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Abstract

In this article, the study of the orthogonality properties of q-polynomials of the Hahn class started in the
initial article by R. Álvarez-Nodarse, R. Sevinik-Adıgüzel, and H. Taşeli, On the orthogonality of q-classical
polynomials of the Hahn class I is proceeded. To be more specific, the orthogonality properties of the
q-polynomials belonging to the ∅-Hermite-Laguerre/Jacobi, ∅-Jacobi/Hermite-Laguerre, 0-Laguerre/Jacobi-
Bessel and 0-Jacobi/Laguerre-Bessel cases are studied by taking into account the idea considered in the
initial paper. In particular, a new orthogonality relation for the q-Meixner polynomials is established.

E-mail: ran@us.es, sevinikrezan@gmail.com.tr, taseli@metu.edu.tr

1 Introduction

In our previous article [1], we have started the study of the orthogonality properties of polynomial solutions of
the q-difference equation of hypergeometric type (q-EHT)

σ1(x; q)Dq−1Dqy(x, q) + τ(x, q)Dqy(x, q) + λ(q)y(x, q) = 0, (1.1)

where σ1(x, q) and
σ2(x, q) := q

[
σ1(x, q) + (1− q−1)xτ(x, q)

]
(1.2)

are both quadratic polynomials. Our main tool was the q-Pearson equation that the weight function ρ satisfy

ρ(qx, q)

ρ(x, q)
=

σ1(x, q) + (1− q−1)xτ(x, q)

σ1(qx, q)
=

q−1σ2(x, q)

σ1(qx, q)
. (1.3)

In this paper, we continue the study of the orthogonality properties of q-polynomials of the q-Hahn tableau
started in [1]. The main idea is to provide a relatively simpler geometrical analysis of the q-Pearson equation
by taking into account every possible rational form of the polynomial coefficients of the q-difference equation.
Such a qualitative analysis implies all possible orthogonality relations among the polynomial solutions of the q-
difference equation in question. A previous attempt of using a similar geometrical approach has been introduced
also in [4] but it is far to being complete where only some partial results were obtained.

In this respect, we have considered ∅-Jacobi/Jacobi and 0-Jacobi/Jacobi cases in [1] and we deal with the ∅-
Hermite/Jacobi, ∅-Laguerre/Jacobi, ∅-Jacobi/Hermite, ∅-Jacobi/Laguerre, 0-Laguerre/Jacobi, 0-Laguerre/Bessel,
0-Jacobi/Laguerre and 0-Jacobi/Bessel cases in this paper. The above classification of the q-polynomials is
based on the degrees of the polynomial coefficients σ1 and σ2 and the fact that either qσ1(0, q) = σ2(0, q) = 0 or
σ1(0, q), σ2(0, q) 6= 0. For example, the statement q-Jacobi/q-Laguerre implies that deg[σ1] = 2 and deg[σ2] = 1,
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or q-Hermite/q-Jacobi indicates that deg[σ1] = 0 and deg[σ2] = 2. For further details on this classification see
[2, 3, 9, 10].

In the framework considered in [1] the paper is organized as follows: In Section 2, we give a theorem in
order to calculate q-weight functions for every degree of σ1 and σ2 of the families that were not considered in
[1]. In Section 3, we present the qualitative analysis for the families of ∅-Hermite/Jacobi, ∅-Laguerre/Jacobi, ∅-
Jacobi/Hermite, ∅-Jacobi/Laguerre, 0-Laguerre/Jacobi, 0-Laguerre/Bessel, 0-Jacobi/Laguerre, 0-Jacobi/Bessel
polynomials. In fact, we study each orthogonal polynomial sequence (OPS), which is orthogonal with respect to
(w.r.t.) a q-weight function ρ(x, q) > 0 satisfying the q-Pearson equation as well as certain boundary conditions
(BCs). In order to save space we discuss cases, leading to an OPS, in detail while we mention briefly for the
others. A more detailed discussion can be found in [11].

2 The q-Weight function

In this section we include the analytic representations of q-weight functions satisfying (1.3) for each ∅-Hermite-
Laguerre/Jacobi, ∅-Jacobi/Hermite-Laguerre, 0-Laguerre/Jacobi-Bessel and 0-Jacobi/Laguerre-Bessel cases by
considering the polynomial coefficients σ1 and σ2 of at most 2nd degree and τ of 1st degree in x,

τ(x, q) = τ ′(0, q)x+ τ(0, q), τ ′(0, q) 6= 0,

σ1(x, q) = 1
2σ

′′
1 (0, q)x

2 + σ′
1(0, q)x+ σ1(0, q) =

1
2σ

′′
1 (0, q)[x− a1(q)][x − b1(q)], (2.1)

σ2(x, q) = 1
2σ

′′
2 (0, q)x

2 + σ′
2(0, q)x+ σ2(0, q) =

1
2σ

′′
2 (0, q)[x− a2(q)][x − b2(q)].

In the following we follow the notations introduced in [1]. For the sake of completeness we include here the
Theorems 1 and 2 of [1].

Theorem 1 [1, Theorem 1] Let ρ be a function satisfying the q-Pearson equation (1.3) in such a way that the
BCs

σ1(x, q)ρ(x, q)x
k

∣∣∣∣
x=a,b

= σ2(q
−1x, q)ρ(q−1x, q)xk

∣∣∣∣
x=a,b

= 0, k ∈ N0 (2.2)

also hold. Then the sequence {Pn(x)} of polynomial solutions are orthogonal on (a, b) w.r.t ρ(x, q) in the sense
that ∫ b

a

Pn(x, q)Pm(x, q)ρ(x, q)dqx = d2n(q)δmn,

where dn(q) and δmn denote the norm of the polynomials Pn and the Kronecker delta, respectively. Analogously,
if the conditions

σ2(x, q)ρ(x, q)x
k

∣∣∣∣
x=a,b

= σ1(qx, q)ρ(qx, q)x
k

∣∣∣∣
x=a,b

= 0, k ∈ N0 (2.3)

are fulfilled, the q-polynomials then satisfy the relation
∫ b

a

Pn(x, q)Pm(x, q)ρ(x, q)dq−1x = d2n(q)δmn.

Theorem 2 [1, Theorem 2] Let a1(q), b1(q) and a2(q), b2(q) denote the zeros of σ1(x, q) and σ2(x, q), respec-
tively. Let ρ be a bounded and non-negative function satisfying the q-Pearson equation (1.3). Such a function ρ
can satisfy the BCs (2.2) or (2.3) and, therefore, it may be a desired weight function for the polynomial solutions
Pj(x, q) of (1.1) only in the following cases:

1. Let a < 0 < b, where a = a1(q) and b = b1(q). Then ρ is supported at the points qka and qkb for k ∈ N0

on [a, b] such that ∫ b1(q)

a1(q)

Pn(x, q)Pm(x, q)ρ(x, q)dqx = d2n(q)δmn. (2.4)

where the q-Jackson integral is of type (2.13).

2. Let a = 0 < b, where a = a1(q) and b = b1(q). Then ρ is supported at the points qkb for k ∈ N0 on (0, b]
such that ∫ b1(q)

0

Pn(x, q)Pm(x, q)ρ(x, q)dqx = d2n(q)δmn, (2.5)

where the q-Jackson integral is of type (2.12).
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3. Let 0 = a < b, where a = a2(q) and b = a1(q). Then ρ is supported at the points qkb for k ∈ N0 on (0, b]
such that ∫ a1(q)

0

Pn(x, q)Pm(x, q)ρ(x, q)dqx = d2n(q)δmn, (2.6)

where the q-Jackson integral is of type (2.12).

4. Let 0 < a < b, where a = a2(q) and b = a1(q). Then ρ is supported at the points qkb; a = qNb < · · · <
q2b < qb < b or, equivalently, q−ka; a < aq−1 < aq−2 < · · · < q−Na = b such that

∫ a1(q)

qa2(q)=qNa1(q)

Pn(x, q)Pm(x, q)ρ(x, q)dqx = d2n(q)δmn, (2.7)

where the q-Jackson integral is of type (2.13) and equivalent to the finite sum

∫ a1(q)

qNa1(q)

[·]dqx = (1− q)a1(q)

N−1∑

k=0

Pn(q
ka1(q), q)Pm(qka1(q), q)ρ(q

ka1(q), q).

