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DEFORMATION OF ALGEBRAS ASSOCIATED TO GROUP

COCYCLES

MAKOTO YAMASHITA

Abstract. We define a deformation of algebras endowed with coaction of the
reduced group algebras. The deformation parameter is given by a 2-cocycle
over the group. We prove K-theory isomorphisms for the cocycles which can
be perturbed to the trivial one.

1. Introduction

Deformation of algebras has been an important principle in the study of operator
algebras and noncommutative geometry. The noncommutative torus, whose ‘func-
tion algebra’ is generated by two unitaries u, v satisfying uv = eiθvu for θ ∈ R, is
one of the most famous examples which lead to many interesting ideas in the early
studies of noncommutative geometry by Connes [Con85] and others. The relation
between the generators of the algebra of noncommutative torus indicates that it
can be thought as a deformation of the algebra of functions on the 2-torus.

It turned out that the noncommutative torus is an example of a more general
deformation procedure called the θ-deformation due to Rieffel [Rie89b]. It takes
any C∗-algebra admitting an action of a torus Tn as the original algebra, and
the deformation parameter is given by a skewsymmetric form on R

n. He showed
that the θ-deformations have the same K-groups as the original algebras [Rie93],
extending the case of the noncommutative torus by Pimsner–Voiculescu [PV80].

The noncommutative torus can be also thought as the twisted group algebra for
the case of the discrete group Z2. Recently, a K-theory isomorphism result of the
reduced twisted group algebras C∗

r,ω(Γ) was proved for any discrete group Γ satisfy-
ing the Baum–Connes conjecture with the compact operator algebra coefficient by
Echterhoff et al. [ELPW10]. They showed that the K-groups of the twisted algebras
C∗

r,ω(Γ) do not change if ω is given by a real 2-cocycle on Γ, which can be thought
as a continuous perturbation of the trivial cocycle. We note that Mathai [Mat06]
also proved the K-theory invariance under twisting by such cocycles for a slightly
different class of groups, building on Lafforgue’s Banach algebraic approach [Laf02]
to the Baum–Connes conjecture.

In this paper we unify the two frameworks mentioned above. We thus define a
way to deform the C∗-algebras admitting coactions of the compact quantum group
C∗

r (Γ) (in other words, cross sectional algebras of Fell bundles over Γ [Exe97]), and
the deformation parameter is given by a U(1)-valued 2-cocycle on Γ. Our main
result (Theorem 1) is that, when Γ satisfies the Baum–Connes conjecture with
coefficients and the cocycle comes from an R-valued 2-cocycle, the K-groups of the
deformed algebra are isomorphic to those of the original algebra.

We also remark that there are several similar formalisms of deformation of op-
erator algebras which do not fall into our approach. The deformation of Fell bun-
dles due to Abadie–Exel [AE01] seems to be closest to ours. The deformation of
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function algebras of compact groups which appeared in the study of ergodic ac-
tions with full multiplicity by Wassermann [Was88b] is a close analogue of the
twisted group algebra. Finally, there is a similar K-theoretic invariance result by
Neshveyev–Tuset [NT11b] for certain C∗-algebraic compact quantum groups and
its homogeneous spaces, for the q-deformations of simply connected simple compact
Lie groups.
Acknowledgements. This paper was written during the author’s stay at Department
of Mathematical Sciences, Copenhagen University. He would like to thank Copen-
hagen University for their support and hospitality. He is also grateful to Ryszard
Nest, Takeshi Katsura, and Reiji Tomatsu for stimulating discussions and fruitful
comments.

2. Preliminaries

When A and B are C∗-algebras, A ⊗ B denotes their minimal tensor product
unless otherwise specified. Likewise when H and K are Hilbert spaces, H ⊗ K

denotes their tensor product as a Hilbert space. When H is a Hilbert space and
X is a Hilbert C∗-module over A, we let H ⊗X denote the tensor product Hilbert
C∗-module over A. We let L (X) denote the algebra of the endomorphisms of a
Hilbert C∗-module X .

When A is a C∗-algebra, we let M(A) denote the multiplier algebra.
The coactions of locally compact quantum groups on C∗-algebras are assumed

to be the continuous ones. The crossed products with respect to (co)actions of
locally compact quantum groups on C∗-algebras are understood to be the reduced
ones unless otherwise specified. Our convention is that, when α is an action of a
discrete group Γ on a C∗-algebra A ⊂ B(H), the reduced crossed product is the
C∗-algebra generated by the operators λg ⊗ IdH for g ∈ Γ and the ones

α̃(a) : δg ⊗ ξ 7→ δg ⊗ αg(a)ξ (g ∈ Γ, ξ ∈ H, a ∈ A)

on ℓ2(Γ)⊗H .

2.1. Group cocycles. Let Γ be a discrete group. When (G,+) is a commutative
group, a G-valued 2-cocycle ω on Γ is a map ω : Γ × Γ → G satisfying the cocycle
identity

(1) ω(g0, g1) + ω(g0g1, g2) = ω(g1, g2) + ω(g0, g1g2).

We always assume that ω satisfies the normalization condition

ω(g, e) = ω(e, g) = 1 (g ∈ Γ).

In this paper we consider the cases G = R and G = U(1) as the target group
of cocycles. Note that when ω is an R-valued 2-cocycle, we obtain a U(1)-valued
cocycle eiω by putting eiω(g, h) = eiω(g,h).

