = tk), or a specific misclassification (yk , tk). The specific
misclassification can be fully removed by simply exchanginglabels in the confusion matrix.

Proof. If NI(T,Y) = 1, we can obtain the following conditions from Eq. (8) for classifications without a reject
class:

pi j = p(t = ti) ≈ Pe(t = ti) =
Ci

n
and pk j = 0, i, j, k = 1, 2, . . . ,m, k , i. (9)

These conditions describe the specific confusion matrix where only one non-zero term appears in each column (with
the exception of the last (m+1)th column). Whenj = i, C is a diagonal matrix for representing an exact classification
(yk = tk). Otherwise, a specific misclassification exists for which adiagonal matrix can be obtained by exchanging
labels in the confusion matrix (referring to M11 in Table 4, [11]). ♦

Remark 4. Theorem 1 describes that NI(T,Y)=1 presents a necessary, but not sufficient, condition of an exact
classification.

Theorem 2. For abstaining classification problems, whenNI(T,Y) = 0, the classifier generally reflects a misclas-
sification. One special case is that all samples are considered to be one ofmclasses, or be a reject class.

Proof. For NIs defined in Table 1,NI(T,Y) = 0 iff I (T,Y) = 0. According to information theory [37], the
following conditions can hold based on the given marginal distributions (or the empirical ones if a confusion matrix
is used):

I (T,Y) = 0, i f f p(t, y) = p(t)p(y). (10)

The conditional part in Eq. (10) can be rewritten in the formpi j = p(t = ti)p(y = y j). From the constraints in (3),
p(t = ti) > 0 (i = 1, 2, . . . ,m) can be obtained. For classification solutions, there should exist at least one term for
p(y = y j) > 0 ( j = 1, 2, . . . ,m+ 1). Therefore, at least one non-zero term forpi j > 0 (i , j) must be obtained. This
non-zero term corresponds to the off-diagonal term in the confusion matrix, which indicates that a misclassification
has occurred. When all samples have been identified as one of the classes (referring to M2 in Table 4, [11]),NI = 0
should be obtained.♦

Remark 5. Eq. (10) gives the statistical reason for zero mutual information, that is, the two random variables are
“statistically independent”. Theorem 2 demonstrates an intrinsic reason for local minima in NIs.
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Theorem 3. The NI measures defined by the Shannon entropy generally do not exhibit a monotonic property with
respect to the diagonal terms of a confusion matrix.

Proof. Based on [11], we arrive at simpler conditions for the localminima aboutI (T,Y) for the given confusion
matrix:

C =





























. . . 0 0 . . .

0 ci,i ci,i+1 0
0 ci+1,i ci+1,i+1 0
. . . 0 0 . . .





























, i f
ci,i

ci+1,i
=

ci,i+1

ci+1,i+1
. (11)

The local minima are obtained because the four given non-zero terms in Eq. (11) produce zero (or the minimum)
contribution toI (T,Y). Suppose a generic form is given forNI(T,Y) = g(I (T,Y)), whereg(· ) is a normalization
function. From the chain rule of derivatives, it can be seen that the conditions do not change for reaching the local
minima.♦

Remark 6. The non-monotonic property of the information measures implies that these measures may suffer
from an intrinsic problem of local minima for classificationrankings (referring to M19-M20 in Table 4, [11]). Or,
according to Feature 1 of the meta-measures, a rational result for the classification evaluations may not be obtained
due to the non-monotonic property of the measures. This shortcoming has not been theoretically derived in previous
studies ([28][29][32]).

5. Normalized Information Measures based on Information Divergence

In this section, we propose normalized information measures based on the definition of information divergence.
In Table 2, we summarize the commonly-used divergence measures, which are denoted asDk(T,Y) and represents
dissimilarity between the two random variablesT andY. In Sections 5 and 6, we apply the following notations for
defining marginal distributions:

pt(z) = pt(t = z) = p(t), and py(z) = py(y = z) = p(y), (12)

wherez is a possible scalar value thatt or y can take. For a consistent comparison with the previous normalized
information measures, we adopt the following transformation onDk [31]:

NIk = exp(−Dk). (13)

This transformation provides both inverse and normalization functionalities. It does not introduce any extra param-
eters, and presents a high degree of simplicity, as in derivation for examining the local minima. Two more theorems
are derived by following a similar analysis to that in the previous section.

Theorem 4. For all NI measures in Table 2, whenNI(T,Y) = 1, the classifier corresponds to the case of either
an exact classification, or a specific misclassification. Generally, the misclassification in the latter case can not be
removed by switching labels in the confusion matrix.

