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Optimal paths for symmetric actions in the unitary group∗

Jorge Antezana, Gabriel Larotonda and Alejandro Varela

Abstract

Given a positive and unitarily invariant Lagrangian L defined in the algebra of

Hermitian matrices, and a fixed interval [a, b] ⊂ R, we study the action defined in the

Lie group of n× n unitary matrices U(n) by

S(α) =
∫

b

a

L(α̇(t)) dt ,

where α : [a, b] → U(n) is a rectifiable curve. We prove that the one-parameter

subgroups of U(n) are the optimal paths, provided the spectrum of the exponent

is bounded by π. Moreover, if L is strictly convex, we prove that one-parameter

subgroups are the unique optimal curves joining given endpoints. Finally, we also

study the connection of these results with unitarily invariant metrics in U(n) as well
as angular metrics in the Grassmann manifold. 1

1 Introduction

The group of n× n complex unitary matrices U(n) carries, as any Lie group, a canonical

connection without torsion defined on left-invariant vector fields X,Y as ∇XY = 1
2 [X,Y ],

whose geodesics are the one-parameter groups t 7→ UetZ (here U is a unitary matrix and Z

an anti-Hermitian matrix). We can introduce a Riemannian metric on the unitary group

in a standard fashion

〈X,Y 〉g = Tr(U∗X(U∗Y )∗) = Tr(XY ∗),

for U∗X,U∗Y in the Lie algebra of the group, that is, for U∗X,U∗Y anti-Hermitian

matrices. It is well-known that the connection just introduced is in fact the Levi-Civita

connection of the metric g induced by the trace, and that geodesics are short provided the

spectrum of Z is bounded by π (see for instance [3]).

Now consider the bi-invariant Finsler metric given by the spectral norm,

‖X‖
U
= ‖U∗X‖ = ‖X‖
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for any X tangent to a unitary matrix U . Remarkably, if one keeps the connection but

changes the metric, the geodesics of the connection are still short for the induced rectifiable

distance (which, as in the Riemannian setting, is computed as the infimum of the length of

piecewise smooth curves joining given endpoints, and L(α) =
∫ 1
0 ‖α̇‖dt). The same result

was also proved in [4], using techniques of variational calculus, if the Finsler metrics are

given by the p-Schatten norms for p ≥ 2. This raises a natural question: what do these

norms have in common that could imply this phenomenon? A possible answer could be

that all these norms are unitarily invariant, thus they induce bi-invariant metrics on the

unitary group. One of the main obstacles to deal with general unitarily invariant norms,

is that variational arguments become untractable if the norm is not smooth enough.

In this article we prove that this is the right answer, and introduce a new approach that

simplifies considerably the technicalities. It is based in a beautiful and deep result due to

Thompson on the product of exponential matrices (Theorem 2.1 below).

Our approach also works for more general optimization problems described as follows: fix

a bounded interval [a, b] ⊂ R, and let S be the action defined on piecewise C1 curves

α : [a, b] → U(n) by

S(α) =
∫ b

a
L(α̇(t)) dt,

where L is a Lagrangian defined in the algebra of n×n matrices, with the following unitary

invariance property: for every n × n matrix A, and every pair of n × n unitary matrices

U and V

L(UAV ) = L(A). (1)

As usual, it is asked that the Lagrangian is a convex and positive map, and without loss

of generality we will assume that L(0) = 0. A Lagrangian that satisfies these properties

will be called symmetric Lagrangian. Two classical examples of symmetric Lagrangians

are:

• An unitarily invariant norm ‖ · ‖φ;

• The kinetic energy E(A) = ‖A‖2F , where ‖ · ‖F denotes the Frobenius norm.

In the first case, we recover the geometric context mentioned above, because the action S
defines the length of α associated to the Finsler structure that considers the norm ‖ · ‖φ
in each tangent space. Note that in this case, S does not depend on the parametrization

of α. So, there is no significative difference between the problem of finding a curve that

minimizes S among all piecewise C1 curves or among all piecewise C1 curves with a given

interval of parameters.

However, in the second example, the action associated to the kinetic energy depends on

the parametrization. Let α : [a, b] → U(n) be a smooth curve. A simple change of variable

shows that, if we take the family of curves αr : [ra, rb] → U(n) defined by αr(t) = α(t/r),

then r 7→ S(αr) is a non-increasing function for r ∈ (0,+∞). The same phenomenon also
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holds for any other convex Lagrangian. This suggests that in order to find a minimum we

should fix the length of the interval of parameters. This is also suggested by considering

the example of the energy functional, where the parameter t should be interpreted as the

time parameter.

As translations of that interval do not change the value of S(α), without lost of generality
we can consider intervals of the form [0, b]. So, the optimization problem that we will

study is the following:

Problem 1. Given U, V ∈ U(n) and b > 0, find the piecewise C1 curves γ : [0, b] → U(n)
such that γ(0) = U , γ(b) = V and γ minimizes the action given by

S(α) =
∫ b

0
L(α̇(t)) dt (2)

where L is a given symmetric Lagrangian.

The second question that arises is whether the minimal paths, when they exist, are unique

or not, or if they are unique modulus a reparametrization of the path. Thus we will study

the following:

Problem 2. Given U, V ∈ U(n), b > 0, and a minimizing function γ : [0, b] → U(n) with
γ(0) = U , γ(b) = V , is this function the unique minimizer of the Lagrangian for the given

endpoints? Is it true that any other minimizing curve with this given endpoints is just a

reparametrization of γ?

