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In a noncommutative algebra there is no canonical way to express elements in univalent way,
which is often called “ordering problem”. In this note we give product formula of the Weyl algebra
in generic ordered expression. In particular, the generic product formula of ∗-exponential functions
of quadratic forms will be given.

In differential geometry, it is widely accepted that geometrical notion should have coordinate free
expression. Obviously, algebraic structure of (C[uuu], ∗Λ) depends only on the skew part of Λ. It seems
reasonable to accept the independence of ordering principle as a basic principle that the physical
implication should be independent of ordered expressions.

In the last section, we mention the independence of ordering principle (IOP), and how this
principle breaks down in the system containing ∗-exponential functions of quadratic forms.

As a result, we obtain a kind of “double covering group” of Sp(m;C) which is simply connected,
but this contains the double covering group (meta-plectic group) of Sp(m;R). Several extraordinary
properties of ∗-exponential functions of quadratic forms will be given.

In these calculus, we found peculiar elements, called polar elements, each of which has infinitely
many square roots.

1 General product formula and intertwiners

We start with a little general setting as follows: Let S(n) and A(n) be the spaces of complex
symmetric matrices and skew-symmetric matrices respectively, and M(n)=S(n) ⊕ A(n). For an
arbitrary fixed n×n-complex matrix Λ∈M(n), we define a product ∗

Λ
on the space of polynomials

C[uuu] by the formula

(1.1) f ∗
Λ
g = fe

i~
2
(
∑←−
∂uiΛ

ij−−→∂uj )g =
∑

k

(i~)k

k!2k
Λi1j1· · ·Λikjk∂ui1· · ·∂uikf ∂uj1· · ·∂ujk g.

It is known and not hard to prove that (C[uuu], ∗
Λ
) is an associative algebra. Clearly, if Λ is symmetric,

then the algebra obtained is commutative and is isomorphic to the standard polynomial algebra with
~.
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For every Λ, ∂ui acts as a derivation of the algebra (C[uuu], ∗
Λ
). Noting this, we define for any other

constant symmetric matrix K a new product ∗
Λ,K

by the formula

f ∗
Λ,K

g =fe
i~
2
(
∑←−
∂uiK

ij∗
Λ

−−→
∂uj )g

=
∑

k

(i~)k

k!2k
Ki1j1 · · ·Kikjk(∂ui1 · · ·∂uikf)∗Λ(∂uj1 · · ·∂ujk g).

This is also an associative algebra (C[uuu], ∗
Λ,K

). Since Λ, K are constant matrices and the non-
commutativity of matrix algebra is not used in the calculation of the product formula, the new
product formula can be rewritten as

f ∗
Λ,K

g =
∑

k

(i~)k

k!2k
(Λ+K)i1j1 · · · (Λ+K)ikjk∂ui1 · · ·∂uikf∂uj1 · · ·∂ujk g

by noting that the exchanging indexes of ∂ui1 ···uik is permitted. That is, ∗
Λ,K

= ∗
Λ+K

.
This formula may be written as

(1.2) fe
i~
2
(
∑←−
∂ui(Λ+K)ij

−−→
∂uj )g = fe

i~
2
(
∑←−
∂uiK

ije
i~
2 (

∑←−−
∂uk

Λkl−−→∂uk
)−−→∂uj )g.

Using a symmetric matrixK, we compute 1
k!
( i~
4

∑
Kij∂ui∂uj )

k(f∗
K
g) by noting that this is written

as follows: ∑

p+q+r=k

(i~)r

r!2r
Ki1j1 · · ·Kirjr∂ui1 · · ·∂uir

1

p!
(
i~
4

∑
Kij∂ui∂uj )

pf

× ∂uj1 · · ·∂ujr
1

q!
(
i~
4

∑
Kij∂ui∂uj )

qg.

Using this formula, we have the following formula:

(1.3)
e

i~
4

∑
Kij∂ui∂uj

((
e−

i~
4

∑
Kij∂ui∂uj f

)
∗

Λ

(
e−

i~
4

∑
Kij∂ui∂uj g

))

=fe
i~
2
(
∑←−
∂ui∗ΛKij∗

Λ

−−→
∂uj )g = f∗

Λ+K
g.

Set Λ = K+J where K, J are the symmetric part and the skew-part of Λ respectively. Since
the commutator [ui, uj] = i~J ij is given by the skew-part of Λ, the algebraic structure of (C[uuu], ∗

Λ
)

depends only on J , whose isomorphism class may be denoted by (C[uuu], ∗
J
) or simply by (C[uuu], ∗) by

noticing this class consists of a single algebra.
This is confirmed directly by the formula (1.3). Namely, we see the following:

Corollary 1.1 Let I
K

0 (f) = e
i~
4

∑
Kij∂ui∂uj , and I0

K
(f) = e−

i~
4

∑
Kij∂ui∂uj . Then I

K

0 is an isomorphism
of (C[uuu]; ∗

Λ
) onto (C[uuu]; ∗

Λ+K
).

It is clear that the product f∗
Λ
g is defined if one of f, g is a polynomial and another is a smooth

function.
LetHol(Cn) be the space of all holomorphic functions on the complex n-plane Cn with the uniform

convergence topology on each compact domain. The next one gives a useful remark:

Lemma 1.1 Hol(Cn) with the topology above is a Fréchet space defined by a countable family of
seminorms.

Proposition 1.1 For every p(uuu) ∈ C[uuu], the left-multiplication f → p(uuu) ∗
Λ
f and the right-

multiplication f → f ∗
Λ
p(uuu) are both continuous linear mapping of Hol(Cn) into itself.

If two of f, g, h are polynomials, then associativity (f∗
Λ
g∗

Λ
)h = f∗

Λ
(g∗

Λ
h) holds.

3



1.1 Expression parameters and intertwiners

In what follows we treat the case of 2m variables, and we use notations

(1.4) uuu = (u1, u2, · · · , u2m) = (ũuu, ṽvv), ũuu = (ũ1, · · · , ũm), ṽvv = (ṽ1, · · · , ṽm).

The skew part J is fixed to be the standard skew-symmetric matrix J =

[
0 −I
I 0

]
. The algebra is

called the Weyl algebra and the isomorphism class is denoted by W~(2m).
We use sometimes notations (u1, · · · , um, v1, · · · , vm) instead of (ũ1, · · · , ũm, ṽ1, · · · , ṽm) when no

confusion is suspected.
For the case of a universal enveloping algebra of a Lie algebra, Poincaré-Birkhoff-Witt theorem

ensures that this is realized on the space of ordinary polynomials by giving a new associative product.
However, there is no standard way of unique expressing elements of algebra.

Note that if the generator system is fixed, then Proposition 1.1 gives a representation of the
algebra. The product formula (1.1) gives also the unique expression of elements of this algebra
by the usual polynomials. For instance, computing ui∗uj∗uk by using (1.1) gives the expression of
ui∗uj∗uk as a polynomial. Thus, the product formula (1.1) will be referred to K-ordered expression
(or K-ordering), i.e. if generators are fixed, giving an ordering expression is nothing but giving a
product formula on the space of polynomials which defines the Weyl algebra W~.

By this formulation of orderings, the intertwiner between K-ordered expression and K ′-ordered
expression is explicitly given as follows:

Proposition 1.2 For every K,K ′ ∈ S(n), the intertwiner is defined by

(1.5) I
K′

K
(f) = exp

( i~
4

∑

i,j

(K
′ij−Kij)∂ui∂uj

)
f (= I

K′

0 (I
K

0 )−1(f)),

and by (1.3) it gives an isomorphism I
K′

K
: (C[uuu]; ∗

K+J
) → (C[uuu]; ∗

K′+J
). Namely, the following

identity holds for any f, g ∈ C[uuu] :

(1.6) I
K′

K
(f ∗

Λ
g) = I

K′

K
(f) ∗

Λ′
I

K′

K
(g),

where Λ = K+J , Λ′ = K ′+J .

Intertwiners do not change the algebraic structure ∗, but do change the expression of elements by
the ordinary commutative structure.

If the skew part J is fixed, we often use notation ∗
K
instead of ∗

Λ

In what follows, we use the notation ∗
K
instead of ∗

Λ
, since the skew-part J is fixed as the standard

skew-matrix. We use notations

uuu = (u1, u2, · · · , u2m) = (ũuu, ṽvv), ũuu = (ũ1, · · · , ũm), ṽvv = (ṽ1, · · · , ṽm).

As in the case of one variable, infinitesimal intertwiner

dI
K
(K ′) =

d

dt

∣∣∣
t=0
I

K+tK′

K
=
i~
4
K ′ij∂ui∂uj

4



is viewed as a flat connection on the trivial bundle
∐

K∈S(n)Hol(C
n). The equation of parallel

translation along a curve K(t) is given by

(1.7)
d

dt
ft = dI

K̇
(t)(K̇(t))ft, K̇(t) =

d

dt
K(t),

but this may not have a solution for some initial function.
Note that according to the choice of K = 0, K0,−K0, I, where

(0, K0,−K0, I) =

([
0 0
0 0

]
,

[
0 I

I 0

]
,

[
0 −I
−I 0

]
,

[
I 0
0 I

])
,

Choice of K (name of ordering)
K = 0 Weyl ordered expression

K0 =

[
0 I

I 0

]
Normal ordered expression

−K0 Anti-normal ordered expression[
I 0
0 I

]
Unit ordered expression

General K K-ordered expression

the product formulas (1.1) give the Weyl
ordered expression and the normal or-
dered expression, the antinormal or-
dered expression respectively, but the
unit ordered expression is not so familiar
in physics.
For each ordered expression, the prod-
uct formulas are given respectively by
the following formula:

(1.8)

f(uuu)∗0g(uuu) =f exp
~i
2
{←−∂v∧

−→
∂u}g, (Moyal product formula)

f(uuu)∗
K0
g(uuu) =f exp ~i{←−∂v

−→
∂u}g, (ΨDO product formula)

f(uuu)∗
−K0

g(uuu) =f exp−~i{←−∂u
−→
∂v}g, (ΨDO product formula)

where
←−
∂v∧
−→
∂u =

∑
i(
←−
∂ṽi
−→
∂ũi −

←−
∂ũi
−→
∂ṽi) and

←−
∂v
−→
∂u =

∑
i

←−
∂ṽi
−→
∂ũi .

The product formula for the unit ordered expression is a bit complicated to write down, but it is
easy to obtain. For instance

u2∗
I
=u2+

i~
2
, u∗

I
e−

1
i~
u2=0=e−

1
i~
u2∗

I
u e.t.c.

while the Weyl ordered expression gives

v∗0e−
2
i~
uv=0=e−

2
i~
uv∗0u.

The next one is trivial, but an important remark:

Proposition 1.3 Every entire function f(u, v) =
∑
aklu

kvl can be viewed as a K-ordered expression
of an element of extended Weyl algebra.

The relations between two different expressions are given by intertwiners, but computations in
the algebra can be done by using only the associativity and the fundamental commutation relations.
Note for instance that u∗v−v∗u = −i~ give for every polynomial p(v∗v) of v∗u that

u∗p(v∗u) = p(u∗v)∗u, (bumping identity).
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Let u◦v = 1
2
(u∗v+v∗u); the symmetric product. The bumping identity gives

u∗(u∗v)∗v = u∗(u◦v+1

2
i~)∗v = (u◦v+

1

2
i~)∗(u◦v+3

2
i~).

Throughout this series, we use notation :•:
K

to indicate the expression parameter for elements of
W~. For instance, we write

:ui∗uj:K=u2+
i~
2
(K+J)ij, :uj∗uj:I = u2j+

i~
2

etc.

A remarkable feature of the first three formulas of (1.8) is seen as follows:

:ũj∗ṽj :0 = ũj ṽj−
1

2
i~, :ṽj∗ũj:0 = ũj ṽj+

1

2
i~, (Weyl ordering)

:
∑

aklũ
k
∗∗ṽl∗:K0

=
∑

aklũ
kṽl, (normal ordering),

:
∑

aklṽ
k
∗∗ũl∗:−K0

=
∑

aklũ
kṽl, (anti-normal ordering),

but concrete product formulas will be used to extend the algebra transcendentally.

Weyl ordered expression. In general, define w∗(ukvl) by 1
(k+l)!

∑
x1∗x2∗ · · · ∗xk+l, where xi is

ũk or ṽl and the summation runs through all possible rearrangement of uk∗vl.

(1.9) (ũ+ṽ)n∗ =
∑

k

nCkw∗(ũ
kṽn−k), :w∗(ũ

kṽl):0 = ũkṽl.

Special expression parameter Ks. In [12], we introduced the special ordered expression Ks to
control the distribution of singular points of ∗-exponential functions of quadratic forms.

By Ks-product formula, we see that (Hol(Cn), ∗
Ks
) contains a subalgebra which is isomorphic to

the Clifford algebra Cliff(m).

Siegel class of expression parameters. In [12], we introduced the class S+(Rn) of expression
parameters and gave several remarks. This is

S+(Rn) = {K; Re
1

~
〈ξ(iK), ξ〉 ≥ cK |ξ|2, ∃ck > 0, ∀ξ ∈ Rn}

which will be called the imaginary positive definite class or the Siegel class. S+(Rn) is GL(n,R)-
invariant. Expressions in this class is easy to treat up to ∗-exponential functions of linear forms and
their integrals. Further remarks will be given in the last section.

1.1.1 Linear change of generators

Next, we consider the effect of linear changes of generators such as

u′i =
∑

ukS
k
i , S ∈ GL(n,C), (uuu′ = uuuS).

Since ∂ui =
∑
Ski ∂u′k , the product formula is rewritten by using new generators as

(1.10) f ∗
Λ
g = fe

i~
2
(
∑←−
∂u′

i
(tSΛS)ij

−−→
∂u′

j
)
g.

6



Hence the notation ∗
Λ
is better to be replaced ∗

Λ′
where Λ′=tSΛS.

Therefore the algebraic structure of (C[uuu], ∗
Λ
) depends only on the conjugate class of the skew

part J . If tSJS = J , that is, S is a symplectic linear change of generators such as

u′i =
∑

ukS
k
i , S ∈ Sp(m,C),

the mapping uuu → uuu′ does not change the algebraic structure. Change of generators are viewed

often as coordinate transformations, but note here that I
tSKS

K
is something like the “square root” of

symplectic coordinate transformations.
Since detS = 1 for S ∈ Sp(m,C), we see det tSKS = detK, hence the isomorphic change by the

intertwiner I
K′

K
can not be covered by a coordinate transformation if detK 6= detK ′.

1.2 Star-exponential functions of linear functions

For aaa,bbb ∈ C2m, we set 〈aaaΓ,bbb〉 = ∑2m
ij=1 Γ

ijaibj , 〈aaa,uuu〉 =
∑2m

i=1 aiui. These will be denoted also by

aaaΓ tbbb and 〈aaa,uuu〉 = aaa tuuu. For f(uuu) ∈ Hol(C2m), the direct calculation via the product formula (1.1) by
using Taylor expansion gives the following:

(1.11)
es

1
i~
〈aaa,uuu〉∗

K
f(uuu) = es

1
i~
〈aaa,uuu〉f(uuu+

s

2
aaa(K+J)),

f(uuu)∗
K
e−s

1
i~
〈aaa,uuu〉 = f(uuu+

s

2
aaa(−K+J))e−s

1
i~
〈aaa,uuu〉

as natural extension of the product formula. This gives also the associativity

(1.12)
(
es

1
i~
〈aaa,uuu〉∗

K
f(uuu)

)
∗

K
et

1
i~
〈bbb,uuu〉 = es

1
i~
〈aaa,uuu〉∗

K

(
f(uuu)∗

K
et

1
i~
〈bbb,uuu〉

)
, f(uuu) ∈ Hol(C2m).

By a direct calculation of intertwiner, we see that

(1.13) I
K′

K
(e

1
i~
〈aaa,uuu〉) = e

1
4i~
〈aaa(K ′−K),aaa〉e

1
i~
〈aaa,uuu〉.

Hence, {e 1
4i~
〈aaaK,aaa〉e

1
i~
〈aaa,uuu〉;K ∈ SC(2m)} is a parallel section of

∐
K∈SC(2m)Hol(C

2m).

We denote this element symbolically by e
1
i~
〈aaa,uuu〉

∗ . Namely we denote

(1.14) : e
1
i~
〈aaa,uuu〉

∗ :
K
= e

1
4i~
〈aaaK,aaa〉e

1
i~
〈aaa,uuu〉 = e

1
4i~
〈aaaK,aaa〉+ 1

i~
〈aaa,uuu〉.

By using the product formula in K-ordered expression, we have easily the exponential law

:e
s 1
i~
〈aaa,uuu〉

∗ :
K
∗

K
:e
t 1
i~
〈aaa,uuu〉

∗ :
K
= :e

(s+t) 1
i~
〈aaa,uuu〉

∗ :
K
, ∀K ∈ S(2m).

The exponential law may be written by omitting the suffix K as

e
s 1
i~
〈aaa,uuu〉

∗ ∗et
1
i~
〈aaa,uuu〉

∗ = e
(s+t) 1

i~
〈aaa,uuu〉

∗ , ese
t 1
i~
〈aaa,uuu〉

∗ = e
s+t 1

i~
〈aaa,uuu〉

∗

together with the exponential law with the ordinary exponential functions.
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Furthermore note also that :〈aaa,uuu〉:
K

= 〈aaa,uuu〉 for every K, and e
s
i~
〈aaa,uuu〉

∗ is the solution of the
evolution equation

d

dt
:e

t
i~
〈aaa,uuu〉

∗ :
K
=

1

i~
:〈aaa,uuu〉:

K
∗

K
:e

t
i~
〈aaa,uuu〉

∗ :
K
with initial data :e

0
i~
〈aaa,uuu〉

∗ :
K
= 1.

e
s 1
i~
〈aaa,uuu〉

∗ = {es2 1
4i~
〈aaaK aaa〉es

1
i~
〈aaa,uuu〉;K ∈ S(2m)} forms a one parameter group of parallel sections.

By applying (1.11) to :e
±s 1

i~
〈aaa,uuu〉

∗ :
K
, we have for every f ∈ Hol(Cn) the associativity

(1.15) :(e
s 1
i~
〈aaa,uuu〉

∗ ∗f∗(uuu))∗e−s
1
i~
〈aaa,uuu〉

∗ :
K
= :f∗(uuu+saaaJ):K = :e

s 1
i~
〈aaa,uuu〉

∗ ∗(f∗(uuu)∗e−s
1
i~
〈aaa,uuu〉

∗ ):
K
.

This gives also the real analyticity of e
s 1
i~
〈aaa,uuu〉

∗ ∗f∗(uuu)∗e−s
1
i~
〈aaa,uuu〉

∗ in s.

