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Summary

In many conventional scientific investigations with high or ultra-high dimensional

feature spaces, the relevant features, though sparse, are large in number compared

with classical statistical problems, and the magnitude of their effects tapers off. It

is reasonable to model the number of relevant features as a diverging sequence when

sample size increases. In this article, we investigate the properties of the extended

Bayes information criterion (EBIC) (Chen and Chen, 2008) for feature selection in lin-

ear regression models with diverging number of relevant features in high or ultra-high

dimensional feature spaces. The selection consistency of the EBIC in this situation is

established. The application of EBIC to feature selection is considered in a two-stage

feature selection procedure. Simulation studies are conducted to demonstrate the

performance of the EBIC together with the two-stage feature selection procedure in

finite sample cases.

Keywords: Diverging number of parameters, Feature selection, Extended Bayes information

criterion, High dimensional feature space, Penalized likelihood, Selection consistency.
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1 Introduction

In the setting of a regression model, if the number of features (covariates) p is of

the polynomial order or exponential order of the sample size n, i.e., p = O(nκ) or

p = O(exp(nκ)), the feature space is referred to as a high-dimensional or ultra-high

dimensional feature space. Regression problems with high or ultra-high dimensional

feature spaces arise in many important fields of scientific research such as genomics

study, medical study, risk management, machine learning, etc.. Such problems are

generally referred to as small-n-large-p problems. In many small-n-large-p problems

the relevant (or causal, true, as referred by some other authors) features, though

sparse, are relatively large in number compared with classical statistical problems,

and their effects usually taper off to zero from the largest to the smallest. To reflect

the estimability of the feature effects, it is reasonable to model the number of relevant

features as a diverging sequence depending on the sample size. [7] and [11] are among

the earliest papers dealing with diverging number of relevant features. In this article,

we consider model selection criteria for linear regression models with high or ultra-

high feature space and diverging number of relevant features.

In general, there are two goals in model selection. The first one is to select

models to do prediction and the focus is on prediction accuracy. The second one is

to identify relevant features and the focus is on selection consistency. In traditional

model selection problems where the number of features under study is small, these two

goals might be addressed at the same time. But, in small-n-large-p problems, the two

goals need to be treated separately. We concentrate on the second goal in this article

and refer to the problem as feature selection. A model selection criterion is crucial for

feature selection. The traditional model selection criteria such as Akaike’s information

criterion (AIC) [1], cross-validation (CV) [16], generalized cross-validation (GCV) [6]
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and the Bayes information criterion (BIC) [14] are not suitable for feature selection

in small-n-large-p problems. The CV or GCV, which aims to minimize prediction

errors, does not address the issue of selection consistency. The AIC and BIC are

overly liberal; that is, the criteria select far more features than the relevant ones, see,

[3, 15, 2]. [2] proposed a modified BIC (mBIC) for the study of genetic QTL mapping

to address problems caused by too many features. [4] developed a family of extended

Bayes information criteria (EBIC) for feature selection in small-n-large-p problems.

The family of EBIC is indexed by a parameter γ in the range [0, 1]. The original BIC

is a special case of EBIC with γ = 0. The mBIC is also a special case of EBIC in an

asymptotic sense; that is, it is asymptotically equivalent to the EBIC with γ = 1. [4]

considered the case of high dimensional feature space with fixed number of relevant

features. They established the selection-consistency of EBIC when p = O(nκ) and

γ > 1− 1
2κ

for any κ > 0.

Model selection criterion for diverging number of relevant features in high or

ultra-high dimensional feature space is still almost a void. [19] considered a BIC

type criterion for diverging number of relevant features but their criterion applies

only when the dimension of the feature space is smaller than n, in fact, they require

p/nξ < 1 for some 0 < ξ < 1. In this paper, we investigate the property of the

EBIC when the number of relevant features diverges at the order O(nc) for some

0 < c < 1 and p = O(nκ) for any κ or p = O(exp(nκ)) for some 0 < κ < 1.

We identify the conditions under which the EBIC remains selection consistent and

provide the theoretical proof (Theorem 1). Since the seminal paper on LASSO [17],

penalized likelihood methods with various penalty functions have been largely used for

model selection, see, e.g., [9, 8, 22]. It has been shown that if the penalty parameter

in the penalized likelihood is properly chosen the penalized likelihood methods are
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selection consistent under certain conditions, see [9, 11, 23, 8, 18, 12]. However, in

practice, without a proper criterion for the selection of the penalty parameter (which

corresponds to the selection of model), the selection consistency cannot be realized.

The commonly used criterion in the penalized likelihood methods, the CV, cannot be

selection consistent in small-n-large-p problems, as we have already pointed out in the

previous paragraph. In this paper, we also consider the application of the EBIC for

the selection of the penalty parameter in penalized likelihood methods. Simulation

studies are conducted to demonstrate the finite sample properties of the EBIC and

the selection procedures.

The remainder of the paper is arranged as follows. In §2, the selection consistency

of EBIC with diverging number of relevant features are established. In §3, a two-

stage feature selection procedure with the application of the EBIC is described and

discussed. In §4, simulation results are reported. Technical details and proofs are

provided in the Appendix.

2 Selection consistency of EBIC with diverging

number of relevant features

We denote by pn the number of features under investigation to make its dependence

on n explicit. Let (yi, xi1, . . . , xipn), i = 1, . . . , n, be independent observations. We

consider the following linear model

yi =

pn
∑

j=1

βnjxij + ǫi, i = 1, . . . , n, (1)

where ǫi’s are i.i.d. with mean zero and variance σ2. In matrix notation, (1) is

expressed as

yn = Xnβn + ǫn,
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where βn = (βn1, . . . , βnpn)
T , yn = (y1, . . . , yn)

T and Xn = (xij) i=1,...,n

j=1,...,pn
. Here pn is

either of a polynomial order or an exponential order of n, and βn is sparse, meaning

that only a few of its components are non-zero.