2 Preliminaries

Throughout this paper Mn(C) denotes the algebra of complex n× n matrices, Gl (n) the
group of all invertible elements of Mn(C), U(n) the group of unitary n× n matrices, and

H(n) the real subalgebra of Hermitian matrices. If T ∈ Mn(C), then ‖T‖ stands for the

usual spectral norm, |·| indicates the modulus of T , i.e. |T | =
√
T ∗T , and tr(T ) denotes the

trace of T . Given A ∈ H(n), λ1 (A) ≥ . . . ≥ λn (A) denotes the eigenvalues of A arranged

in non-increasing way, and given an arbitrary matrix T ∈ Mn(C), s1 (T ) ≥ . . . ≥ sn (T )

denotes the singular values of T , i.e. the eigenvalues of |T |. We will use λ(A) (resp. s(T ))

to denote the vector in R
n consisting of the eigenvalues of A (resp. the singular values of

T ). Finally, given A,B ∈ H(n), by means of A ≤ B we denote that A is less that or equal

to B with respect to the Löwner order.

2.1 Product of exponentials

We begin this subsection with the following remarkable result:

3



Theorem 2.1 (Thompson [17]). Given X,Y ∈ H(n), there exist unitary matrices U and

V such that

eiXeiY = ei(UXU
∗+V Y V ∗) .

We will use the following corollary of Thompson’s theorem:

Corollary 2.2. Let X,Y,Z ∈ H(n) be such that ‖Z‖ ≤ π and eiXeiY = eiZ . Then, there

are unitary matrices U and V such that |Z| ≤ |UXU∗ + V Y V ∗|.

Proof. By Thompson’s Theorem it is enough to prove that, if X,Y ∈ H(n), eiX = eiY ,

and ‖X‖ ≤ π, then |X| ≤ |Y |. Let Y =
∑

n∈N ηn en ⊗ en be a spectral decomposition of

Y . If Λ = {n : eiηn = −1}, then

|X| = πP +
∑

n/∈Λ

|µn| en ⊗ en ,

where P is the spectral projection of X onto the subspace generated by the eigenvectors

associated to ±π, and the eigenvalues µn ∈ (−π, π) satisfy that eiµn = eiηn for every

n /∈ Λ. Clearly PY = Y P and P |X|P ≤ P |Y |P . On the other hand, since |µn| ≤ |ηn| for
every n /∈ Λ, we also obtain that (1− P )|X|(1 − P ) ≤ (1− P )|Y |(1− P ). �

Another result due to Thompson is the following triangle inequality for the modulus of

matrices:

Theorem 2.3 (Thompson [15, 16]). Given A,B ∈ Mn(C), there exist unitaries V and

W such that

|X + Y | ≤ V |X|V ∗ +W |Y |W ∗.

Combining this result with Corollary 2.2 we get:

Proposition 2.4. Let m ≥ 2, and consider X,X1, . . . ,Xm ∈ H(n) such that ‖X‖ ≤ π

and

eiX = eiX1 · · · eiXm .

Then, there exist unitary matrices U1, . . . , Um such that |X| ≤
m
∑

k=1

Uk|Xk|U∗
k .

Proof. For m = 2 it is a direct consequence of Corollary 2.2 and Theorem 2.3. Suppose

that the result is proved for m = k. Then, given X,X1, . . . ,Xk+1 ∈ H(n) such that

‖X‖ ≤ π, let Y ∈ H(n) be such that ‖Y ‖ ≤ π and

eiY = eiX2 · · · eiXk+1 .

By the inductive hypothesis, there exist unitary matrices V2, . . . , Vk+1 such that

|Y | ≤
k+1
∑

j=2

Vj |Xj |V ∗
j .
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On the other hand, since eiX = eiX1eiY , by the case n = 2 already proved, there are

unitary matrices U1 and U such that |X| ≤ U1|X1|U∗
1 + U |Y |U∗. If we define Uj = UVj

for j ≥ 2, then we get the desired result. �

2.2 The Lagrangians

Let us list in the following proposition several properties of the symmetric Lagrangian

that will be used in the sequel:

Proposition 2.5. Let L : Mn(C) → [0,∞) be a symmetric Lagrangian, i.e. convex,

L(0) = 0, and unitarily invariant in the sense of equation (1). Then

(P1) L is continuous,

(P2) L(tA) ≤ tL(A) for every t ∈ [0, 1],

(P3) L(A) ≤ L(B) provided 0 ≤ A ≤ B,

(P4) There exists φ : Rn+ → [0,+∞) such that L(A) = φ(s(A)). This φ is invariant under

rearrangement, positive, convex, with φ(0) = 0 and φ(x) ≤ φ(y) if x, y ∈ R
+
n and

xi ≤ yi for i = 1 . . . n.

Proof. The first property is clear because every convex function in a finite dimensional

vector space is continuous. Also (P2) is a consequence of the convexity and the fact that

L(0) = 0. As L is unitarily invariant, the singular value decomposition implies that L(A)
only depends on the singular values of A. Hence, if x ∈ R

+
n and diag(x) denotes the n×n

diagonal matrix whose diagonal entries correspond to the coordinates of x, we can define

φ(x) = L(diag(x)); clearly φ(0) = 0, it is non-negative and convex. Convexity implies

that if x, y ∈ R
n
+ and xi ≤ yi for i = 1, . . . , n, then φ(x) ≤ φ(y). This proves (P4), and

(P3) is a direct consequence of it. �

Remark 2.6. Let φ : Rn+ → [0,+∞) be a rearrangement invariant, positive and convex

function, with φ(0) = 0. Then φ gives place to a symmetric Lagrangian Lφ via the equation
Lφ(A) = φ(s(A)). Note that the natural extension of φ to R

n is strongly Schur convex,

but not necessarily subadditive.