5. Let a < b = 0, where a = a1(q) and b = 0. Then ρ is supported at the points qka for k ∈ N0 on [a, 0) such
that ∫ 0

a1(q)

Pn(x, q)Pm(x, q)ρ(x, q)dqx = d2n(q)δmn,

where the q-Jackson integral is of type (2.12).

6. Let a = a1(q) = 0 and b → ∞. Then ρ is supported at the points q±kα for arbitrary α > 0 and k ∈ N0 on
(0,∞) such that ∫ ∞

0

Pn(x, q)Pm(x, q)ρ(x, q)dqx = d2n(q)δmn,

where the q-Jackson integral is of type (2.14).

7. Let a = a1(q) < 0 and b → ∞. Then ρ is supported at the points qka and q∓kα for arbitrary α > 0 and
k ∈ N0 on [a,∞) such that

∫ ∞

a1(q)

Pn(x, q)Pm(x, q)ρ(x, q)dqx :=

∫ 0

a1(q)

[·]dqx+

∫ ∞

0

[·]dqx = d2n(q)δmn, (2.8)

where the first q-Jackson integral is of type (2.12) and the second one is of type (2.14), respectively.

8. Let a = a2(q) > 0 and b → ∞. Then ρ is supported at the points q−ka for k ∈ N0 on [a,∞) such that

∫ ∞

a2(q)

Pn(x, q)Pm(x, q)ρ(x, q)dq−1x = d2n(q)δmn, (2.9)

where the q−1-Jackson integral is of type (2.15).

9. Let a = a2(q) = 0 and b → ∞. Then ρ is supported at the points q±kα for arbitrary α > 0 and k ∈ N0 on
(0,∞) such that ∫ ∞

0

Pn(x, q)Pm(x, q)ρ(x, q)dqx = d2n(q)δmn, (2.10)

where the q-Jackson integral is of type (2.14).

10. Let a → −∞ and b → ∞. Then ρ is supported at the points ∓q±kα for arbitrary α > 0 and k ∈ N0 on
(−∞,∞) such that ∫ ∞

−∞

Pn(x, q)Pm(x, q)ρ(x, q)dqx = d2n(q)δmn, (2.11)

where the bilateral q-Jackson integral is of type (2.14).
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In the above theorem, the q-Jackson integrals [5, 6] are defined by

∫ a

0

f(x)dqx = (1− q)a

∞∑

j=0

qjf(qja) and

∫ 0

a

f(x)dqx = (1− q)(−a)

∞∑

j=0

qjf(qja) (2.12)

if a > 0 and a < 0, respectively. Therefore, we have

∫ b

a

f(x)dqx :=

∫ b

0

f(x)dqx−

∫ a

0

f(x)dqx and

∫ b

a

f(x)dqx :=

∫ 0

a

f(x)dqx+

∫ b

0

f(x)dqx (2.13)

when 0 < a < b and a < 0 < b, respectively. Furthermore, we make use of the improper q-Jackson integrals

∫ ∞

0

f(x)dqx = (1− q)

∞∑

j=−∞

qjf(qj) and

∫ ∞

−∞

f(x)dqx = (1− q)

∞∑

j=−∞

qj [f(qj) + f(−qj)] (2.14)

where the second one is sometimes called the bilateral q-integral. The q−1-Jackson integrals may be defined
similarly. For instance, the improper q−1-Jackson integral on (a,∞) is given by

∫ ∞

a

f(x)dq−1x = (q−1 − 1)a

∞∑

j=0

q−jf(q−ja), a > 0 (2.15)

provided that limj→∞ q−jf(q−ja) = 0 and the series is convergent.
The next theorem is the extension of [1, Theorem 4] for the other q- polynomials (see also [3]).

Theorem 3 Let σ1 and σ2 be polynomials of at most 2nd degree in x as the form (2.1). Then a solution ρ(x, q) of
q-Pearson equation (1.3) for each ∅-Hermite-Laguerre/Jacobi, ∅-Jacobi/Hermite-Laguerre, 0-Laguerre/Jacobi-
Bessel and 0-Jacobi/Laguerre-Bessel cases is expressible in the equivalent forms shown in Table 1.

Table 1: Expressions for the q-weight function ρ(x, q)

∅-Jacobi/Laguerre 1.
(a−1

1 qx, b−1
1 qx; q)∞

(a−1
2 x; q)∞

2. |x|α (qa2/x, qb
−1
1 x; q)∞

(a1/x; q)∞
, qα = − q

−2
σ
′

2
(0,q)

1
2
σ′′

1 (0, q)b1
∅-Jacobi/Hermite (a−1

1 qx, b−1
1 qx; q)∞

∅-Laguerre/Jacobi 1.
(a−1

1 qx; q)∞

(a−1
2 x, b−1

2 x; q)∞
2. |x|α

√
xlogq x−1 (a2q/x, b2q/x; q)∞

(a1/x; q)∞
, qα =

1
2
σ′′

2 (0, q)q
−2

σ′

1(0, q)

3. |x|α xlogq x(qa−1
1 x, qa2/x, qb2/x; q)∞, qα = − q

−2 1
2
σ′′

2 (0, q)
σ
′

1
(0,q)a1

∅-Hermite/Jacobi 1.
1

(a−1
2 x, b−1

2 x; q)∞
2. |x|α xlogq x−1(a2q/x, b2q/x; q)∞, qα =

1
2
σ′′

2 (0, q)q
−1

σ1(0, q)

0-Jacobi/Laguerre |x|α (a−1
1 qx; q)∞, qα = − q−2σ′

2(0, q)
1
2
σ′′

1 (0, q)a1

0-Jacobi/Bessel |x|α
√
xlogq x−1(a−1

1 qx; q)∞, qα = − q−2 1
2
σ′′

2 (0, q)
1
2
σ′′

1 (0, q)a1

0-Laguerre/Jacobi 1. |x|α 1

(a−1
2 x; q)∞

, qα = − q−2 1
2
σ′′

2 (0, q)a2

σ′

1(0, q)
2. |x|α

√

xlogq x−1(qa2/x; q)∞,
q−2 1

2
σ′′

2 (0, q)

σ′

1(0, q)

0-Laguerre/Bessel |x|α
√
xlogq x−1, qα =

q−2 1
2
σ′′

2 (0, q)

σ′

1(0, q)

Proof: The proof is similar to the [1, Theorem 4]. To obtain the second formula for the ∅-Laguerre/Jacobi
family we rewrite the q-Pearson equation (1.3) in the form

ρ(qx, q)

ρ(x, q)
= ax

[1− a2/x][1− b2/x]

[1− a1q−1/x]
, a =

q−2 1
2σ

′′
2 (0, q)

σ′
1(0, q)

and then apply the same procedure described in [1]. �
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3 The analysis of the orthogonality of the q-polynomials

This section includes the main analysis of the ∅-Hermite-Laguerre/Jacobi, ∅-Jacobi/Hermite-Laguerre, 0-Laguer-
re/Jacobi-Bessel and 0-Jacobi/Laguerre-Bessel cases by taking into account the rational function on the r.h.s. of
the q-Pearson equation (1.3) along the same lines with the ∅-Jacobi/Jacobi and 0-Jacobi/Jacobi cases handled
in [1]. Therefore, in order to follow the paper we highly recommend the reader to read first paper [1]. In
particular, Section 2 and Theorem 2 where different kinds of orthogonality relations of the form

∫ b

a

Pn(x, q)Pm(x, q)ρ(x, q)dqx = d2n(q)δmn

for different kinds of q-Jackson integrals have been established.