We first introduce some notations. Let s0n = {j : βnj 6= 0, j ∈ {1, . . . , pn}}. Let

s be any subset of {1, . . . , pn}. For convenience, we also refer to s as a submodel.

We denote by Xn(s) the matrix composed of the columns of Xn with indices in s.

Similarly, βn(s) denotes the vector consisting of components of βn with indices in s.

Let ν(s) denote the number of components in s. Let p0n = ν(s0n). Let Hn(s) be the

projection matrix of Xn(s), i.e., Hn(s) = Xn(s)[Xn(s)
TXn(s)]

−1Xn(s)
T . Define

∆n(s) = ‖µn −Hn(s)µn‖22,

where µn = Eyn = Xn(s0n)βn(s0n) and ‖ · ‖2 is the L2 norm.

Let Sj be the set of all combinations of j indices in {1, . . . , pn}. Interchangeably

we also call Sj the class of submodels consisting of j features. Let τ(Sj) be the size

of Sj ; that is, τ(Sj) =
(

pn
j

)

.

The family of EBIC proposed in [4] under model (1) is defined as

EBICγ(s) = n ln

(‖yn −Hn(s)yn‖22
n

)

+ ν(s) lnn + 2γ ln τ(Sj), s ∈ Sj , γ ≥ 0.

The family of EBIC is motivated from a Bayesian framework which gives rise to

the BIC. The BIC of a model s is an approximation to the minus 2 log-transform

of the posterior probability of s while the prior probability on each model is equal.

With the equal prior probabilities, the prior probability on the submodel class Sj is

proportional to its size τ(Sj). This makes BIC favor models with larger number of

features in small-n-large-p problems. Instead of imposing an equal prior probability

on each model, the EBIC imposes different prior probabilities on models in different

submodel classes such that the prior probability on Sj is proportional to τ(Sj)
−γ.
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The parameter γ is determined such that the resultant EBIC is selection consistent.

In the case of high dimensional feature space, i.e., pn = O(nκ) for any κ > 0 , and

a fixed number of relevant features, [4] showed that if γ > 1 − 1/(2κ) the EBIC

is selection consistent. In the following, we deal with the case that the number of

relevant features diverges and the feature space is high or ultra-high dimensional.

First we consider the following condition:

Consistency Condition:

lim
n→∞

min{ ∆n(s)

p0n ln pn
: s0 6⊂ s, ν(s) ≤ kn} = ∞.

where kn = kp0n for any fixed k > 1.

This condition is slightly different from what is called the asymptotic identifiability

condition in [4]. The restriction ν(s) ≤ kn is imposed because in practice only the

models with size comparable with and smaller than the true model will be considered.

Implicitly, the consistency condition requires that

√

n

p0n ln pn
min{|βnj| : j ∈ s0n} → ∞. (2)

We now discuss a relationship between the consistency condition above and the well

known sparse Reisz condition which is given as follows:

0 < cmin ≤ min{λmin(
1

n
Xn(s)

TXn(s)) : ν(s) ≤ kn}

≤ max{λmax(
1

n
Xn(s)

TXn(s)) : ν(s) ≤ kn} ≤ cmax < ∞,

where λmin and λmax denote the smallest and the largest eigenvalues respectively. If

p0n is fixed and hence so is {βnj : j ∈ s0n} then the sparse Reisz condition implies the

consistency condition as shown in [4]. If p0n diverges then the sparse Reisz condition

together with (2) imply the consistency condition. When the number of relevant fea-

tures diverges, conditions of the type (2) are always imposed for selection consistency
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in penalized likelihood procedures, see [23, 18, 12]. As the following proposition im-

plies, the sparse Reisz condition together with (2) are stronger assumptions than the

consistency condition.

Proposition 1. Assume s0n = {1, 2, . . . , p0n}. Let s−k be the set with the kth element

of s0n removed. Let k(s) = s−k ∪ s. If (2) is satisfied and

lim
n→∞

mins:ν(s)≤kn,s0 6⊂s
maxk{‖[I −Hn(k(s))]Xn({k})‖}

p0n ln pn
= ∞ (3)

then the consistency condition holds.

The above proposition is similar to a result in [4] which deals with a high dimensional

feature space and a fixed number of relevant features. The same as in [4], examples

can be constructed such that (3) holds but the sparse Reisz condition does not hold.

Condition (2) determines the divergence pattern of (n, p0n, pn) and the constraint

on βnj. Now consider the high and ultra-high dimensional feature spaces separately.

If pn = O(nκ) for any fixed κ > 0 and p0n = nc for some 0 < c < κ, (2) reduces to

n1−c

lnn
min{|β2

nj| : j ∈ s0n} → ∞. The induced constraint on βnj is that min{|β2
nj| : j ∈

s0n} must have a magnitude larger than O(n−(1−c)). Let b be any number bigger than

c. Then the following provides a consistency pattern: (n, p0n, pn) = (n,O(nc), O(nκ)),

min{|βnj| : j ∈ s0n} = O(n−(1−b)/2), 0 < c < κ, c < b < 1. If pn = O(exp(nκ))

and p0n = nc then, by the same argument, (2) induces the following consistency

pattern: (n, p0n, pn) = (n,O(nc), O(exp(nκ))), min{|βnj| : j ∈ s0n} = O(n−(1−b)/2),

0 < c, κ < 1, c + κ < b < 1.