It is remarkable that if K = 0, then : e
1
i~
〈aaa,uuu〉

∗ :
K
= e

1
i~
〈aaa,uuu〉, that is, ∗-exponential functions of

linear functions are ordinary exponential functions in Weyl ordered expression. On the other hand,

if K ∈ S+(Rn) then :e
±s 1

i~
〈aaa,uuu〉

∗ :
K
has a very strong property that

:e
±s 1

i~
〈aaa,uuu〉

∗ :
K
= e

s2

4i~
〈aaaK,aaa〉e±

s
i~
〈aaa,uuu〉

is rapidly decreasing in s ∈ R.

1.2.1 Extension of products

For every positive real number p, we set

(1.16) Ep(Cn) = {f ∈ Hol(Cn) ; ‖f‖p,s = sup |f | e−s|ξ|p <∞, ∀s > 0}

where |ξ| = (
∑

i |ui|2)1/2. The family of seminorms {|| · ||p,s}s>0 induces a topology on Ep(Cn) and
(Ep(Cn), ·) is an associative commutative Fréchet algebra, where the dot · is the ordinary product for
functions in Ep(Cn). It is easily seen that for 0 < p < p′, there is a continuous embedding

(1.17) Ep(Cn) ⊂ Ep′(Cn)

as commutative Fréchet algebras (cf. [4]), and that Ep(Cn) is GL(n,C)-invariant.
We denote

(1.18) Ep+(Cn) =
⋂

p′>p

Ep′(Cn), (with the intersection topology)

It is obvious that every polynomial is contained in Ep(Cn), that is p(uuu) ∈ E0+(Cn), and C[uuu] is dense
in Ep(Cn) for any p > 0 in the Fréchet topology defined by the family of seminorms {|| ||p,s}s>0.

We easily see that e
1
i~
〈aaa,uuu〉 ∈ E1+(Cn). Moreover, it is not difficult to show that an exponential

function ep(uuu) of a polynomial of degree d is contained in Ed+(Cn), but not in Ed(Cn).
Theorems 1.1 and 1.2 stated below give basic tools to study ∗-functions (cf. [9] for the proof),

although most of the concrete formulas can be obtained without these theorems.
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Theorem 1.1 For 0 < p ≤ 2, the product formula (1.1) extends to give the following:
(1) The space (Ep(Cn), ∗

K
) forms a complete noncommutative topological associative algebra over C.

(2) The intertwiner I
K′

K
extends to give an isomorphism of (Ep(Cn), ∗

K
) onto (Ep(Cn), ∗

K′
).

Remark For the second statement, it is enough to prove that I
K′

K
extends to give a linear isomorphism

of Ep(Cn) onto itself. The property (2) shows that if p ≤ 2,
∐

K∈S(n) Ep(Cn) is a trivial subbundle,
and this is in fact an algebra bundle

∐

K∈S(n)

(Ep(Cn), ∗
K
). (0 < p ≤ 2)

The equation of parallel translation (1.7) has a unique solution for the initial function f is in Ep(Cn),
0 < p ≤ 2.

It is easily seen that the following identities hold on Ep(Cn), p ≤ 2

(1.19) I
K

K′
I

K′

K
= 1, I

K′′

K′
I

K′

K
= I

K′′

K
.

Hence, for every f ∈ Ep(Cn), the set f∗(uuu) = {IK

0 (f);K ∈ SC(n)} is a globally defined parallel
section.

For p > 2, we note the following:

Theorem 1.2 For p > 2, the product formula (1.1) gives continuous bi-linear mappings of

(1.20) Ep(Cn)× Ep′(Cn)→ Ep(Cn), Ep′(Cn)× Ep(Cn)→ Ep(Cn),

for ∀p′ such that 1
p
+ 1

p′
≥ 1.

For f, g, h ∈ Ep(Cn) (p > 2), the associativity (f∗
K
g)∗

K
h = f∗

K
(g∗

K
h) holds if two of f, g, h are

in Ep′(Cn) such that 1
p
+ 1

p′
≥ 1.

Note that the linear change of coordinate uuu′ = uuuS by S ∈ GL(n,C) gives naturally the topological
linear isomorphism ΦS : Ep(Cn)→ Ep(Cn), p ≥ 0, and this is an isomorphism as C[uuu]-bi-modules for
every p ≥ 0;

ΦS : (Ep(Cn); ∗
Λ
)→ (Ep(Cn; ∗tSΛS

).

This is not an automorphism, but an outer isomorphism.

1.2.2 Remarks on elements obtained by integrals

Suppose f(x) is a continuous mapping of a compact domain D into Ep(Cn). As ‖f(x)‖p,s is bounded
on D, its integral over D is bounded. Hence we see

∫
D
f(x)dx ∈ Ep(Cn). This will be used to compute

Fourier series.

Lemma 1.2 For every compact interval I, the integral
∫
I
:e
t 1
i~
〈aaa,uuu〉

∗ :
K
dt gives an element of E1+(Cn)

for every K ∈ S(n), and

I
K′

K

(∫

I

:e
t 1
i~
〈aaa,uuu〉

∗ :
K
dt
)
=

∫

I

:e
t 1
i~
〈aaa,uuu〉

∗ :
K′
dt

{
∫
I
:e
t 1
i~
〈aaa,uuu〉

∗ :
K
dt;K ∈ S(n)} is a parallel section which may be denoted by

∫
I
e
t 1
i~
〈aaa,uuu〉

∗ dt without showing
expression parameters.
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Since e
1
i~
〈aaa,uuu〉 ∈ E1+(Cn), Theorem 1.2 shows that e

1
i~
〈aaa,uuu〉∗

K
f , f∗Ke

1
i~
〈aaa,uuu〉 are defined for every

f ∈ ⋃
p>2 Ep(Cn), but in fact these are defined for every f ∈ Hol(Cn) by (1.11).

As we have seen above, ∗-product integrals of exponential functions of linear functions are re-
mained in the class. E1+(C2m). Note that usual integral can be defined for elements of E1+(C2m).
However, we have to be careful to use the integral on noncompact domain, for such integrals often
give elements outside the domain where the integrand is considered. Here, we give a typical example.

Suppose Re( 1
i~〈aaaK,aaa〉) < 0, that is K is in the Siegel class. Then, the integral

∫∞
−∞ :e

t 1
i~
〈aaa,uuu〉

∗ :
K
dt

converges. The formula of Fourier transform gives
∫ ∞

−∞
:e
t 1
i~
〈aaa,uuu〉

∗ :
K
dt =

∫

R
e

t2

4i~
〈aaaK,aaa〉et

1
i~
〈aaa,uuu〉dt = 2(

−i~π
〈aaaK,aaa〉)

1/2 e−
1
i~

1
〈aaaK,aaa〉

〈aaa,uuu〉2 .

Since 1
i~〈aaa,uuu〉∗ : Hol(C2m)→ Hol(C2m) is continuous, we see that

(1.21)
1

i~
〈aaa,uuu〉∗

∫ ∞

−∞
e
t 1
i~
〈aaa,uuu〉

∗ dt = lim
N,N ′→∞

∫ N ′

−N

1

i~
〈aaa,uuu〉∗et

1
i~
〈aaa,uuu〉

∗ dt =

∫ ∞

−∞

d

dt
e
t 1
i~
〈aaa,uuu〉

∗ dt = 0.

Since 〈aaa,uuu〉∗
K
f(〈aaa,uuu〉) = 〈aaa,uuu〉f(〈aaa,uuu〉)+ i~

2
〈aaaK,aaa〉f ′(〈aaa,uuu〉), the direct calculation also gives

〈aaa,uuu〉∗
K
e−

1
i~

1
〈aaaK,aaa〉

〈aaa,uuu〉2 = 0.

Under the condition Re( 1
i~〈aaaK,aaa〉) < 0, we denote as in [12]

1

2π~

∫ ∞

−∞
e
t 1
i~
〈aaa,uuu〉

∗ dt = δ∗(〈aaa,uuu〉)

Moreover, we see that integrals
∫ 0

−∞ :e
t 1
i~
〈aaa,uuu〉

∗ :
K
dt, −

∫∞
0

:e
t 1
i~
〈aaa,uuu〉

∗ :
K
dt are both inverses of 1

i~〈aaa,uuu〉. We
denote these by

(
1

i~
〈aaa,uuu〉)−1∗+ =

∫ 0

−∞
:e
t 1
i~
〈aaa,uuu〉

∗ :
K
dt, (

1

i~
〈aaa,uuu〉)−1∗− = −

∫ ∞

0

:e
t 1
i~
〈aaa,uuu〉

∗ :
K
dt.

This apparently breaks associativity

(
(
1

i~
〈aaa,uuu〉)−1∗+∗K

1

i~
〈aaa,uuu〉

)
∗

K
(
1

i~
〈aaa,uuu〉)−1∗− 6= (

1

i~
〈aaa,uuu〉)−1∗+∗K

( 1

i~
〈aaa,uuu〉∗

K
(
1

i~
〈aaa,uuu〉)−1∗−

)
.

1.2.3 Remarks on real analyticity and on associativity

A mapping f : U → F from an open subset U of R into a Fréchet space F is called to be real
analytic, if for every a ∈ U there is ε(a) > 0 such that f is written in the form

f(a+ s) =
∑

k

1

k!
aks

k, ak ∈ F, |s| < ε(a).

ak is given by ak = ∂ks f |s=0.
If F is a Banach space and

∑
k

1
k!
‖ak‖|s|k converges, then the power series

∑
k aks

k is called to
converge absolutely under the norm.
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If a Fréchet space F is defined by a countable family of seminorms {‖f‖m;m = 1, 2, 3 · · · }, then
replace this part by the absolute convergence of

∑
k

1
k!
‖ak‖m|s|k w.r.t. seminorms ‖ · ‖m. A power

series
∑

k aks
k converges if this converges absolutely under every seminorms.

Radius of convergence Suppose a Fréchet space F is defined by a countable family of seminorms
{‖f‖m;m = 1, 2, 3 · · · }.

Lemma 1.3 For a power series
∑

k aks
k, ak ∈ F , there exists uniquely a real number R (0 ≤ R ≤ ∞)

satisfying (1) and (2) below:

(1) If |s| < R, then the power series
∑

k aks
k converges absolutely under every seminorm ‖ · ‖m.

(2) If |s| > R, then
∑

k aks
k does not converge for some seminorm.

Proof Suppose
∑

k aks
k
0 converges at s0. Then aks

k
0 is bounded under every seminorm ‖ · ‖m. Set

supk ‖aksk0‖m ≤ Mm. Then for every s such that |s| < |s0|
∑

k

‖aksk‖m ≤
∑

k

Mm|s/s0|k =Mm
1

1− |s/s0|
<∞.

It follows the convergence of
∑

k aks
k. �

Lemma 1.4
∑

k≥0 aks
k and

∑
k≥1 kaks

k−1 have same radius of convergence.

Real analyticity is left invariant under every continuous linear transformation:

Lemma 1.5 Let F,G be Fréchet spaces and ϕ : F → G be a continuous linear mapping. If f : U →
F is real analytic, then ϕf : U → G is also real analytic.

Since X → p(uuu)∗X∗q(uuu) is a continuous linear mapping, Lemma1.1 gives the following:

Lemma 1.6 Let U be an connected open neighborhood of 0 of Rℓ Suppose ψ : U → Hol(Cn) be a
real analytic mapping. Then x → p(uuu)∗ψ(x)∗q(uuu) is also a real analytic on U for every polynomial
p(uuu), q(uuu).

Remarks on the associativity
Products of exponential functions of quadratic forms may not be defined, and even if the product

is defined the associativity may not hold, since these are elements of E2+(Cn). In general, we do not
have the associativity even for a polynomial p(uuu)

(eH(uuu)∗p(uuu))∗eK(uuu), eH(uuu)∗(p(uuu)∗eK(uuu)),

since p(u) has two different ∗-inverses in general.

However, if we can treat elements in (C[uuu][[~]], ∗
K
), the space of formal power series of ~, then

∗
Λ
-product is always defined by the product formula (1.1) and the associativity holds.
Elements of E2+(Cn) are often given as a real analytic function of ~ defined on certain interval

containing ~ = 0. The following is easy to see:
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Theorem 1.3 Suppose f(~,uuu), g(~,uuu) and h(~,uuu) are given as real analytic function of ~ in some
interval [0, H ]. If

f(~,uuu)∗
K
g(~,uuu), (f(~,uuu)∗

K
g(~,uuu))∗

K
h(~,uuu), g(~,uuu)∗

K
h(~,uuu), f(~,uuu)∗

K
(g(~,uuu)∗

K
h(~,uuu))

are defined as real analytic functions on [0, H ], then the associativity

(f(~,uuu)∗
K
g(~,uuu))∗

K
h(~,uuu) = f(~,uuu)∗

K
(g(~,uuu)∗

K
h(~,uuu))

holds.

We refer this theorem to the formal associativity theorem.
Remark 1. In what follows, elements are often given in the form f( 1

i~ϕ(t),uuu) by using a real analytic
function f(t,uuu), t∈[0, T ], where ϕ(t) is a real analytic function such that ϕ(0)=0. (Cf.(4.19), (2.13)

In such a case, replacing t by s~ gives a real analytic function of ~, and such an element is
embedded in (C[uuu][[~]], ∗

K
). Thus, we can apply the above theorem. We call such elements classical

elements. However, there are many elements in E2+(Cn) written in the form f( 1
i~ϕ(t),uuu) such that

ϕ(0) 6=0.

2 Blurred covering group of Sp(m,C)

In this section we first treat the infinitesimal ∗-action of quadratic forms on the space of exponential
functions of quadratic forms. We treat this in general expressions by using intertwiners. Since the
space of quadratic forms is isomorphic to the Lie algebra of Sp(m,C), i.e.

{〈uuuA,uuu〉;A ∈ S(2m)} ∼= sp(m,C) = {α;αJ+J tα = 0}

as Lie algebra, the natural ∗-action of quadratic forms can be viewed as the infinitesimal action
of the Lie group Sp(m,C).

In contrast with that infinitesimal intertwiners are viewed as a flat connection on the trivial bundle∐
K∈S(2m) Ce

S(2m), whose fiber is the space of exponential functions of quadratic forms CeS(2m),
all possible infinitesimal actions of quadratic forms gives a tangential distribution on each fiber∐

K∈S(2m) Ce
S(2m).

2.1 Infinitesimal actions of quadratic forms

On every fiber at K, consider left multiplication

:〈uuuA,uuu〉:
K
∗

K
: CeS(2m) → CeS(2m)

Since 1
i~ :〈uuuA,uuu〉:K = 1

i~〈uuuA,uuu〉+ 1
2
Tr(AK), we see

(2.1)
1

i~
:〈uuuA,uuu〉:

K
∗

K
(ge

1
i~
〈uuuQ,uuu〉) =

(1
2
Tr

(
(K−J)A(K+J)Q+ AK

)
+

1

i~
〈uuuQ′,uuu〉

)
ge

1
i~
〈uuuQ),uuu〉

where Q′ = A+A(K+J)Q+Q(K−J)A+Q(K−J)A(K+J)Q, and A ∈ S(2m). The term 1
i~〈uuuQ′,uuu〉

will be called the infinitesimal phase part, and 1
2
Tr

(
(K−J)A(K+J)Q + AK

)
will be called the

infinitesimal amplitude part.
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Moving A ∈ S(2m) at every fixed ge
1
i~
〈uuuQ,uuu〉, we have a linear subspace of the tangent space of

CeS(2m) at ge
1
i~
〈uuuQ,uuu〉. We call this the singular distribution of infinitesimal actions of quadratic forms.

On the other hand, there is a natural correspondence between sp(m;C) and S(2m).

sp(m;C) ∼= S(2m) via α ∈ sp(m;C)⇔ αJ ∈ S(2m), J =

[
0 −1
1 0

]
.

We make the correspondence as follows:

A⇔ α=−AJ, Q⇔ ξ=−QJ.

We set also κ′=JK ′, κ=JK in sp(m;C). Through these, intertwiners I
K′

K
defined on

∐
K∈S(2m) Ce

S(2m)

in § 3.1 of [13] is easily translated on
∐

κ∈sp(m;C)Ce
sp(m;C)J as

Iκ
′

κ (ge〈uuu(
1
i~
αJ),uuu〉) =

g√
det(I−α(κ′−κ))

e
〈uuu( 1

i~
1

I−α(κ′−κ)
αJ),uuu〉

.

These intertwiners may be viewed as coordinate transformations: Iκ
′

κ : Cesp(m;C)J → Cesp(m;C)J . For
the precise treatment of patching by intertwiners, we set

Iκ
′

κ

1√
det(I−ακ))

e
1
i~
〈uuu( 1

I−ακ
αJ),uuu〉 =

1√
det(I−ακ′))

e
1
i~
〈uuu( 1

I−ακ′
αJ),uuu〉

D̃κ = {
1√

det(I−ακ))
e

1
i~
〈uuu( 1

I−ακ
αJ),uuu〉;α ∈ Dκ}, Dκ={α; det(I−ακ) 6= 0}.

As κ moves in the whole space sp(m,C), and for any α, we can find κ such that det(I−ακ) 6=0, we
easily see that

(2.2)
⋃

κ

Dκ = sp(m,C),
⋂

κ

Dκ = {0}.

D̃κ is a double cover of Dκ. (Recall we set
√
1 = {±1} in the case κ = 0.) Let π : D̃κ → Dκ be

the natural projection. As it was seen in in § 3.1 of [13] intertwiners Iκ
′

κ give isomorphisms

D̃κ ⊃ π−1(Dκ∩Dκ′)
Iκ
′

κ−→ π−1(Dκ′∩Dκ) ⊂ D̃κ′
↓ π ↓ π ↓ π ↓ π
Dκ ⊃ Dκ∩Dκ′ == Dκ′∩Dκ ⊂ Dκ′

However intertwiners Iκ
′

κ are 2-to-2 mappings. Thus, the union
⋃
κ D̃κ is a manifold-like object glued

by 2-to-2 coordinate transformations.

Set α′=−Q′J , ξ=−QJ , α=−AJ , κ=JK. These are ∈ sp(m;C). We want to translate the equality
(2.1) by these replacement. First, the infinitesimal phase part is rewritten as

α′ =α− α(I−κ)ξ + ξ(I+κ)α− ξ(I+κ)α(I−κ)ξ
=
(
I + ξ(I+κ)

)
α
(
I − (I−κ)ξ

)
,
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and it is easy to see
(
I + ξ(I+κ)

)
α
(
I − (I−κ)ξ

)
∈ sp(m;C) by moving J in the l.h.s of

J
(
I + ξ(I+κ)

)
α
(
I − (I−κ)ξ

)
to the r.h.s. Hence, the equality (2.1) is translated into

(2.3)
(♦) 1

i~
:〈uuu(αJ),uuu〉:

K
∗

K
(ge

1
i~
〈uuu ξJ,uuu〉)=

(1
2
Tr

(
(κ+I)α(κ−I)ξ+ακ

)
+〈uuu(α′J),uuu〉

)
ge

1
i~
〈uuu ξJ),uuu〉

α′=(I + ξ(I+κ))α(I − (I−κ)ξ).