3.1 q-Classical ∅-Hermite/Jacobi Polynomials

Let the coefficients σ1 and σ2 be constant and quadratic polynomials in x, respectively, such that σ1(0, q) 6= 0
and σ2(0, q) 6= 0. If σ1(x, q) = σ1(0, q) 6= 0 then, from (1.2),

σ2(x, q) = q
[
σ1(x, q) + (1 − q−1)xτ(x, q)

]
= (q − 1)τ ′(0, q)x2 + (q − 1)τ(0, q)x+ qσ1(0, q)

where τ ′(0, q) 6= 0 by hypothesis. Then the q-Pearson equation (1.3) takes the form

f(x, q) :=
ρ(qx, q)

ρ(x, q)
=

q−1σ2(x, q)

σ1(qx, q)
= (1− q−1)

τ ′(0, q)

σ1(0, q)
[x− a2(q)][x− b2(q)] (3.1)

provided that the discriminant denoted by ∆q,

∆q :=

[
(1− q−1)

τ(0, q)

σ1(0, q)

]2
− 4(1− q−1)

τ ′(0, q)

σ1(0, q)

of f in (3.1) is non-zero. Notice that y-intercept of f is y = 1 since σ2(0, q) = qσ1(0, q). Moreover, x = a2 and
x = b2 indicate its zeros which are constant multiples of the roots of σ2. The following straightforward lemma
allows us to determine the locations of the zeros of f .

Lemma 4 Let Λq =
τ ′(0,q)
σ1(0,q)

6= 0. Then we encounter the following cases for the roots of the equation f(x, q) = 0.

Case 1. If Λq > 0, f has two real distinct roots with opposite signs.

Case 2. If Λq < 0, there exist three possibilities

(a) if ∆q > 0, f has two real roots with same signs

(b) if ∆q = 0, f has a double root

(c) if ∆q < 0, f has a pair of complex conjugate roots.

The next step is sketching roughly all graphs of f by taking into account all possible relative positions of
the zeros of f in question. As a result of analysis of the graphs of f , we determine a suitable ρ > 0 satisfying
the q-Pearson equation (1.3) with BCs (2.2), (2.3).

In Figure 1A, let us consider the possible intervals in which we can have a suitable weight function ρ which
are defined by the zeros of the polynomials σ1 and σ2. First of all, notice that since ρ should be a positive
weight function and f is negative in the intervals (−∞, a2) and (b2,∞), they are not suitable. On the other
hand, the interval (a2, b2) is also eliminated in which ρ = 0 due to PII in [1, page 5]. As a result, an OPS fails
to exist.

Let us analyse the case in Figure 1B. The positivity of ρ implies that the interval (a2, b2) should be eliminated.
On the other hand, (−∞, a2) is not suitable since ρ = 0 in (0, a2) (this situation is similar to the one described
in [1, PVI page 6]). The interval (b2,∞) coincides with 8th case of Theorem 2. Notice that ρ(qx, q)/ρ(x, q) = 1
at x0 = −τ(0, q)/τ ′(0, q) > b2, then ρ is decreasing on (x0,∞). Since f has infinite limit as x → +∞, ρ → 0 as
x → ∞. As a result, the typical shape of ρ is constructed in Figure 2 assuming a positive initial value of ρ in
each subinterval.
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2
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0

0

1

x

B

a
2

y

b
2

Figure 1: The graph of f(x, q). In A, we have Case 1 with Λq > 0 and a2 < 0 < b2, and in B, Case 2(a) with
Λq < 0 and 0 < a2 < b2.

0
0

a
2

b
2

y

x

Figure 2: The graph of ρ(x, q) associated with the case in Figure 1B.

However, it is not enough to assure that ρ satisfies the BC at +∞. In fact, even if ρ → 0 as x → ∞
we should check that σ1(x, q)ρ(x, q)x

k → 0 as x → ∞ by using instead of the q-Pearson equation (1.3), the
following extended q-Pearson equation [1]

g(x, q) :=
σ1(qx, q)ρ(qx, q)(qx)

k

σ1(x, q)ρ(x, q)xk
= qk

σ1(x, q) + (1 − q−1)xτ(x, q)

σ1(x, q)
= qk

q−1σ2(x, q)

σ1(x, q)
(3.2)

which is represented in Figure 3 for some 0 < q < 1, where k is large enough.

0

0

1

y

a
2

b
2

qk

x

Figure 3: The graph of g(x, q) corresponding to Figure 1B.

If we now provide a similar anaysis for g in (3.2), we see from Figure 3 that, g has the same property with f .
Therefore, σ1(x, q)ρ(x, q)x

k → 0 as x → ∞. That is, an OPS, to be stated in Theorem 5, on (b2,∞) supported
at the points b2q

−k for k ∈ N0 exists.
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Theorem 5 Let 0 < a2 ≤ b2 and q2Λq < 0. Let a = b2(q) be a zero of σ2(x, q) and b → ∞. Then, there exists
a sequence of polynomials (Pn)n for n ∈ N0 orthogonal on (a, b) w.r.t. the weight function (see expression 2 for
the ∅-Hermite/Jacobi case in Table 1)

ρ(x, q) = |x|α xlogq x−1(qa2/x, qa/x; q)∞, qα =
q−1 1

2σ
′′
2 (0, q)

σ1(0, q)

in the sense (2.9) of Theorem 2-8.

The OPS in Theorem 5 coincides with the case Ia1 in Chapter 11 of [7, pages 335 and 357]. In fact, a typical

example of this family is the Al-Salam-Carlitz II polynomials V
(α)
n (x; q) on (1,∞) satisfying the q-EHT with

σ1(x, q) = aq−1, σ2(x, q) = (x− a2)(x− b2),

τ(x, q) =
1

q − 1
x−

1 + a

q − 1
and λn(q) =

1

1− q
[n]q

where a2 = a, b2 = 1 in our notation [7]. The conditions q2Λq < 0 and 0 < a2 ≤ b2 give the restriction 0 < a ≤ 1

on the parameters of V
(α)
n (x; q) which is orthogonal on (1,∞) in the sense (2.9) with

d2n = (q−1 − 1)q−αn−n2

(q; q)n(q; q)∞.

In the literature, this relation is usually written as a finite sum [7, page 357].

0
0

1

x

y

Figure 4: The graph of f(x, q) in Case2(c) with Λq < 0 and a2(q), b2(q) ∈ C.

In Figure 4, the only interval is (−∞,∞) which corresponds to 10th case of Theorem 2. Notice that
ρ(qx, q)/ρ(x, q) = 1 at x0 = −τ(0, q)/τ ′(0, q), then it follows that ρ is increasing on (−∞, x0) and decreasing
on (x0,∞). Moreover, ρ → 0 as x → ∓∞ since ρ(qx, q)/ρ(x, q) → ∞. Then, there may be an OPS on
(−∞,∞). But we should analyse the extended q-Pearson equation (3.2) to check σ1(x, q)ρ(x, q)x

k → 0 as
x → ∓∞ which leads to similar figure as Figure 4. Then ρ and σ1(x, q)ρ(x, q)x

k have same property that
qσ1(x, q)ρ(x, q)x

k = σ2(q
−1x, q)ρ(q−1x, q)xk → 0 as x → ∓∞ for k ∈ N0. Thus we can find a suitable ρ on

(−∞,∞) supported at the points q∓k for k ∈ N. Therefore, we have the following theorem.

Theorem 6 Let q2Λq < 0 and a2, b2 ∈ C. Let a → −∞ and b → ∞. Then, there exists a sequence of
polynomials (Pn)n for n ∈ N0 orthogonal on (a, b) w.r.t. the weight function (see expression 1 for the ∅-
Hermite/Jacobi in Table 1)

ρ(x, q) =
1

(a−1
2 x, b−1

2 x; q)∞

in the sense (2.11) of Theorem 2-10.

The OPS in Theorem 6 corresponds to the case Ia1 in Chapter 11 and case Va2 in chapter 10 of [7, pages 335,

357, 283 and 315]. An example of this family is the discrete q−1-Hermite II polynomials h̃n(x; q) whose q-EHT
has the coefficients

σ1(x, q) = q−1, σ2(x, q) = (x− a2)(x− b2),

7



τ(x, q) =
1

q − 1
x and λn(q) =

1

1− q
[n]q

where a2 = −i, b2 = i ∈ C in our notation [7]. Discrete q−1-Hermite II polynomials are orthogonal on (−∞,∞)
with

d2n = (1− q)q−n2

(q; q)n
(q,−q,−1,−1,−q; q)∞

(i,−i,−iq, iq,−i, i, iq,−iq; q)∞

and the conditions q2Λq < 0 and a2, b2 ∈ C hold.

