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Guanajuato, GTO 36240, Mexico; e-mail: kevei@cimat.mx

Abstract

We investigate the inhomogeneous Galton–Watson processes with
immigration, where ρn the offspring means in the nth generation tends
to 1. We show that if the second derivatives of the offspring generating
functions go to 0 rapidly enough, then the asymptotics are the same as
in the INAR(1) case, treated in [4]. We also determine the limit if this
assumption does not hold showing the optimality of the conditions.
AMS Subject Classification (2000): 60J80.
Keywords: nearly critical Galton–Watson process; immigration; com-
pound Poisson distribution; negative binomial distribution.

1 Introduction

Let X0 = 0 and consider the following inhomogeneous Galton–Watson pro-
cess with immigration:

Xn =

Xn−1
∑

j=1

ξn,j + εn,

where {ξn,j, εn : n, j ∈ N} are independent nonnegative integer valued ran-
dom variables such that {ξn,j : j ∈ N} are identically distributed. If the
offspring distribution is Bernoulli distribution, that is each particle either

1The research was supported by the Analysis and Stochastics Research Group of The
Hungarian Academy of Sciences.
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dies without descendant or leaves exactly one descendant, we obtain the so-
called first order integer-valued autoregressive (INAR(1)) time series. We
assume that the process is nearly critical, that is

Eξn,1 = ρn ↑ 1 as n → ∞.

We note here that in the followings any non-specified limit relation is meant
as n → ∞.

The theory of branching processes is used to model the evolution of pop-
ulations whose members live, reproduce and die independently of each other.
Its first appearance was motivated by the problem of extinction probability
of the family names in the British peerage. The problem was addressed by
Francis Galton in 1873 and solved by Henry Watson in 1874. Since then
the theory is developing to model more complex systems, and now branching
processes play an important role in models of genetics, molecular biology,
physics and computer science. Therefore we do not even try to give a com-
prehensive bibliography. As a main reference on branching processes we refer
to the classical book of Athreya and Ney [1]. For some recent application of
INAR models and branching processes see [4].

The aim of the present paper is to investigate the asymptotic properties
of nearly critical Galton–Watson processes with immigration under general
offspring distribution, and thus extend the results in the INAR(1) case by
Györfi, Ispány, Pap and Varga [4], by dropping the restrictive condition of
Bernoulli offsprings.

Section 2 contains all the results and the discussions. In subsection 2.1
we investigate the case which is parallel to the results in [4]. Here we assume
that the variance of the offsprings tends to 0 with a prescribed rate, and
thus in a clear sense the offsprings are ‘almost’ Bernoulli random variables.
The methods here are similar the ones in [4], however we emphasize that the
proofs are necessarily more difficult, since we do not have a closed form for
the generating functions even in the case of Bernoulli immigration. Subsec-
tion 2.2 deals with a significantly different case, when the second derivatives
also contribute to the limit distribution, and so the proofs need new ideas.
Subsection 2.3 contains the case, when ρn → 1 very fast. Finally, in subsec-
tion 2.4 we consider the case of linear fractional generating functions. This
example is very important because of the explicit computations. All the
proofs are placed in section 3.
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2 Results and discussion

Introduce the generating functions

Fn(x) = ExXn , Gn(x) = Exξn,1 , Hn(x) = Exεn , x ∈ [0, 1].

Using the branching property we obtain the basic recursion for Fn:

Fn(x) = E
[

x
∑Xn−1

i=1 ξn,i+εn
]

= E

[

E

(

x
∑Xn−1

i=1 ξn,i+εn

∣

∣

∣

∣

Xn−1

)]

= E
[

Gn(x)
Xn−1

]

Hn(x) = Fn−1(Gn(x))Hn(x).

Introduce the following notation: Gn+1,n(x) = x and if Gj+1,n(x) is defined
for j ≤ n then

Gj,n(x) = (Gj◦ . . . ◦Gn) (x) = Gj(Gj+1,n(x)).

With this notation the induction above gives the formula

Fn(x) =

n
∏

j=1

Hj(Gj+1,n(x)). (1)

According to the continuity theorem for discrete random variables ([2]
p. 280) for proving a limit theorem we have to show that Fn(x) converges as
n → ∞ for all x ∈ (0, 1), and the limit function is the generating function
of the limit distribution. Since for fix j the function Hj(Gj+1,n(x)) ∼ 1, we
introduce the corresponding generating function

F̃n(x) =

n
∏

j=1

eHj(Gj+1,n(x))−1 = exp

{

n
∑

j=1

(Hj(Gj+1,n(x))− 1)

}

,

which is easier to handle, because of its exponential form. This is a kind of
accompanying law of Xn. So for proving a limit theorem we have to check
the following two conditions:

(a) Fn(x)− F̃n(x) → 0 for all x ∈ (0, 1), and

(b) the limit limn→∞ F̃n(x) exists for all x ∈ (0, 1), and the limit function
is a generating function.
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Also note the intuitively clear fact, that

G
′

j+1,n(1) = ρj+1ρj+2 · · · ρn = ρ[j,n]. (2)

This is because G
′

n,n(1) = G′
n(1) = ρn and

G
′

j,n(1) = G′
j(1)G

′

j+1,n(1) = ρjG
′

j+1,n(1),

and so by induction we have (2).

2.1 Poisson and compound Poisson limits

In this subsection we investigate the case, when the second derivative of the
offspring generating function goes to 0 so fast that it does not appear in the
limit distribution. So the results here are the analogs of the ones in the case
of Bernoulli offsprings in [4].