By moving α∈sp(m,C) we make a subspace D(κ,geξ) of the tangent space TgeξCeS(2m) of CeS(2m) at

ge
1
i~
〈uuu ξJ,uuu〉. We make also a distribution (a singular subbundle):

(2.4)
D(κ,geξ) =

{(1
2
Tr

(
(κ+I)α(κ−I)ξ+ακ

)
+

1

i~
〈uuuα′J,uuu〉, α

)
;α ∈ sp(m,C)

}

where α′ =
(
I+ξ(I+κ)

)
α
(
I−(I−κ)ξ

)
.

on the space CeS(2m). Note the following:

Lemma 2.1 det(I+ξ(I+κ))= det(I−(I−κ)ξ)=det(I−ξ(I−κ)).

Proof For the first equality, use det J=1 and

det(J(I+ξ(I+κ)))= det((I−tξ(I−tκ))J) = det(I−(I−κ)ξ).

For the second, we use the standard trick

det(I−(I−κ)ξ) = det(ξ−1ξ−(I−κ)ξ) = det(ξξ−1−ξ(I−κ))

via an appropriate approximation of ξ by nonsingular element. ✷

First of all, we consider open subsets where the rank of distribution is constant:

Lemma 2.2 α→ α′ is a bijection of sp(m;C) onto itself, if and only if det(I+ξ(I+κ)) 6= 0. In this
case, Lemma2.1 gives

α = (I+ξ(I+κ))−1α′(I−(I−κ)ξ)−1.
That is in K-ordered expression, the infinitesimal action {〈uuu(αJ),uuu〉∗; α∈sp(m;C)} degenerates only
at the point ξ such that det(I+ξ(I+κ)) = 0.

Let Oκ = {ξ ∈ sp(m;C); det(I+ξ(I+κ)) 6= 0} for every κ∈sp(m;C). Since this distribution is
given by the infinitesimal action of a Lie group, we have

Proposition 2.1 The distribution D(κ,geξ) is constant corank one and involutive on Oκ.

The goal of this section is as follows:

Theorem 2.1 Maximal integral submanifold through g ∈ C× over Oκ is given by

(2.5) {g
√
det(I+(I+κ)α)e〈uuu(

1
i~
αJ),uuu〉;α ∈ Oκ}

This is a nontrivial double cover of Oκ.
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The proof is given in several steps. Note first that the maximal integral submanifold through 1 must
be closed under ∗κ-product.
Step 1 First note that the phase part of the distribution takes arbitrary element. Thus consider
elements g(t)e

1
i~
〈uuu(tα̃J),uuu〉 by fixing α̃. We want to make the tangent vectors of this curve are always

in the distribution. Taking derivative, we have

( d
dt
g(t)+

1

i~
〈uuu(α̃J),uuu〉g(t)

)
e

1
i~
〈uuu(tα̃J),uuu〉.

Comparing this with (2.3) at ξ = tα̃, we take α(t) so that

α̃ = (I+tα̃(I+κ))α(t)(I−tα̃(I−κ)).

Then, the infinitesimal action by 〈uuu(α(t)J),uuu〉 satisfies

:
1

i~
〈uuu(α(t)J),uuu〉:

K
∗

K
(g(t)e

1
i~
〈uuu(tα̃J,uuu〉)

=

{
1

2
Tr

(
(κ+I)α(t)(κ−I)tα̃+α(t)κ

)
+

1

i~
〈uuu(α̃J),uuu〉

}
g(t)e

1
i~
〈uuu(tα̃J),uuu〉

=
( d
dt
g(t)+

1

i~
〈uuu(α̃J),uuu〉g(t)

)
e

1
i~
〈uuu(tα̃J),uuu〉

.

Plugging in α(t) = (I+tα̃(I+κ))−1α̃(I−(I−κ)tα̃)−1 into the above, g(t) is obtained by solving

d

dt
g(t) =

1

2
Tr

(
(κ+I)α(t)(κ−I)tα̃+α(t)κ

)
g(t), g(0) = g.

Step 2 To solve this equation, we first solve it in the case κ=0. The equation becomes

d

dt
log g(t) =

1

2
Tr

tα̃2

1− (tα̃)2
=

1

4

d

dt
Tr log(1−(tα̃)2).

It follows that

g(t) = eTr log(1−(tα̃)
2)

1
4 = 4

√
det(1−(tα̃)2).

On the other hand, since det(1−tα̃)=det(1+tα̃), we have g(t) =
√

det(1+tα̃), that is,

Lemma 2.3
√

det(1+tα̃) e
1
i~
〈uuu(tα̃J),uuu〉 is in an integral submanifold.

Step 3 The integral manifold for the general κ is obtained by the intertwiner Iκ0 . We have

Iκ0

(√
det(1+α̃)e

1
i~
〈uuu(tα̃J),uuu〉

)
=

√
det(I+α̃)√
det(I−α̃κ)

e
1
i~
〈uuu( 1

I−α̃
α̃J),uuu〉.

Replacing 1
I−α̃ α̃ = α gives

α̃ = α
1

1 + ακ
=

1

I+ακ
α.

Plugging this and using the algebraic calculation such that
√
x√
x
= 1, we have the following:

15



Proposition 2.2 In κ-ordered expression, the maximal integral submanifold is given by

cÕκ = {c
√

det(I+α(I+κ)) e
1
i~
〈uuu(αJ),uuu〉;α ∈ Oκ}

where Oκ = {α ∈ sp(m,C); det(I+α(I+κ)) 6= 0}.
Note that Proposition 2.2 shows that we have only to know the phase part to know the integral

submanifold. By definition Õκ is the maximal integral submanifold through (1, 0) ∈ C×sp(m;C).
Setting c = 1 in Proposition2.2, we see that

(2.6) πκ : Õκ → Oκ
is a nontrivial double cover, which is just the forgetful mapping of the amplitude part. The signifi-
cance of the set Oκ will be explained in the next section by the Cayley transform.

2.1.1 Integral submanifolds and twisted Cayley transforms

The Cayley transform C0(X) = I−X
I+X

has following properties: ForX ∈ sp(m;C) with det(I+X) 6= 0,
we see C0(X) ∈ Sp(m;C) and det(I + C0(X)) = (det(I +X))−1.

(2.7) X ∈ sp(m;C)⇔ C0(X) ∈ Sp(m;C), C2
0(X) = X.

Let O0 = {X ∈ sp(m;C); det(I+X) 6= 0}. C0 : O0 → Sp(m;C) is viewed as a local coordinate
system Sp(m;C), which covers an open dense subset of Sp(m;C).

Let Oκ = {α ∈ sp(m;C); det(I+(I+κ)α) 6= 0}, and define

(2.8)

Cκ(α) = (I − (I−κ)α) 1

I + (I+κ)α
=

1

I+α(I+κ)
(I−α(I−κ)),

(Cκ)
−1(Y ) =

1

I−κ+Y (I+κ)
(I−Y ) = (I−Y )

1

I−κ+(I+κ)Y
.

Cκ : Oκ → Sp(m;C) gives also a local coordinate system of Sp(m;C). We call (2.8) the twisted
Cayley transform. Since Cκ : Oκ → Cκ(Oκ) is a diffeomorphism, we often identify Oκ with Cκ(Oκ)
through the twisted Cayley transform Cκ. The following Lemma is crucial to our purpose:

Lemma 2.4
⋃{Cκ(Oκ); κ ∈ sp(m,C)} = Sp(m,C). On the other hand, if α 6∈ O0, then

1
I−ακα 6∈ Oκ

for every κ ∈ Dα={κ∈sp(m;C); det(I − ακ) 6= 0}.
Proof Suppose there is a Y ∈Sp(m,C) such that det(I−κ+Y (I+κ))=0 for every κ ∈ sp(m,C).
Then such a Y must satisfy det(1−κ

I+κ
+Y )=0. Since 1−κ

I+κ
moves in an open dense domain of Sp(m,C),

it follows det(X+Y )=0 for every X ∈ Sp(m,C). Set X=Y to get a contradiction. Thus we see that
for every Y there is κ such that det(I−κ+Y (I+κ)) 6=0. Hence C−1κ (Y ) exists. The rest of Lemma
follows easily. ✷

Define Tκ′−κ(α) =
1

I−α(κ′−κ)α. Then T
−1
κ′−κ(α) =

1
I+α(κ′−κ)α

Tκ′−κ(α) ∈ sp(m;C)⇐⇒ α ∈ sp(m;C).

It is easy to see
1

I−α(κ′−κ)(I+α(I+κ)) = I+Tκ′−κ(α)(I+κ
′).

Hence, we have the following:
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The Cayley transform gives the phase part of intertwiners.
T−κ ∼ C−10 Cκ, Tκ′−κ ∼ C−1κ′ Cκ (∼ means equality in algebraic calculations)

On Sp(m,C), the coordinate transformations are given by the phase part of the intertwiners.
Hence, by setting Oκκ′ = Oκ ∩Oκ′ , intertwiners give 2-to-2 mappings

(2.9) Iκ
′

κ : π−1κ (Oκκ′)→ π−1κ′ (Oκ′κ)

just as in Proposition 3.1 in § 3.1 of [13]. Since 0∈⋂κOκ, and Cκ(0) = I, we can consider
⋃
κ Õκ as

an object patched by the intertwiners Iκ
′

κ as a bundle-like object over
⋃
κ Cκ(Oκ) = Sp(m;C).

Computing the derivative of the twisted Cayley transform, we have

(dCκ)ξ(α)=− (I−κ)α 1

I+(I+κ)ξ
=− (I−(I−κ)ξ) 1

I+(I+κ)ξ
(I+κ)α

1

I+(I + κ)ξ
.

Using the bumping identity 1
I+(I+κ)ξ

(I+κ) = (I+κ) 1
I+ξ(I+κ)

, we easily see

(2.10) (dCκ)ξ((I+ξ(I+κ))α(1−(I−κ)ξ)) = −2αCκ(ξ).

Thus, the phase part of the distribution Dκ is translated by Cκ into the right invariant tangential
distribution on Sp(m;C). Recall that (I+ξ(I+κ))α(1−(I−κ)ξ) appeared already in (2.3), (♦) as
the infinitesimal phase part.

Proposition 2.3 The infinitesimal phase part of the infinitesimal action : 1
i~〈uuuαJ,uuu〉:κ∗κ is translated

by the twisted Cayley transform Cκ into the right invariant distribution by α ∈ sp(m;C) on Sp(m;C).

As the distribution in the previous section is defined by the infinitesimal action of ∗-exponential
functions e

t 1
i~
〈uuuA,uuu〉

∗ , the maximal integral submanifold must be closed by the left multiplication

e
t 1
i~
〈uuuA,uuu〉

∗ ∗.
Therefore, the joint object {Õκ; κ ∈ sp(m,C)} must have certain “Lie group-like” properties with

manifold-like properties patched by 2-to-2 coordinate transformations. A general product formula
will be given in the next section.

On the other hand, recall the second statement of Lemma2.4 gives

Proposition 2.4 If det(I+α) = 0, then the infinitesimal ∗-action of the quadratic forms to the
parallel section { 1√

det(I−ακ)
e

1
i~
〈uuu 1

I−ακ
α,uuu〉; κ ∈ sp(m;C)

}

degenerates at every κ. Namely, ( 1√
det(I−ακ)

; 1
I−ακα) 6∈ Õκ for every κ ∈ Dα, where Dα =

{κ∈sp(m;C); det(I − ακ) 6= 0}.

The most degenerate (minimal rank) orbit will be called the orbit of vacuums. An example is

given by α =

[
1 0
0 −1

]
in the case m = 1. These elements will be used to make matrix representations

in the later chapter.
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2.2 General product formula

It is rather hard to construct general manifold theory patched together by 2-to-2 coordinate trans-
formations, for such objects do not have underlying topological spaces. In spite of this, there is no
difficulty forming a local/classical differential geometry. Hence a certain general theory is easy to
construct for a Lie group-like object by using infinitesimal algebraic notions other than point set
pictures. It is natural to think this gives an intuitive concrete object of “gerbes”.

Proposition 2.3 shows that if one concerns only the phase parts of the ∗-product, then one can
compute these via the group structure of Sp(m;C) through twisted Cayley transform.

By this observation, we first investigate the product ∗0 defined on C× ×O0 as follows:

(g; a)∗0(g′; b) =
(
gg′

(
1√

det(1+ab)

)
;C−10 (C0(a)C0(b))

)

C−10 (C0(a)C0(b)) =
1

1+a
(a+b) 1

1+ab
(1+a)

Note first the following general identity:

Lemma 2.5 1
1+a

(a+b) 1
1+ab

(1+a) ∼ (1+b) 1
1+ab

(a+b) 1
1+b

, where the reason of the notation ∼ instead

of = is that algebraic calculation such as (1+a) 1
1+a

= 1 is used in the proof. Hence, one may replace
1

1+a
(a + b) 1

1+ab
(1 + a) by (1+b) 1

1+ab
(a+b) 1

1+b
.

Proof follows immediately by the identity (a+b)
(
1+ 1

1+ab
(a+b)

)
=

(
1+(a+b) 1

1+ab

)
(a+b). ✷

As far as concerning the phase part C0(a), and forgetting about the singularity, this gives a group
which is isomorphic to Sp(m;C).

To consider the amplitude part, we define

(g;α)∗κ(g′; β) ∼ Iκ0
(
I0κ(g;α)∗0I0κ(g′; β)

)
.

Since I0κ(g;α) =
(
g(det(I+ακ))−

1
2 ;T−κ(α)

)
, the definition of Cκ gives that

(2.11) (g;α) ∗κ (g′; β) =
(
gg′(

det(P+Q(I+κ))

det(P (I+α(I+κ))(I+β(I+κ)))
)
1
2 ;C−1κ (Cκ(α)Cκ(β))

)

where P = I+α(I−κ)β(I+κ), Q = α+β+2ακβ, and

(2.12) C−1κ (Cκ(α)Cκ(β)) = (I+β(I+κ))
1

P
Q

1

I+(I+κ)β
.

We easily see that det(P+Q(I+κ)) = det(I+α(I+κ))(I+β(I+κ)). Hence, the first component of

the r.h.s of (2.11) is gg′( 1
detP

)
1
2 . Hence, we obtain

(2.13) (g;α) ∗κ (g′; β)=
(
gg′(

1

detP
)
1
2 ; (I+β(I+κ))

1

P
Q

1

I+(I+κ)β

)
.

The product formula (2.13) works only for α, β such that detP 6= 0, and det(I+(I+κ)β) 6= 0. But,
one can choose the expression parameter κ so that these conditions are satisfied.
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The product formula is classical
Singularities move when κ moves. For every ∀(g; a), (g′; b), the product Iκ0 (g; a) ∗κ
Iκ0 (g

′; b) is defined in a generic (open dense) expression κ. By this algebraic trick, the
product is defined for every pair, which will be denoted by (g; a) ∗ (g′; b).
It is remarkable that the product formula does not involve ~.

This follows from that we treat elements written in the form e
1
i~
Q(uuu). Therefore, for elements

written in the form eQ(uuu) the product must be written in the form e(i~)
2R(uuu), and hence the product

formula is real analytic in ~ ≥ 0. Hence one can apply the formal associativity Theorem1.3.

Proposition 2.5 Associativity holds with ± ambiguity.

We call this object a blurred Lie group, and denote it by (Sp
( 1
2
)

C (m); ∗). This is not an object in
which ±a is treated simply as a single point, since they can be locally distinguished.

For instance, we first note the following:

(1; 0) is the identity with respect to ∗κ-product for ∀κ
In particular, in the Weyl ordered expression, the integral manifold through (1; 0) is

Õ0 = {
√
(det(1+a); a); a ∈ O0}.

Although the sign ambiguity remains, we obtain the following:

Proposition 2.6 (a) If A,B ∈ Õ0, and if A∗0B is defined, then A∗0B ∈ Õ0.

(b) (1; 0) is the identity.

(c) The inverse (
√
det(1+a); a)−1 is given by (

√
det(1−a);−a).

(
√
det(1+a); a) ∗0 (

√
det(1−a);−a) = (

√
1; 0).

In general,
√
1 must be treated as ±1, but concerning the inverse, this should be 1 by continuous

tracing from the identity (1; 0) to the point (
√
det(1+a); a).

Since Õκ is a local Lie group with the identity and sp(m;C) as its tangent space, we have the
following:

Proposition 2.7 sp(m;C) is the Lie algebra of Sp
( 1
2
)

C (m).

By A = αJ , sp(m;C) is naturally identified with the space of expression parameters S(2m).

Since the element (1; 0) may be viewed as the identity of the blurred Lie group Sp
( 1
2
)

C (m), the

tangent space of Sp
( 1
2
)

C (m) at (1; 0) is naturally identified with sp(m,C).

In the next section, we define one parameter subgroups of (Sp
( 1
2
)

C (m); ∗), and the ∗-exponential
mapping

exp∗ : sp(m;C)→ Sp
( 1
2
)

C (m),

and we show that every one parameter subgroup has discrete branched singular points in generic
ordered expression.
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2.3 Abstract definition of blurred Lie groups

Here we give a tentative abstract definition of blurred Lie (covering) groups. As we do not have
enough concrete examples, it seems to be too early to give the notion of isomorphisms or the general
theory.

Let G be a locally simply arcwise connected topological group and let {Oα;α ∈ I} be an open
covering of G.

(a) For every α ∈ I, Oα contains the identity e. Oα is called an abstract expression
space, and α is called an expression parameter.

(b) For every α ∈ I, Oα is open, dense and connected, but it may not be simply connected.
(c) For every α, β ∈ I, there is a homeomorphism φβα : Oα → Oβ .
(d) For every g, h ∈ G, there is α ∈ I and continuous path g(t), h(t) ∈ G, t ∈ [0, 1], such that

g(0) = h(0) = e, g(1) = g, h(1) = h and g(t), h(t), g(t)h(t) are in Oα for every t ∈ [0, 1].