3.2 q-Classical ∅-Laguerre/Jacobi Polynomials

Let the coefficients σ1 and σ2 be linear and quadratic polynomials in x, respectively, such that σ1(0, q) 6= 0 and

σ2(0, q) 6= 0. If σ1 is written in terms of its roots, i.e., σ1(x, q) = σ′
1(0, q)[x− a1(q)], a1(q) = −σ1(0,q)

σ′

1
(0,q) then from

(1.2)
σ2(x, q) = (q − 1)τ ′(0, q)x2 + [qσ′

1(0, q) + (q − 1)τ(0, q)]x− qσ′
1(0, q)a1(q)

where τ ′(0, q) 6= 0 by hypothesis. Then the q-Pearson equation (1.3) takes the form

f(x, q) :=
ρ(qx, q)

ρ(x, q)
=

q−1σ2(x, q)

σ1(qx, q)
=

(1− q−1) τ ′(0,q)
σ′

1
(0,q) [x− a2(q)][x− b2(q)]

qx− a1(q)
(3.3)

provided that the discriminant denoted by ∆q,

∆q :=

[
1 +

(1− q−1)τ(0, q)

σ′
1(0, q)

]2
+ 4a1(q)(1 − q−1)

τ ′(0, q)

σ′
1(0, q)

of the quadratic polynomial in the nominator of f in (3.3) is non-zero. Note that here x = a2 and x = b2 are
roots of f which are constant multiplies of the roots of σ2. Moreover, x = q−1a1 is the vertical asymptote of
f and y = 1 is its y-intercept since σ2(0, q) = qσ1(0, q). On the other hand, the locations of the zeros of f are
introduced by the following straightforward lemma.

Lemma 7 Let Λq =
τ ′(0,q)
σ′

1
(0,q) 6= 0. Then, we have the following cases for the roots of the equation f(x, q) = 0.

Case 1. If Λq and a1(q) have opposite signs, then there are two real distinct roots with opposite signs.

Case 2. If Λq and a1(q) have same signs, then there exist three possibilities

(a) if ∆q > 0, f has two real roots with same signs

(b) if ∆q = 0, f has a double root

(c) if ∆q < 0, f has a pair of complex conjugate roots.

0

0

1

y
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q−1a
1

a
2

b
2

x

0

0

1

x

y
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q−1a
1

b
2

a
2

Figure 5: The graph of f(x, q). In A, we have Case 1 with Λq < 0 and a2 < 0 < q−1a1 < b2, and in B, we have
Case 2(a) with Λq < 0 and a2 < b2 < q−1a1 < 0.
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In Figure 5A, we first start with positivity condition of q-weight function which allows us to exclude the
intervals (−∞, a2) and (q−1a1, b2). Moreover, due to PIII in [1, page 5], (a2, q

−1a1) can not be used. On the
other hand, the interval (b2,∞) coincides with 8th case of Theorem 2. Notice that since ρ(qx, q)/ρ(x, q) = 1
at x0 = −τ(0, q)/τ ′(0, q) > b2, ρ is decreasing on (x0,∞). Moreover, Since ρ(qx, q)/ρ(x, q) has an infinite
limit as x → +∞, we have ρ → 0 as x → ∞. However, since it is infinite interval, we should check that
σ1(x, q)ρ(x, q)x

k → 0 as x → ∞ by using extended q-Pearson equation (3.2). The graph of the function
g defined in (3.2) looks like the one for f . Then the analysis of the extended q-Pearson equation leads to
σ1(x, q)ρ(x, q)x

k → 0 as x → ∞. Therefore, (b2,∞) is suitable interval to have ρ. Thus, we have the following
theorem.

Theorem 8 Let a2 < 0 < a1 < b2 and qΛq < 0. Let a = b2(q) be the zero of σ2(x, q) and b → ∞. Then, there
exists a sequence of polynomials (Pn)n for n ∈ N0 orthogonal on (a, b) w.r.t. the weight function (see the 2nd
expression of the ∅-Laguerre/Jacobi case in Table 1)

ρ(x, q) = |x|α
√
xlogq x−1 (qa2/x, qa/x; q)∞

(a1/x; q)∞
, qα =

q−2 1
2σ

′′
2 (0, q)

σ′
1(0, q)

(3.4)

in the sense (2.9) of Theorem 2-8.

The OPS in Theorem 8 coincides with the case IIa2 in Chapter 11 of [7, pages 337 and 358]. An example of
this family is the celebrated q-Meixner polynomials Mn(x; b, c; q) on (1,∞) satisfying the q-EHT with

σ1(x, q) = cq−2(x− a1), σ2(x, q) = (x− a2)(x − b2),

τ(x, q) = −
1

1− q
x+

cq−1 − bc+ 1

1− q
and λn(q) =

[n]q
1− q

(3.5)

where a1 = bq, a2 = −bc and b2 = 1 in our notation [7]. The conditions q2Λq < 0 and a2 < 0 < a1 < b2 give us
the restrictions c > 0 and 0 < b < q−1 on the parameters of Mn(x; b, c; q) which is orthogonal on (1,∞) and

d2n = (q−1 − 1)c2nq−n(2n+1)(q,−c−1q, bq; q)n
(q,−c; q)∞
(bq; q)∞

.

In the literature, this relation can be found as a finite sum [7, page 360].
In Figure 5B, the only possible interval is (q−1a1,∞) which is the one identified in Theorem 2-7. Notice that

ρ(qx, q)/ρ(x, q) = 1 at x0 = −τ(0, q)/τ ′(0, q) > q−1a1, then ρ is increasing on (q−1a1, x0) and decreasing on
(x0,∞) which leads to ρ → 0 as x → ∞ since ρ(qx, q)/ρ(x, q) → ∞. But we still need to show σ1(x, q)ρ(x, q)x

k →
0 as x → ∞ by using the extended q-Pearson equation (3.2). By applying the same procedure to the extended
q-Pearson equation (3.2) whose graph looks like the one for f , we get σ1(x, q)ρ(x, q)x

k → 0 as x → ∞.
Consequently, we have a suitable ρ on the interval (a1,∞) supported at the points a1q

k and q∓k for k ∈ N0.

Theorem 9 Let a2 ≤ b2 < a1 < 0, qΛq < 0. Let a = a1 be a zero of σ1(x, q) and b → ∞. Then, there exists a
sequence of polynomials (Pn)n for n ∈ N0 orthogonal on (a, b) w.r.t. the weight function (see the 1st expression
of the ∅-Laguerre/Jacobi case in Table 1)

ρ(x, q) =
(a−1qx; q)∞

(a−1
2 x, b−1

2 x; q)∞

in the sense (2.8) of Theorem 2-7 with

d2n = (1− q)q−n(2n−1)
(
a2b2a

−1
1

)2n
(q, a−1

2 a1, b
−1
2 a1; q)n

(q, a1, qa
−1
1 , a−1

2 b−1
2 a1, qa2b2a

−1
1 ; q)∞

(a−1
2 a1, b

−1
2 a1, a

−1
2 , b−1

2 , qa2, qb2; q)∞
. (3.6)

The OPS in Theorem 9 coincides with the case VIa2 in Chapter 10 of [7, pages 285 and 315]. This case leads
to the new orthogonality relation on the interval (a1,∞)

∫ ∞

a1

(a−1qx; q)∞

(a−1
2 x, b−1

2 x; q)∞
Pn(x)qPm(x)qdqx = d2nδmn, a2 < b2 < q−1a1 < 0, (3.7)

where d2n is given by (3.6) and coincide with the value [7, page 316]. Note that this family does not appear in
the q-Askey scheme [7, 8].
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Figure 6: The graph of f(x, q) in Case 2(a). In A, we have Λq < 0 and q−1a1 < 0 < a2 < b2 and in B, Λq > 0
and 0 < a2 < b2 < q−1a1.