In the followings Poisson(λ) stands for a Poisson distribution with pa-
rameter λ if λ > 0, and Poisson(0) is the degenerate distribution at 0, while
Bernoulli(p) is a Bernoulli distribution with parameter p > 0.

The first theorem deals with the case when the immigration has Bernoulli
distribution.

Theorem 1 Let {Xn}n∈N be a Galton–Watson process with immigration,
with εn ∼ Bernoulli(mn,1). Assume that

(i) ρn < 1, limn→∞ ρn = 1,
∑∞

n=1(1− ρn) = ∞ and limn→∞
G′′

n(1)
1−ρn

= 0,

(ii) limn→∞
mn,1

1−ρn
= λ.

Then
Xn

D−→ Poisson(λ).

Next we turn to general immigration distributions. Let us denote the
factorial moments of the immigration distribution by

mn,k := E[εn(εn − 1) . . . (εn − k + 1)] = H(k)
n (1). (3)

(Clearly, this is consistent with the notation Bernoulli(mn,1).)
The analog of Theorem 2 [4] can be shown: the process has Poisson limit

even if the immigration distribution is not Bernoulli, only ‘close’ to it. Since
the proof is also the same as there, we omit it.
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Theorem 2 Let {Xn}n∈N be a Galton–Watson process with immigration.
Assume that

(i) ρn < 1, limn→∞ ρn = 1,
∑∞

n=1(1− ρn) = ∞ and limn→∞
G′′

n(1)
1−ρn

= 0,

(ii) limn→∞
mn,1

1−ρn
= λ, limn→∞

mn,2

1−ρn
= 0.

Then
Xn

D−→ Poisson(λ).

Before the following results we recall that for a finite measure µ on Z+ =
{1, 2, . . .} the compound Poisson distribution CP(µ) with intensity measure
µ is the distribution which has generating function

exp

{

∞
∑

j=1

µ{j}(xj − 1)

}

, x ∈ [0, 1].

The analogs of Theorem 4 and 5 in [4] are also true. The proof of Theorem
3 is the same as of Theorem 4 in [4], and also follows from the stronger
Theorem 4, so we skip it.

Theorem 3 Let {Xn}n∈N be a Galton–Watson process with immigration.
Assume that

(i) ρn < 1, limn→∞ ρn = 1,
∑∞

n=1(1− ρn) = ∞ and limn→∞
G′′

n(1)
1−ρn

= 0,

(ii) limn→∞
mn,j

j(1−ρn)
= λj for j = 1, 2, . . . , J with λJ = 0.

Then
Xn

D−→ CP(µ),

where µ is a finite measure on {1, 2, . . . , J − 1} given by

µ{j} =
1

j!

J−j−1
∑

i=0

(−1)i

i!
λj+i, j = 1, 2, . . . , J − 1.

The following theorem is more general than Theorem 5 in [4] even in the
case of Bernoulli offspring distributions. And since the proof of Theorem 5
in [4] is only given by Poisson approximation we give the analytical proof.
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Theorem 4 Let {Xn}n∈N be a Galton–Watson process with immigration.
Assume that

(i) ρn < 1, limn→∞ ρn = 1,
∑∞

n=1(1− ρn) = ∞ and limn→∞
G′′

n(1)
1−ρn

= 0,

(ii) limn→∞
mn,j

j(1−ρn)
= λj for j = 1, 2, . . ., and lim supn→∞

n
√

λn/n! ≤ 1.

Then
Xn

D−→ Y,

where the random variable Y has generating function

ExY = exp

{

∞
∑

l=1

(x− 1)l

l!
λl

}

.

Note that if λn = 0 for some n ≥ 2, then λm = 0 for all m ≥ n. This
simple fact follows from the previous two theorems.

Also notice that the assumption lim supn→∞
n
√

λn/n! ≤ 1 implies that the
limiting generating function exists for x ∈ (0, 1). This assumption is weaker
than the one in [4], which is that for all j = 1, 2, . . . the limit

µ{j} =
1

j!

∞
∑

i=0

(−1)i

i!
λj+i (4)

exists. However, under this assumption the limit turns out to be a compound
Poisson random variable with intensity measure µ, that is

exp

{

∞
∑

l=1

(x− 1)l

l!
λl

}

= exp

{

∞
∑

l=1

µ{l}(xl − 1)

}

.

This follows easily by Abel’s theorem.
The limit can be compound Poisson even if condition (4) fails. If λn =

(n− 1)!/n, then condition (4) does not hold even for j = 2, but

∞
∑

l=1

(x− 1)l

l2
= −

∫ x−1

0

log(1− u)

u
du =

∫ x

1

log(2− y)

1− y
dy =

∞
∑

j=1

µ{j}(xj − 1),

with

µ{j} =
1

j

[

log 2−
j−1
∑

k=1

1

k2k

]
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that is the limit is compound Poisson with intensity measure µ. To see that
the sequence {λn = (n−1)!

n
}∞n=1 can be a limit in condition (ii) consider the

following example: ρn = 1 − n−1 and Hn(x) = 1 + (H(x) − 1)/n with the
generating function H(x) = 1− log(2− x).

We do not know whether the limit in the previous theorem necessarily
has a compound Poisson distribution.

2.2 Negative binomial limits

In the followings we investigate the case, when G′′
n(1)/(1 − ρn) 6→ 0. In

contrast to the previous subsection we show that in this case the second
derivatives do appear in the limit. Here we restrict ourselves to the case
when the immigration distribution is close to a Bernoulli distribution.