We now state the main result on the selection consistency of the EBIC with

diverging number of relevant features in high or ultra-high dimensional feature spaces.

Theorem 1. Assume model (1) and the consistency condition. In addition, assume

that p0n ln pn = o(n), ln p0n/ ln pn → δ ≥ 0. Let kn = kp0n for any constant k > 1.
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Then

P{mins:ν(s)≤knEBICγ(s) > EBICγ(s0n)} → 1,

if γ > 1+δ
1−δ

− lnn
2(1−δ) ln pn

.

The following are immediate corollaries of Theorem 1.

Corollary 1. If pn = O(nκ) for any constant κ > 0, p0n = p0 is fixed, the EBIC is

selection consistent with γ > 1− lnn
2 ln pn

= 1− 1
2κ

among all models s with ν(s) ≤ kn.

Corollary 2. If pn = O(nκ) for any constant κ > 0, p0n = O(nc), min{|βnj| : j ∈

s0n} = O(n−(1−b)/2), 0 < c < κ, c < b < 1, then the EBIC is selection consistent with

γ > κ+c−0.5
κ−c

among all models s with ν(s) ≤ kn.

Corollary 3. If pn = O(exp(nκ)) for 0 < κ < 1, p0n = O(nc), min{|βnj| : j ∈ s0n} =

O(n−(1−b)/2), 0 < c, κ < 1, c + κ < b < 1, the EBIC is selection consistent with

γ > 1− lnn
2 ln pn

among all models s with ν(s) ≤ kn.

The following lemmas are needed in the proof of Theorem 1.

Lemma 1. If
ln j

ln p
→ δ as p → +∞, we have

ln(
p!

j!(p− j)!
) = j ln p(1− δ)(1 + o(1)).

Lemma 2. Let χ2
k denote a χ2 random variable with degrees of freedom k. If m →

+∞ and
K

m
→ 0 then

P (χ2
k ≥ m) =

1

Γ(k/2)
(m/2)k/2−1e−m/2(1 + o(1)),

uniformly for all k ≤ K.

The proofs of Lemmas 1 and 2 and Theorem 1 are given in the Appendix.
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3 Application of EBIC in feature selection proce-

dures

In this section. we consider the application of EBIC for choosing tuning parameters in

feature selection procedures using penalized likelihood methods. When the dimension

of the feature space is high or ultra-high, a natural first step in feature selection is to

reduce the dimensionality of the feature space by some screening procedure and then

to apply the penalized likelihood method with the reduced feature space. This has

become a well-accepted strategy for feature selection with high or ultra-high feature

space, see, e.g., [10, 20, 5]. In the following, we describe a general feature selection

procedure of this nature where EBIC is used to choose the penalty parameter in the

penalized likelihood.

Screening stage: Let Fn denote the set of all the features. This stage screens out

obviously irrelevant features by a screening procedure and reduces Fn to a set

S∗
n with dimension smaller than n. The screening procedure we recommend is

as follows. First using the sure independence screening (SIS) advocated in [10]

to reduce the dimension of Fn to a low power order of n, say n3/2, then using

LASSO by choosing an appropriate penalty parameter to further reduce the

dimension below n.

Selection stage: Select features by optimizing a penalized log likelihood of the form

ln,λ(X(S∗
n),β(S∗

n)) = −2 lnL(X(S∗
n),β(S∗

n)) +
∑

j∈S∗

n

pλ(|βj|),

where L(X(S∗
n),β(S∗

n)) is the likelihood function of the model with all features

in S∗
n , pλ(·) is a penalty function and λ is the penalty parameter. An appropriate

penalty function to use is the SCAD penalty proposed in [9]. The λ is chosen
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by EBIC as follows. For each λ, let snλ be the set of features with non-zero

coefficient when ln,λ(X(S∗
n),β(S∗

n)) is minimized. Compute

EBICγ(λ) = −2 lnL(X(snλ), β̂(snλ)) + ν(snλ) lnn+ 2γ ln

(

pn
ν(snλ)

)

,

where β̂(snλ) is the maximum likelihood estimate (without penalty) of β(snλ)

and γ is taken to be 1− lnn
C ln pn

for some C > 2. Let λ∗ be the one which attains

the minimum EBICγ . The set snλ∗ is taken as the set of selected features.

We shortly discuss the properties of the above feature selection procedure in the

following. For a screening procedure, if P (S∗
n ⊂ Fn) → 1, as n goes to infinity, the

screening procedure is said to have the property of sure screening, see [10]. For a penal-

ized likelihood function of the above type, if there is λn such that P (snλn
= s0n) → 1,

the penalized likelihood is said to have an oracle property (in a narrower sense). If

the screening procedure in the screening stage has the property of sure screening, the

reduced feature space S∗
n will contain all the relevant features with probability con-

verging to 1 as n goes to infinity. If the penalized likelihood has the oracle property

with the reduced feature space, there will be a λ value such that its corresponding set

snλ is the same as s0n, the true set of relevant features, in the selection stage when

S∗
n contains all the relevant features. Then the selection consistency of EBIC will

guarantee that the true set of relevant feature is selected. Thus the feature selection

procedure will be selection consistent if the conditions required by the sure screening

property of the screening procedure, the oracle property of the penalized likelihood

and the selection consistency of EBIC are met simultaneously.