In Figure 6A, the only possible interval is (b2,∞). An analogous analysis as the one that has been done for
the case in Figure 5A yields ρ → 0 as x → ∞. Moreover, since from (3.2) σ1(x, q)ρ(x, q)x

k → 0 as x → ∞ for
k ∈ N0, then there exists a q-weight function on (b2,∞) supported at the points b2q

−k for k ∈ N0. Thus we
have the following result.

Theorem 10 Let q−1a1 < 0 < a2 ≤ b2 and qΛq < 0. Let a = b2 be the zero of σ2(x, q) and b → ∞. Then,
there exists a sequence of polynomials (Pn)n for n ∈ N0 orthogonal on (a, b) w.r.t. the weight function (3.4)
(see Theorem 8) in the sense (2.9) of Theorem 2-8.

A typical example of this family is the q-Meixner polynomials whose q-EHT has the coefficients (3.5) where
a1 = bq, a2 = −bc and b2 = 1 in our notation [7]. This is an interesting set of q-Meixner polynomials having
the same orthogonality properties which is defined under the new restrictions c > 0, b < 0 and 0 < −bc ≤ 1 on
the parameters.

In Figure 6B, the only possible interval is (b2, q
−1a1) which concides with 4th case of Theorem 2. In fact,

ρ(qx, q)/ρ(x, q) = 1 at b2 < x0 = −τ(0, q)/τ ′(0, q) < q−1a1, then ρ is increasing on (b2, x0) and decreasing on
(x0, q

−1a1). Moreover, ρ(qb2, q) = 0 and ρ(q−1a1, q) = 0 since ρ(qb2, q)/ρ(b2, q) = 0 and ρ(qx, q)/ρ(x, q) → ∞
as x → q−1a−1 . Therefore, there is an OPS on (qb2, a1) with a weight function supported at the points a1q

k, or
equivalently, an OPS defined on (b2, q

−1a1) with a weight function supported at b2q
−k for k ∈ N0 exists.

Theorem 11 Let 0 < a2 ≤ b2 < a1 and qΛq > 0. Let a = qb2 be the zero of σ2(q
−1x, q) and b = a1 of σ1(x, q).

Then, there exists a sequence of polynomials (Pn)n for n ∈ N0 orthogonal on (a, b) w.r.t. the weight function
(see the 3th expression of ∅-Laguerre/Jacobi in Table 1)

ρ(x, q) = |x|α xlogq x(qb−1x, qa2/x, a/x; q)∞, qα = −
q−2 1

2σ
′′
2 (0, q)

σ′
1(0, q)b

in the sense (2.7) of Theorem 2-4.

The OPS in Theorem 11 coincides with the case IIb1 in Chapter 11 of [7, pages 337 and 361]. An example of
this family is the quantum q-Kravchuk polynomials Kqtm

m (x; p,N ; q) satisfying the q-EHT with the coefficients

σ1(x, q) = −q−2(x − a1), σ2(x, q) = p(x− a2)(x − b2),

τ(x, q) = −
p

1− q
x+

p− q−1 + q−N−1

1− q
and λn(q) =

p

1− q
[n]q

where a1 = q−N , a2 = p−1q−N−1 and b2 = 1. The conditions qΛq > 0 and 0 < a2 ≤ b2 < a1 give the restriction
p ≥ q−N−1 on the parameter of Kqtm

m (x; p,N ; q) which forms an orthogonal set on (1, q−N−1) with

d2n = (q−1 − 1)
1

(p−1q−N ; q)N
p−2nq−n(2n+1)(q, pq, q−N ; q)n(q, p

−1q−N , qN+1; q)∞.

In the literature, this relation can be found as a finite sum [7, page 362].
In Figure 7, (q−1a1,∞) is the only interval where f is positive. Notice that the graphs of f in the interval

(q−1a1,∞) in Figures 7 and 5B have the same behaviour. Then, the analysis of Figure 5B is valid for this case
and therefore there exists a suitable ρ on (q−1a1,∞). Thus, we have the following theorem.
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Figure 7: The graph of f(x, q) in Case 2(c) with Λq < 0 and a1 < 0, a2, b2 ∈ C.

Theorem 12 Let a1 < 0, a2, b2 ∈ C and qΛq < 0. Let a = a1 be the zero of σ1(x, q) and b → ∞. Then,
there exists a sequence of polynomials (Pn)n for n ∈ N0 orthogonal on (a, b) w.r.t. the weight function given in
Theorem 9, with d2n defined by (3.6), (see the relation (3.7)).

Notice that the orthogonality relation of this OPS is analogous to the one defined in Theorem 9 but in this case
the zeros of σ2 a2, b2 are complex numbers.

For the two cases listed below the OPS fails to exist.

Case 1. Λq > 0 and q−1a1(q) < a2(q) < 0 < b2(q) and Case 2(a). Λq > 0 and 0 < a2(q) < q−1a1(q) < b2(q).

3.2.1 q-Classical ∅-Jacobi/Laguerre Polynomials

Let the coefficients σ1 and σ2 be quadratic and linear polynomials in x, respectively, such that σ1(0, q) 6= 0 and
σ2(0, q) 6= 0. If σ1 is written in terms of its roots, i.e., σ1(x, q) =

1
2σ

′′
1 (0, q)[x− a1(q)][x− b1(q)], then from (1.2)

σ2(x, q) = σ′
2(0, q)x+ σ2(0, q) where

σ′
2(0, q) = −q

[
1
2σ

′′
1 (0, q)[a1(q) + b1(q)]− (1− q−1)τ(0, q)

]
6= 0 and σ2(0, q) = q 1

2σ
′′
1 (0, q)a1(q)b1(q) 6= 0

provided that τ ′(0, q) = −
1
2σ

′′
1 (0, q)

(1−q−1) . Therefore, the q-Pearson equation (1.3) takes the form

f(x, q) :=
ρ(qx, q)

ρ(x, q)
=

−
[
a1(q) + b1(q) −

(1−q−1)τ(0,q)
1
2σ

′′
1 (0, q)

]
[x− a2(q)]

[qx− a1(q)][qx− b1(q)]

where
[
a1(q) + b1(q) −

(1−q−1)τ(0,q)
1
2σ

′′
1 (0, q)

]
a2(q) = a1(q)b1(q). Let us point out that f(x, q) intercepts the y-axis at

the point y = 1 since σ2(0, q) = qσ1(0, q). On the other hand, we have the following cases according as the sign
of zeros of σ1 and Λq defined as

Λq :=
[
a1(q) + b1(q)−

(1− q−1)τ(0, q)
1
2σ

′′
1 (0, q)

]
,

Case 1. Λq < 0 with a1 < 0 < b1, Case 2. Λq > 0 with 0 < a1 < b1, Case 3. Λq < 0 with 0 < a1 < b1.

In Figure 8A, the only possible interval is (q−1a1, q
−1b1) which is the one described in Theorem 2-1. In

fact, ρ(qx, q)/ρ(x, q) = 1 at q−1a1 < x0 = −τ(0, q)/τ ′(0, q) < q−1b1, Then, ρ is increasing on (q−1a1, x0) and
decreasing on (x0, q

−1b1). Moreover, ρ → 0 as x → q−1a+1 and x → q−1b−1 since ρ(qx, q)/ρ(x, q) → ∞. Then
there exists an OPS to be stated in Theorem 13 on (a1, b1) w.r.t. a ρ supported at the points x = qka1 and
x = qkb1 for k ∈ N0.
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Figure 8: The graph of f(x, q). In A, we have Case 1 with Λq < 0 and q−1a1 < 0 < q−1b1 < a2 and in B,
Case 2 with Λq > 0 and 0 < q−1a1 < a2 < q−1b1.

Theorem 13 Let a1 < 0 < b1 < a2 and q2Λq < 0. Let a = a1 and b = b1 be the zeros of σ1(x, q). Then,
there exists a sequence of polynomials (Pn)n for n ∈ N0 w.r.t. weight function (see the 1st expression of the
∅-Jacobi/Laguerre case in Table 1)

ρ(x, q) =
(qa−1x, qb−1x; q)∞

(a−1
2 x; q)∞

in the sense (2.4) of Theorem 2-1.