Proof. Whenpy(z) = pt(z), it is always the case thatNI(T,Y) = 1. However, general conditions can be given for
py(z) = pt(z) as follows:

py(y = zi) = pt(t = zi), or
∑

j

p ji =
∑

j

pi j , i = 1, 2, . . . ,m. (14)

Eq. (14) implies two cases of classifications forDk(T,Y) = 0, k = 10, . . . , 20, One of these corresponds to an exact
classification (oryk = tk), while the other is the result of a specific misclassification that shows the relationship of
yk , tk, but py(z) = pt(z). In the latter case, switching labels in the confusion matrix to remove misclassification
generally destroys the relation forpy(z) = pt(z) at the same time. Considering the relation is a necessary condition for
a perfect classification, the misclassification cannot be removed through a label switching operation.♦

Remark 7. Theorem 4 suggests the caution should be applied in explaining the classification evaluations when
NI(T,Y) = 1. The maximum of the NIs from the information divergence measures only indicates the equivalence
between the marginal probabilities,py(z) = pt(z), but this is not always true for representing exact classifications (or
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yk = tk). Theorem 4 reveals an intrinsic problem when using an NI as ameasure for similarity evaluations between
two datasets, such as in image registration.

Theorem 5. The NI measures based on information divergence generallydo not exhibit a monotonic property
with respect to the diagonal terms of confusion matrix.

Proof. The theorem can be proved by examining the existence of multiple maxima for NI measures based on
information divergence. Here we use a binary classificationas an example. The local minima ofDk are obtained
when the following conditions exist for a confusion matrix:

C =
[

C1 − d1 d1 0
d2 C2 − d2 0

]

and d1 = d2, (15)

whered1 andd2 are integer numbers (> 0) for misclassified samples. The confusion matrix in Eq. (15) produces zero
divergenceDk and therefore,NIk = 1. However, changing fromd1 , d2 always results inNIk < 1. ♦

Remark 8. Theorem 5 indicates another shortcoming of NIs in the information divergence group from the view-
point of monotonicity. The reason is once again attributed to the usage of marginal distributions in calculations of
divergence. The shortcoming has not been reported in previous investigations ([31][35]).

6. Normalized Information Measures based on Cross-Entropy

In this section, we propose normalized information measures based on cross-entropy, which is defined for discrete
random variables as [10]:

H(T; Y) = −
∑

z

pt(z) log2 py(z), or H(Y; T) = −
∑

z

py(z) log2 pt(z). (16)

Note thatH(T; Y) differs from joint-entropyH(T,Y) with respect to both notation and definition, and is given as[37]:

H(T,Y) = −
∑

t

∑

y

p(t, y) log2p(t, y). (17)

In fact, from Eq. (16), one can derive the relation between KLdivergence (see Table 2) and cross-entropy:

H(T; Y) = H(T) + KL(T,Y), or H(Y; T) = H(Y) + KL(Y,T). (18)

If H(T) is considered as a constant in classification since the target dataset is generally known and fixed, we can
observe from Eq. (18) that cross-entropy shares a similar meaning as KL divergence for representing dissimilarity
betweenT andY. From the conditionsH ≥ 0 andKL ≥ 0, we are able to realize the normalization for cross-entropy
shown in Table 3. Following similar discussions as in the previous section, we can derive that all information measures
listed in Table 3 will also satisfy Theorems 4 and 5.

7. Numerical Examples and Discussions

This section presents several numerical examples togetherwith associated discussions. All calculations for the
numerical examples were done using the open source softwareScilab1 and a specific toolbox2. The detailed imple-
mentation of this toolbox is described in [38]. Table 4 listssix numerical examples in binary classification problems
according to the specific scenarios of their confusion matrices. We adopt the notations from [39] for the terms “correct
recognition rate (CR)”, “ error rate (E)”, and “reject rate (Rej)” and their relation:

CR+ E + Re j= 1. (19)

In addition, we define “accuracy rate (A)” as

1http://www.scilab.org
2 The toolbox is freely available as the file “confmatrix2ni.zip” at (http://www.openpr.org.cn).
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A =
CR

CR+ E
. (20)

The first four classifications (or models) M1-M4 are providedto show the specific differences with respect to error
types and reject types. In this work, we do not concern classifiers applied (say, neural networks or support vector
machines) for evaluations, but only the resulting evaluations from these classifiers. In real applications, it is common
to encounter ranking classification results as in M1 to M4. The first two classifications of M1 and M2 share the same
values for the correct recognition and accuracy rates (CR = A = 99%). The other two classifications, for M3 and
M4, have the same reject rates (Re j = 1%) and correct recognition rates (CR = 99%). The accuracy rates for M3
and M4 are also the same (A = 100%). This definition is consistent with the conventions inthe study of “Accuracy-
Reject” curves [16]. If neglecting the specific application backgrounds, users generally have a ranking order for the
four classifications so that the “best” one is selected. The data from other conventional measures, such asPrecision,
RecallandF1, are also given in Table 4. Without using extra knowledge about the cost of different error types or reject
types, the conventional performance measures are not possible to rank the four classifications, M1-M4, properly.