An open covering {Oα;α ∈ I} is called natural covering of G if it satisfies (a)∼(d). The
condition (c) shows that there is an abstract topological space X homeomorphic to every Oα. We
consider a connected covering space π : X̃ → X . This is same to say we consider a connected
covering πα : Õα → Oα for each α. It is easy see that π−1α (e) is a group given as a quotient group
of the fundamental group of Oα. As G is locally simply connected, π−1α (e) forms a discrete group,
and φβα lifts to an isomorphism φ̃βα : π−1α (e)→ π−1β (e). We denote π−1α (e) = Γα, and the isomorphism
class is denoted by Γ .

Choose ẽα ∈ π−1α (e) and call ẽα a tentative identity. For any continuous path g(t) in Oα such
that g(0) = g(1) = e, the continuous tracing among the set π−1(g(t)) starting at ẽα gives a group
element γ ∈ Γα.

By a standard argument, it is easy to make Õα a local group such that πα is a homomorphism:
We define first that ẽαẽα = ẽα. For paths g(t), h(t), g(t)h(t) such that they are in Oα for every
t ∈ [0, 1] and g(0) = h(0) = e, we define the product by a continuous tracing among the set-to-set
mapping

π−1α (g(t))π−1α (h(t)) = π−1α (g(t)h(t)).

We set Oαβ = Oα ∩ Oβ, Oαβγ = Oα ∩Oβ ∩Oγ for simplicity.
As G is locally simply connected, the full inverse π−1α V of a simply connected neighborhood

V ⊂ Oα of the identity e ∈ G is the disjoint union
∐

λ Ṽλ, each member X̃λ of which is homeomorphic
to V . Moreover π−1α Oαβ is also a local group for every β.

Isomorphisms modulo Γ , Controlled discontinuity
For every α, β, we define the notion of “isomorphism” Iβα of local groups, which corresponds to

the notion of intertwiners in the previous section:

Õα ⊃ π−1α Oαβ
Iβα−→ π−1β Oβα ⊂ Õα

↓ πα ↓ πβ
Oα ⊃ Oαβ === Oβα ⊂ Oβ

such that Iαβ = (Iβα)
−1, but the cocycle condition IβαI

γ
βI

α
γ = 1 is not required for Oαβγ .

Since the correspondence Iβα does not make sense as a point set mapping, we should be careful
for the definition.
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Note that Iβα is a collection of 1-to-1 mapping Iβα(g) : π
−1
α (g)→ π−1β (g) for every g ∈ Oαβ = Oβα,

which may not be continuous in g.
For each g there is a neighborhood Vg of the identity e such that Vgg ⊂ Oαβ and the local

trivialization π−1α (Vgg) = Vgg×π−1α (g). Thus Iβα(g) extends to the correspondence

Ĩβα(h, g) : π
−1
α (hg)→ π−1β (hg), h ∈ Vg

which commutes with the local deck transformations.

Definition 2.1 The collection Iβα={Iβα(g); g ∈ Oαβ} is called an isomorphism modulo Γ , if the
product Iαβ (hg)Ĩ

β
α(h, g) is in the group Γ for every g ∈ Oαβ and h ∈ Vg. (It follows the continuity of

Iβα(hg) w.r.t. h.)

The condition given by this definition means roughly that Iβα(g) has discontinuity in g only in the
group Γ .

G̃ = {Õα, πα, Iβα ;α, β ∈ I} is called a blurred covering group of G if each Õα is a covering
local group of Oα, where {Oα;α ∈ I} is a natural open covering of a locally simply arcwise connected
topological group G and Iβα are isomorphisms modulo Γ .

Because of the failure of the cocycle condition, this object does neither form a covering group,
nor a topological point set. However, this object looks like a covering group.

For g, let Ig be the set of expression parameters involving g; Ig = {α ∈ I;Oα ∋ g}. For every
α ∈ I(g, h, gh) = Ig ∩ Ih ∩ Igh, we easily see that π−1α (g)π−1α (h) = π−1α (gh). In general, this is viewed
as set-to-set correspondence, but if g or h is in a small neighborhood of the identity, we can make
these correspondence a genuine point set mapping. Hence, we have the notion of indefinite small
action or “infinitesimal left/right action” of small elements to the object. This corresponds to the
infinitesimal action w2

∗∗ or ∗w2
∗ in the previous section.

Next, we choose an element ẽα ∈ π−1α (e), and call it a local identity. On the other hand, π−1α (e) is

called the set of local identities of G̃. The failure of the cocycle condition gives that Mαẽα may not
be a single point set, but forms a discrete abelian group. Hence an identity of our object is always a
local identity.

Since G is a locally simply connected, there is an open simply connected neighborhood Vβ of e
contained in Oβ. Hence, there is the unique lift Ṽβ through ẽβ. Setting Ṽβγ = Ṽβ ∩ Ṽγ e.t.c., we see
easily Iγβ (Ṽβγ) = Ṽγβ .

The {g̃α ∈ Õα;α ∈ I} may be viewed as an element of G̃ if Iβα g̃α = g̃β, but this is not a single
point set by the same reason. In spite of this, one can distinguish individual points within a small
local area.

3 Star-exponential functions of quadratic forms

For an element H∗ of the algebra, we define the ∗-exponential function etH∗∗ as the real analytic
solution of

(3.1)
d

dt
f∗(t) = H∗∗f∗(t), f(0)=1,
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provided the solution exists. More precisely, we define etH∗∗ as the family {ft(K)} of univalent
solutions of the evolution equation

(3.2)
d

dt
ft(K) = :H∗:K∗Kft(K),

with the initial condition f0(K) = 1. We think of ft(K) as the K-ordered expression of etH∗∗ , and
denote it by :etH∗∗ :

K
= ft(K). Uniqueness is ensured if we consider only real analytic solutions. (3.1)

is called the left evolution equation. The right evolution equation is defined similarly, but this is not
used except when otherwise mentioned.

If H∗ is a ∗-polynomial, (3.1) can be rewritten as a partial differential evolution equation. If the
equation d

dt
:f∗(t):K = :H∗:∗f∗(t):K has a unique solution for the initial element f∗(0)=g∗, then the

solution will be denoted by :etH∗∗ ∗g∗:K .
As it was seen in § 1.1, a star exponential function e

1
i~
〈ξξξ,uuu〉

∗ of a linear form 〈ξξξ,uuu〉, was welldefined
as the family {e 1

4i~
〈ξξξK,ξξξ〉e

1
i~
〈ξξξ,uuu〉} for all K∈S(n). Provided :esH∗∗ :

K
exists for every s∈C, they form a

complex one parameter subgroup, for the exponential law holds by the uniqueness of real analytic
solutions.

Here we give several general remarks on ∗-exponential functions of quadratic forms.
(1) If H∗ is a quadratic form, :esH∗∗ :

K
is defined with double branched singularities on a discrete set

(c.f. (3.10)). Thus, we have to prepare two sheets to consider :esH∗∗ :
K
for s ∈ C. But, the origin

0 of
another sheet does not correspond to 1, but −1.

(1.1) In general, there is no reflection symmetry in s for the domain of existence of the solution of
(3.2). That is, the existence of :esH∗∗ :

K
does not necessarily imply that :e−sH∗∗ :

K
exists: e.g.

:e
t 1
i~
(u2+v2)

∗ :
I
=

1

cos t− sin t
e

1
i~

sin t
cos t− sin t

(u2+v2) cf.(3.17).

(1.2) Moreover :esH∗∗ :
K
is double-valued holomorphic function in K on an open connected dense

domain, i.e. double-valued holomorphic parallel section.

(2) If H∗, G∗ are quadratic forms, then the product :etH∗∗ ∗eG∗∗ :
K
is defined as a double-valued

holomorphic function of (t,K) defined on an open connected dense domain containing (0, 0).

For a given K, suppose that (3.2) has real analytic solutions in t on some domain D(K) including
0 for the initial functions 1 and g. We denote the solution of (3.2) with initial function g by

(3.3) :etH∗∗ :
K
∗

K
g, t∈D(K).

Proposition 3.1 If H∗ is a polynomial and :etH∗∗ :
K
is defined on a domain D(K), then :etH∗∗ :

K
∗

K
p(uuu)

is defined for every polynomial p(uuu) on the same domain D(K).
If p(uuu) =

∑
Aα(s)uuu

α is a polynomial whose coefficients depend smoothly on s, then the formula

∂ℓs:e
tH∗
∗ :

K
∗

K
p(uuu) = :etH∗∗ :

K
∗

K
∂ℓsp(uuu)

holds for every ℓ.
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Proof Multiplying the defining equation (3.2) by ∗p(uuu) and applying the associativity in Proposi-
tion 1.1, we have

(3.4)
d

dt
ft(K)∗p(uuu) = :H∗:K∗K (ft(K)∗p(uuu)), f0(K) = 1.

Since ft(K)∗p(uuu) is a real analytic solution, this is written in our notation as etH∗∗ ∗p(uuu). Applying
∂ℓs to (3.4) gives the second assertion by a similar argument. ✷

For a quadratic form 〈uuuA,uuu〉∗, the ∗-exponential function e
t
i~
〈uuuA,uuu〉∗

∗ is given in a concrete form.
For every α ∈ sp(m,C), we consider first the one parameter subgroup e−2tα of Sp(m,C), and consider
the inverse image of twisted Cayley transform C−1κ (e−2tα): We set

(3.5) C−1κ (e−2tα) =
1

(I−κ)+e−2tα(I+κ)(I−e
−2tα) =

1

cosh tα−(sinh tα)κ sinh tα.

where 1
X

stands for X−1.

The exponential function must lie on the integral manifold Õκ through (1; 0), and the point of
the integral manifold is determined by its phase part. Hence we have

(3.6) exp∗κ
1

i~
tα =

((
det(I + C−1κ (e−2tα)(I+κ))

) 1
2 ;C−1κ (e−2tα)

)
.

In the original notation, we see e
s 1
i~
〈uuu(αJ),uuu〉∗

∗ as follows by setting κ=JK:

:e
s 1
i~
〈uuu(αJ),uuu〉∗

∗ :κ =
(
det(I+C−1κ (e−2sα)(I+κ))

) 1
2 e

1
i~
〈uuu(C−1

κ (e−2sα)J),uuu〉.

More precisely, for every α∈sp(m,C), the K-ordered expression of the ∗-exponential function is given
as follows: (Cf.[9] [11] [10] for special cases.)

(3.7) :e
t
i~
〈uuu(αJ),uuu〉∗

∗ :
K
=

2m√
det(I−κ+e−2tα(I+κ))

e
1
i~
〈uuu 1

I−κ+e−2tα(I+κ)
(I−e−2tα)J,uuu〉

where κ=JK. It is not hard to see that this is the real analytic solution of (3.2). By this concrete
form we see this is an element of E2+(C2m) whenever this is defined. But it is remarkable that

:e
t
i~
〈uuu(αJ),uuu〉∗

∗ :
K
remains in the space CeQ(u,v) given in Theorem3.3.

3.1 Adjoint action to V2m.

Sp
( 1
2
)

C (m) is not a genuine Lie group, as elements have double-valued nature in general, and it looks

something like a double covering group of Sp(m,C). But, because of this reason, Sp
( 1
2
)

C (m) contains
several genuine groups such as the metaplectic group which is not contained in Sp(m,C). Moreover,

Sp
( 1
2
)

C (m) contains Spin(m) under the special ordered expression Ks (cf. [13].) In the case m = 1, we
have seen in [12] some basic properties of Jacobi’s θ-functions by means of ∗-exponential functions
of quadratic forms.
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To avoid the vague issue of sign ambiguity, we first consider adjoint representations of Sp
( 1
2
)

C (m)
on the linear space of generators, for the sign ambiguity disappears in adjoint representations, and
it is independent of the expression parameter K.

For α ∈ sp(m;C), the quadratic form 〈uuu(αJ),uuu〉 acts on the space of linear functions:

[〈uuu( 1

2i~
αJ),uuu〉, 〈aaa,uuu〉] = −〈aaaα,uuu〉.

Hence, the Lie algebra sp(m;C) is obtained by the adjoint representation of quadratic forms

ad(〈uuu( 1

2i~
αJ),uuu〉) = −α ∈ sp(m;C).

It follows that for every ∗-function such as ∗-polynomials or f∗(uuu) =
∫
Rn f̂(ξ)e

1
i~
〈ξ,uuu〉

∗ d−ξ,

etad(〈uuu(
1

2i~
αJ),uuu〉)f∗(uuu) = f∗(e

−tαuuu),

where e−tα is a linear transformation e−tα ∈ Sp(m;C).

A concrete form for the case m = 1 is given by using the transposed matrices as follows,

(3.8) ad(
i

2~
(au2 + bv2 + 2cuv))

[
u
v

]
=

[
−c −b
a c

] [
u
v

]

Let V2m={〈ξξξ,uuu〉;ξξξ∈C2m}. For every quadratic form 1
2i~〈uuuA,uuu〉∗, ad( 1

2i~〈uuuA,uuu〉∗) is welldefined as
a linear mapping independent of expression parameters.

ad(
1

2i~
〈uuuA,uuu〉∗) : V2m → V2m, ad(

1

2i~
〈uuuA,uuu〉∗) : Hol(C2m)→ Hol(C2m)

It is easy to see that ad(〈uuu( 1
2i~αJ),uuu〉)=−α∈sp(m,C), hence it extends as a ∗-derivation

ad(
1

2i~
〈uuuA,uuu〉∗) : (E2(C2m), ∗)→ (E2(C2m), ∗).

Linear algebra on finite dimensional vector space gives linear isomorphisms

ead(
1

2i~
〈uuuA,uuu〉∗) : V2m → V2m, ead(

1
2i~
〈uuuA,uuu〉∗) : Hol(C2m)→ Hol(C2m)

and a ∗-isomorphism
ead(

1
2i~
〈uuuA,uuu〉∗) : (E2(C2m), ∗)→ (E2(C2m), ∗).

Set A=αJ . Since :e
t

2i~
〈uuuA,uuu〉∗

∗ :
K
is defined as a multi-valued holomorphic mapping from an open

connected dense domain D containing the origin into E2+(C2m). and the first associativity Theo-
rem1.3 applied to t=~s shows the following:

Lemma 3.1 Both sides are well-defined and associativity

:(e
t

2i~
〈uuuA,uuu〉∗

∗ ∗〈ξξξ,uuu〉)∗e−
t

2i~
〈uuuA,uuu〉∗

∗ :
K
=:e

t
2i~
〈uuuA,uuu〉∗

∗ ∗(〈ξξξ,uuu〉∗e−
t

2i~
〈uuuA,uuu〉∗

∗ ):
K

holds for every t∈D.
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Differentiating the identity of Lemma3.1 by using Theorem1.3 several times, gives that

d

dt
:e

t
2i~
〈uuuA,uuu〉∗

∗ ∗〈ξξξ,uuu〉∗e−
t

2i~
〈uuuA,uuu〉∗

∗ :
K
=:ad(

1

2i~
〈uuuA,uuu〉∗)(e

t
2i~
〈uuuA,uuu〉∗

∗ ∗〈ξξξ,uuu〉∗e−
t

2i~
〈uuuA,uuu〉∗

∗ ):
K
.

Uniqueness of the real analytic solution gives that the matrix obtained is independent of expression
parameters:

:e
t

2i~
〈uuuA,uuu〉∗

∗ ∗〈ξξξ,uuu〉∗e−
t

2i~
〈uuuA,uuu〉∗

∗ :
K
=etad(

1
2i~
〈uuuA,uuu〉∗)〈ξξξ,uuu〉=〈ξξξe−tα,uuu〉 (=〈ξξξ, e−tαuuu〉),

where A=αJ, α∈sp(m,C).

Theorem 3.1 If :e
t

2i~
〈uuuA,uuu〉∗

∗ :
K
is defined, then

e
t〈uuu( 1

2i~
αJ),uuu〉

∗ ∗ 〈aaa,uuu〉∗e−t〈uuu(
1

2i~
αJ),uuu〉

∗ = 〈aaae−tα,uuu〉.

The proof is based on the fact that e
t

2i~
〈uuuA,uuu〉∗

∗ ∗〈aaa,uuu〉∗e−t〈uuu(
1

2i~
αJ),uuu〉

∗ is defined and real analytic on an
open dense connected domain of t containing 0. Hence, one may replace 〈aaa,uuu〉 by any polynomial.

Since {eα, α∈sp(m,C)} generates Sp(m,C), the following is easy to see:

Proposition 3.2 As linear transformation of V2m, we have Ad(e
t〈uuu( 1

2i~
αJ),uuu〉

∗ ) = etad(〈uuu(
1

2i~
αJ),uuu〉). Hence,

Ad(e
t〈uuu( 1

2i~
αJ),uuu〉

∗ ) has no singular point and generates the group Sp(m,C).

This identity holds in spite of the ambiguity of the amplitude of e
t〈uuu( 1

2i~
αJ),uuu〉

∗ , because the ambi-
guity of amplitude disappears in the adjoint formula. Hence,

Ad(e
t〈uuu( 1

2i~
αJ),uuu〉

∗ ) generates the group Sp(m,C).

Ad : Sp
( 1
2
)

C (m)→ Sp(m,C) is a 2-to-1 “surjective homomorphism”.

The blurred Lie group Sp
( 1
2
)

C (m) generated by e
t〈uuu( 1

i~
αJ),uuu〉

∗ looks like a double covering group of
Sp(m,C) which is known to be simply connected.

3.2 Several point set pictures for blurred subgroups

Recall the surjective “homomorphism”

Ad : Sp
( 1
2
)

C (m)→ Sp(m,C).

For every subgroup G of Sp(m,C), the full inverse Ad−1G may be viewed as a blurred covering of
G. However, it is often possible that Ad−1G is a genuine Lie group under a suitable expression
parameter.

Suppose we have a subgroup G of Sp(m,C). Take a simple open covering {Vα}α of Sp(m,C) such
that {Vα∩G}α is also a simple open covering of G, and each Vα is contained in some Cκ(Oκ). (Cf.
Lemma2.4.) For every α, β, γ we denote

Vαβ∩G=Vα∩Vβ∩G, Vαβγ∩G=Vα∩Vβ∩Vγ∩G, e.t.c.
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Although Sp
( 1
2
)

C (m) is a blurred double covering, the simplicity of Vα∩G ensures that
Ad−1(Vα∩G)=(Vα∩G,Z2), and the patching diffeomorphisms φαβ : Vαβ∩G→ Z2 satisfies the cocy-
cle condition

φαβφβγφγα=± 1

as 2-to-2 mappings. These 2-to-2 patching diffeomorphisms give on each (α, β) two choices of patching
diffeomorphisms, say ±φαβ. In a certain case, we can select one of these sign to clear the cocycle
condition to obtain a genuine subset.

Theorem 3.2 For a connected subgroup G of Sp(m,C), if we can select patching diffeomorphisms
so that they satisfies the cocycle condition, then there is a group G̃ contained in Ad−1(G) such that
Ad : G̃→ G is a surjective homomorphism.