The OPS in Theorem 13 coincides with the case VIIa1 in Chapter 10 of [7, pages 292 and 318]. A typical
example of this family is the big q-Laguerre polynomials Pn(x; a, b; q) satisfying the q-EHT with

σ1(x, q) = q−2(x− a1)(x − b1), σ2(x, q) = −abq(x− a2),

τ(x, q) = −
q−1

q − 1
x+

a+ b− abq

q − 1
and λn(q) =

q−n

q − 1
[n]q

where a1 = bq, b1 = aq and a2 = 1. The conditions q2Λq < 0 and a1 < 0 < b1 < a2 give the restrictions b < 0
and 0 < a < q−1 on the parameters of Pn(x; a, b; q) which is orthogonal on (bq, aq) with

d2n = (a− b)q(1− q)(−ab)nqn(n+3)/2(q; q)n(aq, bq; q)n
(q, a−1bq, ab−1q; q)∞

(aq, bq; q)∞
.

In Figure 8B, the only possible interval is (a2, q
−1b1) which coincides with the one described by Theorem

2-4. Notice that ρ(qx, q)/ρ(x, q) = 1 at a2 < x0 = −τ(0, q)/τ ′(0, q) < q−1b1. Thus, ρ is increasing on (a2, x0)
and decreasing on (x0, q

−1b1). Moreover, ρ(qa2, q) = 0 and ρ → 0 as x → q−1b−1 since ρ(qa2, q)/ρ(a2, q) = 0
and ρ(qx, q)/ρ(x, q) → ∞ as x → q−1b−1 . Therefore, (qa2, b1) is suitable interval in which we have a positive ρ.

Theorem 14 Let 0 < a1 < a2 < b1 and q2Λq > 0. Let a = qa2 be the zero of σ2(q
−1x, q) and b = b1 of σ1(x, q).

Then, there exists a sequence of polynomials (Pn)n for n ∈ N0 orthogonal on (a, b) w.r.t. the weight function
(see the 2nd expression of the ∅-Jacobi/Laguerre case in Table 1)

ρ(x, q) = |x|α
(a/x, qb−1x; q)∞
(a1(q)/x; q)∞

, qα = −
q−2σ′

2(0, q)
1
2σ

′′
1 (0, q)b

in the sense (2.7) of Theorem 2-4.

The OPS in Theorem 14 coincides with the case IIIb3 in Chapter 11 of [7, pages 343 and 363]. An example of
this family is the affine q-Kravchuk polynomialsKAff

n (x; p,N ; q) on (1, q−N−1) whose q-EHT has the coefficients

σ1(x, q) = q−1(x− a1)(x − b1), σ2(x, q) = −pq1−N(x − a2),

τ(x, q) =
1

1− q
x−

pq + q−N − pq1−N

1− q
and λn(q) =

1

q − 1
[n]q−1
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where a1 = pq, b1 = q−N and a2 = 1. The conditions q2Λq > 0 and 0 < a1 < a2 < b1 give the restriction
0 < p < q−1 on the parameter of KAff

n (x; p,N ; q) which forms an orthogonal set on (1, q−N−1) with

d2n = (−1)npn−N (q−1 − 1)q−N(n+1)qn(n+1)/2(q, pq, q−N ; q)n
(q, qN+1; q)∞

(pq; q)∞
.

In the literature, this relation can be found as a finite sum [7, page 364].
The following four cases listed below fail to define an OPS.

Case 1. Λq < 0 and q−1a1 < 0 < a2 < q−1b1, Case 2. Λq > 0 and 0 < q−1a1 < q−1b1 < a2, Case 2. Λq > 0
and 0 < a2 < q−1a1 < q−1b1 and Case 3. Λq < 0 and a2 < 0 < q−1a1 < q−1b1.

3.2.2 q-Classical ∅-Jacobi/Hermite Polynomials

Let the coefficients σ1 and σ2 be quadratic and constant polynomials in x, respectively, such that σ1(0, q) 6= 0
and σ2(0, q) 6= 0. If σ1 can be written in terms of its roots, i.e., σ1(x, q) =

1
2σ

′′
1 (0, q)[x− a1(q)][x− b1(q)], then,

from (1.2)
σ2(x, q) = σ2(0, q) = q 1

2σ
′′
1 (0, q)a1(q)b1(q)

provided that (1 − q−1)τ ′(0, q) = − 1
2σ

′′
1 (0, q) and (1 − q−1)τ(0, q) = 1

2σ
′′
1 (0, q)[a1(q) + b1(q)]. Therefore, the

q-Pearson (1.3) becomes

f(x, q) :=
ρ(qx, q)

ρ(x, q)
=

a1(q)b1(q)

[qx− a1(q)][qx − b1(q)]
.

Notice that the point y = 1 is y-intercept of f . In a similar fashion as before, we introduce the following two
cases.

Case1. a1(q) < 0 < b1(q). Case 2. 0 < a1(q) < b1(q).
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Figure 9: The graph f(x, q) in A, we have Case 1. and in B, Case 2.

In Figure 9A, the only possible interval is (q−1a1, q
−1b1) which coincides with Theorem 2-1. Notice that

ρ(qx, q)/ρ(x, q) = 1 at q−1a1 < x0 = −τ(0, q)/τ ′(0, q) < q−1b1. Then, ρ is increasing on (q−1a1, x0) and
decreasing on (x0, q

−1b1). Moreover, ρ → 0 as x → q−1a+1 and x → q−1b−1 since ρ(qx, q)/ρ(x, q) → ∞. It is
obvious that BC holds at x = a1(q) and x = b1(q). Then there exists an OPS with positive q-weight function
on (a1, b1), as it is stated in the following theorem.

Theorem 15 Let a1 < 0 < b1. Let a = a1 and b = b1 be the zeros of σ1(x, q). Then, there exists a sequence of
polynomials (Pn)n for n ∈ N0 orthogonal on (a, b) w.r.t. the weight function (see the ∅-Jacobi/Hermite case in
Table 1)

ρ(x, q) = (qa−1x, qb−1x; q)∞ > 0, x ∈ (a, b)

in the sense (2.4) of Theorem 2-1.

The OPS in Theorem 15 coincides with the case Ia1 in Chapter 11 of [7, pages 335 and 357]. An example of

this family is Al-Salam-Carlitz I polynomials U
(a)
n (x; q) on (a, 1) satisfying the q-EHT with the coefficients

σ1(x, q) = q−1(x − a1)(x− b1), σ2(x, q) = a,
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τ(x, q) =
1

1− q
x−

1 + a

1− q
and λn(q) =

q1−n

q − 1
[n]q

where a1 = a and b1 = 1. The conditions a1 < 0 < b1 give the restriction a < 0 on the parameter of U
(a)
n (x; q)

which forms an orthogonal set on (a, 1) with

d2n = (−a)nq(
n
2
)(1− q)(q; q)n(q, a, a

−1q; q)∞.

Another example of this family is the discrete q-Hermite I polynomials which are special case of Al-Salam-
Carlitz I polynomials (see [8] for further details). Finally, let us mention that the case represented in Figure 9B
is inappropriate to define an OPS.

3.2.3 q-Classical 0-Laguerre/Jacobi Polynomials

Let σ1 and σ2 be linear and quadratic polynomials in x, respectively, such that σ2(0, q) = qσ1(0, q) = 0. If
σ1(x, q) = σ′

1(0, q)x, then from (1.2), σ2(x, q) =
1
2σ

′′
2 (0, q)x

2 + σ′
2(0, q)x where

1
2σ

′′
2 (0, q) = q(1 − q−1)τ ′(0, q) 6= 0 and σ′

2(0, q) = q[σ′
1(0, q) + (1− q−1)τ(0, q)] 6= 0

provided that (1 − q−1)τ(0, q) 6= −σ′
1(0, q). For this case the q-Pearson equation reads

f(x, q) :=
ρ(qx, q)

ρ(x, q)
= q−1(1− q−1)

τ ′(0, q)

σ′
1(0, q)

[x− a2(q)] (3.8)

where −(1− q−1) τ ′(0,q)
σ′

1
(0,q)a2(q) = 1 + (1−q−1)τ(0,q)

σ′

1
(0,q) . Let us point out that f intercepts y-axis at the point

y := y0 = q−1

[
1 +

(1− q−1)τ(0, q)

σ′
1(0, q)

]
.