Fan and Lv [10] showed that, under certain conditions (conditions 1-4 in section

5 of their paper), the SIS has the sure screening property if the dimension of the

feature space is reduced to an order O(n1−θ) for some θ > 0. If the tuning parameter in
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LASSO is chosen such that the number of non-zero coefficients is large enough (smaller

than n), the LASSO procedure can retain all the true features almost surely as n goes

to infinity, see [5]. Kim et al. [12] considered the SCAD with diverging number of

relevant features under the following conditions. C1: There are 0 ≤ c < b ≤ 1 and

M1 > 0 such that p0n = O(nc) and n(1−b)/2min{|βnj| : j ∈ s0n} ≥ M1. C2: There

exists M2 > 0 such that n−1(Xn({j})TXn({j}) ≤ M2, for any j. C3: There exists

M3 > 0 such that λmin(n
−1Xn(sn0)

TXn(sn0)) ≥ M3, where λmin denotes the smallest

eigenvalue. C4: pn ≤ n and the eigenvalues of n−1XT
nXn are uniformly bounded

from both below and above. They showed that under the above conditions the oracle

property of the SCAD holds. The condition n(1−b)/2min{|βj| : j ∈ s0n} ≥ M1 implies

that n(1−c−κ)/2min{|βj| : j ∈ s0n} → ∞ for some κ < b− c. If C4 is replaced by C4
′

:

τ(S∗
n) < n and the eigenvalues of n−1Xn(sn)

TXn(sn) for any sn ⊂ S∗
n are uniformly

bounded from both below and above, then together with C1-C3 the oracle property of

the SCAD penalized likelihood in the selection stage will be guaranteed. Therefore,

suppose that conditions 1-4 in [10], C1-C3, C4
′

and the consistency condition hold,

then the two-stage procedure described above is selection consistent. The reason we

recommend a two-step screening procedure is that if only SIS is used to reduce the

dimensionality below n condition C4
′

might not hold because SIS does not reduce the

level of the spurious correlations in the original feature space. On the other hand,

LASSO does reduce the level of the spurious correlations since it tends to select only

one of the highly correlated features, see [24], but due to the capacity of the computing

facilities it might not be able to handle ultra-high dimensional feature space. When

the two steps are combined it is more likely that C4
′

will be satisfied while the sure

screening property is retained. In fact, the conditions in [10] for the sure screening

property can be much relaxed when the dimensionality is only reduced to a power
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order of n higher than n. The performance of the feature selection procedure described

in this section is investigated in simulation studies which are presented in the next

section.

4 Simulation studies

The purpose of the simulation studies is to investigate the applicability of EBIC

in feature selection procedures and to investigate whether or not the asymptotic

property of selection consistency can be realized in finite sample situations. To this

end, the two-stage feature selection procedure discussed in §3 is considered in the

simulation studies. The R package plus [21] is used for the computation. We are

mainly concerned about the selection consistency of the EBIC in the consistent range

of γ. We take γ slightly bigger than 1− lnn
2 ln pn

(in the simulation we take γ = 1− lnn
4 ln pn

)

for demonstrating the performance of the EBIC in finite sample situations. We also

consider γ = 0, which corresponds to the original BIC, and γ = 1, which corresponds

to an asymptotic form of the mBIC proposed in [2]. Throughout the simulation

studies, τ(S∗
n) is taken to be 0.5n.

We take the divergence pattern as (n, p0n, pn) = (n, c[n0.325], [exp(n0.35)]) for n =

100, 200, 500 and 1, 000, and c = 1 and 2, which results in the table below:

n 100 200 500 1,000
pn 150 595 6,655 74,622

p0n(c = 1) 4 6 8 9
p0n(c = 2) 8 12 16 18

For j ∈ s0n the parameter βnj is independently generated as βnj = (−1)u (n−0.1625 +

|z|) where u ∼ Bernoulli(0.4) and z is a normal random variable with mean 0 and sat-

isfies P (|z| ≥ 0.1) = 0.25. This ensures, roughly, min{|βnj| : j ∈ s0n} = O(n−0.1625).

The error variance σ2 is determined by setting the following ratio to certain values

13



when n = 100 and kept unchanged for other n’s:

h =
E(β∗TΣβ∗)

E(β∗TΣβ∗) + σ2
,

where Σ is the covariance matrix of the predictors and the expectation is with respect

to the generating distribution of β∗. This ratio mimics what is called the heritability

in broad sense in genetic studies. We considered h = 0.4, 0.6 and 0.8. For each

simulation setting, 200 data sets are generated and analyzed. The following three

correlation structures are considered for the covariates:

Structure I: Power decay correlation. The covariates are generated as a series

of normally distributed random variables with mean 0 and correlation coefficient

ρij = 0.5|i−j|.

Structure II: Diagonal block design with equal pairwise correlation. The covari-

ance matrix is a diagonal block matrix. Each block except the last one is of dimension

50×50. The variances in the blocks are all equal to 1 and the off-diagonal correlations

are all equal to ρ = 0.5.

Structure III: Diagonal block design with uniformly distributed eigenvalues. Un-

like the diagonal block matrix in Structure 2, each block is first generated such that its

smallest eigenvalue is 1, largest eigenvalue is 50 and other eigenvalues are uniformly

distributed over (1, 50), and then it is converted into a correlation matrix.

The finite sample performance of the EBIC is assessed by the positive discovery

rate (PDR) and false discovery rate (FDR) defined as follows:

PDRn =
ν(snλ∗ ∩ s0n)

ν(s0n)
, FDRn =

ν(snλ∗\s0n)
ν(snλ∗)

,

where snλ∗ is the set of features selected in the selection stage of the two-stage pro-

cedure. The asymptotic property of selection consistency is equivalent to

lim
n→∞

PDRn = 1 and lim
n→∞

FDRn = 0,
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in probability.