Note that for condition (a) it is only needed that ρn < 1, ρn → 1 and
∑∞

n=1(1 − ρn) = ∞ (see the proof of Theorem 1). Since we always assume
these conditions we concentrate on condition (b), i.e. –in case of Bernoulli
immigration– on the existence of the limit

lim
n→∞

n
∑

j=1

mj,1(Gj+1,n(x)− 1). (5)

We try to compute the derivatives at 1 of the components in the sum
above. First note that since G

′

j+1,n(1) = ρ[j,n], the first derivative in (5) is

n
∑

j=1

mj,1ρ[j,n] =

n
∑

j=1

mj,1

1− ρj
(1− ρj)ρ[j,n],

and since {(1− ρj)ρ[j,n]} form a Toeplitz matrix, we obtain that in order to
get a limit the asymptotic order of mn,1 must be 1 − ρn. For the second
derivative we have the recursion

G
′′

j,n(x) =
d2

dx2
Gj(Gj+1,n(x)) =

d

dx

(

G′
j(Gj+1,n(x))G

′

j+1,n(x)
)

= G′′
j (Gj+1,n(x))G

′

j+1,n(x)
2 + G′

j(Gj+1,n(x))G
′′

j+1,n(x). (6)

Substituting x = 1 for j ≤ n (recall that Gn+1,n(x) = x) by (2) we obtain
that

G
′′

j,n(1) = G′′
j (1)ρ

2
[j,n] + ρjG

′′

j+1,n(1), (7)
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and G
′′

n,n(1) = G′′
n(1). Induction argument shows that

G
′′

j+1,n(1) =
n
∑

i=j+1

G′′
i (1)ρ[j,i−1]ρ

2
[i,n],

so the second derivative in (5) is

n
∑

j=1

mj,1G
′′

j+1,n(1) =
n
∑

i=2

G′′
i (1)ρ

2
[i,n]

i−1
∑

j=1

mj,1ρ[j,i−1].

As we have seen mn ≈ 1− ρn, and so to get a limit for the second derivative
we must have G′′

n(1) ≈ 1 − ρn. These heuristic argument kind of shows the
necessity of the assumptions in the following theorem. We also note that Step
2 of the proof Theorem 5 shows that the higher derivatives must have the
same order, namely 1− ρn. We are not able to calculate these contributions,
therefore we have to assume condition (iii).

The reasoning above can be made rigorous to show the following: If
limn→∞G′′

n(1) = a exists and the inhomogeneous Galton–Watson process
with immigration has a proper limit distribution with finite second moment,
then necessarily a = 0. This immediately implies that limn→∞Gn(x) = x,
i.e. there is no critical nontrivial branching mechanism with finite second
moment, which can cause a proper limit distribution with finite second mo-
ment. This result is in complete accordance with Theorem 1 (ii) by Foster
and Williamson [3] in the homogeneous case.

We will show that in this setup the limit distribution is the negative
binomial distribution. A random variable X has negative binomial dis-
tribution with parameters r > 0 and p ∈ (0, 1), denoted by NB(r, p), if
P{X = k} =

(

k+r−1
r−1

)

(1 − p)rpk, k = 0, 1, 2, . . ., where the binomial coeffi-

cient is defined by
(

k+r−1
r−1

)

= (k+r−1)(k+r−2)···r
k!

. The generating function is

ExX =

(

1− p

1− px

)r

.

The following theorem holds.

Theorem 5 Let {Xn} be a Galton–Watson process with immigration, with
general offspring and immigration distribution, such that the followings hold:

(i) ρn < 1, limn→∞ ρn = 1,
∑∞

n=1(1− ρn) = ∞,
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(ii) limn→∞
G′′

n(1)
1−ρn

= ν ∈ (0,∞),

(iii) limn→∞
G

(s)
n (1)
1−ρn

= 0, for all s ≥ 3,

(iv) limn→∞
mn,1

1−ρn
= λ and limn→∞

mn,2

1−ρn
= 0.

Then
Xn

D−→ NB(2λ/ν, ν/(2 + ν)).

As we already mentioned, assumption (ii) means that the second deriva-
tives have a significant role in the limit, while assumption (iii) ensures that
the third and higher derivatives do not count. The proof of the theorem

basically lays on determining the asymptotic of G
(k)

j+1,n, combined with a rel-

atively closed formula for the coefficient of f ′′(g) in dk

dxk f(g(x)), see (13). This
‘shows’ that to handle the case, when the higher derivatives also count, a dif-
ferent approach is needed, or at least the calculations become more technical.
It would be also interesting to extend the results to more general immigration
distribution, that is to know whether a kind of analog of Theorem 4 remains
true.

Finally, we note that if λ > 0 is fixed and ν → 0, then

lim
ν→0

NB(2λ/ν, ν/(2 + ν)) → Poisson(λ).

It is easy to check that the proof of the theorem remains correct in this case,
and we obtain that Theorem 5 holds if ν = 0 and in this case the limit
distribution is Poisson(λ), which is exactly the statement of Theorem 2.

2.3 The case
∑∞

n=1(1− ρn) < ∞
Let us consider the nearly critical inhomogeneous Galton–Watson process
with general offspring distribution and general immigration. It was always
assumed that ρn does not converge too fast to 1, that is

∑∞

n=1(1− ρn) = ∞.
In this section we investigate the case, when this assumption does not hold,
and assume that

∞
∏

n=2

ρn = ρ ∈ (0, 1).
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(Note that this is equivalent to the assumption
∑∞

n=1(1 − ρn) < ∞.) We
show that in this case the limit distribution exists under very general as-
sumptions, but the process does not contain enough randomness as in the
previous cases: the limit distribution explicitly contains each offspring- and
immigration distribution. That is ρn tends to 1 so fast, that the process has
no time to forget the initial distribution. This shows that the right assump-
tion is indeed

∑∞

n=1(1 − ρn) = ∞, as it was investigated in [4]. In fact, the
case treated in this section is much simpler.