According to the intuitions of Feature 3 proposed in Section3, one can gain two sets of ranking orders for the four
classifications M1 to M4 in forms of:

ℜ(M2) > ℜ(M1), ℜ(M4) >ℜ(M3), (21− a)

ℜ(M4) > ℜ(M2), ℜ(M3) >ℜ(M1), (21− b)

where we denoteℜ(•) to be a ranking operator, so thatℜ(Mi) > ℜ(M j) expressesMi is better thanM j in ranking.
From eq. (21), one is unable to tell the ranking order betweenM2 and M3. For a fast comparison, a specific letter is
assigned to the ranking order of each model in Table 4 based oneq. (21):

ℜ(M4) = A,ℜ(M3) = B,ℜ(M2) = B,ℜ(M1) = C. (22)

The top rank “A” indicates the “best” classification (M4 in this case) of the four models. Table 4 does not distinguish
ranking order between M2 and M3. However, numerical investigations using information measures will provide the
ranking order from the given data. The other two models, M5 and M6, are also specifically designed for the purpose
of examining information measures on Theorems 3 and 5 (or Feature 1), respectively.

Tables 5 and 6 present the results on information measures for M1-M6, where the ranking orders among M1-M4
is based on the calculation results of NIs with the given digits. The following observations are achieved from the
solutions to the examples.

1) When normalization functions include the termH(Y) for the mutual information group, the associated NI pro-
duces the desirable feature of a variation in reject rate.NI2 is effective for this feature even if it only uses
H(T) for its normalization. The effectiveness is attributed to the definition ofIM(T,Y) for calculating mutual
information based on the intersection ofT andY.

2) The results of M5 and M6 confirm, respectively, Theorem 3 for local minima and Theorem 5 for maxima of
NIs. The existence of multi extrema indicates the non-monotonic property with respect to the diagonal terms of
the confusion matrix, thereby exhibiting an intrinsic shortcoming of the information measures.

3) For classifications M1 to M4, the meta-measure of Feature 3suggests ranking orders as shown in eqs. (21) or
(22). However, of all the measures in the three groups onlyNI2 shows any consistency with the intuitions from
the given examples (Tables 5 and 6). This result indicates that Feature 3 seems to be a difficult property for
most information measures.

4) None of the performance or information measures investigated in this work fully satisfy the meta-measures.
Examining data distinguishability in M1 through M4, we consider the information measures from the mutual-
information group to be more appropriate than those of the other groups (say,NI12 and NI22 do not show
significant distinguishability, or value differences, to the four models).
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The fourth observation supports the proposal of meta-measures for a higher level of classification evaluations.
The meta-measures provide users with a simple guideline of selecting “proper” measures from their specific concerns
of applications. For example, the performance measures (such asA, E, CR, F1, or AUC) satisfy Feature 1, but fail
directly to distinguish error types and reject types in an objective evaluation. When Feature 2 or 3 is a main concern,
the information measures exhibited to be more effective, despite them not being perfect.

Of all the information measures investigated,NI2 is shown to be the “best” for the given examples in terms of
Feature 3. Therefore, more detailed studies, from both theoretical and numerical ones, were made on this promising
measure. The theoretical properties of this measure was derived in Appendix A. While Theorem A1 confirms that
NI2 satisfy Feature 3 around the exact classifications, TheoremA2 indicates that this measure is able to adjust the
ranking order between a misclassification of a large class and a rejection of a small class. Table 7 shows two sets of
confusions matrices which are similar to M1-M4 in Table 4. One can observe the changes of ranking orders among
them. These changes numerically confirm Theorem A2 and its critical point, or cross-over point (Ω = C1/n ≈ 0.942),
for the given data.

Further investigations were carried out on three-class problems. Although some NIs could be removed directly
based on their poor performance with respect to the meta-measures (such asNI1 andNI9 on Feature 2), they were
retained to demonstrate pros and cons in the applications. At this stage, we extend the concepts of error types and
reject types to multiple classes. Nine examples are specifically designed in Table 8. The ranking order for each model
is shown in Table 8, which is derived from the intuitions of Feature 3. From Tables 9 and 10, it is interesting to see
that NI2 is still the most appropriate measure for classification evaluations. Using this measure, we can select the
“best” and “worst” classifications consistent with our intuition. All other measures perform below our satisfactions
for distinguishing error types and reject types properly.

The numerical study supports the viewpoint that no universally superior measure exists. For example, in com-
paring with information measureNI2, the conventional accuracy measure satisfies Feature 1, butdoes not qualify
to Feature 3. Thus, any measure, either performance-based or information-based, should be designed and evaluated
within the context of the specific applications. It is evident that the desirable features in the specific applications
become more crucial (or “proper”) for evaluation measures than some generic mathematical properties. For example,
information measures (such as KL divergence), that may not satisfy a metric’s properties (say, symmetry), are able to
process classification evaluations including a reject option. They provide more applicable power than the conventional
performance measures in abstaining classifications. However, we still need a complete picture about information mea-
sures with respect to their advantages as well as limitations. The examples in Tables 4, 7, and 8 only present limited
scenarios for variations in confusion matrices. Using the open-source toolbox from [38], one is able to test more
scenarios for numerical investigations.