The simulated PDRn and FDRn averaged over 200 replicates for each setting are

reported in Table 1, 2 and 3 respectively for correlation stucture I, II and III. In the

tables, γBIC = 0 corresponding to BIC, γSC = 1 − lnn/(4 ln pn) corresponding to a

value in the selection consistent range of γ and γmBIC = 1 corresponding to mBIC.

The following points are manifest in Tables 1, 2 and 3. (i) The finite sample

performance of the EBIC closely matches its asymptotic property. That is, under all

the three correlation structures, for the procedure with EBICγSC , the PDRn and the

FDRn approach rapidly to 1 and 0 respectively, as n increases from 100 to 1000, at all

the three h levels. (ii) The BIC does not appear to be selection consistent. Under all

the settings, the FDRn of the procedure with BIC does not reduce as n increases, it

is in fact quite the opposite. (iii) In general, the PDRn of the procedure with BIC is

higher because it always selects much more features. But, as n gets large, the PDRn

of EBICγSC quickly becomes comparable with that of the BIC. (iv) For large n, the

mBIC is comparable with EBICγSC , which reflects the fact that it is also selection

consistent since γmBIC = 1 is in the consistency range of EBIC. But for small n, it

loses certain power while overly controlling FDRn.

A Appendix

A.1 Proof of Lemma 1:

Proof. Write

p!

j!(p− j)!
=

p(p− 1) · · · (p− j + 1)

j!
=

pj
(

1− 1
p

)

· · ·
(

1− j−1
p

)

j!
.

Note that
(

1− j − 1

p

)j−1

<

(

1− 1

p

)

· · ·
(

1− j − 1

p

)

<

(

1− 1

p

)j−1

,
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and, see [13], that

√
2πjj+1/2e−j+1/(12j+1) < j! <

√
2πjj+1/2e−j+1/(12j).

We now have

ln(
p!

j!(p− j)!
) ≤j ln p+ (j − 1) ln(1− 1/p)− (j + 1/2) ln j + j − 1

12j + 1
− ln

√
2π

≤j ln p− (j + 1/2) ln j + j = j ln p[1− (j + 1/2) ln j

j ln p
+

1

ln p
]

=j ln p(1− δ)(1 + o(1)).

(4)

and

ln(
p!

j!(p− j)!
) ≥j ln p+ (j − 1) ln(1− j − 1

p
)

− (j + 1/2) ln j + j − 1

12j
− ln

√
2π

≥j ln p+ (j − 1) ln

(

1− j − 1

p

)

− (j + 1/2) ln j − ln
√
2π

=j ln p



1 +
(j − 1) ln

(

1− j−1
p

)

j ln p
− (j + 1/2) ln j

j ln p
− ln

√
2π

j ln p





=j ln p(1− δ)(1 + o(1)).

(5)

Lemma1 follows from (4) and (5). ✷

A.2 Proof of Lemma 2

Proof. Denote F̄k(m) = P (χ2
k ≥ m). By integration by parts, we obtain

F̄k(m) =
1

2k/2Γ(k/2)

∫ +∞

m

xk/2−1e−x/2dx =
1

Γ(k/2)
(m/2)k/2−1e−m/2 + F̃k−2(m).

If k is even,

F̄k(m) =
1

Γ(k/2)
(m/2)k/2−1e−m/2[1 +

(k−2)/2
∑

i=1

(
(k/2− 1) · · · (k/2− i)

(m/2)i
)].
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If k is odd,

F̄k(m) =
1

Γ(k/2)
(m/2)k/2−1e−m/2[1 +

(k−3)/2
∑

i=1

(
(k/2− 1) · · · (k/2− i)

(m/2)i
)] + F̄1(m),

where

F̄1(m) = P (χ2
1 ≥ m) ≈ 2

exp(−m/2)√
2πm

=
1

Γ(k/2)
(m/2)k/2−1e−m/2 2Γ(k/2)√

2π(m/2)(k−1)/2

when m → +∞. We can write

F̄k(m) =
1

Γ(k/2)
(m/2)k/2−1e−m/2[1 +R(k,m)].

It is straightforward to see that R(k,m) ≤ R(K,m) → 0 when m → +∞. ✷

A.3 Proof of Theorem 1

Proof. Let s be any submodel. Decompose EBICγ(s)− EBICγ(s0n) as follows:

EBICγ(s)− EBICγ(s0n)

=n ln
yTn {In −Hn(s)}yn
yTn {In −Hn(s0n)}yn

+ (ν(s)− p0n) lnn+ 2γ(ln τ(Sj)− ln τ(Sp0n))

=T1 + T2, say,

(6)

where

T1 =n ln
yTn [In −Hn(s)]yn
yTn [In −Hn(s0n)]yn

= n ln
yTn [In −Hn(s)]yn
ǫTn [In −Hn(s0n)]ǫn

=n ln

{

1 +
yTn [In −Hn(s)]yn − ǫTn [In −Hn(s0n)]ǫn

ǫTn [In −Hn(s0n)]ǫn

}

T2 =(ν(s)− p0n) lnn+ 2γ(ln τ(Sν(s))− ln τ(Sp0n)).

(7)

Case I: s0n 6⊂ s.