3 Optimality of one parameter subgroups

A geodesic segment is a curve t 7→ UeitZ for Z ∈ H(n) and U ∈ U(n). In this section

we prove that the geodesic segments (which are parametrized with constant velocity) are

optimal for Problem 1. Moreover, if L is strictly convex, then we will prove that these

geodesic segments are the unique optimal paths.
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3.1 Geodesic segments are short

Definition 3.1. A polygonal path is a broken geodesic, that is, a curve P : [0, b] → U(n)
such that there is a partition of the interval [0, b] given by the points 0 = t0 < . . . < tk = b,

Herminitian matrices X1,. . .,Xk with norm less than or equal to π, and U ∈ U(n) so that

P (t) =







Ue
i t
t1
X1 if t ∈ [0, t1]

UeiX1 · · · eiXj−1e
i

t−tj−1

tj−tj−1
Xj

if t ∈ [tj−1, tj ] (j > 1)
. (3)

Our first step toward the proof of the optimality of the geodesic segments with constant

velocity is the following proposition, which proves that segments are better than polygonal

paths.

Proposition 3.2. Let U ∈ U(n) and V = UeiZ , with Z ∈ H(n) and ‖Z‖ ≤ π. Let

γ : [0, b] → U(n) be the segment γ(t) = Ueit
Z
b , and P : [0, b] → U(n) a polygonal path

joining U to V . Then S(P ) ≥ S(γ).

Proof. Let 0 = t0 < . . . < tk = b, and X1,. . .,Xk ∈ H(n) with norm less than or equal to

π, so that P has the form showed in (3) . Then

S(P ) =

k
∑

j=1

∫ tj

tj−1

L
(

Ṗ (t)
)

dt =

k
∑

j=1

∫ tj

tj−1

L
(

Xj

tj − tj−1

)

dt

=

k
∑

j=1

(tj − tj−1)L
(

Xj

tj − tj−1

)

(4)

On the other hand, since eiZ = eiX1 · · · eiXk and ‖Z‖ ≤ π, by Proposition 2.4 there exist

unitary matrices U1, . . . Un such that

|Z| ≤
n
∑

k=1

Uk|Xk|U∗
k . (5)

Then, joining (4) and (5), and using the properties of L we obtain

S(P ) = b
k

∑

j=1

(tj − tj−1)

b
L
(

Xj

tj − tj−1

)

≥ bL





1

b

k
∑

j=1

Uj |Xj |U∗
j



 ≥ bL
(Z

b

)

=

∫ b

0
L
(Z

b

)

dt = S(γ).

�
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To prove that geodesic segments are optimal paths among all the possible piecewise C1

curves, we need the following standard approximation result by polygonal paths.

Lemma 3.3. Let α : [0, b] → U(n) be piecewise smooth. Then for any ǫ > 0 there is a

polygonal path Pǫ : [0, b] → U(n) such that for any t ∈ [0, b],

‖P ∗
ǫ (t)Ṗǫ(t)− α∗(t)α̇(t)‖ < ǫ.

Proof. We may as well assume that α is smooth in [0, b]. Recall that α, α̇ are continuous

in the uniform norm. Let ǫ > 0, and choose a partition 0 = t0 < t1 < · · · < tn = b of the

interval [0, b] such that, for any k = 0, 1, · · · , n,

‖α(t) − α(s)‖ < 2 and ‖α∗(t)α̇(t)− α∗(s)α̇(s)‖ <
ǫ

2

if s, t ∈ [tk, tk+1]. The first condition implies that there exist Zk ∈ H(n) such that

‖Zk‖ < π and eiZk = α∗(tk)α(tk+1). Moreover, if log denotes the principal branch of the

logarithm, then

Zk = log(α∗(tk)α(tk+1)).

Now note that, for any fixed t ∈ [0, b], the map g : h 7→ 1
h log(α

∗(t)α(t+h)), is well-defined

and analytic, for sufficiently small h. Moreover

g(h) −−−−→
h→0

d

ds
log α∗(t)α(t+ s)

∣

∣

∣

∣

s=0

= α∗(t)α̇(t).

Then, taking a refinement of the partition if necessary, we can also assume that

‖Zk − α∗(tk)α̇(tk)‖ <
ǫ

2

for any k = 0, 1, 2 · · · , n. Consider the map Pǫ : [0, b] → U(n) which is defined as

Pǫ(t) = α(tk)e
t−tk

tk+1−tk
Zk

for t ∈ [tk, tk+1].

Then Pǫ is certainly a polygonal path, and it is straightforward to see that verifies the

claim of the lemma. �

Theorem 3.4. Let U ∈ U(n) and V = UeiZ , with Z ∈ H(n) and ‖Z‖ ≤ π. Then, the

curve γ(t) = ueitZ/b is optimal among piecewise smooth curves α : [0, b] → U(n) joining U

to V , with respect to the action S defined by a symmetric Lagrangian, and in particular

inf S = bL(Z/b).