We state the theorem in the most general setup.

Theorem 6 Let Xn be the Galton–Watson process with immigration, de-
scribed above. If

∏∞

n=2 ρn = ρ ∈ (0, 1) and
∑∞

n=1mn,1 < ∞, then

Xn
D−→ Y,

where Y has generating function

g(x) =

∞
∏

j=1

Hj(Gj+1,∞(x)),

with
Gj+1,∞(x) = lim

n→∞
Gj+1,n(x).

Let us see an example in the simplest case, when both the offspring dis-
tribution and the immigration distribution is Bernoulli. In this case we can
compute the limit generating function.

Example 1. Let ρn = 1 − 1
n2 . Clearly

∑∞

n=1(1 − ρn) = π2/6 < ∞. For
the product we have

ρ[1,n] = ρ2ρ3 . . . ρn =

(

1− 1

22

)(

1− 1

32

)

· · ·
(

1− 1

n2

)

=
(22 − 1)(32 − 1) . . . (n2 − 1)

(n!)2

=
1 · 3 · 2 · 4 · . . . · (n− 1) · (n + 1)

(n!)2

=
n + 1

2n
→ 1

2
= ρ.
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In this case Gj+1,n(x) = 1 + ρ[j,n](x− 1), so Gj+1,∞(x) = 1 + ρ(x − 1)/ρ[1,j].
Since Hj(x) = 1−mj,1(1− x), for the limit generating function we have

g(x) =
∞
∏

j=1

[

1− mj,1

ρ[1,j]

1

2
(1− x)

]

=
∞
∏

j=1

[

1−mj,1
j

j + 1
(1− x)

]

.

Choose mj,1 = (j + 1)/j3, so

g(x) =

∞
∏

j=1

[

1− 1− x

j2

]

=
sin(π

√
1− x)

π
√
1− x

.

The following example is Example 1 in [4], which shows that in a special
case the limit can be Poisson even in this setup.

Example 2. Assume that the offspring distribution is Bernoulli(ρn) and
the immigration εn has Poisson(mn,1) distribution, where

∑∞

n=1(1−ρn) < ∞
and

∑∞

n=1mn,1 < ∞. As before Gj+1,∞(x) = 1 + ρ(x − 1)/ρ[1,j], and since
Hn(x) = emn,1(x−1) we have that

g(x) = exp

{

(x− 1)
∞
∑

n=1

mn,1ρ

ρ[1,n]

}

,

and since the sum in the exponent is finite, this is Poisson distribution with
mean

∑∞

n=1
mn,1ρ

ρ[1,n]
.

2.4 The linear fractional case

The importance of the linear fractional generating functions in branching
processes is that, that this is basically the only example when explicit com-
putation can be done. In this subsection we investigate this example in detail,
which actually helped to find the general form of Theorem 5.

The linear fractional generating function has the form f(s) = 1 − α
1−β

+
αs

1−βs
, where α, β ∈ (0, 1), α + β ≤ 1. For the first two derivatives we have

f ′(1) =
α

(1− β)2

f ′′(1) =
2αβ

(1− β)3
,

11



and these determine the parameters α, β:

α =
4f ′(1)3

(2f ′(1) + f ′′(1))2

β =
f ′′(1)

2f ′(1) + f ′′(1)
.

If f1(s) and f2(s) are both linear fractional generating functions then so
is f1(f2(s)), that is if Gn is linear fractional for all n, so is Gj,n(s) for all j, n,
with parameters

αj,n =
4G

′

j,n(1)
3

(2G
′

j,n(1) +G
′′

j,n(1))
2
,

βj,n =
G

′′

j,n(1)

2G
′

j,n(1) +G
′′

j,n(1)
.

As we have seen G
′

j,n(1) = ρ[j−1,n] and G
′′

j,n(1) =
∑n

i=j G
′′
i (1)ρ[j−1,i−1]ρ

2
[i,n].

The generating function has the form Fn(x) =
∏n

j=1Hj(Gj+1,n(x)). Assum-
ing Bernoulli immigration, i.e. Hn(x) = 1 + mn(x − 1), the corresponding
accompanying generating function is

F̃n(x) = exp

{

n
∑

j=1

mj(Gj+1,n(x)− 1)

}

= exp

{

n
∑

j=1

mj

(

− αj+1,n

1− βj+1,n

+
αj+1,nx

1− βj+1,nx

)

}

.

Some calculation shows
αj+1,n

1− βj+1,nx
=

ρ[j,n]
(

1 +
∑n

i=j+1

G′′

i (1)ρ[i,n]

2ρi

)(

1 +
∑n

i=j+1

G′′

i (1)ρ[i,n]

2ρi
(1− x)

) .