Proof. Since patching diffeomorphisms are so adjusted that the cocycle condition is satisfied, we
have a genuine point set. But it is easy to see that these satisfies the condition of covering group of
G. Note that such a point set picture may not be unique. �

We have already in [13] an example that Sp
( 1
2
)

C (m) contains Spin(m) under a special ordered
expression Ks. Here, we give a simplest example. Note that

i

2~
[
∑

(u2i + v2i ),

(
uuu

vvv

)
] =

[
0 −Im
Im 0

](
uuu

vvv

)
.

We see that Sp(m,C) contains U(1) in the form

(3.9) U(1) =

{[
cos θIm − sin θIm
sin θIm cos θIm

]
; θ ∈ R

}
.

Hence we see that {Ad(e
iθ
2~

∑
m(u2i+v

2
i )

∗ )} = U(1) and the full inverse Ũ(1) = Ad−1(U(1)) is a double
covering group of U(1) ⊂ Sp(m,C). In the next section, we see that there are open subsets K1, K2

of expression parameters such that

:Ũ(1):
K
=

{
U(1)×Z2 K ∈ K1

the connected double cover of U(1) K ∈ K2

Then, noting that Sp(m,R) ⊃ U(1), the full inverse Ad−1(Sp(m,R)) is a genuine connected double
covering group of Sp(m,R) under the K-ordered expression such that K ∈ K2. This is called the
metaplectic group and denoted byMp(m). The metaplectic group is the connected double covering
group of Sp(m,R), which appears naturally as patching diffeomorphisms of the symbols of the group
of invertible Fourier integral operators. It is known that Mp(m) has no complexification as Lie

groups. Thus Sp
( 1
2
)

C (m) is viewed as its complexification as blurred Lie groups.

For concrete computation, note that the adjoint mapping Ad gives

e
r
~
u2

∗ →
[

1, 0
−ri, 1

]
, e

s
~
iuv
∗ →

[
e−s, 0
0, es

]
, e

t
~
v2

∗ →
[
1, ti
0, 1

]
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e
θ
2~

(u2+v2)
∗ →

[
cosh θ, i sinh θ
−i sinh θ, cosh θ

]
, e

s
2~

(u2−v2)
∗ →

[
cos s, i sin s
i sin s, cos s

]

In particular, Sp(1,C) = SL(2,C) contains SL(2,R) and

SU(2) =
{[

α β
−β̄ ᾱ

]
; |α|2+|β|2 = 1

}
∼= S3,

SU(1, 1) =
{[

α β
β̄ ᾱ

]
; |α|2−|β|2 = 1

}
.

Through these subgroups we take the full inverse Ad−1(G). Hence, for SL(2,R) we see

{Ad(e
r
2~
i(u2+v2)

∗ ∗ e
s
~
iuv
∗ ∗ e

ti
~
u2

∗ ); r, s, t ∈ R}

=

{[
cos r, − sin r
sin r, cos r

] [
e−s, 0
0, es

] [
1, 0
t, 1

]
; r, s, t ∈ R

}

Hence, Ad−1(SL(2,R)) is the connected double covering of SL(2,R) under the K-ordered expression
such that K∈K2.

Similarly, under the K-ordered expression such that K∈K2, we see S̃U(1, 1) = Ad−1(SU(1, 1)) is
the connected double covering group of SU(1, 1).

Next, consider
S̃U(2) = Ad−1(SU(2)).

Indeed, this is the simplest toy model of blurred covering group. More precisely, decompose SU(2)
as {[

cos θ, − sin θeiψ

sin θe−iψ, cos θ

] [
eiρ, 0
0, e−iρ

]
; θ, ψ, ρ ∈ R, |θ| < π

2

}

with singular points at cos θ = 0, where θ, ψ may be viewed as the latitude and longitude respectively.
Under a suitable expression parameter, we have a double covering group of the group {eiρ}. Hence,
we have a covering space by replacing ρ by ρ/2 for each decomposition.

By this observation we see also

Proposition 3.3 There is no expression parameter K under which all one parameter subgroup are
not 2π-periodic but 4π-periodic.

3.3 Several remarks on ∗-exponential functions
By noting that det(etα)=1 for every α∈sp(m,C), (3.7) is rewritten as

(3.10) :e
t
i~
〈uuu(αJ),uuu〉∗

∗ :
K
=

2m√
det(etα(I−κ)+e−tα(I+κ))

e
1
i~
〈uuu 1

etα(I−κ)+e−tα(I+κ)
(etα−e−tα)J,uuu〉

In spite of the sign ambiguity of
√

, the exponential law

(3.11)
:e

(s+t) 1
i~
〈uuu(αJ),uuu〉∗

∗ :
K
=:e

s 1
i~
〈uuu(αJ),uuu〉∗

∗ :
K
∗

K
:e
t 1
i~
〈uuu(αJ),uuu〉∗

∗ :
K

:e
s(a+ 1

i~
〈uuu(αJ),uuu〉∗)

∗ :
K
=:ease

s 1
i~
〈uuu(αJ),uuu〉∗

∗ :
K
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holds under computations such as
√
a
√
b=
√
ab. This is because that the exponential law and asso-

ciativity holds on the group Sp(m,C). Note however that
√
1=± 1.

By this observation we have the following:

Proposition 3.4 For every fixed α, κ, a suitable choice of angle θ gives various real one parameter

subgroups :e
seiθ 1

i~
〈uuu(αJ),uuu〉∗

∗ :
K
, s∈R. Moreover, we can find many complex semi-groups on various

sectors.

By the concrete formula (3.10), we have also the following:

Proposition 3.5 Replacing t by t~, :et〈uuu(αJ),uuu〉∗∗ :
K
is real analytic in ~ in an open connected domain

containing ~ = 0.

As (3.10) has double branched singular points, we have to use two sheets by setting slits in the
complex plane to treat :etH∗∗ :

K
univalent way. Although there is no general rule to set the slits, it is

natural to set the slits periodically, since the singular points are distributed periodically.
We adopt this rule throughout this series.

Note that J ∈ sp(m,C) and also J ∈ Sp(m,C) = {g ∈ GL(2m,C); gJ tg = J}. For every
g ∈ Sp(m,C), J̃ = gJg−1 is both an element of Lie algebra and a group element satisfies J̃2=−I and

etJ̃=cos tI+(sin t)J̃ . Recall the formula (3.7), which is rewritten as

:e
t
i~
〈uuu(αJ),uuu〉∗

∗ :
(−Jκ)

=
2m√

det(I−κ+e−2tα(I+κ))
e

1
i~
〈uuu 1

I−κ+e−2tα(I+κ)
(I−e−2tα)J,uuu〉

, κ=JK.

Setting α = J̃ and noting αJ = gJg−1J = −g tg, we see first

I−κ+e−2tα(I+κ) = I−κ+(cos 2tI−(sin 2t)J̃)(I+κ)
= 2(cos tI−(sin t)J̃)(cos tI−(sin t)J̃κ)
= 2g(cos tI−(sin t)J)(cos tI−(sin t)Jκ̃)g−1, (κ̃ = g−1κg).

We have also that

(I − e−2tα)J=J−(cos 2tI−(sin 2t)J̃)J=− 2g sin t(cos tI − (sin t)J)tg.

Since det(cos tI−(sin t)J) = 1, it follows

det(I−κ+e−2tα(I+κ)) = 22m det(cos tI−(sin t)Jκ̃).

Recalling that K=−Jκ, κ=gκ̃g−1, and plugging these, we have

(3.12) :e
− t

i~
〈uuug,uuug〉∗

∗ :
(−Jκ)

=:e
t
i~
u〈uuu(αJ),uuu〉∗

∗ :
(−Jκ)

=
1√

det(cos tI−(sin t)Jκ̃)
e

1
i~
〈uuug − sin t

cos tI−(sin t)Jκ̃
,uuug〉

where cos tI−(sin t)Jκ̃ is a symmetric matrix.

Now, one may assume in generic ordered expressions, −Jκ̃ has disjoint 2m simple eigenvalues.
Considering the diagonalization of Jκ̃ in (3.12), we easily see that
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Lemma 3.2 In a generic (open dense) ordered expression, the singular points distributed π-periodically
along 2m lines parallel to the real axis, and the singular points are all simple double branched singular

points. Moreover, :e
− t

i~
〈uuug,uuug〉∗

∗ :
(−Jκ)

is rapidly decreasing along lines parallel to the pure imaginary axis

of the growth order e−|t|
m

, where 2m = n.

Generic assumption Throughout this series, we suppose above properties for generic ordered ex-
pressions except otherwise stated.

In addition to generic assumption, we may suppose the following:

Proposition 3.6 In generic ordered expression K, one may assume that :e
t
i~
〈uuug,uuug〉∗

∗ :
(−Jκ)

has no
singular point on the real line. Hence, the exponential law proved by the uniqueness in the left

evolution equation gives that :e
t
i~
〈uuug,uuug〉∗

∗ :
(−Jκ)

, t ∈ R forms a one parameter subgroup of period π, or
2π depending on the expression parameter K.

One of the remarkable feature of this concrete formula (3.12) is that it shows several extraordinary
properties of ∗-exponential functions. For instance, we will see in the next section the following (cf.
(3.15), Lemma3.2):

Proposition 3.7 If α = gJg−1 for some g ∈ Sp(m,C), then the ∗-exponential function of quadratic
form 1

i~〈uuu(αJ),uuu〉∗ in a generic (open dense) ordered expression κ is 2π-periodic along real line (in
precise, π-periodic or alternating π-periodic), and rapidly decreasing in both sides along the imaginary
axis iR in the growth order e−|t|

m

. Hence such a ∗-exponential function must have singular points by
Liouville’s theorem.

By (3.10), we see also that :e
s 1
i~
〈uuu(αJ),uuu〉∗

∗ :κ has in general discrete branched singularities on the
complex space s∈C with some periodicity depending on the parameter κ=JK. To obtain the value
without sign ambiguity, we have to fix the path from 0. To stress this, we use sometimes the notation

(3.13) :e
[0∼s] 1

i~
〈uuu(αJ),uuu〉∗

∗ :κ

where [0 ∼ s] indicates a path joining 0 to s avoiding singular points.

Replacing −Jκ by K in (3.12), we have Jκ̃ = −tgKg, and replacing t by −t we have the formula
(1.10) again:

(3.14) :e
t
i~
〈uuug,uuug〉∗

∗ :
K
=

1√
det(cos tI−(sin t)tgKg)

e
1
i~
〈uuug sin t

cos tI−sin t tgKg
,uuug〉

By requiring 1 at t = 0 and by using det g = 1, we have by setting t = ±π, and t = ±π
2
, that

(3.15) :e
π±1

i~
〈uuug,uuug〉∗

∗ :
K
=

√
(−1)2m=

√
1, :e

π ±1
2i~
〈uuug,uuug〉∗

∗ :
K
=

1√
detK

e−
1
i~
〈uuu 1

K
,uuu〉.

Note that the r.h.s. of the first equality looks independent of g and the expression parameters, and
that the r.h.s. of the second equality looks independent of g. Since Sp(m,C) is connected, it looks
the sign of

√
1 and

√
detK can be fixed. However, the sign of

√
1 depends both on the expression
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K and on the path from 0 to π by which we choose the sign of :e
π 1

i~
〈uuuαJ,uuu〉∗

∗ :κ under the condition
e
0〈uuuαJ,uuu〉∗
∗ :κ = 1, where the path should be so chosen that there is no singular point on the path.

In the case K=0 (the Weyl ordered expression), the r.h.s. of the second identity diverges and the
first identity gives

:e
[0∼t] 1

i~
〈uuug,uuug〉∗

∗ :0 =
√

(cos t)2me
1
i~
〈uuug sin t

cos t
I,uuug〉 = (cos t)me

1
i~
〈uuug sin t

cos t
I,uuug〉

by requesting 1 at t = 0. Hence :e
[0∼π] 1

i~
〈uuug,uuug〉∗

∗ :0 = (−1)m.
In general the ±-sign depends on the path from 0 to π or π/2. It depends on which sheet the

end point of the path is sitting. By this observation, we see that

(3.16) :e
[0∼π]±1

i~
〈uuug,uuug〉∗

∗ :
K
= (−1)m, (resp. − (−1)m)

if :e
π±1

i~
〈uuug,uuug〉∗

∗ :
K
is sitting in the same (resp. opposite) sheet as in :e

0±1
i~
〈uuug,uuug〉∗

∗ :
K
.

On the other hand, for a fixed K, the r.h.s. of the second equality (3.15) is independent of
g. Since Sp(m,C) is connected, it looks that one can fix the sign of

√
detK in the r.h.s. of the

second equality. Here, we meet the strange phenomenon that we have already met in [13]. We call

e
π 1

2i~
〈uuug,uuug〉∗

∗ the (total) polar element and denote this by ε00. The polar element will be discussed
in the next section more closely.

3.3.1 The case m = 1

In this section, we treat the case of two variables u, v (i.e. the case m=1). Note first that
{〈uuug,uuug〉∗; g∈SL(2,C)} is spanned by quadratic forms given by

[
cosh r sinh r
sinh r cosh r

]
,

[
cos r i sin r
i sin r cos r

]
,

[
eis 0
0 e−is

]
,

[
es 0
0 e−s

]
, r, s ∈ R.

In particular, we treat ∗-exponential functions et
1
i~
(u2∗+v

2
∗)

∗ , e
t 1
i~
2u◦v

∗ more closely.
In (3.7), we set the expression parameter K = −Jκ= [ a cc b ], and we set the amplitude part of (3.7)
1√

∆K(t)
where

(3.17) ∆K(t)=det((cos t)I+(sin t)K)= cos2 t−(a+b) sin t cos t+(ab−c2) sin2 t

Note that a+b and ab−c2 can be arbitrary complex numbers.
∆K(t) and the phase part of (3.7) are both π-periodic, but the sign of

√
∆K(t) depends on

the expression parameter K and the path from 0 to t in the complex plane. The sign ambiguity is

removed by putting the initial condition e
0 1
i~
H∗

∗ =1 at t=0 only in the case that a = −b and c2+a2 = 1,
i.e. ∆K(t) = 1, or the case that (a−b)2+4c2=0, i.e. ∆K(t)=

1
4
(2 cos t+(a+b) sin t)2.

Moreover, singular points depend on expression parameters (cf.[13]). The case c=0 where a, b are
arbitrary in C gives an overview how the singular points are moving:

:e
t 1
i~
(u2∗+v

2
∗)

∗ :
K
=

1√
(cos t−a sin t)(cos t−b sin t)

exp
1

i~

( sin t

cos t−b sin tu
2+

sin t

cos t−a sin tv
2
)
.
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By these observations, we see that the singular points appear π-periodically in general on two lines
parallel to the real axis and the ∗-exponential functions have e−|t|-growth with the exponential decay
on the line parallel to the pure imaginary axis when these do not hit singular points.

The observation here gives in addition the following:

Lemma 3.3 Choosing the expression parameter K, we can make both :e
[0→π] 1

i~
(u2∗+v

2
∗)

∗ :
K
= 1, and −1.

Moreover, multiplying et, we have an extremal point, called vacuum,

lim
t→∞

et:e
it 1

i~
(u2∗+v

2
∗)

∗ :
K
=

2√
(1−a)(1−b)

exp
1

i~

( 1

1−bu
2+

1

1−av
2
)
.

depending on the expression parameters.

We fix the expression parameter K as follows:

Kre =

[
ρ ic′

ic′ ρ

]
, or Kim =

[
iρ c
c iρ

]
, ρ, c, c′ ∈R.

The formula (3.17) is rewritten in this case as

∆Kre(t)= det((cos t)I+(sin t)Kre)= cos2 t+2ρ sin t cos t+(ρ2+c′
2
) sin2 t,

∆Kim
(t)= det((cos t)I+(sin t)Kim)= cos2 t+2iρ sin t cos t−(ρ2+c2) sin2 t.

The first one is obviously positive definite if c′ 6= 0 (i.e. Siegel ordered expression in the case m = 1)
and hence

√
∆Kre(t) does not change sign when t moves 0 to π along real line.

On the other hand,

√
∆Kim

(t)=
1

2
e−it

√
(1+ρ)2+c2

√
(e2it+α)(e2it+ᾱ), α =

1−(ρ+ic)
1+(ρ+ic)

.

One may assume generically that |α| 6= 1. Hence,
√

∆Kim
(t) changes sign when t moves from 0 to

π. Thus, we have

Lemma 3.4 :e
t 1
i~
(u2+v2)

∗ :
Kre

is π-periodic, and the two lines of singular points are sitting in both upper
and lower half plane. The real line is between these.

On the other hand, :e
t 1
i~
(u2+v2)

∗ :
Kim

is alternating π-periodic, and the two lines of singular points
are sitting in upper or lower half plane depending on the sign of ρ.

The expression parameter Kim is the case m = 1 of the special expression parameter Ks used in [13].

Next, we take our attention to the quadratic form 2u◦v, but we take a general expression parameter

K=

[
δ c

c δ′

]
. A little complicated calculation via intertwiner I

K

K0
from the normal ordered expression

gives by setting ∆=et+e−t−c(et−e−t) that

(3.18) :e
t 1
i~
2u◦v

∗ :
K
=

2√
∆2−(et−e−t)2δδ′

e
1
i~

et−e−t

∆2−(et−e−t)2δδ′

(
(et−e−t)(δ′u2+δv2)+2∆uv

)
.
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The q-scalar and the polar element are obtained by setting t = ±πi and t = ±πi
2
respectively.

For the simplest case in (3.18), that the case c = δ = δ′ = 0 is the Weyl ordered expression.
This is not a generic ordered expression having singular points on the imaginary axis, and this is
πi-alternating periodic.

On the contrary, the unit ordered expression is given by K = I, i.e. δ = 1, δ′ = 1, c = 0. By
(3.18), we have

:e
t 1
i~
2u◦v

∗ :
I
=

2√
4
e

1
4i~

(e2t+e−2t+2)(u2+v2)+2(e2t−e−2t)uv.

This is πi-periodic and there is no singular point.
For the case δ = δ′ = 0 but c 6= 0 which involves the normal ordered expression, we see that

(3.19) :e
t 1
i~
2u◦v

∗ :
K
=

2√
∆2

e
1
i~

et−e−t

∆2

(
2∆uv

)
=

2

∆
e

1
i~

et−e−t

∆
2uv.

This is the case where the singular points are not branching ones and they are sitting πi periodically
on a single line parallel to the imaginary axis whose real part are given by log

∣∣ c+1
c−1

∣∣. We see also that

:e
t
i~
2u◦v

∗ :
K
is alternating πi-periodic along the imaginary axis.