Proof. Given ǫ > 0, let δ > 0 such that ‖X − Y ‖ ≤ δ implies that |L(X) − L(Y )| < ǫ/b

for every X and Y in a ball big enough. Then, let Pδ be a polygonal path in U(n) as in

the previous lemma, joining U to V , such that

‖α̇− Ṗδ‖ = ‖α∗α̇− P ∗
δ Ṗδ‖ < δ.
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Then by Proposition 3.2,

S(γ) ≤ S(Pδ) =
∫ b

0
L(Ṗ (t)) dt ≤ ε+

∫ b

0
L(α̇(t)) dt < ǫ+ S(α),

Therefore, S(γ) ≤ S(α). �

Remark 3.5. If α : [0, b] → U(n) is just rectifiable (that is, differentiable p.p. with

α̇(t) bounded), the approximation by a polygonal path can be carried out with no major

changes, and the proof of the previous theorem shows that in fact, geodesic segments are

optimal among rectifiable arcs joining given endpoints.

3.2 Uniqueness of short paths

Concerning uniqueness, it is clear that the convexity condition of L should be strenghtened.

Let us agree to call L nondegenerate if, given A,B ∈ H(n), the existence of λ ∈ (0, 1) such

that the inequality of the convexity condition turns into an equality, implies that there

exists s ≥ 0 such that A = sB. In other words, if

L(λA+ (1− λ)B) = λL(A) + (1− λ)L(B)

for some λ ∈ (0, 1), then A = sB for some s ≥ 0. This is a notion of nondegeneracy

outside lines.

The other notion at play here is the strongest notion of strict convexity of L, which of

course means that if the equality above holds for some λ ∈ (0, 1), then A = B. A simple

example of a strictly convex Lagrangian is the energy functional, given by the square of

the Frobenius norm on H(n).

Remark 3.6. Note that strict convexity implies nondegeneracy, but the notion of nonde-

generacy is relevant since no linear space norm can be strictly convex. In fact, it is usual

to say that a norm ‖ · ‖ on a linear space is strictly convex when the weaker condition

(nondegeneracy) stated above holds, which due to the homogeneity of the norm amounts

to say that

‖A+B‖ = ‖A‖ + ‖B‖

implies A = sB for some s ≥ 0, and geometrically, is equivalent to the fact that the unit

ball of the normed space has no segments.

We begin with a technical lemma. Recall that if A ∈ H(n), then λ1 (A), . . ., λn (A) denotes

the eigenvalues of A arranged in non-increasing way.

Lemma 3.7. Let X,Y,Z ∈ H(n) be such that eZ = eiXeiY and ‖Z‖ < π. If λk (X) =

rλk (Z) and λk (Y ) = (1 − r)λk (Z) for some r ∈ [0, 1] and every k ∈ {1, . . . , n}, then

X = rZ and Y = (1− r)Z.
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Proof. It is enough to show that Z shares an orthonormal basis of eigenvalues with X and

Y . Let ξ be an unitary eigenvector of Z such that |Z|ξ = ‖Z‖ξ. Consider the unit sphere

Sn−1 ⊂ C
n and the maps α, β : [0, 1] → Sn−1 given by α(t) = eitZξ,

β(t) =

{

e2itXξ if t ∈ [0, 1/2]

eiXe2i(t−1/2)Y ξ if t ∈ [1/2, 1]
.

In particular, α and β have the same extreme points. A simple computation shows that,

with respect to the natural Riemannian structure, Long(α) = µ and Long(β) ≤ µ. But,

since

α̈(t) = eitZ(−Z 2)ξ = −eitZ |Z|2ξ = −‖Z‖2eitZξ = −‖Z‖2α(t)

and Long(α) = ‖Z‖ < π, then α is the unique short geodesic of the sphere Sn−1 joining ξ

with eiZξ. So, Graph(α) = Graph(β) and ξ is also an eigenvalue of X and Y . Iterating

this procedure, we can conclude that X, Y and Z share a common orthonormal basis of

eigenvalues. �

Theorem 3.8. Assume that L is strictly convex. Let X,Y ∈ H(n) with norm less or equal

than π, and Z ∈ H(n) such that ‖Z‖ < π and eiZ = eiXeiY . Consider the geodesic segment

γ : [0, b] → U(n) defined by γ(t) = eitZ/b, and the polygonal P : [0, 1] → U(n)defined by







e
i t
t0
X

if t ∈ [0, t0]

eiXe
i
t−t0
b−t0

Y
if t ∈ [t0, b]

.

for some t0 ∈ (0, b). If S(P ) = S(γ) then X = t0
b Z and P = γ.

Proof. By Proposition 2.1, there exist unitary matrices U and V such that

eiZ = ei(UXU
∗+V Y V ∗) and |Z| ≤ |UXU∗ + V Y V ∗| ,

and by the computations made in Proposition 3.2 (Equation (4))

S(P ) = t0 L
(

X

t0

)

+ (b− t0)L
(

Y

b− t0

)

.

Then, using the properties of L, the hypothesis S(P ) = S(γ) implies that

S(γ) = S(P ) = t0 L
(

X

t0

)

+ (b− t0)L
(

Y

b− t0

)

= b

(

t0
b
L
(

UXU∗

t0

)

+
b− t0

b
L
(

V Y V ∗

b− t0

))

≥ bL
(

UXU∗ + V Y V ∗

b

)

≥ bL
(Z

b

)

= S(γ).
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On one hand, this implies that Z = UXU∗ + V Y V ∗. Indeed, if W = UXU∗ + V Y V ∗

then |Z| ≤ |W |. But the above chain of identities implies that L(Z) = L(W ), and

(P2) in Proposition 2.5 implies that |Z| = |W |. Hence, 0 ≤ |Z| = |W | < π. Since

eiZ = ei(UXU
∗+V Y V ∗) we get the desired equality. On the other hand, since L is strictly

convex if r = t0/b then

rZ = UXU∗ and (1− r)Z = V Y V ∗.