8. Summary

In this work, we investigated objective evaluations of classifications by introducing normalized information mea-
sures. We reviewed the related works and discussed objectivity and its formal definition in evaluations. Objective
evaluations may be required under different application background. In classifications, for example, exact knowledge
of misclassification costs is sometimes unknown in evaluations. Moreover, cases of ignorance regarding reject costs
appear more often in scenarios of abstaining classifications. In these cases, although subjective evaluations can be
applied, the user-given data of the unknown abstention costs will lead to a much higher degree of uncertainty or in-
consistency. We believe that an objective evaluation can bea suitable solution, as well as a complementary, approach
to subjective evaluations. In some situations, an objective evaluation is considered useful despite the subjective evalu-
ations being reasonable for the applications. The results from both objective and subjective evaluations give users an
overall quality of classification results.

Considering that abstaining classifications are becoming more popular, we focused on the distinctions of error
types and reject types within objective evaluations of classifications. First, we proposed three meta-measures for
assessing classifications, which seem more relevant and proper than the properties of metrics in the context of clas-
sification applications. The meta-measures provide users with useful guidelines for a quick selection of candidate
measures. Second, we tried systematically to enrich a classification evaluation bank by including commonly used
information measures. Contrary to the conventional performance measures that apply empirical formulas, the infor-
mation measures are theoretically more sound for objectiveevaluations of classifications. The key advantage of these
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measures over the conventional ones is their ability to handle multi-class classification evaluations with a reject op-
tion. Third, we revealed theoretically the intrinsic shortcomings of the information measures. These have not been
formally reported before in studies of image registration,feature selection, or similarity ranking. The discovery of
these shortcomings is very important for users to interprettheir results correctly when applying those measures.

Based on the principle of the “No Free-Lunch Theorem” [15], we recognize that there are no “universally superior”
measures [5]. It is not our aim to replace the conventional performance measures, but to explore information measures
systematically in classification evaluations. The theoretical study demonstrates the strength and weakness of the
information measures. Numerical investigations, conducted on binary and three-class classifications, confirmed that
objective evaluations are not an easy topic in the study of machine learning. One of the most challenging tasks will be
an exploration of novel measures that satisfy all meta-measures as well as the metric properties in objective evaluations
of classifications. It is also necessary to define the “ranking order” intuitions among error types and reject types in
generic classifications, which will form the basis of the quantitative meta-measures. However, this task becomes more
difficult if classifications are beyond two classes.
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Appendix A. Theorems and Sensitivity Functions ofNI2 for Binary Classifications

Theorem A1: For a binary classification defined by:

C =
[

T N FP RN
FN T P RP

]

, and (A1− a)

C1 = T N+ FP+ RN,C2 = FN + T P+ RP,C1 +C2 = n (A1 − b)

NI2 satisfies Feature 3 on the property regarding error types andreject types around the exact classifications. Specifi-
cally for the four confusion matrices below:

M1 =

[

C1 0 0
d C2 − d 0

]

, M2 =

[

C1 − d d 0
0 C2 0

]

,

M3 =

[

C1 0 0
0 C2 − d d

]

, M4 =

[

C1 − d 0 d
0 C2 0

]

,

(A2)

the following relations will be held:

NI2(M1) < NI2(M2) and NI2(M3) < NI2(M4), (A3 − a)

NI2(M1) < NI2(M3) and NI2(M2) < NI2(M4), (A3 − b)

where C1 > C2 > d > 0. (A3 − c)

Proof. For a binary classification,NI2 is defined by the modified mutual information:

NI2 =
IM (T,Y)

H(T) , and
IM(T,Y) = TN

n log2
nTN

C1(TN+FN) +
FP
n log2

nFP
C1(TP+FP)

+ FN
n log2

nFN
C2(FN+TN) +

TP
n log2

nTP
C2(FP+TP) .

(A4)

Let M0 be a confusion matrix corresponding to the exact classifications:

M0 =

[

C1 0 0
0 C2 0

]

. (A5)
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Based on the definition ofIM in (A4), one can calculate the mutual information differences between two models.
ConsideringM0 to be a baseline, we obtain the analytical results below for the four models:

∆I10 = IM(M1) − IM(M0) =
1
n

(C1 log2
C1

C1 + d
+ d log2

d
C1 + d

), (A6 − a)

∆I20 = IM(M2) − IM(M0) =
1
n

(C2 log2
C2

C2 + d
+ d log2

d
C2 + d

), (A6 − b)

∆I30 = IM(M3) − IM(M0) =
d
n

(log2
C2

n
), (A6 − c)

∆I40 = IM(M4) − IM(M0) =
d
n

(log2
C1

n
), (A6 − d)

For the given assumptionC1 > C2 > d > 0, all ∆Is above are negative values so that their abstracts represent the
absolute costs in classifications. One can directly prove that |∆I30| > |∆I40| from (A6-c) and (A6-d). The procedures
for the proof of|∆I10| > |∆I20| are given below. First, one needs to confirm the following twofunctions to be strictly
decreasing (x1 < x2, g(x1) > g(x2)):

g1(x) = (
x

x+ d
)x and g2(x) = (

d
x+ d

)d f or x > 0, d > 0. (A7 − a)

Then, from the monotonically decreasing property of (A7-a), one can derive the following relations:

C1 > C2 → ( C1
C1+d )C1 < ( C2

C2+d)C2 < 1 and ( d
C1+d )d < ( d

C2+d )d < 1
→ 1

n |C2 log2
C2

C2+d + d log2
d

C2+d | < 1
n |C1 log2

C1
C1+d + d log2

d
C1+d |

→ |∆I20| < |∆I10|
(A7 − b)

The relations in (A3-a) are achieved forNI2 because its normalization term,H(T), is a constant for the givenC1 and
C2. One therefore confirms the satisfaction of Feature 3 on the property of the within error types and reject types
around the exact classifications, respectively.