Notice that for the zero cases one of the boundary of (a, b) interval could be zero. Therefore it is convenient
to know the behaviour of ρ at the point x = 0.

Lemma 16 If 0 < y0 < 1, then ρ(x, q) → 0 as x → 0. Otherwise it diverges to ∓∞.

Proof: From (3.8) it follows that

ρ(qkx, q) = q−k

[
1 +

(1− q−1)τ(0, q)

σ′
1(0, q)

]k
(x/a2(q); q)kρ(x, q)

where the result follows by iterating. �

The following cases according to the signs of the zero of σ2 and Λq := τ ′(0,q)
σ′

1
(0,q) together with y0 < 1, y0 > 1

follow:

Case 1. Λq > 0, a2 > 0 and y0 > 1, Case 2. Λq < 0, a2 < 0 and 0 < y0 < 1, Case 3. Λq < 0, a2 > 0 and
y0 < 0.

The Case 1, do not lead to any OPS. Case 2-3 are introduced in Figure 10. In Figure 10A, the only
possible interval is (0,∞) which concides with 9th case of Theorem 2. Notice that ρ(qx, q)/ρ(x, q) = 1 at
x0 = −τ(0, q)/τ ′(0, q) > 0. Then ρ is increasing on (0, x0) and decreasing on (x0,∞). Furthermore, ρ → 0 as
x → 0+ by Lemma 16 since 0 < y0 < 1 and ρ → 0 as x → ∞ since ρ(qx, q)/ρ(x, q) → ∞. Therefore, it could
be possible to have a suitable ρ on (0,∞). But we need to check σ1(x, q)ρ(x, q)x

k → 0 as x → ∞ for k ∈ N0 by
using extended q-Pearson equation (3.2). It is clear from (3.2) that graph of the function g defined in (3.2) looks
like the one represented in Figure 10A with y-intercept, 0 < qk+1y0 < 1, k ∈ N0. Thus σ1(x, q)ρ(x, q)x

k → 0 as
x → ∞ for k ∈ N0 and therefore, there exists an OPS on (0,∞) which is established in the next theorem.

Theorem 17 Let qΛq < 0, a2 < 0 and 0 < qy0 < 1. Let a = 0 and b → ∞. Then, there exists a sequence
of polynomials (Pn)n for n ∈ N0 orthogonal on (a, b) w.r.t. the weight function (see the 1st expression of the
0-Laguerre/Jacobi case in Table 1)

ρ(x, q) = |x|α
1

(a−1
2 x; q)∞

, qα = −
q−2 1

2σ
′′
2 (0, q)a2

σ′
1(0, q)

in the sense (2.10) of Theorem 2-9.
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Figure 10: The graph of f(x, q) in A, we have Case 2. and in B, Case 3.

The OPS in Theorem 17 coincides with the case IIIa2 in Chapter 10 of [7, pages 272 and 309]. An example of

this family is the q-Laguerre polynomials L
(α)
n (x; q) on (0,∞) whose q-EHT has the coefficients

σ1(x, q) = q−2x, σ2(x, q) = qαx(x − a2),

τ(x, q) = −
qα

1− q
x+

q−1 − qα

1− q
and λn(q) = [n]q

qα

1− q

where a2 = −1. The conditions qΛq < 0, a2 < 0 and 0 < qy0 < 1 result in the restriction α > −1 on the

parameter of L
(α)
n (x; q) which forms an orthogonal set on (0,∞) with

d2n =
1

2
q−n(1− q)

(qα+1; q)n
(q; q)n

(q,−qα+1,−q−α; q)∞
(qα+1,−q,−q; q)∞

.

In Figure 10B, the positivity of ρ enables us to skip the intervals (−∞, 0) and (0, a2). So the only in-
terval is (a2,∞) which is the one described in Theorem 2-8. Notice that ρ(qx, q)/ρ(x, q) = 1 at x0 =
−τ(0, q)/τ ′(0, q) > a2. Therefore, ρ is increasing on (a2, x0) and decreasing on (x0,∞). Moreover, ρ(qa2, q) = 0
since ρ(qa2, q)/ρ(a2, q) = 0 and ρ → 0 as x → ∞ since ρ(qx, q)/ρ(x, q) → ∞. Furthermore, since the
graph of the function g defined in (3.2) looks like the one represented in Figure 10B one can conclude that
σ1(x, q)ρ(x, q)x

k → 0 as x → ∞ for k ∈ N0 and therefore we have the following theorem.

Theorem 18 Let qΛq < 0, a2 > 0 and qy0 < 0. Let a = a2 be the zero of σ2(x, q) and b → ∞. Then, there
exists a sequence of polynomials (Pn)n for n ∈ N0 orthogonal on (a, b) w.r.t. the weight function (see the 2nd
expression of the 0-Laguerre/Jacobi case in Table 1)

ρ(x, q) = |x|α
√
xlogq x−1(qa/x; q)∞, qα =

q−2 1
2σ

′′
2 (0, q)

σ′
1(0, q)

in the sense (2.9) of Theorem 2-8.

The OPS in Theorem 18 coincides with the case IIa2 in Chapter 11 of [7, pages 337 and 358]. An example of
this family is the q-Charlier polynomials Cn(x; a; q) on (1,∞) satisfying the q-EHT with the coefficients

σ1(x, q) = aq−2x, σ2(x, q) = x(x− a2),

τ(x, q) = −
1

1− q
x+

a+ q

(1− q)q
and λn(q) = [n]q

1

1− q

where a2 = 1. The conditions qΛq < 0, a2 > 0 and qy0 < 0 give the restriction a > 0 on the parameter of
Cn(x; a; q) which is orthogonal on (1,∞) with

d2n = a2nq−n(2n+1)(−a−1q, q; q)n(−a, q; q)∞.

In the literature, this relation can be found as a finite sum [7, page 360].
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3.2.4 q-Classical 0-Laguerre/Bessel Polynomials

Let σ1 and σ2 be linear and quadratic polynomials in x, respectively, such that σ2(0, q) = qσ1(0, q) = 0.
If σ1(x, q) = σ′

1(0, q)x, then, from (1.2) σ2(x, q) = 1
2σ

′′
2 (0, q)x

2 = q(1 − q−1)τ ′(0, q)x2 provided that (1 −
q−1)τ(0, q) = −σ′

1(0, q). As a result, q-Pearson equation becomes

f(x, q) :=
ρ(qx, q)

ρ(x, q)
= q−1(1 − q−1)

τ ′(0, q)

σ′
1(0, q)

x.

Let us point out that f intercepts y-axis at the point y := y0 = 0. According to the sign of Λq := τ ′(0,q)
σ′

1
(0,q) we

have only one possible case.

0

0

1

y

x

Figure 11: The graph of f(x, q) with Λq < 0, a2 = 0.

From Figure 11 it follows that (0,∞) is the only possible interval and it coincides with the one described in
Theorem 2-9. Notice that ρ(qx, q)/ρ(x, q) = 1 at x0 = −τ(0, q)/τ ′(0, q) > 0. Then, ρ is increasing on (0, x0)
and decreasing on (x0,∞). Moreover, by use of the extended q-Pearson equation (3.2) it is straightforward to
see that σ1(x, q)ρ(x, q)x

k → 0 as x → +∞. Thus, the following theorem holds.

Theorem 19 Let qΛq < 0, a2 = 0 and qy0 = 0. Let a = 0 and b → ∞. Then, there exists a sequence of
polynomials (Pn)n for n ∈ N0 orthogonal on (a, b) w.r.t. the weight function (see the 0-Laguerre/Jacobi case in
Table 1)

ρ(x, q) = |x|α
√
xlogq x−1, qα =

q−2 1
2σ

′′
2 (0, q)

σ′
1(0, q)

in the sense (2.10) of Theorem 2-9.