Now, by Lemma 3.7 we obtain that X = UXU∗ and Y = V Y V ∗ which concludes the

proof. �

Theorem 3.9. Assume that L is strictly convex. Let Z ∈ H(n) be such that ‖Z‖ < π.

Then, the geodesic segment δ : [0, b] → U(n) defined by γ(t) = UeitZ/b is the unique

piecewise C1 curve in U(n) joining U to V = UeiZ , and S(δ) = bL(Z/b).

Proof. Without lost of generality we can assume that U = 1. Suppose that α is any short,

piecewise smooth curve joining 1 to eiZ . Let t0 ∈ (0, 1) and let α(t0) = eiX = eiZe−iY ,

with ‖Y ‖ ≤ π, ‖X‖ ≤ π. Consider the polygonal P : [0, b] → U(n) defined by







e
i t
t0
X

if t ∈ [0, t0]

eiXe
i
t−t0
b−t0

Y
if t ∈ [t0, b]

.

Then, by Proposition 3.2 and Theorem 3.4 applied to each segment,

S(γ) ≤ S(P ) ≤
∫ t0

0
L(α̇) dt+

∫ b

t0

L(α̇) dt = S(α) = S(γ),

Hence S(γ) = S(P ), and by Theorem 3.8 we get that X = t0
b Z. �

This settles Problem 2 when the Lagrangian is strictly convex: the geodesic segments

are optimal and unique as functions. Regarding the second question of that problem, we

have the following result, that settles this poblem when the Lagrangian is nondengenerate

(for instance, if L is a strictly convex norm on a linear space, Remark 3.6): in this case,

geodesic segments are optimal and unique modulo a reparametrization of the path, that

is, they are unique in a geometrical sense.

Theorem 3.10. Assume that L is nondegenerate. Let Z ∈ H(n) be such that ‖Z‖ < π.

Then, if α : [0, b] → U(n) is an optimal path of the minimization problem given by L with

given endpoints U, V , α must be a reparametrization of the geodesic segment γ : [0, b] →
U(n) defined by γ(t) = UeitZ/b.

Proof. We assume that U = 1 and V = eiZ . Let t0 ∈ (0, 1) and let α(t0) = eiX = eiZe−iY ,

with ‖Y ‖ ≤ π, ‖X‖ ≤ π. Arguing as in the proof of Theorem 3.8, convexity of L and

10



minimality of α imply that Z = UXU∗ + V Y V ∗. Now, nondegeneracy of L implies also

that there exists s ≥ 0 such that

UXU∗

t0
= s

V Y V ∗

b− t0
.

Now we take s0 = st0
b−t0

≥ 0 and r = (1 + s0)
−1. Note that r ∈ [0, 1] and also that rZ =

UXU∗, (1 − r)Z = V Y V ∗. Invoking once again Lemma 3.7, it follows that X = UXU∗,

Y = V Y V ∗. Thus α(t0) = eirZ and then α must be a reparametrization of the geodesic

segment γ. �

Regarding uniqueness of paths when ‖U − V ‖ = 2 (or equivalently, when V = UeiZ and

‖Z‖ = π), this property is not expected since taking n = 1, U = 1, V = −1 shows

that there are two geodesic segments in the circumference (= U(1)) joining U, V , and the

situation worsens as n gets bigger.

4 Rectifiable distances in U(n) and angular metrics in the

Grassmann manifold

In this section, we focus in the particular case where L is a unitarily invariant norm. In

that case the action S defines a length of curves and the length of the optimal path defines

a distance in U(n).

4.1 Unitarily invariant norms and symmetric gauge functions

One of the most relevant properties of the uniform norm of matrices is the following: given

two unitary matrices U and V , then ‖UTV ‖ = ‖T‖. This property is shared by many

other norms defined in Mn(C).

Definition 4.1. A norm ‖| · ‖| defined in Mn(C) is called unitarily invariant if for every

matrix T and every pair of unitary matrices U and V it holds that ‖| UTV ‖| = ‖| T ‖| .

As a consequence of the singular value decomposition, ‖| T ‖| = ‖| |T | ‖| , and

‖| T ‖| = ‖T‖φ = φ(s(T )) , (6)

where φ is a symmetric gauge function, that is, a rearrangement invariant norm on R
n,

and depends only on the moduli of the coordinates of the vectors. The next theorem [5]

will be useful in what follows:

Theorem 4.2. There is a bijection bewtween symmetric gauge functions φ on R
n, and

unitarily invariant norms ‖ · ‖φ on Mn(C) given by equation (6) above.
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4.2 Rectifiable metrics in the unitary group

By considering as a Lagrangian a unitarily invariant norm ‖ · ‖φ, the action S can be

interpreted as the length of curves Lφ, and the rectifiable distance between U, V ∈ U(n) is

dφ(U, V ) = inf {Lφ(γ)| γ : [a, b] → U(n) is piecewise smooth and joins U to V in U(n)} .

The function dφ is in fact a distance, since ‖U − V ‖φ ≃ dφ(U, V ) for any U, V ∈ U(n).
One of the main features of this metric is that it is invariant for the action of the unitary

group U(n), in fact it is a bi-invariant metric

dφ(UV1W,UV2W ) = dφ(V1, V2)

for U,W, V1, V2 ∈ U(n).

4.2.1 Minimality of one-parameter subgroups

As a direct consequence of Theorem 3.4 and Theorem 3.10, we obtain the following result,

which generalizes [4, Theorem 3.2] for the p-norms (p ≥ 2), see also [11].