Suppose in (3.18) that K=Kre;

(3.20) δ=δ′=ρ, c = ic′ ρ, c′ ∈ R, c′ 6=0.

By setting β=ρ+ ic′, we have that

(3.21)
1

2

√
∆2−(et−e−t)2δδ′=e−t

√
(1−β)(1+β̄)

√
e2t−1+β

1−β

√
e2t−1−β̄

1+β̄
.

Obviously |1+β
1−β ||

1−β̄
1+β̄
| = 1, but one may assume in generic ordered expression that |1+β

1−β |6=1. Hence,√
e2t−1+β

1−β

√
e2t−1−β̄

1+β̄
changes the sign when t moves 0 to πi. Thus we see 1

2

√
∆2−(et−e−t)2δδ′ does

not change the sign on the interval [0, πi]. Hence :e
t 1
i~
2u◦v

∗ :
Kre

is πi-periodic. Remark now this is the

case in :e
it
i~
〈uuug,uuug〉

∗ :
K
where

g =
1√
2

[
1 i
i 1

]
, Kre =

[
ρ ic′

ic′ ρ

]
.

The concrete expression of polar element is

(3.22) :ε00:Kre
= :e

πi 1
i~
u◦v

∗ :
Kre

=
1√

(ρ2+c′2)
e
− 1

i~
1

ρ2+c′2
ρ(u2+v2)−2c′iuv

.

Note that the quadratic form u2∗+v
2
∗ is a representative of general quadratic forms au2∗+bv

2
∗+2cu◦v

with the discriminant c2−ab = −1 via SL(2;C)-linear change of generators.
Since SL(2;C) = Sp(1;C), such a linear change is covered by a change of expression parameters

by the formula (1.10). Thus, even if an expression parameter K is fixed generically, these patterns
for the quadratic form u2∗+v

2
∗ must appear for au2∗+bv

2
∗+2cu◦v via changing coefficients. We shall

show that this appears slightly different, more delicate shape.
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In general, we set

eitH∗∗ =e
it
i~
(au2∗+bv

2
∗+2cu◦v)

∗ , c2−ab = 1.

We have then three patterns as follows:
(Q(1)): eitH∗∗ is alternating π-periodic and the 2 lines of singular points are in the upper

half-plane.
(Q(2)): eitH∗∗ is alternating π-periodic and the 2 lines of singular points are in the lower

half-plane.
(Q(3)): eitH∗∗ is π-periodic and the real line are between 2 lines of singular points.

(Q(k)) are open subsets of {(a, b, c); c2−ab=1} such that (Q(1))∪ (Q(2))∪ (Q(3)) is dense. Since
the time reversing sends the line of singularities to the opposite side, we see that (Q(k)) has the
property

(Q(1))−1 = (Q(2)), (Q(3))−1 = (Q(3)).

This means that if eitH∗∗ ∈ (Q(1)), then e
it(−H∗)
∗ ∈ (Q(2)).

Remark Alternating π-periodicity appears when no sheet changing occurs. Thus,

:e
π 1

i~
(u2+v2)

∗ :
K
= −1

always on the positive sheet, as far as requesting e
0 1
i~
(u2+v2)

∗ = 1. On the other hand ,

:e
π 1

i~
(u2+v2)

∗ :
K
= 1,

when the sheet changing occurs on a path from 0 to π. It is very easy to make a mistake.

Recall first the anomalous phenomena mentioned in [13] that a polar element is obtained not

only by e
πi
i~
u◦v

∗ but also by e
πi
2i~

(au2∗+bv
2
∗+c2u◦v)

∗ , c2−ab = 1. This shows that a polar element is sitting on
various one parameter subgroups. This is just like the longitude lines starting at the north pole meet

again at the South Pole. We show in the next section this is a generic phenomena of e
πi
2i~

(au2∗+bv
2
∗+2cu◦v)

∗ ,
c2−ab = 1. Thus, a polar element has infinitely many square roots sitting on the equator.

Beyond the south pole the longitude lines come back again to the north pole, where we give the
initial value 1 to every one parameter subgroup parameterized by longitude. However, it is a little
surprising that the periodicity of these periodic movement depends on expression parameters.

3.3.2 Product structure

The product formula (2.13) shows that the space CeQ(u,v) of exponential functions of polynomial
of degree 2 forms a very special subclass in the space E2+(C2m). It is useful to memorize the next
theorem:

Theorem 3.3 In a generic ordered expression K, the ∗
K
-product

π
K
: CeQ(u,v) × CeQ(u,v) → CeQ(u,v)

is a mapping given in the form π
K
(aeQ, beR) = ab

√
f(Q,R,K) eg(Q,R,K) where f and g are mero-

morphic functions of Q,R,K. Hence the continuity

lim
(k,ℓ)

π
K
(ake

Qk , bℓe
Rℓ) = π

K
(lim
k
ake

Qk , lim
ℓ
bℓe

Rℓ)
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holds whenever limk ake
Qk , limℓ bℓe

Rℓ are defined in the space CeQ(u,v), and

π
K
(ake

Qk , bℓe
Rℓ), π

K
(lim
k
ake

Qk , lim
ℓ
bℓe

Rℓ)

are defined.

As for products, we know already that associativity holds always with sign ambiguity. However
the following theorem is useful as a corollary of Proposition 3.5 and the formal associativity theorem
(cf. Theorem 1.3),

Theorem 3.4 For quadratic forms K∗, L∗, M∗, associativity

(e[0∼r]K∗∗ ∗e[0∼s]L∗∗ )∗e[0∼t]M∗∗ =e[0∼r]K∗∗ ∗(e[0∼s]L∗∗ ∗e[0∼t]M∗∗ )

holds without sign ambiguity whenever both sides are defined, where paths in both left/right hand
sides with same symbol should be same path (synchronized path selecting).

We next consider the product esH∗∗ ∗etK∗∗ for two quadratic forms H∗, K∗ such that [H∗, K∗] = 0.
First of all, we show the following

Proposition 3.8 If esH∗∗ ∗etK∗∗ are defined on (s, t)∈[0, a]2, then esH∗∗ ∗etK∗∗ =etK∗∗ ∗esH∗∗ .

Proof Since K∗∗esH∗∗ and esH∗∗ ∗K∗ satisfies the equation d
ds
fs = H∗∗fs with f0 = K∗, we have

K∗∗esH∗∗ = esH∗∗ ∗K∗. Hence, we have

d

dt
esH∗∗ ∗etK∗∗ =K∗∗esH∗∗ ∗etK∗∗ ,

d

dt
etK∗∗ ∗etH∗∗ =K∗∗etK∗∗ ∗esH∗∗

with the same initial condition esH∗∗ . The uniqueness gives the proof. ✷

If (s, t)∈C2, then we have in general esH∗∗ ∗etK∗∗ = ±etK∗∗ ∗esH∗∗ with the sign ambiguity by the
product formula (2.11). This means in particular and the phase parts of both sides coincides (the
sign ambiguity appears only in the amplitude parts). In general, esH∗∗ ∗etK∗∗ has a singular set S of
complex codimension 1. We see that the origin (0, 0) is not contained in S. Since S is a branched
singularity, we have to prepare two sheets C2

+, C
2
− and “slit” Σ of real codimension 1 to connect

these two sheets. Σ is set so that C2\Σ is locally simply connected and there is no singular point.

Now, restrict the parameter (s, t) ∈ R2 in esH∗∗ ∗etK∗∗ and suppose esH∗∗ ∗etK∗∗ has a singular point
in (s, t)∈(0, a)×(0, b). One may assume that R2 is transversal to S in generic ordered expression.
Hence if S ∩ R2 6= ∅, then this is a discrete set and Σ ∩ R2 is a collection of (real one dimensional)
curves starting at a singular point ending another singular point or ∞. Hence one may assume that
the boundary ∂([0, a]×[0, b]) cuts the slit just once for all.

Proposition 3.9 Under the assumption as above, we have esH∗∗ ∗etK∗∗ = −esK∗∗ ∗etH∗∗
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Proof As we have two sheets, there are two “origin”, (0, 0)∈C2
+ and (0, 0)∈C2

−. Since e
0H∗
∗ ∗e0K∗∗ is

1 in the positive sheet C2
+, the origin in the negative sheet must be treated as −1. Now, consider

eaH∗∗ ∗ebK∗∗ and ebK∗∗ ∗eaH∗∗ . The first one is defined by the solution of the evolution equation

d

dt
ft = H∗∗ft, f0 = ebK∗∗ .

We indicate this by the notation e
[0→a]H∗
∗ ∗ebK∗∗ . This is the clockwise tracing from the origin. On

the contrary, e
[0→b]K∗
∗ ∗eaH∗∗ means the anti-clockwise tracing from the origin. Now suppose there is a

singular point (s0, t0), then one of the paths e
[0→a]H∗
∗ ∗ebK∗∗ and e

[0→b]K∗
∗ ∗eaH∗∗ is crossing the slit hence

they are sitting mutually in the opposite sheet. By this way, the sign changes around a singular
point. ✷

4 Rule of setting slits and polar elements

If it is an absolute scalar, then (
√
1)2=1 is trivial. Recall first

Proposition 4.1 If e2πα=I such as α=J (e.g. α = gJg−1, ∀g∈Sp(m,C)), then :e
π 1

i~
〈uuuαJ,uuu〉∗

∗ :κ =
√
1

independent of K.

Note that l.h.s. is not a classic element, for this identity does not hold for ~ = 0.

Hence, the strict exponential law might be failed, that is, :e
2π 1

i~
〈uuuαJ,uuu〉∗

∗ :κ = 1 or

:e
π 1

i~
〈uuuαJ,uuu〉∗

∗ :κ∗κ:eπ
1
i~
〈uuuαJ,uuu〉∗

∗ :κ = 1

may not hold automatically. If :e
t 1
i~
〈uuuαJ,uuu〉∗

∗ :κ has a singular point on the interval [0, 2π], then it may

occur (e
π 1

i~
〈uuuαJ,uuu〉∗

∗ )2 6=e2π
1
i~
〈uuuαJ,uuu〉∗

∗ , although the equality holds modulo ± sign.
To avoid such a strange nature, we give a general rule to set slits. Because of the double branching

singular points, we have to use two sheets by setting slits in the complex plane to treat these ∗-
exponential functions :etH∗∗ :

K
univalent way.

♣ As it is discussed already, it is natural to set the slits periodically,
since the singular points are distributed periodically.

By virtue of this rule, we have

Proposition 4.2 If e2πα=I (e.g. α = gJg−1, ∀g∈Sp(m,C)), then :
(
e
[0→π] 1

i~
〈uuuαJ,uuu〉∗

∗ )2:κ=1 for every

κ-ordered expression such that :e
t 1
i~
〈uuuαJ,uuu〉∗

∗ :κ has no singular point on the interval [0, π]. Moreover,
we have

:e
2π 1

i~
〈uuuαJ,uuu〉∗

∗ :κ=:(e
π 1

i~
〈uuuαJ,uuu〉∗

∗ )2:κ.

Proof. Note first that this is by no means trivial. It is crucial that the assumption and the π-

periodicity of singular points shows that :e
t 1
i~
〈uuuαJ,uuu〉∗

∗ :κ has no singular point on the interval [π, 2π],
but if there is no rule to set the slit, it may happen that path [0→2π] cross the slit only once.
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By the rule of setting slits ♣, we see that the slits are set π-periodically. Thus, the line segment

[0, 2π] must cross the slits even (possibly 0) times. It follows :e
2π 1

i~
〈uuuαJ,uuu〉∗

∗ :κ=1, since this is sitting in
the positive sheet.

To confirm :(e
π 1

i~
〈uuuαJ,uuu〉∗

∗ )2:κ = :e
2π 1

i~
〈uuuαJ,uuu〉∗

∗ :κ, we have to recall how the ∗-product eπ
1
i~
〈uuuαJ,uuu〉∗

∗ ∗g is
defined. We use the definition which is given by the evolution equation (3.2).

Since :e
π 1

i~
〈uuuαJ,uuu〉∗

∗ :κ = ±1, one can define

:e
t 1
i~
〈uuuαJ,uuu〉∗

∗ :κ∗κ:1:κ, or :e
t 1
i~
〈uuuαJ,uuu〉∗

∗ :κ∗κ:(−1):κ

by the solution of the evolution equation (3.2) with the initial condition ±1. By Proposition 3.1, the

solution is :e
t 1
i~
〈uuuαJ,uuu〉∗

∗ :κ or −:et
1
i~
〈uuuαJ,uuu〉∗

∗ :κ respectively. This gives the result. �

4.1 General polar element as q-scalars

It is interesting that polar element ε00 behaves just like a scalar, but it behaves various ways. Some-
times, it behaves as if it were −1, and sometimes it looks as if i depending on K. We call such
elements q-scalars. But, to treat this as a univalent element, we have to distinguish more strictly.

The strange double-valued nature of the polar element ε00 is caused by that e
π 1

2i~
〈uuug,uuug〉∗

∗ is moving
discontinuously in both positive and negative sheets when g moves in Sp(m,C).

In this section, we analyze this phenomenon more clearly. In particular, we investigate the
generic patterns of periodicity and singularities of ∗-exponential functions of quadratic forms under
the assumption ♣. In particular, we are interested the behaviour of polar element. In what follows,
we use several notions for the path as follows:

[0→a] : the path starting from the origin 0 ending at a along the line segment, but the ∗-exponential
is evaluated at t=a by the continuous chase from 0 to a along the path [0→a].
[0∼a] : a path starting from the origin 0 ending at a avoiding singular points, but evaluated at a.

[0≈a] : a path starting from the origin 0 ending at a avoiding singular points and slits so that the
end point is sitting in the same sheet as the origin.

For a fixed g, ε00 = :e
π 1

2i~
〈uuug,uuug〉∗

∗ :
K
is always viewed as a double-valued single parallel section. If

K is fixed, ε00 looks independent of g with ± ambiguity. To distinguish the sign, we use the notation

(4.1) :ε00[g]:K = :e
[0→π] 1

2i~
〈uuug,uuug〉∗

∗ :
K
=

1√
det(cos([0→1]π

2
)I−(sin([0→1]π

2
)tgKg)

e−
1
i~
〈uuu 1

K
,uuu〉

to fix the sign of ε00, where [0→a] is the path along the straight line segment. Note that :ε00[g]:K
may not be defined at some g, when a singular point appears in the interval (0, π/2]. Although
ε00 = ±ε00[g] and ε00 is independent of g, ε00[g] may not be continuous w.r.t. g. The sign changes
discontinuously at some g. For a generic K, there is g∈Sp(m,C) such that tgKg is a real diagonal

matrix. Hence :e
t 1
2i~
〈uuug,uuug〉∗

∗ :
K
has a singular point.
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Note that for every g∈Sp(m,C) there is k∈Sp(m,C) such that −〈uuug,uuug〉∗=〈uuuk,uuuk〉∗. This is
shown for instance

(4.2) g

[
iI 0
0 −iI

] [
iI 0
0 −iI

]
tg = −g tg.

Recall the rule ♣ of setting slits. As sheets are set π-periodically we see the next result:

Lemma 4.1 In generic K-expression, :e
[0→π] 1

i~
〈uuug,uuug〉∗

∗ :
K

and :e
[0→π]−1

i~
〈uuug,uuug〉∗

∗ :
K

belong to the same
sheet, and

:e
[0→π] 1

i~
〈uuug,uuug〉∗

∗ :
K
= :e

[0→π]−1
i~
〈uuug,uuug〉∗

∗ :
K
= 1 or − 1.

However, this may not belong to the same (positive) sheet as :e
0 1
i~
〈uuug,uuug〉∗

∗ :
K
.

Proof If the path [0→π] crosses the slit ℓ-times, then the end point :e
[0→π] 1

i~
〈uuug,uuug〉∗

∗ :
K

is sitting on

the (−1)ℓ-sheet. Since sheets are set π-periodically, the path [0→π] for :e[0→π]
−1
i~
〈uuug,uuug〉∗

∗ :
K
also crosses

the slit ℓ-times. ✷

On the other hand, the second equality of (3.15) does not necessarily imply that

:e
[0→π] 1

2i~
〈uuug,uuug〉∗

∗ :
K
= :e

[0→π]−1
2i~
〈uuug,uuug〉∗

∗ :
K
.

The sheet change may occur in the continuous tracing of
√

det(cos tI−(sin t)tgKg) from −π
2
to π

2
if

the path from −π
2
to π

2
crosses the slit odd-times. (3.15) shows

Lemma 4.2 :ε00[g]:K = :ε00[g]
−1:

K
if and only if

√
det(cos([0→π])I−(sin([0→π])tgKg) = 1.

If there is no singular point on :e
t 1
2i~
〈uuug,uuug〉∗

∗ :
K
, t ∈ R, then this forms a one parameter group, and

thus the equality above is equivalent with :e
[0→π] 1

i~
〈uuug,uuug〉∗

∗ :
K
= 1 by the exponential law.

Lemma3.3 in the this section shows that for a certain K there are g, g′ such that
√

(−1)2m = 1
and −1 respectively. Thus, even if K is fixed, the sign may depend on g and the path from 0 to
π. Since Sp(m,C) is connected, the sign changes discontinuously when the path from 0 to π hits a
singular point. The sign changes by the changing sheet caused when the path crossing the slit drawn
from the set of the singular points.

In the argument above, paths were restricted in line segment to fix the ambiguous sign. In fact,
we can relax this condition. The next lemma shows that the sign-changing is caused only when the
path moves across the set S of singular points. Take an open connected subset U of Sp(m,C) which

may be U 6= −U . Suppose we can fix path :e
[0∼π] 1

i~
〈uuug,uuug〉∗

∗ :
K
from t=0 to t=π avoiding singular points

but depending continuously in g ∈ U . By setting t = π, and t = π
2
, we have the following :

Lemma 4.3 Under the assumption for U mentioned above, the ∗-exponential function

:e
[0∼t] 1

i~
〈uuug,uuug〉∗

∗ :
K
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is defined uniquely without sign ambiguity by the continuous tracing from the identity, and we see

(4.3) :e
[0∼π] 1

i~
〈uuug,uuug〉∗

∗ :
K
=

√
(−1)2m,

where
√
(−1)2m = (−1)m, when the end point of path is sitting in the same (positive) sheet as 0, and

−(−1)m, when the end point of path is sitting in the opposite (negative) sheet.

On the other hand for the polar element, we have

(4.4) :e
[0∼π] 1

2i~
〈uuug,uuug〉∗

∗ :
K
=

1√
detK

e−
1
i~
〈uuuK−1,uuu〉.

The sign of
√
detK is determined by the sheet on which the end point of the path [0∼π] is sitting.