Without loss of generality, assume σ2 = 1. We can write

ǫTn{In −Hn(s0n)}ǫn =

n−p0n
∑

i=1

Z2
i = (n− p0n)(1 + op(1)) = n(1 + op(1)), (8)

17



where Zi’s are i.i.d. standard normal variables, since Hn(s0n) is a projection matrix

with rank p0n. We have

yTn [In −Hn(s)]yn − ǫTn [In −Hn(s0n)]ǫn

=∆n(s) + 2µT
n [In −Hn(s)]ǫn + ǫTnHn(s0n)ǫn − ǫTnHn(s)ǫn.

It is trivial that

ǫTnHn(s0n)ǫn = p0n(1 + op(1)). (I)

We will show

max{ǫTnHn(s)ǫn, ν(s) ≤ kn} = Op(kn ln pn), (II)

and

|µT
n [In −Hn(s)]ǫn| =

√

∆n(s)Op(kn ln pn), (III)

uniformly for all s with ν(s) ≤ kn. Under the assumption of the theorem, 2kn ln pn =

o(n). Then, by the asymptotic identifiability condition, (I), (II) and (III) imply that

yTn [In −Hn(s)]yn − ǫTn [In −Hn(s0n)]ǫn = ∆n(s)(1 + op(1)), (9)

uniformly for all s with ν(s) ≤ kn. It then follows from (8) and (9) that

T1 = n ln

(

1 +
∆n(s)

n
(1 + op(1))

)

, (10)

uniformly for all s with ν(s) ≤ kn.

We now prove (II) and (III) in the following. Let m = 2kn[ln pn + ln(kn ln pn)]. It

is obvious that
kn
m

→ 0. Note that we can express ǫTnHn(s)ǫn = χ2
j (s) where j = ν(s).

By the Bonferroni inequality, we have

P (max{ǫTnHn(s)ǫn : ν(s) ≤ kn} ≥ m)

=P (max{χ2
j (s) : s ∈ Sj , j ≤ kn} ≥ m) ≤

kn
∑

j=1

τ(Sj)P (χ2
j ≥ m).
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By the fact that τ(Sj) =
(

pn
j

)

≤ pjn and Lemma 2, there is some c close to 1, not

depending on j for j ≤ kn, such that

τ(Sj)P (χ2
j ≥ m) ≈c

1

2j/2−1Γ(j/2)

τ(Sj)

pknn
(kn ln pn)

−knmj/2−1

≤ c

m
(kn ln pn)

−jmj/2 =
c

m

[
√

m

(kn ln pn)2

]j

=
c

m
qjn, say,

where

qn =

√

m

(kn ln pn)2
=

√

2[kn ln pn + kn ln(kn ln pn)]

(kn ln pn)2
(1 + o(1)) ≤ q,

for some q between 0 and 1, when n is large enough, since qn → 0. Thus

P (max{ǫTnHn(s)ǫn : ν(s) ≤ kn} ≥ m) ≤ c

m

kn
∑

j=1

qj ≤ c

m

q

1− q
→ 0; (11)

that is,

max{ǫTnHn(s)ǫn : ν(s) ≤ kn} = m(1 + op(1)) = Op(kn ln pn),

which establishes (II).

For verifying (III), note that we can express

µT
n{In −Hn(s)}ǫn =

√

∆n(s)Z(s),

where Z(s) ∼ N(0, 1). For any s with ν(s) ≤ kn, we have

|µT
n{In −Hn(s)}ǫn| ≤

√

∆n(s)max{|Z(s)| : ν(s) ≤ kn}.

Let m be the same as above. Consider P (max{|Z(s)| : ν(s) ≤ kn} ≥ √
m). We have

P (max{|Z(s)| : ν(s) ≤ kn} ≥
√
m) =P (max{|Z(s)| : s ∈ Sj, j ≤ kn} ≥

√
m)

≤
kn
∑

j=1

τ(Sj)P (Z(s) ≥
√
m) =

kn
∑

j=1

τ(Sj)P (χ2
1 ≥ m)

≤
kn
∑

j=1

τ(Sj)P (χ2
j ≥ m),
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since P (χ2
1 ≥ m) < P (χ2

j ≥ m) by Lemma 2. We have already shown that the last

sum converges to zero. This establishes (III).

Now, putting (6), (7) and (10) together, we have

EBICγ(s)− EBICγ(s0n)

=n ln

(

1 +
∆n(s)

n
(1 + op(1))

)

+ (ν(s)− p0n) lnn + 2γ(ln τ(Sν(s))− ln τ(Sp0n))

≥n ln[1 + Cp0n ln pn/n(1 + op(1))]− p0n(lnn+ 2γ ln pn),

for some positive C, when n is large enough, by the consistency condition. Then by

choosing C > 1 + 2γ, the difference goes to infinity as n → ∞.

Case II: s0n ⊂ s.

When s0 ⊂ s, {In − Hn(s)}Xn(s0) = 0. Hence, yTn {In − Hn(s)}yn = ǫTn{In −

Hn(s)}ǫn and

ǫTn{In −Hn(s0)}ǫn − ǫTn{In −Hn(s)}ǫn = ǫTn{Hn(s)−Hn(s0)}ǫn = χ2
j (s),

where χ2
j (s) is a χ2 random variable depending on s with degrees of freedom j and

j = ν(s)− p0n. We obtain that

n log

(

ǫTn{I −Hn(s0)}ǫn
ǫTn{I −Hn(s)}ǫn

)

=n log

{

1 +
χ2
j(s)

ǫTn{I −Hn(s0)}ǫn − χ2
j(s)

}

≤
nχ2

j(s)

ǫTn{I −Hn(s0)}ǫn − χ2
j(s)

.