Theorem 4.3. Let U, V ∈ U(n) and V = UeiZ , with ‖Z‖ ≤ π, Z ∈ H(n). Then, the

curve δ(t) = UeitZ is shorter than any other piecewise smooth curve γ in U(n) joining U

to V , when we measure them with the norm ‖ · ‖φ. In particular, dφ(U, V ) = ‖Z‖φ. If

‖U − V ‖ < 1 (equivalently, if ‖Z‖ < π), then this δ is the unique short path joining U, V

in U(n) provided the norm is stricly convex.

Remark 4.4. A question related to the uniqueness of geodesics, is if we can ensure that

the points in U(n) are aligned when the distance is additive. That is, if

dφ(U, V ) = dφ(U,W ) + dφ(W,V ).

implies that there exists t0 ∈ [0, 1] and X0 ∈ H(n) with ‖X0‖ ≤ π such that

V = UeiX0 , while W = Ueit0X0 .

The previous theorem implies this when ‖U − V ‖ < 2. However, the question always has

an affirmative answer (provided the norm is strictly convex), with a simpler proof.

Theorem 4.5. Assume that the norm ‖ · ‖φ is strictly convex, and let U, V,W ∈ U(n) be
such that

dφ(U, V ) = dφ(U,W ) + dφ(W,V ).

Then U, V,W are aligned in U(n).

12



Proof. We can assume that U = 1, V = eiZ , W = eiX with X,Z of norm less or equal

than π. Let Y ∈ H(n) such that ‖Y ‖ ≤ π and eiZ = eiXeiY . Then the hypothesis is that

‖Z‖φ = ‖X‖φ + ‖Y ‖φ.

Consider the smooth path α(t) = eitXeitY . Then α joins the same endpoints that δ(t) =

eitZ in U(n), thus

‖X + Y ‖φ = Lφ(α) ≥ Lφ(δ) = ‖Z‖φ = ‖X‖φ + ‖Y ‖φ.

Since the norm is strictly convex, there exists λ ≥ 0 such that Y = λX. Pick X0 = (1+λ)X

and t0 = (1 + λ)−1 to finish the proof. �

4.3 The Grassmannian

The Grassmannian Gn is the set of subspaces of Cn, which can be identified with the set of

orthogonal projections in Mn(C). If we consider in Mn(C) the topology defined by any

of all the equivalent norms, the Grassmann space endowed with the inherited topology

becomes a compact set. However, it is not connected. Indeed, it is enough to consider

the trace tr, which is a continuous map defined on the whole space Mn(C), and restricted

to Gn takes only positive integer values. In particular, this shows that the connected

components of Gn are the subsets Gm,n defined as:

Gm,n := {P ∈ Gn : tr(P ) = m}.

Each of these components is a submanifold of Mn(C) [18, p.129], and connected compo-

nents are given by the unitary orbit of a given projection P such that tr(P ) = m:

Gm,n = {UPU∗ : U ∈ U(n)}.

The tangent space at a point P ∈ Gm,n can be identified with the subspace of P -codiagonal

Hermitian matrices, i.e.

TPGn = {X ∈ H(n) : X = PX +XP} .

In particular note that TPGn has a natural complement NP , which is the space of Her-

mitian matrices that commute with P , that is, the P -diagonal Hermitian matrices. The

decomposition in diagonal and codiagonal matrices defines a normal bundle, and leads to

a covariant derivative

∇V Γ(P ) = ΠTP ||NP

d

dt
Γ(α(t))

∣

∣

∣

∣

t=0

, (7)

where Γ is a vector field along the curve α : (−ε, ε) → Gm,n that satisfies α(0) = P and

α̇(0) = V . So, we have a notion of parallelism, and the geodesics in this sense are described

by the following theorem:

13



Theorem 4.6 (Porta-Recht [13]). The unique geodesic at P with direction X is:

γ(t) = e itXPe−itX .

As the unitary group acts transitively in these components via U · P = UPU∗, they are

also homogeneous spaces of U(n). They can be distinguished from other homogeneous

submanifolds of U(n), because the map

P 7→ SP = 2P − 1

embeds them in U(n), and the map S is two times an isometry. The images SP are

symmetries, i.e. matrices that satisfy S∗
P = SP = S−1

P .

4.3.1 Finsler metrics on the Grassmannian

For a given symmetric norm, the Grassmann space carries the Finsler structure given by

‖X‖P = ‖X‖φ
for X ∈ TPGn, and with this structure, the Grassmann component {UPU∗ : U ∈ U(n)}
is isometric (modulo a factor 2) to the orbit of symmetries {USPU

∗ : U ∈ U(n)}. In

the particular case when ‖ · ‖φ is the Frobenius norm, this connection is the Levi-Civita

connection of the metric, since the P -diagonal matrices are the orthogonal complement of

the P -codiagonal matrices with respect to this Riemannian metric.

A straightworward computation shows that, if X = XP + PX, then eiXSP = SP e
−iX .

This simple observation enables to use our results in the unitary group, to prove minimality

of geodesics in the Grassmann manifold:

Theorem 4.7. If P,Q ∈ Gm.n then there exists X ∈ TPGn such that Q = eiXPe−iX and

‖X‖ ≤ π
2 , unique when ‖P −Q‖ < 1. The geodesic γ(t) = eitXPe−itX is shorter than any

rectifiable path in Gn joining P,Q and

dφ(P,Q) = ‖XP − PX‖φ = ‖X‖φ.