Then it is a proof of the relation (A3-b), which suggests thata misclassification suffer a higher cost than a rejection
for the same class. Feature 3 considers this relation as a basic property in classifications for the between error and
reject types. The procedures for the proof are:

C1 > C2 → C1C2 +C1d > (C1 +C2)d = nd

→ 1 > C1
n >

d
C2+d →

∣

∣

∣log2(C1
n )
∣

∣

∣ <
∣

∣

∣

∣
log2( d

C2+d)
∣

∣

∣

∣

→ 1
n

∣

∣

∣d log2(C1
n )
∣

∣

∣ < 1
n

∣

∣

∣

∣

d log2
d

C2+d

∣

∣

∣

∣

< 1
n

∣

∣

∣

∣

C2 log2
C2

C2+d + d log2
d

C2+d

∣

∣

∣

∣

→ |∆I40| < |∆I20|

(A8 − a)

C1 + d < n→ C1(C1 + d) + nd < C1n+ nd→ C1(C1+d)+nd
n(C1+d) < 1

→ C1
n +

d
C1+d < 1→ d

C1+d <
C2
n < 1→

∣

∣

∣log2
C2
n

∣

∣

∣ <
∣

∣

∣

∣

log2
d

C1+d

∣

∣

∣

∣

→ 1
n

∣

∣

∣d log2
C2
n

∣

∣

∣ < 1
n

∣

∣

∣

∣

C1 log2
C1

C1+d + d log2
d

C1+d

∣

∣

∣

∣

→ |∆I30| < |∆I10| .

(A8 − b)

♦
Theorem A2: For the given conditions (A1)-(A2) andC1 > C2 > d > 0, NI2 will satisfy the following relations:

NI2(M4) > NI2(M3) > NI2(M2) > NI2(M1) f or 0.5 < p1 < Ω ≤ 1 (A9− a)

NI2(M4) > NI2(M2) > NI2(M3) > NI2(M1) f or 0.5 < Ω < p1 ≤ 1 (A9− b)

where we setp1 = C1/n, andΩ is an upper boundary for the validation of (A9-a).
Proof. The first relation describes that the ranking order in (A9-a) is valid only for a certain range ofp1. The

lower boundary is resulted from the assumption ofC1 to be a large class. The upper boundary,Ω, is determined by
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Figure A1.: Plots of “∆I vs. p1(%)” whenn = 100 andd = 1.(Black-Solid= ∆I10, Black-Dash=∆I20, Blue-Solid=∆I30, Blue-Dash=∆I40)

the cross-over point between the functions of (A-6b) and (A-6c). For better understanding of the relations (A9), we
present the plots of “∆I vs. p1” whenn = 100 andd = 1 (Fig. A1).

For examining the validation range of (A9-a), one needs to calculate the cross-over point from solving the equation
below:

f = ∆I20 − ∆I30 =
1
n

(C2 log2
C2

C2 + d
+ d log2

dn
C2 + d

) = 0. (A10)

There exists no closed-form solution toΩ. Based on the monotonicity of the related functions and relations in (A3),
one is able to confirm the conditions in (A9-a) and (A9-b), respectively. Fig. A1 depicts numerically that only a single
cross-over point appears to the range ofp1 > 0.5(orC1 > C2). ♦

Remark A1: We can denoteΩ(n, d) to be the cross-over point obtained fromf , with two independent variables
n andd. The value ofΩ increases withn, but decreases withd. A numerical solution toΩ should be engaged.
The physical interpretation ofΩ is a critical point at which a rejection within a small class has the same cost with
a misclassification within a large class. This situation generally does not occur except for classifications of largely-
skewed classes (say,C1 >> C2). Therefore, we call the ranking order in (A9-a) is a generalranking order, and one in
(A9-b) is a largely-skewed-class ranking order.

Sensitivity functions: The sensitivity functions are given as the conventional forms for delivering approximation
analysis ofIM:

∂IM

∂T N
=

1
n

[

log2
n

C1
+

(

log2
T N

T N+ FN

)

sng(T N)

]

, (A11− a)

∂IM

∂T P
=

1
n

[

log2
n

C2
+

(

log2
T P

T P+ FP

)

sng(T P)

]

, (A11− b)

∂IM

∂FN
=

1
n

[

log2
n

C2
+

(

log2
FN

FN + T N

)

sng(FN)

]

, (A11− c)

∂IM

∂FP
=

1
n

[

log2
n

C1
+

(

log2
FP

FP+ T P

)

sng(FP)

]

, (A11− d)

∂IM

∂RN
= − ∂I
∂T N

− ∂I
∂FP
, (A11− e)
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∂IM

∂RP
= − ∂I
∂FN

− ∂I
∂T P
. (A11− f)

wheresgn(.) is a sign function for satisfying the definition ofH(0) = 0. Only four independent variables describe the
sensitivity functions due to the two constraints in (A1-b).Hence, a chain rule is applied for deriving the functions of
(A11-e) and (A11-f).♦

Remark A2: Using eq.(A11), we failed to reach the reasonable conclusions as those in Theorems A1 for the
reason that the first-order differentials may be not sufficient for the analysis around the exact classifications. For
example, we got the results for:

I (M1) − I (M0) ≈ (T P1 − T P0) ∂IM(M0)
∂TP + (FN1 − FN0) ∂IM (M0)

∂FN
= − d

n log2( n
C2

) + d
n log2( n

C2
) = 0.