Eventually, we obtained that in the linear fractional case the limit exists
(under the assumption

∑∞

n=1(1− ρn) = ∞) if and only if

lim
n→∞

n
∑

j=1

mjρ[j,n]

[(

1 +
n
∑

i=j+1

G′′
i (1)ρ[i,n]
2ρi

)(

1 +
n
∑

i=j+1

G′′
i (1)ρ[i,n]
2ρi

(1− x)

)]−1

exists. It is easy to check that if (ii) in Theorem 5 holds, then so is (iii), that
is the limit is negative binomial distribution.
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3 Proofs

We use the continuity theorem for generating functions ([2] p. 280) and Lem-
mas 5 and 6 in [4] without any further reference. We also frequently use the
simple facts that

∣

∣

∣

∣

∣

n
∏

k=1

zk −
n
∏

k=1

wk

∣

∣

∣

∣

∣

≤
n
∑

k=1

|zk − wk|, (8)

for zk, wk ∈ [−1, 1], k = 1, 2, . . . , n, (see for example Lemma 3 in [4]) and
that |eu − 1− u| ≤ u2 for |u| ≤ 1/2.

Proof of Theorem 1. By the assumptions the immigration εn has
Bernoulli(mn,1) distribution, that is Hn(x) = 1 +mn,1(x− 1), in which case
formula (1) reduces to

Fn(x) =

n
∏

j=1

[

1 +mj,1(Gj+1,n(x)− 1)
]

.

Let us define the generating function

F̃n(x) =
n
∏

j=1

emj,1(Gj+1,n(x)−1).

Estimation (9) gives that if mn,1 → 0 then max1≤j≤nmj,1|Gj+1,n(x)−1| → 0.
We want to show that for all x ∈ (0, 1)

(a) F̃n(x)− Fn(x) → 0, as n → ∞, and

(b) limn→∞ F̃n(x) = eλ(x−1).

Condition (a) is the easier to handle. Using (8), the inequality |eu − 1−
u| ≤ u2 and the mean value theorem combined with the monotonicity of the

13



derivative, we obtain

|F̃n(x)− Fn(x)| =

∣

∣

∣

∣

∣

n
∏

j=1

emj,1(Gj+1,n(x)−1) −
n
∏

j=1

[

1 +mj,1(Gj+1,n(x)− 1)
]

∣

∣

∣

∣

∣

≤
n
∑

j=1

∣

∣

∣
emj,1(Gj+1,n(x)−1) −

[

1 +mj,1(Gj+1,n(x)− 1)
]

∣

∣

∣

≤
n
∑

j=1

m2
j,1|Gj+1,n(x)− 1|2

≤
n
∑

j=1

m2
j,1|x− 1|2

(

G
′

j+1,n(1)
)2

.

Using (2), finally we have

|F̃n(x)− Fn(x)| ≤ |x− 1|2
n
∑

j=1

m2
j,1ρ

2
[j,n],

and by Lemma 5 in [4] this goes to 0 under the assumptions of the theorem.
Now consider condition (b). This convergence is equivalent to

n
∑

j=1

mj,1[Gj+1,n(x)− 1] → λ(x− 1).

Let x ∈ (0, 1). The convexity of the generating functions implies Gn(x) ≥
1− ρn + ρnx = 1 + ρn(x− 1). And so

Gn−1,n(x) = Gn−1(Gn(x)) ≥ 1 + ρn−1(Gn(x)− 1) ≥ 1 + ρn−1ρn(x− 1).

Induction gives that

Gj+1,n(x) ≥ 1 + ρj+1ρj+2 · · · ρn(x− 1) = 1 + ρ[j,n](x− 1), (9)

which implies the lower bound

n
∑

j=1

mj,1[Gj+1,n(x)− 1] ≥
n
∑

j=1

mj,1ρ[j,n](x− 1) → λ(x− 1).

14



For the upper bound note that by the previous estimations Gj+1,n(x) ∈
(1− ρ[j,n], 1) for any x ∈ (0, 1). Again by convexity, for y ∈ (1 − ρ[j,n], 1) we
have

Gj(y) = Gj

(

1− y

ρ[j,n]
(1− ρ[j,n]) + 1− 1− y

ρ[j,n]

)

≤ 1− y

ρ[j,n]
Gj(1− ρ[j,n]) + 1− 1− y

ρ[j,n]
= 1 + ϑj,n(y − 1),

where

ϑj,n =
1−Gj(1− ρ[j,n])

ρ[j,n]
= G′

j(ξj,n),

by the mean value theorem. Since ρ[j,n] → 0 thus ξj,n → 1 as n → ∞,
ϑj,n ↑ ρj . So we get

Gj,n(x) = Gj(Gj+1,n(x)) ≤ 1 + ϑj,n(Gj+1,n(x)− 1),

and so induction gives

Gj+1,n(x) ≤ 1 + ϑj+1,nϑj+2,n · · ·ϑn,n(x− 1) =: 1 + ϑ[j,n](x− 1). (10)

Summarizing we have

n
∑

j=1

mj,1[Gj+1,n(x)− 1] ≤
n
∑

j=1

mj,1ϑ[j,n](x− 1).

Note that in the case of Bernoulli offspring distributions the upper and lower
bounds are equal.

So we have to check that under what conditions

n
∑

j=1

mj,1ϑ[j,n] → λ.

For this, exactly the same way as in Lemma 5 in [4] we only need that the
sequence bn,j := (1 − ρj)ϑ[j,n] form a Toeplitz matrix. The only nontrivial
condition is

n
∑

j=1

bn,j → 1.

15



We may write

n
∑

j=1

bn,j = (1− ρ1)
n
∏

l=2

ϑl,n + (1− ρ2)
n
∏

l=3

ϑl,n + · · ·

+(1− ρn−1)ϑn,n + (1− ρn)

= 1−
[

(ρn − ϑn,n) + (ρn−1 − ϑn−1,n)ϑn,n + · · ·

+(ρ2 − ϑ2,n)

n
∏

l=3

ϑl,n + ρ1

n
∏

l=2

ϑl,n

]

.