If the norm is strictly convex and ‖P − Q‖ < 1, the geodesic is the unique short path

joining P,Q ∈ Gn.
Proof. The existence of X follows from Halmos [8] or Davis and Kahan [6]. Since e2iX =

SQSP , if ‖Q− P‖ < 1 this X is unique. Since

Sγ(t) = 2γ(t) − 1 = eitXSP e
−itX = e2itXSP = SP e

−2itX ,

and S is two times an isometry, the minimality of γ follows from Theorem 4.3, and the

same applies to the uniqueness in the strictly convex case. Finally, Lφ(γ) = ‖XP −PX‖φ,
and on the other hand, since PXP = 0 then

|XP − PX|2 = |XP + PX|2 = |X|2,

thus dφ(P,Q) = Lφ(γ) = ‖|XP − PX|‖φ = ‖|X|‖φ = ‖X‖φ. �
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Remark 4.8. In the situation of the previous theorem, it is not hard to see that if

k ∈ Z, then PX2k = X2kP , PX2k+1 = −PX2k+1. Then P |X| = |X|P = |XP | and
(1− P )|X| = |X|(1 − P ) = |PX|. Moreover

Q = P cos2 X + (1− P ) sin2X − i

2
P sin 2X +

i

2
(1− P ) sin 2X,

and then |PQ|2 = PQP = P cos2 X, which leads to |PQ| = P cosX = cos |XP |, and
likewise |QP | = (1− P ) cosX = cos |PX|. Thus if Y ∈ TpGn is any other matrix as X, it

follows that P cosX = P cos Y or equivalently,

cos |XP | = |PQ| = cos |Y P |.

4.4 The angular metrics

Let X and Y be two m-dimensional subspaces of Cn, and let PX and PY be the orthogonal

projections onto X and Y respectively. The principal angles between X and Y are the

angles θ1(X ,Y), . . . , θm(X ,Y) ∈ [0, π/2) whose cosines are the m greatest singular values

of PXPY , see [9].

In [10] Li, Qiu, and Zhang used the principal angles to define metrics in the components

of Gm,n. Given a symmetric norm ‖·‖φ, they define for P,Q ∈ Gm,n the following distance:

ρφ(P,Q) = ‖ arccos |PQ|‖φ.

These distances are called angular metrics, because if φ is the symmetric gauge function

associated to ‖ · ‖φ then

ρφ(P,Q) = φ(θ1(X ,Y), . . . , θm(X ,Y), 0, . . . , 0).

where X = R(P ) and Y = R(Q). The definition of these metrics was motivated not only

by pure mathematics but also by engineering applications. For example, in robust control,

a linear time-invariant system can be described by a subspace valued frequency function,

and the description of an uncertain system needs a suitable distance measure between

subspaces. The reader is referred to [10], where other motivations and applications of

these metrics are described.

A legitimate question at this point, is if these distances are related to an infinitesimal

structure on the manifold Gn, that is, if the angular distance among P,Q ∈ Gm,n can be

computed as the infima of the lengths of the rectifiable arcs joining P,Q. Note that, by

Remark 4.8, if X is as in Theorem 4.7, then the angular distance among P,Q can be

computed as

ρφ(P,Q) = ‖ arccos |PQ|‖φ = ‖XP‖φ
and this computation does not depend on the particular X. Then, one can be tempted to

endow the Grassmannian with the Finsler metric (i.e. tangent norm) given by ‖X‖P =
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‖XP‖φ for X ∈ TPGn. The problem with this definition is that it is not clear how to

extended it to the whole Mn(C) in order to obtain an unitarily invariant norm there.

To this end, it suffices to consider the case m ≤ n/2. Let φ be the symmetric gauge

function associated to ‖ · ‖φ (see Theorem 4.2), and define ‖ · ‖ψ in the following way:

‖A‖ψ = φ
(

1/2(s1 (A) + s2 (A) , . . . , s2m−1 (A) + s2m (A) , 0, . . . , 0)
)

, (8)

where s1 (A),. . .,sn (A) denotes the singular values of A counted with multiplicity and or-

dered in non-increasing way2. Straightforward computations show that ‖·‖ψ is a symmetric

norm, and also that, for any Q ∈ Gm,n and Z ∈ TQGn it holds

‖QZ‖φ = ‖Z‖ψ.

The following theorem gives the link between the rectifiable distances and the angular

metrics:

Theorem 4.9 (Davis-Kahan [6]). Let P,Q ∈ Gm,n, and denote X = R(P ) and Y = R(Q).

Then, if X ∈ H(n) is P -codiagonal with ‖X‖ ≤ π/2 and Q = eiXPe−iX , its spectrum

counted with multiplicity is

(

± θ1(X ,Y), . . . ,±θm(X ,Y), 0 . . . , 0
)

.

Consider the rectifiable distance dψ associated to the norm given in (8), and take P,Q,X

as in Theorem 4.7. Then

dψ(P,Q) = ‖X‖ψ = φ
(

1/2(s1 (X) + s2 (X) , . . . , s2m−1 (X) + s2m (X) , 0, . . . , 0)
)

= φ
(

θ1(X ,Y), . . . , θm(X ,Y), 0 . . . , 0
)

= ρφ(P,Q) ,

by Theorem 4.9, and this establishes the following (obtained by Neretin in [12] with another

proof):

Theorem 4.10. Let ‖ · ‖φ be a symmetric norm, and ρφ its corresponding angular metric

in Gm,n. Then, there exists an induced symmetric norm ‖ · ‖ψ such that the corresponding

rectifiable distance dψ coincides with ρφ.