Note that (−1)m in Lemma4.3 is −1 if m =odd, and 1 if m =even. Thus, the mathematical
context depends on (−1)m = ±1 in the next Proposition.

Proposition 4.3 Suppose there is g ∈ Sp(m,C) such that :e
[0→π] 1

i~
〈uuug,uuug〉∗

∗ :
K

= −1. Then, there

must exist h ∈ Sp(m,C) such that :e
[0→π] 1

i~
〈uuuh,uuuh〉∗

∗ :
K

= 1, and ĥ ∈ Sp(m,C) such that the path

:e
[0→π] 1

2i~
〈uuuĥ,uuuĥ〉∗

∗ :
K
must hit a singular points.

Proof Suppose :e
[0→π] 1

i~
〈uuug,uuug〉∗

∗ :
K
= −1 for every g∈Sp(m,C) and suppose there is no singular point

on the path [0→π].
As Sp(m,C) is connected, (4.2) and the second equality of (3.15) give that for the mid-point

(4.5) :e
[0→π] 1

2i~
〈uuug,uuug〉∗

∗ :
K
=:e

[0→π] 1
2i~
〈uuuk,uuuk〉∗

∗ :
K
=:e

[0→π]−1
2i~
〈uuug,uuug〉∗

∗ :
K
.

The exponential law gives

:e
[0→π]−1

2i~
〈uuug,uuug〉∗

∗ :
K
= :

(
e
[0→π] 1

2i~
〈uuug,uuug〉∗

∗
)−1

:
K

and therefor multiplying e
[0→π] 1

2i~
〈uuug,uuug〉∗

∗ to both sides of (4.5), we have the contradiction

−1 = e
[0→π] 1

i~
〈uuug,uuug〉∗

∗ = e
[0→π] 1

2i~
〈uuug,uuug〉∗

∗ ∗
(
e
[0→π] 1

2i~
〈uuug,uuug〉∗

∗
)−1

= 1.

As a result Sp(m,C) is divided into three parts D+, D−, Dsing such that

:e
[0→π] 1

i~
〈uuug,uuug〉∗

∗ :
K
=





−1 g∈D+

:e
t 1
i~
〈uuug,uuug〉∗

∗ :
K
has a singular point on (0, π) g∈Dsing

1 g∈D−

and D+ $ Sp(m,C). In particular this yields Dsing 6= ∅.
Now, we show that D− 6= ∅. Since the points of Dsing are branched singular points, the value of

:e
t 1
i~
〈uuug,uuug〉∗

∗ :
K
changes sign around branched singular point. Since we assumed as a generic assumption

that the singular points distributed π-periodically along 2m lines parallel to the real line, there is at

38



most one singular point on (0, π). Thus, :e
[0→1] π

i~
〈uuug,uuug〉∗

∗ :
K

must change sign at g∈Dsing. Hence we
see D− 6=∅. ✷

We note that Sp(k,C) is naturally included in Sp(m,C) for m>k. Apparently, the result men-

tioned in [13] is a special case for m = 1, g = 1√
2

[
1 i
i 1

]
and K=K0 (normal ordered expression).

Proposition 4.3 gives in particular that if D+ 6=∅, then D− 6=∅ and Dsing 6=∅.

Consider now whether it is possible D+ = ∅ in Lemma4.3. First we note the following:

Lemma 4.4 If Dsing 6=∅, then D± 6=∅.

Proof For (t, g)∈C×Sp(m,C), the set S of singular points of :e
t 1
i~
〈uuug,uuug〉∗

∗ :
K

is a closed subset of
complex codimension 1. The slit Σ is set so that (C×Sp(m,C))\σ is locally simply connected.

Hence, if :e
[0→π] 1

i~
〈uuug,uuug〉∗

∗ :
K

hits a singular point for some g, then there are h, h′ ∈ Sp(m,C) in a

neighborhood of g such that :e
[0→π] 1

i~
〈uuuh,uuuh〉∗

∗ :
K
hits Σ, but :e

[0→π] 1
i~
〈uuuh′,uuuh′〉∗

∗ :
K
does not. Hence, these

two must have different sign. ✷.

Now note that the comment following (4.1) shows that Dsing 6=∅. Thus, we have

Theorem 4.1 Suppose K is a generic expression parameter. Then, Sp(m,C) is divided into three
non empty subsets D+, D−, Dsing.

Remark 1 As singular points are distributed π- periodically, if g ∈ Dsing, then :e
t 1
i~
〈uuug,uuug〉∗

∗ :
K

has
singular points not only in the interval (0, π

2
] but also in the interval (−π,−π

2
].

Theorem 4.1 shows a polar element ε00 is a member of various one parameter subgroups with
different periodicity ε200 = 1, and ε200 = −1.

Note Sometimes, D− contains a compact subgroup of Sp(m,C). Indeed, we will show in the next
section that such a case exists. That is, in the casem = 1 there is a class Kre of expression parameters
such that

:e
[0→π] 1

i~
〈uuug,uuug〉∗

∗ :
K
= 1 for every g∈SU(2) cf. Proposition 4.5.

Remark 2 A polar element is a double-valued single element. Thus even though :e
π
2i~
〈uuug,uuug〉∗

∗ :
K
=

:e
π
2i~
〈uuuh,uuuh〉∗

∗ :
K
, square of these may be different

:(e
± π

2i~
〈uuug,uuug〉∗

∗ )2:
K
6=:(e

± π
2i~
〈uuuh,uuuh〉∗

∗ )2:
K

if the paths from 0 to π have different numbers of crossing slits.
It is quite difficult to control the ± sign in the product formula. We have always to chase

continuously from the identity. Even though :ε00[g]:K = ±:ε00[h]:K , it does not necessarily imply
:ε00[g]

2:
K

= :ε00[h]
2:

K
. Furthermore, we do not have enough information in order to determine

:ε00[g]∗ε00[h]:K , though this is {±1} by the product formula with sign ambiguity. In such a situation,
we cannot use ε00[g], ε00[h] as elements of a system with binary operations.

39



By these observation, it seems to be better to treat every element always together with a path
from the origin, and products are defined always by path connecting. However, this is sometimes too
much to treat the detail, for the object turns out to be a groupoid. We have to seek an amenable
object to treat which gives informations what we want to know.

Strict polar element

Let [0 ≈ π] be a path from 0 to π avoiding singular points and slits so that e
π 1

2i~
〈uuug,uuug〉∗

∗ is sitting

in the same sheet as in e
0 1
2i~
〈uuug,uuug〉∗

∗ . Then e
[0≈π] 1

2i~
〈uuug,uuug〉∗

∗ is determined without sign ambiguity.

e
[0≈π] 1

2i~
〈uuug,uuug〉∗

∗ is called the strict polar element by requesting that the path is so chosen that

e
π 1

2i~
〈uuug,uuug〉∗

∗ is sitting in the same sheet as in e
0 1
2i~
〈uuug,uuug〉∗

∗ , and it will be denoted by ε̂00. In precise,

(4.6) ε̂00 = e
[0≈π] 1

2i~
〈uuug,uuug〉∗

∗ , :ε̂00:K =
1√

det(cos([0≈1]π
2
)I−(sin([0≈1]π

2
)tgKg)

e−
1
i~
〈uuu 1

K
,uuu〉

but a little care is required for the r.h.s., for the sheet is not distinguished by the notation itself.

Since singular points and slits are not sitting π/2-periodically but only π-periodically, the square
ε̂200 = ε̂00∗ε̂00 is defined only with sign ambiguity (cf.(3.2)). That is, ε̂200 = ±1 and the sign depends
on g and K discontinuously, while ε̂400 = 1 (cf. Proposition 4.2).

But recall here that change of generators is covered by change of expression parameters. Hence
the same phenomenon must occur in the change of expression parameters even when g is fixed.

4.2 Sign-changing by the order of continuous tracing

Recall § 3.3.2. We have discussed the product formula esH∗∗ ∗etK∗∗ for the case [H∗, K∗] = 0 in Propo-
sitions 3.8, 3.9. In this section, we consider the the case [H∗, K∗]6=0 and we give the product formula
corresponding to Propositions 3.8, 3.9.

As it is mentioned before, the product

:e
t〈uuu( 1

2i~
αJ),uuu〉

∗ ∗f :
K
, :f∗e−t〈uuu(

1
2i~

αJ),uuu〉
∗ :

K

are defined by the left/right evolution equations

d

dt
ft = 〈uuu(

1

2i~
αJ),uuu〉∗ft,

d

dt
ft = ft∗〈uuu(

1

2i~
αJ),uuu〉,

with initial data f Suppose f is another ∗-exponential function :e
t〈uuu( 1

2i~
βJ),uuu〉

∗ :
K
.

:e
t〈uuu( 1

2i~
αJ),uuu〉

∗ ∗(f∗e−t〈uuu(
1

2i~
αJ),uuu〉

∗ ):
K

:(e
t〈uuu( 1

2i~
αJ),uuu〉

∗ ∗f)∗e−t〈uuu(
1

2i~
αJ),uuu〉

∗ :
K

e.t.c.

are defined holomorphically, but multi-valued in t on an open connected domain D containing the
origin 0 ∈ C.

Even in such a case, we can fix the value by tracing along a real analytic path from 0. We have
then the following synchronized associativity:

Theorem 4.2 Whenever the same path is used to fix the value in both sides, associativity

:e
t〈uuu( 1

2i~
αJ),uuu〉

∗ ∗(f∗e−t〈uuu(
1

2i~
αJ),uuu〉

∗ ):
K
= :(e

t〈uuu( 1
2i~

αJ),uuu〉
∗ ∗f)∗e−t〈uuu(

1
2i~

αJ),uuu〉
∗ :

K
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holds and differentiating this gives as in § 3.1

:e
t〈uuu( 1

2i~
αJ),uuu〉

∗ ∗f∗e−t〈uuu(
1

2i~
αJ),uuu〉

∗ :
K
= :etad(〈uuu(

1
2i~

αJ),uuu〉)f :
K

Using Theorem1.3 and Theorem4.2, we see also the following:

Corollary 4.1 Suppose e
s〈uuu( 1

2i~
αJ),uuu〉

∗ and e
[0∼t]〈uuu( 1

2i~
βJ),uuu〉

∗ are defined, where [0∼π] is a real analytic
curve in C joining 0 to π avoiding singular points.

Since for every fixed s,

e
s〈uuu( 1

2i~
αJ),uuu〉

∗ ∗et〈uuu(
1

2i~
βJ),uuu〉

∗ ∗e−s〈uuu(
1

2i~
αJ),uuu〉

∗

are defined as a multi-valued holomorphic element on an open connected neighbourhood of [0∼π], we
see

:Ad(e
s〈uuu( 1

2i~
αJ),uuu〉

∗ )e
[0∼t]〈uuu( 1

2i~
βJ),uuu〉

∗ :
K
=:e

[0∼t]〈uuu( 1
2i~

β̃(s)J),uuu〉
∗ :

K
, β̃(s)=esαβe−sα

hold without sign ambiguity, where [0∼t] in the r.h.s. is the path naturally given by the adjoint action
for the path of the l.h.s.

In particular, :e
[0→t]〈uuu( 1

2i~
βJ),uuu〉

∗ :
K
and :e

[0→t]〈uuu( 1
2i~

β̃(s)J),uuu〉
∗ :

K
must have the same periodicity.

Here we used the same notation as in previous section to stress that e
[0→t]〈uuu( 1

2i~
β̃(s)J),uuu〉

∗ is defined by
solving the evolution equation along the real segment [0, t]:

(4.7)
d

dt
f∗(t) = 〈uuu(

1

2i~
β̃(s)J),uuu〉∗f∗(t), f∗(0)=1.

Consider now Ad(e
s〈uuu( 1

2i~
αJ),uuu〉

∗ )e
t〈uuu( 1

2i~
βJ),uuu〉

∗ of two variables (s, t)∈[0, π]×[0, π]. Note that Corol-
lary 4.1 holds even if there is a singular point (s0, t0) in the open square (0, π)×(0, π), but there
happens another phenomenon of change sheets depending on the order of continuous tracing of
values.

By the observation Proposition 3.9 in the previous section, we see that the singular points in C2

forms a set S of complex codimension 1, which is transversal to the real plane. One may assume that
S∩R2 is a discrete set. Suppose now there is a singular point (s0, t0) in the open square (0, π)×(0, π).
Then, there must be a slit starting from (s0, t0) going outside the square. In what follows, we see

that ∗-exponential function et〈uuu(
1

2i~
β̃(s0)J),uuu〉

∗ is discontinuous at t = t0.

Hence fixing t as t0<t<π and tracing e
t〈uuu( 1

2i~
β̃(s)J),uuu〉

∗ by moving s from s=0, the curve must hit
the slit and changes the sheet.

As it mentioned in Proposition 3.9, the sheet changing gives

(4.8) e
t〈uuu( 1

2i~
β̃([0,s])J),uuu〉

∗ = −e[0→t]〈uuu(
1

2i~
β̃(s)J),uuu〉

∗

where the l.h.s. is the element obtained by tracing continuously from e
t〈uuu( 1

2i~
β̃(0)J),uuu〉

∗ = e
t〈uuu( 1

2i~
βJ),uuu〉

∗ to

e
t〈uuu( 1

2i~
β(s)J),uuu〉

∗ under a fixed t.
One may understand how the sign changes by noting the difference ([0, t], s) and (t, [0, s]) in the

next picture.
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✲

✻
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•e
[0→t]〈uuu( 1

2i~
β̃(s)J),uuu〉

∗ =−et〈uuu(
1

2i~
β̃([0,s])J),uuu〉

∗

•e[0→t]〈uuu(
1

2i~
β̃(σ)J),uuu〉

∗ =e
t〈uuu( 1

2i~
β̃([0,σ])J),uuu〉

∗

Fix t such as t0<t<π and move s. At s=s0 the segment [0, t] must hit the slit.
Hence, the sheet must be changed with the sign.

❆❆❑

β̃(s)=esαβe−sα

Now the formal associativity Theorem1.3 gives the translation identity from the right evolution
equation into the left evolution equation:

(4.9) :e
s〈uuu( 1

2i~
αJ),uuu〉

∗ ∗e[0→t]〈uuu(
1

2i~
βJ),uuu〉

∗ :
K
= :e

[0→t]〈uuu( 1
2i~

β̃(s)J),uuu〉
∗ ∗es〈uuu(

1
2i~

αJ),uuu〉
∗ :

K
.

On the other hand, note that e
t〈uuu( 1

2i~
β̃([0,s])J),uuu〉

∗ is the solution of

(4.10)
d

dη
f∗(η) = [〈uuu( 1

2i~
αJ),uuu〉, f∗(η)], f∗(0)=e

t〈uuu( 1
2i~

βJ),uuu〉
∗ , t is fixed.

Since this is real analytic, the formal associativity theorem gives for fixed t that

(4.11) :e
[0→s]〈uuu( 1

2i~
αJ),uuu〉

∗ ∗et〈uuu(
1

2i~
βJ),uuu〉

∗ :
K
= :e

t〈uuu( 1
2i~

β̃([0,s])J),uuu〉
∗ ∗e[0→s]〈uuu(

1
2i~

αJ),uuu〉
∗ :

K
.

If we use the tracing (4.8), then we have

:e
[0→s]〈uuu( 1

2i~
αJ),uuu〉

∗ ∗et〈uuu(
1

2i~
βJ),uuu〉

∗ :
K
=− :e

[0→t]〈uuu( 1
2i~

β̃(s)J),uuu〉
∗ ∗e[0→s]〈uuu(

1
2i~

αJ),uuu〉
∗ :

K

=− :e
[0→t]〈uuu( 1

2i~
β̃(s)J),uuu〉

∗ ∗es〈uuu(
1

2i~
αJ),uuu〉

∗ :
K

for e
[0→s]〈uuu( 1

2i~
αJ),uuu〉

∗ on the right hand side can be replaced simply by e
s〈uuu( 1

2i~
αJ),uuu〉

∗ without changing
meaning. It follows a little tricky result as follows:

Theorem 4.3 If the square [0, s]×[0, t] contains no singular point, then the identify

:e
[0→s]〈uuu( 1

2i~
αJ),uuu〉

∗ ∗et〈uuu(
1

2i~
βJ),uuu〉

∗ :
K
. = :e

[0→t]〈uuu( 1
2i~

β̃(s)J),uuu〉
∗ ∗es〈uuu(

1
2i~

αJ),uuu〉
∗ :

K

holds, but if the square [0, s]×[0, t] contains a singular point (s0, t0) in the interior, then

:e
[0→s]〈uuu( 1

2i~
αJ),uuu〉

∗ ∗et〈uuu(
1

2i~
βJ),uuu〉

∗ :
K
. = −:e[0→t]〈uuu(

1
2i~

β̃(s)J),uuu〉
∗ ∗es〈uuu(

1
2i~

αJ),uuu〉
∗ :

K

since the sheet is exchanged.

Corollary 4.2 Suppose β̃(π)=eπαβe−πα=−β. If there is no singular point in (0, π)×(0, π), then

:e
[0→π]〈uuu( 1

2i~
αJ),uuu〉

∗ ∗eπ〈uuu(
1

2i~
βJ),uuu〉

∗ :
K
. = :e

[0→π]〈uuu(−1
2i~

βJ),uuu〉
∗ ∗eπ〈uuu(

1
2i~

αJ),uuu〉
∗ :

K

but if there is a singular point in (0, π)×(0, π), then

:e
[0→π]〈uuu( 1

2i~
αJ),uuu〉

∗ ∗eπ〈uuu(
1

2i~
βJ),uuu〉

∗ :
K
. = −:e[0→π]〈uuu(

−1
2i~

βJ),uuu〉
∗ ∗eπ〈uuu(

1
2i~

αJ),uuu〉
∗ :

K

The relation such as eπαβe−πα=−β appears naturally in the next section, but the relation in
Corollary 4.2 is not a classical relation, for such a relation does not hold in the limit ~→ 0.

42



4.2.1 Formula obtained by adjoint relations

In this subsection, we apply these results to the case m = 1. First of all, we recall

Proposition 4.4 In a generic ordered expression K, :e
t
i~
(au2+bv2+2cu◦v)

∗ :
K

has no singular point on
the real line and the pure imaginary line.

Providing c2−ab = 1, polar element :e
πi
2i~

(au2+bv2+2cu◦v)
∗ :

K
depends only on K and the path from 0

to π.

Except otherwise stated, the path is chosen as the segment [0→π].