(A12− a)

I (M2) − I (M0) ≈ (T N1 − T N0) ∂IM (M0)
∂TN + (FP1 − FP0) ∂IM (M0)

∂FP
= − d

n log2( n
C1

) + d
n log2( n

C1
) = 0.

(A12− b)

This observation suggests that one needs to be cautious whenusing sensitivity function for approximation analysis on
IM (or NI2).
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Table 1: NI measures within the mutual-information based group.

No. Name [Reference] Formula onNIk

1 NI based on mutual information [28]NI1(T,Y) = I (T,Y)
H(T)

2 NI based on mutual information [11]NI2(T,Y) = IM (T,Y)
H(T)

3 NI based on mutual information [28]NI3(T,Y) = I (T,Y)
H(Y)

4 NI based on mutual information NI4(T,Y) = 1
2

[

I (T,Y)
H(T) +

I (T,Y)
H(Y)

]

5 NI based on mutual information [26]NI5(T,Y) = 2I (T,Y)
H(T)+H(Y)

6 NI based on mutual information [40]NI6(T,Y) = I (T,Y)√
H(T)H(Y)

7 NI based on mutual information [41]NI7(T,Y) = I (T,Y)
H(T,Y)

8 NI based on mutual information [26]NI8(T,Y) = I (T,Y)
max(H(T),H(Y))

9 NI based on mutual information [26]NI9(T,Y) = I (T,Y)
min(H(T),H(Y))
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Table 2: Information measures within the divergence based group.

No. Name ofDk [Reference] Formula onDk (NIk = exp(−Dk))

10 ED-Quadratic Divergence [9] D10 = QDED(T,Y) =
∑

z
(pt(z) − py(z))2

11 CS-Quadratic Divergence [9] D11 = QDCS(T,Y) = log2

∑

z
pt(z)2

∑

z
py(z)2

[
∑

z
(pt(z)py(z))]2

12 KL Divergence [42] D12 = KL(T,Y) =
∑

z
pt(z) log2

pt(z)
py(z)

13 Bhattacharyya Distance [43] D13 = DB(T,Y) = − log2

∑

z

√

pt(z)py(z)

14 χ2 (Pearson) Divergence [44] D14 = χ
2(T,Y) =

∑

z

(pt(z)−py(z))2

py(z)

15 Hellinger Distance [44] D15 = H2(T,Y) =
∑

z
(
√

pt(z) −
√

py(z))2

16 Variation Distance [44] D16 = V(T,Y) =
∑

z
|pt(z) − py(z)|

17 J divergence j [45] D17 = J(T,Y) =
∑

z
pt(z) log2

pt(z)
py(z) +

∑

z
py(z) log2

py(z)
pt(z)

18 L (or JS) divergence [45] D18 = L(T,Y) = KL(T,M) + KL(Y,M),M = (pt(z)+py(z))
2

19 Symmetricχ2 Divergence [46] D19 = χ
2
S(T,Y) =

∑

z

(pt(z)−py(z))2

py(z) +
∑

z

(py(z)−pt(z))2

pt(z)

20 Resistor Average Distance [43]D20 = DRA(T,Y) = KL(T,Y)KL(Y,T)
KL(T,Y)+KL(Y,T)

1
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Table 3: NI measures within the cross-entropy based group.

No. Name Formula onNIk

21 NI based on cross-entropy NI21 =
H(T)

H(T;Y) ,H(T; Y) = −∑
z

pt(z) log2 py(z)

22 NI based on cross-entropy NI22 =
H(Y)

H(Y;T) ,H(Y; T) = −∑
z

py(z) log2 pt(z)

23 NI based on cross-entropy NI23 =
1
2

(

H(T)
H(T;Y) +

H(Y)
H(Y;T)

)

24 NI based on cross-entropy NI24 =
H(T)+H(Y)

H(T;Y)+H(Y;T)

Table 4: Numerical examples in Binary Classifications(M1-M4 and M6:C1 = 90,C2 = 10; M5: C1 = 95,C2 = 5). (R)= ranking order for the
model, where R= A,B, ..., in descending order from the top.