Remark 4.11. In [10, Section 4], the authors prove that when the norm ‖ · ‖φ is strictly

convex, if the distance among P,Q,R ∈ Gm,n is additive, then there exists a direct rotation

from X to Z through Y, where X = R(P ),Y = R(Q) and Z = R(R). This last assertion

is equivalent to the notion of being aligned as introduced in Remark 4.4. Thus the proof

of this fact follows immediatly from Theorem 4.5.

2The arithmetic mean can be replaced by any positive mean.
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A Appendix: compact operators

The results of the previous sections can be extended to the infinite dimensional setting

as follows. Let H be a complex separable Hilbert space, B(H) the algebra of bounded

operators with the supremum norm, K(H) the algebra of compact operators, U(H) the

group of unitary operators. Let ‖ · ‖φ : B(H) → R ∪ {∞} be a symmetric norm, that is a

norm such that

‖AXB‖φ ≤ ‖A‖‖X‖φ‖B‖ (9)

for A,X,B ∈ B(H) (both sides can equal ∞). In particular, it is unitarily invariant,

thus it only depends on the singular values of the operator, and as in Theorem 4.2, there

is a symmetric gauge function φ : R
∞ → R≥0 related to this norm; the relationship

is somewhat subtle so we refer the reader to Simon’s book [14] for full details on these

symmetrically normed ideals.

Let I ⊂ K(H) stand for the ideal of operators with finite norm, which will be assumed

to be complete with respect to its norm, and let Uφ = {u ∈ U(H) : u − 1 ∈ I}. This

is a Banach-Lie group, whose Banach-Lie algebra can be readily identified with the anti-

Hermitian part of I, that we will denote with iIh. A straightforward computation using

the functional calculus and the fact that I is an ideal shows that if ‖Z‖ ≤ π is self-adjoint

and eiZ = U , then Z ∈ I.

A.1 The special unitary groups

The length functional on Uφ is defined accordingly as Lφ(α) =
∫ 1
0 ‖α̇‖φ, and the distance

dφ is defined as the infima of the lengths of curves in Uφ joining given endpoints; in order to

prove minimality of geodesic segments, we will need the following extension of Thompson’s

formula, its proof can be found in [2, Theorem 3.2]:

Theorem A.1. Given X,Y ∈ K(H)h, there is an isometry w ∈ B(H) (w∗w = 1), and

unitary operators U and V such that

ei wXw
∗
ei wY w

∗
= ei U(wXw∗)U∗+i V (wY w∗)V ∗

.

Theorem A.2. Let U, V ∈ Uφ, Z ∈ I such that V = UeiZ and ‖Z‖ ≤ π. Then, the curve

γ(t) = UeitZ is minimal among rectifiable curves α ⊂ Uφ joining U, V , with respect to the

distance induced by the length Lφ, and dφ(U, V ) = ‖Z‖φ. This curve is unique if the norm

is strictly convex and ‖U − V ‖ < 2 (equivalently, ‖Z‖ < π).

Proof. If Z ∈ I is such that eiZ = eiXeiY and ‖Z‖ ≤ π (where we can assume that

X,Y ∈ I), then eiwZw
∗
= eiwXw

∗
eiwY w

∗
for some isometry w ∈ B(H) by Theorem A.1.

With the same proof as Corollary 2.2, we obtain

|wZw∗| ≤ |U(wXw∗)U∗ + i V (wY w∗)V ∗|.
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Due to (9), it follows that

‖Z‖φ = ‖w∗wZw∗w‖φ ≤ ‖wZw∗‖φ ≤ ‖X‖φ + ‖Y ‖φ

since w is an isometry thus ‖w‖ = 1. Now the rest of the proof of minimality of segments

follows as in Section 3. The uniqueness when the norm is strictly convex can be proved

invoking Theorem A.1, and arguing as in the proof of Theorem 3.10. �

A.2 The restricted Grassmannians

The same considerations hold for the special Grassmannian manifold, whose components

can be regarded as unitary orbits of self-adjoint projections P ∈ B(H), with the action of

these special unitary groups:

Gφ(P ) = {UPU∗ : U ∈ Uφ}.

Since U−1 ∈ I, then the orbit is contained in the affine space P +I. Then tangent spaces

are identified with

TPGφ(P ) = {X ∈ Ih : XP + PX = X}.

A well-known result of Halmos [8] says that if P,Q ∈ B(H) are self-adjoint projections

whose ranges have the same dimension (including the posiblity of +∞), and the same

holds for their kernels, then there exists a P -codiagonal X such that ‖X‖ ≤ π
2 and

Q = eiXPe−iX . Since Gφ ⊂ P+I, it is easy to check that SQSP ∈ Uφ. Then, e2iX = SQSP
is also in Uφ, and it follows that X ∈ I.

Corollary A.3. If P,Q ∈ Gφ(P ) then there exists X ∈ TPGφ(P ) such that Q = eiXPe−iX

and ‖X‖ ≤ π
2 , unique when ‖P −Q‖ < 1. The geodesic γ(t) = eitXPe−itx is shorter than

any rectifiable path in Gφ(P ) joining P,Q and dφ(P,Q) = ‖XP − PX‖φ = ‖X‖φ. If the

norm is strictly convex and ‖P − Q‖ < 1, the geodesic is the unique short path joining

P,Q ∈ Gφ(P ).

Remark A.4. When I is the ideal of Hilbert-Schmidt operators, the special Grassman-

nian defined above is known as the Sato Grassmannian or the restricted Grassmannian.

The proof of minimality of one-parameter groups in this Riemann-Hilbert setting was

given in [1] with a different technique.
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