The OPS in Theorem 19 coincides with the case IIIa2 in Chapter 10 of [7, pages 272 and 309]. An example of
this family is Stieltjes-Wigert polynomials Sn(x; q) on (0,∞) whose q-EHT has the coefficients

σ1(x, q) = q−2x, σ2(x, q) = x2,

τ(x, q) = −
1

1− q
x+

1

(1− q)q
and λn(q) = [n]q

1

1− q

where a2 = 0. The conditions qΛq < 0, a2 = 0 and qy0 = 0 are satisfied for Sn(x; q) which forms an orthogonal
set on (0,∞) in the sense (2.10) with

d2n = q−n(1− q)
(−tq,−1/t, q; q)∞

(q2; q)n
.

3.2.5 q-Classical 0-Jacobi/Bessel Polynomials

Let σ1 and σ2 be quadratic polynomials in x, respectively, such that σ2(0, q) = qσ1(0, q) = 0. If σ1(x, q) =
1
2σ

′′
1 (0, q)x[x − a1(q)],

τ ′(0,q)
1
2σ

′′
1 (0, q)

6= − 1
(1−q−1) and τ(0,q)

1
2σ

′′
1 (0, q)

= a1(q)
(1−q−1) , then from (1.2) we have σ2(x, q) =
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1
2σ

′′
2 (0, q)x

2 = q
[
1
2σ

′′
1 (0, q) + (1− q−1)τ ′(0, q)

]
x2. As a result, the q-Pearson equation (1.3) becomes

f(x, q) :=
ρ(qx, q)

ρ(x, q)
=

[
1 + (1−q−1)τ ′(0,q)

1
2σ

′′
1 (0, q)

]
x

q[qx− a1(q]
.

Let us point out that y = Λq := q−2

[
1 + (1−q−1)τ ′(0,q)

1
2σ

′′
1 (0, q)

]
6= 0, is the horizontal asymptote of f(x, q) and the

point y := y0 = 0 is always its y-intercept. Hence, we have the following two cases:

Case 1. Λq > 0 and a1 > 0 and Case 2. Λq < 0 and a1 > 0.

0

0

1

y

x
q−1a

1

Figure 12: The graph of f(x, q) in Case 2.

The Case 1 with Λq > 1 and 0 < Λq < 1 do not lead to any OPS. The Case 2 is represented in Figure 12
from where it follows that the only possible interval is (0, q−1a1) which is the one defined in Theorem 2-2-3.
Notice also that ρ(qx, q)/(x, q) = 1 at 0 < x0 = −τ(0, q)/τ ′(0, q) < q−1a1. Then, ρ is increasing on (0, x0)
and decreasing on (x0, q

−1a1). Moreover, ρ → 0 as x → 0+ and x → q−1a−1 since ρ(qx, q)/(x, q) → 0 and
ρ(qx, q)/(x, q) → ∞, respectively. Then, there exists an OPS with a suitable ρ defined on (0, a1) supported at
the points a1q

k for k ∈ N0 and the following theorem holds.

Theorem 20 Let q2Λq < 0 and a1 > 0. Let a = 0 and b = a1 be the zeros of σ1(x, q). Then, there exists a
sequence of polynomials (Pn)n for n ∈ N0 orthogonal on (a, b) w.r.t. the weight function (see the 0-Jacobi/Bessel
case in Table 1)

ρ(x, q) = |x|α
√
xlogq x−1(b−1qx; q)∞, qα = −

q−2 1
2σ

′′
2 (0, q)

1
2σ

′′
1 (0, q)b

in the sense (2.5) (or (2.6)) of Theorem 2-2-3.

The OPS in Theorem 20 coincides with the case IVa5 in Chapter 10 of [7, pages 278 and 313]. An example of this
family is the Alternative q-Charlier polynomials Kn(x; a; q) on (0, 1) satisfying the q-EHT with the coefficients

σ1(x, q) = −q−2x(x− a1), σ2(x, q) = ax2,

τ(x, q) = −
1 + aq

(1− q)q
x+

1

(1− q)q
and λn(q) = q−n[n]q

1 + aqn

1− q

where a1 = 1. The conditions q2Λq < 0 and a1 > 0 give the restriction a > 0 on the parameter of Kn(x; a; q)
which forms an orthogonal set on (0, 1) with

d2n = anqn(3n−1)/2(−aq, q; q)∞
(q,−a; q)n

(−a,−aq; q)2n
.

In the literature, this relation can be found as a finite sum [7, page 314].
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3.2.6 q-Classical 0-Jacobi/Laguerre Polynomials

Let σ1 and σ2 be quadratic and linear polynomials in x, respectively, such that σ2(0, q) = qσ1(0, q) = 0. If

σ1(x, q) = 1
2σ

′′
1 (0, q)x[x − a1(q)] and

τ ′(0,q)
1
2σ

′′
1 (0, q)

= − 1
(1−q−1) , then from (1.2) we get σ2(x, q) = σ′

2(0, q)x =

q
[
(1 − q−1)τ(0, q)− 1

2σ
′′
1 (0, q)a1(q)

]
x. Therefore, the q-Pearson equation has the form

f(x, q) :=
ρ(qx, q)

ρ(x, q)
=

(1 − q−1) τ(0,q)
1
2σ

′′
1 (0, q)

− a1(q)

q[qx− a1(q]
.

Notice that y = 0 is the horizontal asymptote of the function f(x, q) and its yintercept is

y := y0 = q−1

[
1−

(1− q−1)

a1(q)

τ(0, q)
1
2σ

′′
1 (0, q)

]
.

We have the following two cases: Case 1. y0 > 0 and a1 > 0, Case 2. y0 < 0 and a1 > 0.

0

0 x

1

y

A

q−1a
1

0

0

1

x

y

B

q−1a
1

Figure 13: The graph of f(x, q) in Case 1. In A, we have y0 > 1 and a1 > 0 and in B, 0 < y0 < 1 and a1 > 0.

The Case 1 represented in Figure 13A as well as the Case 2 do not yield any OPS. From Figure 13B, it
follows that the only possible interval is (0, q−1a1) which coincides with 2nd and 3th cases of Theorem 2. A
completely similar analysis as the one done in the previous case allows us to conclude that in (0, a1) an OPS
can be defined which is orthogonal w.r.t. a suitable ρ supported at the points qka1 for k ∈ N0. I.e., we have
the following Theorem.

Theorem 21 Let a1 > 0 and 0 < qy0 < 1. Let a = 0 and b = a1 be the zeros of σ1(x, q). Then, there
exists a sequence of polynomials (Pn)n for n ∈ N0 orthogonal on (a, b) w.r.t. the weight function (see the
0-Jacobi/Laguerre case in Table 1)

ρ(x, q) = |x|α (b−1qx; q)∞, qα = −
q−2 1

2σ
′′
2 (0, q)

1
2σ

′′
1 (0, q)b

in the sense (2.5) (or (2.6)) of Theorem 2-2-3.

The OPS in Theorem 21 coincides with the case IVa4 in Chapter 10 of [7, pages 278 and 312]. An example
of this family is the little q-Laguerre (Wall) polynomials Pn(x;α|q) on (0, 1) satisfying the q-EHT with the
coefficients

σ1(x, q) = q−2x(a1 − x), σ2(x, q) = ax,

τ(x, q) = −
1

(1− q)q
x+

1− aq

(1− q)q
and λn(q) =

q−n

1− q
[n]q

where a1 = 1. The conditions 0 < qy0 < 1 and a1 > 0 give the restriction 0 < a < q−1 on the parameter of
Pn(x;α|q) which is orthogonal on (0, 1) with

d2n = q(α+n)n (q; q)∞
(qα+1; q)∞

(q, qα+1; q)n, qα = a.

In the literature, this relation can be found as a finite sum [7, page 312].
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[1] R. Álvarez-Nodarse, R. Sevinik-Adıgüzel, and H. Taşeli, On the orthogonality of q-classical polynomials of
the Hahn class I, Preprint 2011. arXiv:1107.2423 (http://arxiv.org/abs/1107.2423)
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