Note that in the bracket every term is nonnegative, since ϑj,n = G′
j(ξj,n) ≤

G′
j(1) = ρj , because G′

j is monotone increasing since Gj is convex. So we
need that

(ρn − ϑn,n) + (ρn−1 − ϑn−1,n)ϑn,n + · · ·+ (ρ2 − ϑ2,n)

n
∏

l=3

ϑl,n + ρ1

n
∏

l=2

ϑl,n → 0.

By definition we have ϑj,n = G′
j(ξj,n), where ξj,n ∈ (1 − ρ[j,n], 1), and since

ρj = G′
j(1) the mean value theorem again gives

ρj − ϑj,n = G′
j(1)−G′

j(ξj,n) = (1− ξj,n)G
′′
j (ξ

′
j,n) ≤ ρ[j,n]G

′′
j (1),

where ξ′j,n ∈ (ξj,n, 1). Therefore we obtain

n
∑

j=1

(ρj − ϑj,n)ϑ[j,n] ≤
n
∑

j=1

ρ[j,n]G
′′
j (1)ϑ[j,n] ≤

n
∑

j=1

G′′
j (1)

1− ρj
(1− ρj)ρ

2
[j,n],

which, according to Lemma 5 [4], goes to 0, if G′′

n(1)
1−ρn

→ 0. The proof is ready.

Proof of Theorem 4. By formula (1) for the generating function we have
to show that for all x ∈ (0, 1)

Fn(x) =
n
∏

j=1

Hj(Gj+1,n(x)) → exp

{

∞
∑

l=1

(x− 1)l

l!
λl

}

.

Let us define the function

F̃n(x) =

n
∏

j=1

eHj(Gj+1,n(x))−1.

16



Using the estimation (9) and that 0 ≤ 1−Hj(x) ≤ mj,1(1− x), we have

|Fn(x)− F̃n(x)| ≤
n
∑

j=1

∣

∣

∣
eHj(Gj+1,n(x))−1 −Hj(Gj+1,n(x))

∣

∣

∣

≤
n
∑

j=1

(

Hj(Gj+1,n(x))− 1
)2

≤
n
∑

j=1

m2
j,1ρ

2
[j,n] → 0,

since mj,1/(1 − ρj) → λ1 implies m2
j,1/(1 − ρj) → 0. So we obtain the

convergence Fn(x) − F̃n(x) → 0, for all x ∈ (0, 1). Therefore what we have
to show is that

n
∑

j=1

[

Hj(Gj+1,n(x))− 1
]

→
∞
∑

l=1

(x− 1)l

l!
λl.

Let us fix an ε > 0 and an x ∈ (0, 1). There is an l0 such that

∣

∣

∣

∣

∣

∞
∑

l=l0+1

(x− 1)l

l!
λl

∣

∣

∣

∣

∣

≤ ε and
(1− x)l0+1

(l0 + 1)!
λl0+1 ≤ ε. (11)

By Lemma 6 in [4] we have

Hj(x) =

l0
∑

l=0

mj,l

l!
(x− 1)l +Rj,l0+1(x),

17



where |Rj,l0+1(x)| ≤ (1− x)l0+1mj,l0+1/(l0 + 1)!. Thus

n
∑

j=1

[

Hj(Gj+1,n(x))− 1
]

=
n
∑

j=1

{

l0
∑

l=1

mj,l

l!
(Gj+1,n(x)− 1)l +Rj,l0+1(Gj+1,n(x))

}

=

l0
∑

l=1

(x− 1)l

l!

n
∑

j=1

mj,lρ
l
[j,n] +

n
∑

j=1

Rj,l0+1(Gj+1,n(x))

+

l0
∑

l=1

n
∑

j=1

mj,l

l!

[

(

Gj+1,n(x)− 1
)l − ρl[j,n](x− 1)l

]

=

l0
∑

l=1

(x− 1)l

l!

n
∑

j=1

mj,lρ
l
[j,n] + I1 + I2.

Using (9) again

|I1| ≤
n
∑

j=1

mj,l0+1

(l0 + 1)!
|Gj+1,n(x)− 1|l0+1

≤
n
∑

j=1

mj,l0+1

(l0 + 1)!
ρl0+1
[j,n] (1− x)l0+1 → (1− x)l0+1

(l0 + 1)!
λl0+1

by Lemma 5 in [4], thus (11), the choice of l0, shows that |I1| ≤ 2ε for n large
enough. In order to estimate I2 we use the inequalities (9) and (10) we have

∣

∣

∣

(

Gj+1,n(x)− 1
)l − ρl[j,n](x− 1)l

∣

∣

∣

≤
∣

∣

(

Gj+1,n(x)− 1
)

− ρ[j,n](x− 1)
∣

∣ lρl−1
[j,n](1− x)l−1

≤ l(1− x)l(ρ[j,n] − ϑ[j,n])ρ
l−1
[j,n],

therefore

|I2| ≤
l0
∑

l=1

(1− x)l

(l − 1)!

n
∑

j=1

mj,l(ρ[j,n] − ϑ[j,n])ρ
l−1
[j,n],

which goes to 0, due to Lemma 5 in [4] and to our assumptions.
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Finally for the difference

∣

∣

∣

∣

∣

n
∑

j=1

[

Hj(Gj+1,n(x))− 1
]

−
∞
∑

l=1

(x− 1)l

l!
λl

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

l0
∑

l=1

(x− 1)l

l!