Model M1 M2 M3 M4 M5 M6
(Ranking) (C) (B) (B) (A)

C
[

90 0 0
1 9 0

] [

89 1 0
0 10 0

] [

90 0 0
0 9 1

] [

89 0 1
0 10 0

] [

57 38 0
3 2 0

] [

89 1 0
1 9 0

]

CR 0.990 0.990 0.990 0.990 0.590 0.980
Rej 0.000 0.000 0.010 0.010 0.000 0.000
Precision 0.989 1.000 1.000 1.000 0.950 0.989
Recall 1.000 0.989 1.000 1.000 0.600 0.989
F1 0.994 0.994 1.000 1.000 0.735 0.989
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Table 5: Results for the models in Table 4 on information measures from mutual-information and cross-entropy groups. (R)= ranking order for the model, where R= A,B, ..., in descending order
from the top.

Model NI1 NI2 NI3 NI4 NI5 NI6 NI7 NI8 NI9 NI22 NI23 NI24 NI25

M1 0.831 0.831 0.893 0.862 0.860 0.861 0.755 0.831 0.893 0.998 0.998 0.998 0.998
(C) (D) (D) (B) (D) (D) (D) (D) (D) (D) (A) (A) (A) (A)
M2 0.897 0.897 0.841 0.869 0.868 0.869 0.767 0.841 0.897 0.998 0.998 0.998 0.998
(B) (C) (C) (D) (C) (C) (C) (C) (C) (C) (A) (A) (A) (A)
M3 1.000 0.929 0.909 0.955 0.952 0.953 0.909 0.909 1.000 0.969 0.000 0.484 0.000
(B) (A) (B) (A) (A) (A) (A) (A) (A) (A) (D) (B) (C) (B)
M4 1.000 0.997 0.855 0.928 0.922 0.925 0.855 0.855 1.000 0.970 0.000 0.485 0.000
(A) (A) (A) (C) (B) (B) (B) (B) (B) (A) (C) (B) (B) (B)
M5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.374 0.548 0.461 0.495
M6 0.731 0.731 0.731 0.731 0.731 0.731 0.576 0.731 0.731 1.000 1.000 1.000 1.000

2
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Table 6: Results for the models in Table 4 on information measures from divergence group. S=singularity which cannot be removed. (R)= ranking order for the model, where R= A,B, ..., in
descending order from the top.

Model NI10 NI11 NI12 NI13 NI14 NI15 NI16 NI17 NI18 NI19 NI20

M1 0.9998 0.9998 0.9991 0.9998 0.9988 0.9997 0.9802 0.9983 0.9996 0.9977 0.9996
(C) (A) (A) (B) (A) (B) (A) (A) (B) (A) (B) (A)
M2 0.9998 0.9998 0.9992 0.9998 0.9990 0.9997 0.9802 0.9985 0.9996 0.9979 0.9996
(B) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
M3 0.9998 0.9996 0.9849 0.9926 0.9890 0.9898 0.9802 S 0.9897S S
(B) (A) (D) (D) (D) (D) (D) (A) (D)
M4 0.9998 0.9998 0.9856 0.9928 0.9899 0.9900 0.9802 S 0.9900S S
(A) (A) (A) (C) (C) (C) (C) (A) (C)
M5 0.7827 0.6473 0.6189 0.8540 0.6002 0.8129 0.4966 0.2775 0.7550 0.0455 0.7406
M6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 S
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Table 7: Numerical examples in Binary Classifications(n=100). (R)= ranking order for the model, where R= A,B, ..., in descending order from the top.
Model M1a M2a M3a M4a M1b M2b M3b M4b

C

[

94 0 0
1 5 0

] [

93 1 0
0 6 0

] [

94 0 0
0 5 1

] [

93 0 1
0 6 0

] [

95 0 0
1 4 0

] [

94 1 0
0 5 0

] [

95 0 0
0 4 1

] [

94 0 1
0 5 0

]

CR 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
(Rejection) (0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.01) (0.01)

NI2 0.756 0.874 0.876 0.997 0.720 0.864 0.849 0.997
(Ranking) (D) (C) (B) (A) (D) (B) (C) (A)
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Table 8: Classification examples in three classes(C1 = 80,C2 = 15,C3 = 5).(R)= ranking order for the model, where R= A,B, ..., in descending order from the top.

Model M7 M8 M9 M10 M11
(Ranking) (C) (C) (B) (B) (B)

C





















80 0 0 0
0 15 0 0
1 0 4 0









































80 0 0 0
0 15 0 0
0 1 4 0









































80 0 0 0
0 15 0 0
0 0 4 1









































80 0 0 0
1 14 0 0
0 0 5 0









































80 0 0 0
0 14 1 0
0 0 5 0





















CR 0.99 0.99 0.99 0.99 0.99
Rej 0.00 0.00 0.01 0.00 0.00
Model M12 M13 M14 M15
(Ranking) (B) (B) (B) (A)

C





















80 0 0 0
0 14 0 1
0 0 5 0









































79 1 0 0
0 15 0 0
0 0 5 0









































79 0 1 0
0 15 0 0
0 0 5 0









































79 0 0 1
0 15 0 0
0 0 5 0





















CR 0.99 0.99 0.99 0.99
Rej 0.01 0.00 0.00 0.01

2
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Table 9: Results for the models in Table 8 on information measures from mutual-information and cross-entropy groups. S=singularity which cannot be removed. (R)= ranking order for the model,
where R= A,B, ..., in descending order from the top.