(12)

As n → ∞, n−1ǫTn{I −Hn(s0)}ǫn → σ2 = 1, i.e.,

ǫTn{I −Hn(s0)}ǫn = n(1 + o(1)). (13)

Let S̃j = {s : s ∈ Sj+p0n, s0 ⊂ s}. Note that τ(S̃j) =
(

pn−p0n
j

)

≤ pjn. Let mj =
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2j[ln pn + ln(j ln pn)]. In the same way as we derive (11), we have

P ( max
1≤j≤kn−p0n

max{χ2
j(s) : s ∈ S̃j}
mj

≥ 1) ≤
kn−p0n
∑

j=1

P (max{χ2
j(s) : s ∈ S̃j} ≥ mj)

≤
kn−p0n
∑

j=1

τ(S̃j)P (χ2
j ≥ mj) ≤

1

ln pn

kn−p0n
∑

j=1

qjj → 0,

where

qj =

√

2

j ln pn
+

2 ln(j ln pn)

j(ln pn)2
≤

√

2

ln pn
(1 + o(1)) → 0.

Thus,

max{χ2
j(s) : s ∈ Sj+p0n , s0 ⊂ s} = mj{1 + op(1)}, (14)

uniformly for all s with ν(s) ≤ kn and s0 ⊂ s.

It follows from (12), (13) and (14) that

n log

(

ǫTn{I −Hn(s0)}ǫn
ǫTn{I −Hn(s)}ǫn

)

≤ nmj

[n−mj(1 + op(1))]

≤mj(1 + op(1)) ≤ 2j(1 + δ) ln pn(1 + op(1)),

uniformly for all s with ν(s) ≤ kn and s0 ⊂ s, noting that mj ≤ 2j[ln pn + ln((kn −

p0n) ln pn)] = 2j(1 + δ) ln pn(1 + op(1)) and mj = 2j(1 + δ) ln pn(1 + op(1)) for j =

kn − p0n. Thus

T1 ≥ −2j(1 + δ) ln pn(1 + op(1)).

When p0n ≤ ν(s) ≤ kn we have ln ν(s)/ ln pn → δ uniformly, hence, by Lemma 1,

T2 = j lnn+ 2γ(1− δ)j ln pn(1 + o(1)).

Finally we have

EBICγ(s)− EBICγ(s0n)

≥j lnn+ 2γ(1− δ)j ln pn(1 + o(1))− 2j(1 + δ) ln pn(1 + op(1)) > 0,

uniformly for all s with ν(s) ≤ kn and s0 ⊂ s, if n is big enough, when γ > 1+δ
1−δ

−
lnn

2(1−δ) ln pn
.

✷
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Table 1: The PDR and FDR of the SIS-SCAD-EBIC procedure with Structure I
(power decay correlation) averaged over 200 replicates (the numbers in parentheses
are standard deviations)

c = 1
PDR FDR

n h γBIC γSC γmBIC γBIC γSC γmBIC

100 .4 .726(.242) .450(.291) .384(.288) .571(.212) .074(.205) .050(.181)
.6 .861(.187) .700(.271) .633(.301) .478(.216) .080(.170) .044(.123)
.8 .973(.090) .921(.159) .909(.176) .363(.204) .085(147) .056(.120)

200 .4 .759(.205) .532(.270) .467(.270) .662(.177) .034(.101) .017(.071)
.6 .910(.144) .758(.256) .711(.282) .574(.185) .080(.145) .038(.100)
.8 .989(.056) .957(.105) .947(.128) .389(.200) .060(.115) .045(.105)

500 .4 .826(.146) .640(.212) .604(.214) .768(.100) .037(.090) .011(.046)
.6 .943(.100) .863(.164) .836(.181) .660(.133) .066(.128) .028(.079)
.8 .994(.035) .983(.060) .980(.067) .504(.190) .027(.073) .019(.065)

1000 .4 1.000(.00) .999(.008) .999(.011) .662(.024) .019(.041) .009(.028)
.6 1.000(.00) 1.000(.00) 1.000(.00) .531(.037) .019(.041) .008(.026)
.8 1.000(.00) 1.000(.00) 1.000(.00) .470(.010) .007(.025) .002(.014)

c = 2
PDR FDR

n h γBIC γSC γmBIC γBIC γSC γmBIC

100 .4 .531(.183) .243(.169) .198(.162) .507(.222) .069(.204) .041(.172)
.6 .680(.166) .416(.213) .350(.206) .447(.187) .074(.173) .026(.093)
.8 .850(.153) .708(.225) .628(.248) .373(.163) .118(.143) .068(.118)

200 .4 .613(.162) .306(.164) .260(.161) .619(.162) .028(.096) .010(.066)
.6 .720(.148) .518(.211) .456(.207) .545(.181) .036(.082) .018(.061)
.8 .895(.125) .745(.199) .703(.217) .447(.164) .086(.117) .053(.096)

500 .4 .732(.130) .425(.174) .371(.166) .774(.076) .014(.054) .004(.025)
.6 .832(.104) .635(.176) .590(.186) .695(.112) .028(.064) .010(.031)
.8 .956(.067) .875(.135) .847(.157) .535(.159) .098(.121) .068(.104)

1000 .4 .758(.108) .537(.161) .491(.164) .825(.055) .012(.040) .005(.025)
.6 .849(.102) .715(.134) .689(.144) .761(.077) .025(.062) .010(.035)
.8 .969(.054) .925(.084) .906(.106) .581(.146) .095(.110) .072(.095)
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Table 2: The PDR and FDR of the SIS-SCAD-EBIC procedure with Structure II
(block with equal pairwise correlation) averaged over 200 replicates (the numbers in
parentheses are standard deviations)

c = 1
PDR FDR

n h γBIC γSC γmBIC γBIC γSC γmBIC

100 .4 .733(.285) .402(.318) .343(.291) .427(.268) .229(.369) .198(.362)
.6 .933(.154) .772(.297) .703(.321) .340(.213) .117(.197) .094(.207)
.8 .996(.042) .967(.118) .960(.125) .293(.203) .053(.132) .036(.114)