(

n
∑

j=1

mj,lρ
l
[j,n] − λl

)
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∞
∑

l=l0+1

(x− 1)l

l!
λl

∣

∣

∣

∣

∣

+ |I1|+ |I2|,

where the first and fourth term converge to 0, while the sum of second and
the third is less than 3 ε. Since ε was arbitrary the proof is ready.

Proof of Theorem 5. We separate three cases. First we assume that the
offspring generating functions are second degree polynomials, that is each
particle has at most two offsprings. Then we extend the proof when for the
higher derivatives only assumption (iii) holds. In this two cases we assume
Bernoulli immigration. In the third case we extend the result for general
immigration. Step 1 shows the main idea without the technical difficulty to
handle the higher derivatives.
Step 1. Let us assume that

deg Gn = 2 for all n ∈ N. (12)

First we obtain a recursion like (7). What we need is a general form of a
derivative of a composite function. Let

hk(x) =
dk

dxk
f(g(x)).

According to Lemma 5.6 in [5] the general formula for the derivatives of a
composite function is

dk

dxk
f(g(x)) = k!

k
∑

s=1

f (s)(g(x))
∑

(ν1,...,νk)

k
∏

m=1

1

νm!

(

1

m!
g(m)(x)

)νm

, (13)

where the summation is carried out over all nonnegative integer solutions of
the equation system:

ν1 + 2ν2 + · · ·+ kνk = k

ν1 + ν2 + · · ·+ νk = s.

19



Clearly the coefficient of f ′(g) in hk is g(k), and induction argument shows
that

coefficient of f ′′(g) in hk =







∑

k−1
2

i=1

(

k
i

)

g(i) g(k−i), k odd,
∑

k
2
−1

i=1

(

k
i

)

g(i) g(k−i) + 1
2

(

k
k/2

)(

g(
k
2
)
)2
, k even.

For simplicity introduce

ak,i =

{

(

k
i

)

, if i < k
2
,

1
2

(

k
k/2

)

, if i = k
2
.

Apply this result to Gj,n(x) = Gj(Gj+1,n(x)) for j ≤ n, and note that the
third and higher derivatives vanishes. Substituting x = 1 we have

G
(k)

j,n(1) = ρjG
(k)

j+1,n(1) +G′′
j (1)

k/2
∑

i=1

ak,iG
(i)

j+1,n(1)G
(k−i)

j+1,n(1). (14)

From this, easy induction argument gives the following:

G
(k)

j+1,n(1) =

k/2
∑

i=1

ak,i

n
∑

l=j+1

ρ[j,l−1]G
′′
l (1)G

(i)

l+1,n(1)G
(k−i)

l+1,n(1). (15)

Until now everything hold in general. Now we use our assumptions to
prove

G
(k)

j+1,n(1) =

(

k!

2k−1
νk−1 + o(1)

)

ρ[j,n](1− ρ[j,n])
k−1 + ρ[j,n]o(1), (16)

where o(1) → 0 as j, n → ∞. The proof goes by induction, uses the recursion
(15) and the identity

(k + 1)!

2k
=

1

k

(k+1)/2
∑

i=1

ak+1,i
i!

2i−1

(k + 1− i)!

2k−i
.

Formula (16) is true for k = 1, 2, and let us assume that it is true until some
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k ≥ 2. Then using the induction hypothesis

G
(k+1)

j+1,n(1) =

k+1
2
∑

i=1

ak+1,i

n
∑

l=j+1

ρ[j,l−1]G
′′
l (1)G

(i)

l+1,n(1)G
(k+1−i)

l+1,n (1)

=

k+1
2
∑

i=1

ak+1,i

n
∑

l=j+1

ρ[j,l−1]G
′′
l (1)

×
[(

i!

2i−1
νi−1 + o(1)

)

ρ[l,n](1− ρ[l,n])
i−1 + ρ[l,n]o(1)

]

×
[(

(k − i+ 1)!

2k−i
νk−i + o(1)

)

ρ[l,n](1− ρ[l,n])
k−i + ρ[l,n]o(1)

]

=

k+1
2
∑

i=1

ak+1,iρ[j,n]

n
∑

l=j+1

G′′
l (1)

ρl(1− ρl)
(1− ρl)ρ[l,n]

×
[(

(k + i− 1)!i!

2k−1
νk−1 + o(1)

)

(1− ρ[l,n])
k−1 + o(1)

]

=

(

(k + 1)!

2k
νk + o(1)

)

ρ[j,n](1− ρ[j,n])
k + ρ[j,n]o(1),

where we used the estimation
n
∑

l=j+1

(1− ρl)ρ[l,n](1− ρ[l,n])
k =

(1− ρ[j,n])
k+1

k + 1
+O(max

j≤l≤n
(1− ρl)ρ[l,n]).

Note that the left side is a Riemann approximation of the integral
∫

(1−y)kdy,
corresponding to the partition {ρ[l,n]}nl=j+1. So (16) is proved.

From (16) using also assumption (iv) in the theorem we have

n
∑

j=1

mj,1G
(k)

j+1,n(1) =

n
∑

j=1

mj,1

1− ρj

(

k!

2k−1
νk−1 + o(1)

)

ρ[j,n](1− ρj)(1− ρ[j,n])
k−1

+
n
∑

j=1

mj,1

1− ρj
(1− ρj)ρ[j,n]o(1)

→(k − 1)!