Model NI1 NI2 NI3 NI4 NI5 NI6 NI7 NI8 NI9 NI21 NI22 NI23 NI24

M7 0.912 0.912 0.957 0.935 0.934 0.934 0.876 0.912 0.957 0.998 0.998 0.998 0.998
(F) (F) (F) (C) (G) (G) (G) (F) (H) (E) (D) (C) (C) (C)
M8 0.939 0.939 0.958 0.949 0.949 0.949 0.902 0.939 0.958 0.998 0.998 0.998 0.998
(F) (E) (E) (B) (D) (D) (D) (D) (D) (D) (D) (C) (C) (C)
M9 1.000 0.951 0.961 0.980 0.980 0.980 0.961 0.961 1.000 0.982 0.000 0.491 0.000
(C) (A) (D) (A) (A) (A) (A) (A) (A) (A) (G) (G) (I) (G)
M10 0.912 0.912 0.938 0.925 0.925 0.925 0.860 0.912 0.938 0.999 0.999 0.999 0.999
(E) (F) (F) (F) (I) (I) (I) (H) (H) (G) (A) (A) (A) (A)
M11 0.956 0.956 0.941 0.948 0.948 0.948 0.902 0.941 0.956 0.998 0.998 0.998 0.998
(E) (D) (C) (E) (E) (E) (E) (D) (C) (E) (B) (C) (C) (C)
M12 1.000 0.969 0.943 0.972 0.971 0.971 0.943 0.943 1.000 0.983 0.000 0.492 0.000
(B) (A) (B) (D) (B) (B) (B) (B) (B) (A) (F) (G) (G) (G)
M13 0.939 0.939 0.915 0.927 0.927 0.927 0.863 0.915 0.939 0.999 0.999 0.999 0.999
(D) (E) (E) (I) (H) (H) (H) (G) (G) (F) (A) (A) (A) (A)
M14 0.956 0.956 0.916 0.936 0.935 0.936 0.879 0.916 0.956 0.998 0.998 0.998 0.998
(D) (D) (C) (H) (F) (F) (F) (E) (F) (E) (D) (C) (C) (C)
M15 1.000 0.996 0.919 0.960 0.958 0.959 0.919 0.919 1.000 0.984 0.000 0.492 0.000
(A) (A) (A) (G) (C) (C) (C) (C) (E) (A) (E) (G) (G) (G)
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Table 10: Results for the models in Table 8 on information measures from divergence group. S=singularity which cannot be removed. (R)= ranking order for the model, where R= A,B, ..., in
descending order from the top.

Model NI10 NI11 NI12 NI13 NI14 NI15 NI16 NI17 NI18 NI19 NI20

M7 0.9998 0.9998 0.9982 0.9996 0.9974 0.9994 0.9802 0.9966 0.9992 0.9953 0.9992
(F) (A) (A) (D) (C) (E) (D) (A) (D) (D) (E) (D)
M8 0.9998 0.9996 0.9979 0.9995 0.9969 0.9993 0.9802 0.9959 0.9990 0.9942 0.9990
(F) (A) (E) (E) (D) (F) (E) (A) (F) (F) (F) (F)
M9 0.9998 0.9996 0.9840 0.9924 0.9876 0.9895 0.9802 S 0.9893S S
(C) (A) (E) (H) (G) (I) (H) (A) (H)
M10 0.9998 0.9997 0.9994 0.9999 0.9992 0.9998 0.9802 0.99880.9997 0.9984 0.9997
(E) (A) (C) (A) (A) (A) (A) (A) (B) (A) (C) (A)
M11 0.9998 0.9996 0.9982 0.9995 0.9976 0.9994 0.9802 0.99640.9991 0.9950 0.9991
(E) (A) (E) (D) (D) (D) (D) (A) (E) (E) (F) (E)
M12 0.9998 0.9996 0.9852 0.9927 0.9893 0.9899 0.9802 S 0.9898 S S
(B) (A) (E) (G) (F) (H) (G) (A) (H)
M13 0.9998 0.9997 0.9994 0.9999 0.9992 0.9998 0.9802 0.99890.9997 0.9985 0.9997
(D) (A) (C) (A) (A) (A) (A) (A) (A) (A) (A) (A)
M14 0.9998 0.9997 0.9986 0.9996 0.9982 0.9995 0.9802 0.99720.9993 0.9961 0.9993
(D) (A) (C) (C) (C) (C) (C) (A) (C) (C) (D) (C)
M15 0.9998 0.9998 0.9856 0.9928 0.9899 0.9900 0.9802 S 0.9900 S S
(A) (A) (A) (F) (E) (G) (F) (A) (G)

2
5


	1 Introduction
	2 Related Work
	3 Objective Evaluations and Meta-Measures
	4 Normalized Information Measures based on Mutual Information
	5 Normalized Information Measures based on Information Divergence
	6 Normalized Information Measures based on Cross-Entropy
	7 Numerical Examples and Discussions
	8 Summary