200 .4 .868(.203) .534(.303) .479(.306) .442(.206) .133(249) .110(.246)
.6 .994(.039) .931(.168) .889(.214) .321(.173) .107(161) .078(.143)
.8 1.000(.00) .996(.031) .994(.040) .292(.165) .025(.081) .017(.070)

500 .4 .948(.093) .754(.178) .723(.184) .689(.114) .056(.107) .049(.103)
.6 .993(.035) .922(.121) .904(.132) .626(.127) .031(.080) .019(.064)
.8 1.000(.00) .997(.024) .992(.044) .585(.151) .060(.110) .031(.083)

1000 .4 .940(.080) .813(.158) .785(.180) .818(.046) .073(.113) .049(.092)
.6 .995(.025) .988(.041) .986(.043) .739(.066) .039(.084) .035(.079)
.8 .999(.010) .998(.017) .996(.024) .653(.107) .024(.070) .017(.061)

c = 2
PDR FDR

n h γBIC γSC γmBIC γBIC γSC γmBIC

100 .4 .430(.239) .193(.174) .173(.164) .449(.294) .310(.411) .295(.408)
.6 .684(.234) .390(.236) .343(.224) .343(.220) .164(.235) .150(.253)
.8 .881(.179) .676(.266) .603(.284) .308(.194) .105(.174) .096(.175)

200 .4 .489(.206) .199(.142) .165(.133) .416(.235) .134(.275) .115(.259)
.6 .727(.192) .421(.227) .356(.214) .351(.195) .065(.144) .055(.132)
.8 .919(.135) .718(.254) .672(.269) .351(.184) .055(.099) .043(.088)

500 .4 .664(.137) .258(.132) .238(.132) .669(.145) .031(.099) .020(.076)
.6 .834).127) .468(.211) .407(.209) .609(.132) .029(.073) .014(.047)
.8 .944(.094) .804(.244) .778(.266) .485(.198) .084(.108) .068(.095)

1000 .4 .675(.133) .311(.158) .284(.158) .830(.079) .017(.055) .014(.050)
.6 .882(.134) .551(.234) .496(.240) .744(.115) .060(.108) .033(.073)
.8 .960(.078) .884(.195) .877(.202) .616(.178) .069(.099) .061(.087)
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Table 3: The PDR and FDR of the SIS-SCAD-EBIC procedure with Structure
III (block with uniformly distributed eigenvalues) averaged over 200 replicates (the
numbers in parentheses are standard deviations)

c = 1
PDR FDR

n h γBIC γSC γmBIC γBIC γSC γmBIC

100 .4 .915(.146) .667(.302) .564(.327) .428(.191) .041(.102) .020(.078)
.6 .996(.031) .964(.116) .950(.133) .360(.181) .046(.105) .019(.063)
.8 1.000(.00) 1.000(.00) 1.000(.00) .326(.165) .038(.096) .011(.051)

200 .4 .993(.037) .865(.206) .811(.252) .575(.162) .050(.101) .024(.073)
.6 1.000(.00) .999(.014) .999(.014) .536(.129) .032(.081) .013(.048)
.8 1.000(.00) 1.000(.00) 1.000(.00) .457(.138) .023(.065) .009(.042)

500 .4 1.000(.00) .971(.081) .961(.090) .768(.042) .041(.075) .023(.055)
.6 1.000(.00) 1.000(.00) 1.000(.00) .704(.058) .022(.060) .010(.043)
.8 1.000(.00) 1.000(.00) 1.000(.00) .608(.091) .016(.050) .007(.038)

1000 .4 1.000(.00) .999(.011) .997(.017) .790(.040) .023(.046) .008(.028)
.6 1.000(.00) 1.000(.00) 1.000(.00) .740(.038) .018(.041) .005(.021)
.8 1.000(.00) 1.000(.00) 1.000(.00) .705(.051) .005(.022) .002(.012)

c = 2
PDR FDR

n h γBIC γSC γmBIC γBIC γSC γmBIC

100 .4 .643(.218) .240(.201) .155(.179) .409(.206) .071(.185) .028(.128)
.6 .911(.141) .589(.298) .461(.302) .346(.168) .092(.163) .045(129)
.8 .995(.033) .975(.100) .964(.135) .237(.136) .089(.101) .069(.092)

200 .4 .801(.147) .307(.210) .209(.179) .536(.136) .050(.142) .013(.061)
.6 .974(.063) .817(.198) .742(.236) .443(.147) .076(.095) .045(.073)
.8 .999(.010) .993(.041) .989(.048) .322(.121) .046(.074) .034(.063)

500 .4 .933(.076) .578(.204) .451(.215) .723(.079) .035(.067) .009(.036)
.6 .992(.030) .946(.073) .930(.094) .642(.091) .062(.078) .045(.069)
.8 .999(.005) .998(.016) .997(.017) .498(.105) .023(.044) .014(.036)

1000 .4 .970(.049) .780(.170) .688(.207) .809(.051) .042(.063) .018(.039)
.6 .997(.013) .976(.054) .973(.058) .738(.059) .030(.053) .024(.042)
.8 .999(.004) .998(.011) .998(.012) .608(.085) .011(.031) .006(.022)
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