Note first that 1
i~ [u◦v,

[
u
v

]
] =

[
1 0
0 −1

] [
u
v

]
. It follows that e

it
i~
ad(u◦v)

[
u
v

]
=

[
eit 0
0 e−it

] [
u
v

]
, and hence

for any ∗-function such as f∗(u, v, ~) = 1
2π

∫
R2 f̂(s, t, ~)e

1
i~
(su+tv)

∗ dsdt depending real analytically on ~
in some interval involving ~ = 0, we have

e
is
i~
u◦v

∗ ∗f∗(u, v, ~)∗e−
is
i~
u◦v

∗ =f∗(e
isu, e−isv, ~)

by the formal associativity theorem. Furthermore, we have by the same reason that

(4.12) e
is
i~
u◦v

∗ ∗f∗(u, v, ~)=f∗(eisu, e−isv, ~)∗e
is
i~
u◦v

∗ .

1

2i~
[u2−v2,

[
u
v

]
] =

[
0 −1
−1 0

] [
u
v

]
,

1

2i~
[u2+v2,

[
u
v

]
] =

[
0 1
−1 0

] [
u
v

]
.

It follows that

e
it
2i~

ad(u2−v2)
[
u
v

]
=

[
cos t −i sin t
−i sin t cos t

] [
u
v

]
, e

t
2i~

ad(u2+v2)

[
u
v

]
=

[
cos t sin t
− sin t cos t

] [
u
v

]
.

Now, even if f∗ is a ∗-exponential function of quadratic form :e
t〈uuu( 1

2i~
βJ),uuu〉

∗ :
K
, we can make several

commutation relations by using the product formula (2.11). But for that purpose, we have to use
synchronized path in both sides.

Polar elements are splitting
We next compute the case c=0 and δδ′ 6=± 1 in (3.18) i.e. K = diag{δ, δ′}. Then,

√
∆2−(et−e−t)2δδ′

=
√
1−δδ′e−t

√
e4t+2

1+δδ′

1−δδ′ e
2t+1=

√
1−δδ′e−t

√
(e2t+β)(e2t+β−1)

where β = 1+
√
δδ′

1−
√
δδ′

. If |β| 6= 1 i.e. δδ′ 6∈ R<0 then only one of
√
e2t+β or

√
e2t+β−1 changes sign when

t moves from 0 to πi. Thus, this is the case where the singular points are distributed πi-periodically
along two lines parallel to the imaginary axis both positive and negative real parts, whose real parts

are ± log
∣∣√δδ′+1√

δδ′−1

∣∣, and :e
t
i~
2u◦v

∗ :
K
is πi-periodic along the imaginary axis.
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Lemma 4.5 Suppose K=

[
δ 0
0 δ′

]
such that δδ′ 6= 0, 1, and δδ′ is not a negative real. Then, :e

t
i~
2u◦v

∗ :
K

is πi-periodic along the pure imaginary axis and singular points distributed πi-periodically along two
lines parallel to the imaginary axis both positive and negative real parts.

If δδ′ = 1, then :e
t
i~
2u◦v

∗ :
K

is πi-periodic along the pure imaginary axis and there is no singular
point.

However, if |β| = 1 i.e. δδ′ is negative real, then :e
t 1
i~
2u◦v

∗ :
K
, K = diag{δ, δ′} has two branching

singular points on the open interval i(0, π). Even if this is the case, one may change δ, δ′ slightly so
that δδ′ avoids negative real and 1. By this procedure, we have the same periodical nature and the
pattern of singularities as above.

We next change the generator by (u, v) 1√
2

[
1 −1
1 1

]
, and the expression parameters by two different

ways:

(4.13)

Kre =
1

2

[
1 1
−1 1

][ρ−ic′ 0
0 ρ+ic′

] [
1 −1
1 1

]
=

[
ρ ic′

ic′ ρ

]

Kim =
1

2

[
1 1
−1 1

] [
iρ−c 0
0 iρ+c

] [
1 −1
1 1

]
=

[
iρ c
c iρ

]
.

Then for both cases, we see by (1.10) that

:e
t
i~
(u2−v2)

∗ :
Kre

= :e
t
i~
2u′v′

∗ :
K̂0
, :e

t
i~
(u2−v2)

∗ :
Kim

= :e
t
i~
2u′v′

∗ :
K′0
,

where u′ = 1√
2
(u− v), v′ = 1√

2
(u+ v), K̂0 = diag{ρ−ic, ρ+ic}, K ′0 = diag{iρ−c, iρ+c}.

Note now that [
cos r i sin r
i sin r cos r

]
⊂

[
ρ ic
ic ρ

]
, ρ, c ∈ R,

and [
cos r i sin r
i sin r cos r

]
,

[
cos s − sin s
sins cos s

]
,

[
eiθ 0
0 e−iθ

]

generate SU(2).

By these observation, we have first the following:

Proposition 4.5 If Kre=

[
ρ ic′

ic′ ρ

]
with c′, ρ ∈ R, satisfies |1+ρ+ic′

1−ρ−ic′ |6=1, then Kre ordered expressions

of those three ∗-exponential functions

e
it
i~
2u◦v

∗ , e
t
i~
(u2+v2)

∗ , e
it
i~
(u2−v2)

∗ ,

have no singular point on the real axis and π-periodic, but each of them has singular points sitting
π-periodically along two lines parallel to the real axis on both upper and lower half plane.

Hence, the polar element ε00 may be written in the Kre-expression by

:ε00:Kre
= :e

πi
i~
u◦v

∗ :
Kre

= :e
πi
2i~

(u2−v2)
∗ :

Kre
= :e

− π
2i~

(u2+v2)
∗ :

Kre
.
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and ε200 = 1. Therefore, we have three square roots

e1 = e
πi
2i~

u◦v
∗ , e2 = e

π
4i~

(u2+v2)
∗ , e3 = e

πi
4i~

(u2−v2)
∗

such that e2i = ε00.

To avoid possible confusion, we restrict the expression parameter in the class Kre in what follows.
For every s, (4.12) and Corollary 4.1 gives in generic ordered expression K that

(4.14)
:e

πi
4i~

(u◦v)
∗ ∗e[0∼s]

1
i~
(u2∗+v

2
∗)

∗ ∗e−
πi
4i~

(u◦v)
∗ :

K
=:e

[0∼s] i
i~
(u2∗−v2∗)

∗ :
K
,

:e
πi
2i~

(u◦v)
∗ ∗e[0∼s]

1
i~
(u2∗+v

2
∗)

∗ ∗e−
πi
2i~

(u◦v)
∗ :

K
=:e

[0∼s]−1
i~

(u2∗+v
2
∗)

∗ :
K

without sign ambiguity, where [0∼s] in the l.h.s. is a path from 0 to s in a complex plane on
which there is no singular point, and [0∼s] in the r.h.s. is the path given naturally by the adjoint
transformation.

We have also

(4.15)
e

πi
4i~

u◦v
∗ ∗e

i[0∼s]
i~

(u2∗−v2∗)
∗ ∗e−

πi
4i~

u◦v
∗ =e

− [0∼s]
i~

(u2∗+v
2
∗)

∗ ,

e
πi
4i~

u◦v
∗ ∗e

i[0∼s]
i~

(u2∗−v2∗)
∗ =e

− [0∼s]
i~

(u2∗+v
2
∗)

∗ ∗e
πi
4i~

u◦v
∗

Taking the synchronized use of path, we have

(4.16)
e

π
4i~

(u2∗+v
2
∗)

∗ ∗e
i[0∼s]

i~
u◦v

∗ =e
− i[0∼s]

i~
u◦v

∗ ∗e
π
4i~

(u2∗+v
2
∗)

∗ ,

e
πi
4i~

(u2∗−v2∗)
∗ ∗e

i[0∼s]
i~

u◦v
∗ =e

− i[0∼s]
i~

u◦v
∗ ∗e

πi
4i~

(u2∗−v2∗)
∗ .

In these notations, we have also

e
πi
4i~

u◦v
∗ ∗e

[0∼π]
4i~

(u2∗+v
2
∗)

∗ ∗e−
πi
4i~

u◦v
∗ =e

i[0∼π]
4i~

(u2∗−v2∗)
∗ ,

Applying the second equality of (4.16) to the part e
[0∼π]
4i~

(u2+v2)
∗ ∗e−

πi
4i~

u◦v
∗ , we have

e
πi
4i~

u◦v
∗ ∗e

[0∼π]
4i~

(u2+v2)
∗ ∗e−

πi
4i~

u◦v
∗ =e

πi
4i~

u◦v
∗ ∗e

πi
4i~

u◦v
∗ ∗e

[0∼π]
4i~

(u2+v2)
∗ =e

i[0∼π]
4i~

(u2−v2)
∗

hold. This may be written simply by

(4.17) e
πi
2i~

u◦v
∗ ∗e

π
4i~

(u2+v2)
∗ =e

πi
4i~

(u2−v2)
∗

Note also that (4.16) yields a tricky result as follows:

Proposition 4.6 The polar element e
i[0∼π]

i~
u◦v

∗ satisfies the equality

e
π
4i~

(u2∗+v
2
∗)

∗ ∗e
i[0∼π]

i~
u◦v

∗ =e
− i[0∼π]

i~
u◦v

∗ ∗e
π
4i~

(u2∗+v
2
∗)

∗ .

Hence, such a polar element commutes with another square root of a polar element, if and only if

e
− i[0∼π]

i~
u◦v

∗ = e
i[0∼π]

i~
u◦v

∗ .

45



Recall first (4.17). This gives e1∗e2 = e3 in the Kre-ordered expression.
Generally, adjoint relations of quadratic forms give the following master relations for elements of

square roots of the polar element.

Lemma 4.6 Let H∗ be a quadratic form with the discriminant 1. Then, eπiad(H∗)ej=e
−1
j . This

implies that ei∗ej∗e−1i =e−1j by Theorem 4.2. These relations hold without sign ambiguity.

Proof The first equality is easy to see. The second identity is a special case of the identity which
is proved by using formal associativity theorem. ✷

By the master relation, we have in general

ei∗ej = e−1j ∗ei = ε00∗ej∗ei.

By the identity e3 = e1∗e2, we have

e2∗e3 = e2∗e1∗e2 = e2∗e−12 ∗e1 = e1.

Similarly,
e3∗e1 = e3∗e2∗e3 = e3∗e−13 ∗e2 = e2.

Note that all ei are elements of E2+(C2). Hence, we have

Theorem 4.4 In the Kre-ordered expression such that |1+ρ+ic′
1−ρ−ic′ |6=1, {ε00, e1, e2, e3} generates an al-

gebra A where exist two idempotent elements 1
2
(1+ε00),

1
2
(1−ε00) such that

1 =
1

2
(1+ε00)+

1

2
(1− ε00),

1

2
(1+ε00)∗

1

2
(1− ε00) = 0.

The subalgebra 1
2
(1−ε00)∗A is naturally isomorphic to the complexification C⊗H of the quaternion

field H such that by denoting 1̂ = 1
2
(1−ε00)

ε̂00 =
1

2
(1−ε00)∗ε00 = −1̂, ê2i = −1̂, êi∗êj = −1̂∗êj∗êi, 1 ≤ i, j ≤ 3,

where êi =
1
2
(1−ε00)∗ei, and the subalgebra 1

2
(1+ε00)∗A is the group ring over C of the Klein’s four

group.

4.3 Independence of ordering principle and its failure

In differential geometry, it is widely accepted that geometrical notion should have coordinate free
expression. Obviously, algebraic structure of (C[uuu], ∗Λ) depends only on the skew part of Λ. It seems
reasonable to accept the independence of ordering principle as a basic principle that the physical
implication should be independent of ordered expressions. Theorem 1.1 supports this principle for
elements in a class E2(Cn).

By a direct calculation of intertwiner, we see that

(4.18) I
K′

K
(e

1
i~
〈aaa,uuu〉) = e

1
4i~
〈aaa(K ′−K),aaa〉e

1
i~
〈aaa,uuu〉.
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Hence, {e 1
4i~
〈aaaK,aaa〉e

1
i~
〈aaa,uuu〉;K ∈ SC(2m)} is a parallel section of

∐
K∈SC(2m)Hol(C

2m).

We denoted this collection symbolically by e
1
i~
〈aaa,uuu〉

∗ and we regard each member

(4.19) : e
1
i~
〈aaa,uuu〉

∗ :
K
= e

1
4i~
〈aaaK,aaa〉e

1
i~
〈aaa,uuu〉 = e

1
4i~
〈aaaK,aaa〉+ 1

i~
〈aaa,uuu〉

as its K-expression. Furthermore for every K, e
s
i~
〈aaa,uuu〉

∗ is the solution of the evolution equation

d

dt
:e

s
i~
〈aaa,uuu〉

∗ :
K
=

1

i~
:〈aaa,uuu〉:

K
∗

K
:e

s
i~
〈aaa,uuu〉

∗ :
K
with initial data :1:

K
= 1.

Note also that :〈aaa,uuu〉:
K
= 〈aaa,uuu〉. es

1
i~
〈aaa,uuu〉

∗ = {es2 1
4i~
〈aaaK aaa〉es

1
i~
〈aaa,uuu〉;K ∈ S(2m)} forms a one parameter

group of parallel sections. The product formula in K-ordered expression gives the exponential law

:e
s 1
i~
〈aaa,uuu〉

∗ :
K
∗

K
:e
t 1
i~
〈aaa,uuu〉

∗ :
K
= :e

(s+t) 1
i~
〈aaa,uuu〉

∗ :
K
for every K∈S(2m). Hence, this may be written by omitting

the suffix K as e
s 1
i~
〈aaa,uuu〉

∗ ∗et
1
i~
〈aaa,uuu〉

∗ = e
(s+t) 1

i~
〈aaa,uuu〉

∗ . The product formula may be written as

(4.20) e
1
i~
〈aaa,uuu〉

∗ ∗e
1
i~
〈bbb,uuu〉

∗ = e
1

2i~
〈aaaJ,bbb〉e

1
i~
〈(aaa+bbb),uuu〉

∗ .

The main point is that we do not use operator theory, but instead various ordered expressions
under the leading principle that a physical/mathematical object should be free from ordered expres-
sions (the independence of ordering principle, (IOP) in short), just as geometrical objects are
independent of local coordinate expressions.

Recall this principle in geometry forced to accept the absolute abstract notion “underlying topo-
logical space” before a collection of local coordinate system. However, we saw in [13] that the topology
of a set depends on expression parameters. That is,

P
(2)
K0

∼= SO(m,C)×Z2, but P
(2)
Ks

∼= Spin(m)⊗ C.

Furthermore, if we apply this principle to our system, then it becomes a true nature that every
linear form has two different inverses, for this holds for generic (open dense) expressions. In general,
parallel sections of

∐
K∈S(n) E2+(Cn) are multi-valued with branched singular points depending on

expression parameters. It is difficult to explain multi-valued parallel section in a picture of point
set topology. Thus we have to think twice about the role of expression parameters in geometry and
physics.

4.3.1 Philosophy of general dynamics

It was widely accepted in classical physics that every dynamical movement must be caused by some
Hamiltonian H . Another word, this is the definition of “dynamical movement”. (IOP) is also widely
accepted together with differential geometrical expressions, e.g. contact geometry, G-structures.

The philosophy was succeeded in non-relativistic quantum dynamics by replacing H by a quantum
Hamiltonian. This is given by the evolution equation of every quantum observable ft(uuu):

d

dt
ft(uuu) = [H, ft(uuu)]∗

and the solution is given by ft = etad(H)f0, where e
tad(H) acts on the space of quantum observables.
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In the relativity theory, “time” t is never an absolute scalar, but a coordinate function of “space-
time”. Thus, the Hamiltonian H which governs a relativistic movement is given by H = H(t, e(t,uuu))
involving t and the quantum canonical conjugate e of t. e is called the “energy” variable, relating
each other by e = e(t,uuu), or t = t(e,uuu).

The equation of the relativistic movement is written by similar differential equation by using
“proper time” τ viewed as the individual time of observer:

d

dτ
φτ (e, t,uuu) = [H, φτ (e, t,uuu)],

d

dτ
e∗t = [H, e∗t] = 0,

where φτ is any quantum observable, and the solution is given by φτ = eτad(H)φ0, where e
τad(H) acts

on the space of quantum observables. If one forgets about physics by neglecting the positivity of
energy, such equations can be treated as Fourier integral operators, and the principle (IOP) remains
safe.

However in the field theory, quantum observables φ0 are regarded as operators acting on some
pre-Hilbert space H, and we are requested to have eτH∗ acting on H with suitable associativity such
that φτ may be written as

φτ = (eτH∗ ∗φ0)∗e−τH∗ = eτH∗ ∗(φ0∗e−τH∗ ).

On the other hand, as it is seen throughout this series of papers, ∗-exponential functions such as
eτH∗ often has branched singular point and the periodicity depends on the expression parameters.
We have delicate problems of failing associativity related to moving branched singular points,
which depends on expression parameters. Stone’s theorem shows that there is no essential selfadjoint
operator H such that

∫
R e

tHdt is finite.
At a first glance it is natural to replace eτH∗ by Ad(eτH∗ ) and operator representation of Ad(eτH∗ ).

But this can not be the mathematical Messiah, because such strange phenomena are already involved
in the transcendently extended algebra of ordinary calculus. Hence phisysists are required always the
mathematical consistency. Strictly speaking, this means that physical phenomenon in field theory
depends on how the element is expressed. Nature of individual element, in particular the nature of
periodicity depends on expression parameters.
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Birkhäuser,2004, 483-492.

[12] H.Omori, Y.Maeda, N.Miyazaki and A.Yoshioka : Deformation of expressions for elements of
algebras (I), arXiv:1104.2109

[13] H.Omori, Y.Maeda, N.Miyazaki and A.Yoshioka : Deformation of expressions for elements of
algebras (II), arXiv:1105.1218

[14] M. Rieffel, Deformation quantization for actions of Rn, Memoir. A.M.S. 106, 1993.

49


	1 General product formula and intertwiners
	1.1 Expression parameters and intertwiners
	1.1.1 Linear change of generators

	1.2 Star-exponential functions of linear functions
	1.2.1 Extension of products
	1.2.2 Remarks on elements obtained by integrals
	1.2.3 Remarks on real analyticity and on associativity


	2 Blurred covering group of Sp(m,C)
	2.1 Infinitesimal actions of quadratic forms
	2.1.1 Integral submanifolds and twisted Cayley transforms

	2.2 General product formula
	2.3 Abstract definition of blurred Lie groups

	3 Star-exponential functions of quadratic forms
	3.1 Adjoint action to V2m.
	3.2 Several point set pictures for blurred subgroups
	3.3 Several remarks on *-exponential functions
	3.3.1 The case m=1
	3.3.2 Product structure


	4 Rule of setting slits and polar elements
	4.1 General polar element as q-scalars
	4.2 Sign-changing by the order of continuous tracing
	4.2.1 Formula obtained by adjoint relations

	4.3 Independence of ordering principle and its failure
	4.3.1 Philosophy of general dynamics