2k−1
λνk−1

=(k − 1)!λ
(ν

2

)k−1

.
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So for the sum (5) we have

n
∑

j=1

mj,1

(

Gj+1,n(x)− 1
)

=

n
∑

j=1

mj,1

∞
∑

k=1

G
(k)

j+1,n(1)

k!
(x− 1)k

=
∞
∑

k=1

(x− 1)k

k!

n
∑

j=1

mj,1G
(k)

j+1,n(1)

→
∞
∑

k=1

(x− 1)k

k!
(k − 1)!λ

(ν

2

)k−1

= −2λ

ν
log
(

1− (x− 1)
ν

2

)

,

and Lemma 6 in [4] makes the calculation rigorous. Note that since Gk,n(x)
is a polynomial the infinite sum above is in fact finite.

We obtained that the limit generating function is

exp

{

−2λ

ν
log
(

1− (x− 1)
ν

2

)

}

=
(

1− (x− 1)
ν

2

)− 2λ
ν

=

(

2
2+ν

1− ν
2+ν

x

)
2λ
ν

,

which is the generating function of a negative binomial distribution with
parameter r = 2λ/ν and p = ν/(2 + ν), as we stated.
Step 2. Let us weaken the condition (12) on the generating functions.

From formula (13) induction argument shows that

G
(k)

j+1,n(1) = k!

k
∑

s=2

n
∑

l=j+1

ρ[j,l−1]G
(s)
l (1)

∑

(ν1,...,νk)

m
∏

k=1

1

νm!

(

G
(m)

l+1,n(1)

m!

)νm

.

We claim that under assumption (iii) of the theorem (16) holds. By Step
1, this is true for k = 1, 2. Assume that the statement is true until some
k ≥ 2. The previous case shows that we get the asymptotic from the term
corresponding to s = 2, and we show that the terms corresponding to s ≥ 3
are o(ρ[j,n]). Using the induction hypothesis for the term corresponding to
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s ≥ 3 above we have

n
∑

l=j+1

ρ[j,l−1]G
(s)
l (1)

∑

(ν1,...,νk)

n
∏

k=1

1

νm!

(

G
(m)

l+1,n(1)

m!

)νm

≤
n
∑

l=j+1

ρ[j,l−1]G
(s)
l (1)

∑

(ν1,...,νk)

m
∏

k=1

const ρνm[l,n]

= const ρ[j,n]

n
∑

l=j+1

G
(s)
l (1)

ρl(1− ρl)
(1− ρl)ρ

s−1
[l,n]

= ρ[j,n]o(1).

We proved (16), and the statement follows as in the previous case.
Step 3. Finally, in case of general immigration distribution, according to
the already proved part what we have to show is

∣

∣

∣

∣

∣

n
∏

j=1

Hj

(

Gj+1,n(x)
)

−
n
∏

j=1

[

1 +mj,1

(

Gj+1,n(x)− 1
)]

∣

∣

∣

∣

∣

≤
n
∑

j=1

∣

∣Hj

(

Gj+1,n(x)
)

−
[

1 +mj,1

(

Gj+1,n(x)− 1
)]
∣

∣

≤
n
∑

j=1

mj,2

2

(

Gj+1,n(x)− 1
)2

≤ (x− 1)2

2

n
∑

j=1

mj,2ρ
2
[j,n] → 0,

where we used Lemma 5 and 6 in [4], and the assumption mn,2/(1−ρn) → 0.
The proof is complete.

Proof of Theorem 6. The generating function of the nth generation is

Fn(x) =
n
∏

j=1

Hj(Gj+1,n(x)).

First we show the existence of Gj,∞(x). Let us fix j, and investigate
Gj,n(x) as n → ∞. Using the definition and the monotonicity of Gj,n and
that Gn(x) ≥ x for all n, we have

Gj,n+1(x) = Gj,n(Gn+1(x)) ≥ Gj,n(x).
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Since Gj,n(x) ≤ 1, the limit

Gj,∞(x) = lim
n→∞

Gj,n(x)

exists. Moreover Gj+1,n(x) ≥ 1− ρ[j,n](1− x) implies

Gj+1,∞(x) ≥ 1− ρ(1− x)

ρ[1,j]
.

Therefore we can define the function g in the theorem.
Using the inequality above, the convergence mj,1 → 0, the estimation

Hj(x) ≥ 1 − mj,1(1 − x) and that for x small enough 1 − x ≥ e−(1+ε)x we
obtain

Hj(Gj+1,∞(x)) ≥ 1−mj,1

(

1−Gj+1,∞(x)
)

≥ 1−mj,1
ρ(1− x)

ρ[1,j]

≥ exp

{

−(1 + ε)mj,1
ρ(1− x)

ρ[1,j]

}

.

This easily implies that the function g is continuous at 1, g(1) = 1.
Next we show that Fn(x) → g(x), for all x ∈ [0, 1]. Introduce the notation

gn(x) =

n
∏

j=1

Hj(Gj+1,∞(x)).

Clearly gn(x) → g(x), so we only have to show the convergence gn(x) −
Fn(x) → 0. We have

|gn(x)− Fn(x)| ≤
n
∑

j=1

∣

∣Hj(Gj+1,∞(x))−Hj(Gj+1,n(x))
∣

∣

≤
n
∑

j=1

mj,1

∣

∣Gj+1,n(x)−Gj+1,∞(x)
∣

∣

≤
n0
∑

j=1

mj,1

∣

∣Gj+1,n(x)−Gj+1,∞(x)
∣

∣+ 2

∞
∑

j=n0+1

mj,1,

where the first term goes to 0 for every fixed n0, while the second one can be
arbitrary small by choosing n0 large enough.
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