When ω is a U(1)-valued 2-cocycle on Γ, the twisted reduced group C∗-algebra

C∗
r,ω(Γ) is defined to be the C∗-algebraic span of the operators λ

(ω)
g ∈ B(ℓ2Γ) for

g ∈ Γ defined by

λ(ω)
g δh = ω(g, h)δgh.

Given Γ and ω, we can consider the fundamental unitary W =
∑

g δg ⊗ λg and

another unitary operator
∑

g,h ω(g, h)δg⊗δh representing ω, both on ℓ2(Γ)⊗2. Then
the unitary operator

(2) W (ω) =Wω : δh ⊗ δk 7→ β(h, k)δh ⊗ δhk

in the von Neumann algebra ℓ∞(Γ)⊗B(ℓ2(Γ)) is called the regular ω-representation
unitary. The algebra C∗

r,ω(Γ) can be also defined as the C∗-algebraic span of the

operators φ⊗ ι(W (ω)) for φ ∈ ℓ1(Γ) = ℓ∞(Γ)∗.
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The generators (λ
(ω)
g )g∈Γ satisfy the relations

λ(ω)
g λ

(ω)
h = ω(g, h)λ

(ω)
gh , (λ(ω)

g )∗ = ω(g, g−1)λ
(ω)
g−1 .

From this we see that the vector state for δe is tracial. This trace is called the
standard trace τ on C∗

r,ω(Γ).
Two cocycles ω and ω′ are said to be cohomologous when there exists a map

ψ : Γ → U(1) satisfying

ψ(g)ψ(h)ω(g, h)ψ(gh) = ω′(g, h).

If this is the case, the algebras C∗
r,ω(Γ) and C∗

r,ω′(Γ) are isomorphic via the map

λ
(ω)
g 7→ ψ(g)λ

(ω′)
g .

We let ω denote the complex conjugate cocycle ω(g, h) = ω(g, h). Then the
twisted algebra C∗

r,ω(Γ) is antiisomorphic to C∗
r,ω(Γ) as follows. The formula

(3) ω̃(g, h) = ω(h−1, g−1)

defines another cocycle on Γ. On one hand, the map λ
(ω)
g 7→ λ

(ω̃)
g−1 defines an

antiisomorphism from C∗
r,ω(Γ) to C

∗
r,ω̃(Γ). On the other hand, the equality

ω(h−1, g−1)ω(g, h)ω(gh, h−1g−1) = ω(h−1, g−1)ω(h, h−1g−1)ω(g, g−1)

= ω(h, h−1)ω(g, g−1)

shows that ω and ω̃ are cohomologous with respect to the map g 7→ ω(g, g−1).

2.2. Crossed product presentation of twisted group algebras. The reduced
group algebra C∗

r (Γ) admits the structure of (the function algebra of) a compact
quantum group by the coproduct map δ(λg) = λg ⊗ λg.

Suppose that α and β are U(1)-valued 2-cocycles on Γ. Then, with the unitary
regular β-representation unitary (2), we have

W (β)(λ(α·β)g ⊗ Idℓ2(Γ))(W
(β))∗ = λ(α)g ⊗ λ(β)g

for any g ∈ Γ. This way we obtain a C∗-algebra homomorphism

C∗

r,α·β(Γ) → C∗

r,α(Γ)⊗ C∗

r,β(Γ), λ(α·β)g 7→ λ(α)g ⊗ λ(β)g .

When either of α or β is trivial, we obtain the coactions

δ
(ω)
l : C∗

r,ω(Γ) → C∗

r (Γ)⊗ C∗

r,ω(Γ), δ(ω)
r : C∗

r,ω(Γ) → C∗

r,ω(Γ)⊗ C∗

r (Γ)

of C∗
r (Γ) on the twisted group algebra C∗

r,ω(Γ). Note that these two carry the same
data because C∗

r (Γ) is cocommutative.

The crossed product algebra C∗
r,ω(Γ)⋊δr C0(Γ) with respect to the coaction δ

(ω)
r

is the C∗-algebra generated by δ
(ω)
r (C∗

r,ω(Γ)) and 1⊗ C0(Γ) in B(ℓ2(Γ)⊗ ℓ2(Γ)).
This crossed product is actually isomorphic to the compact operator algebra

K(ℓ2(Γ)) ≃ Γ⋉λ C0(Γ) ≃ C∗

r (Γ)⋊δr C0(Γ),

where λ in the middle denotes the left translation action of Γ on C0(Γ). This
isomorphism is given by the map

(4) C∗

r,ω(Γ)⋊δ
(ω)
r

C0(Γ) → C∗

r (Γ)⋊δr C0(Γ), λ(ω)
g δh 7→ ω(g, h)λgδh.

The crossed product C∗
r,ω(Γ)⋊δr C0(Γ) admits the dual action δ̂

(ω)
r of Γ defined by

(δ̂(ω)
r )k(λ

(ω)
g δh) = λ(ω)

g δhk−1 .

If we regard δ̂
(ω)
r as an action of Γ on C∗

r (Γ)⋊δr C0(Γ) via the isomorphism (4), the
dual coaction can be expressed as

(5) (δ̂(ω)
r )k(λgδh) = ω(g, h)ω(g, hk−1)λgδhk−1 .
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By the Takesaki–Takai duality, the crossed product K(ℓ2(Γ)) ⋊
δ̂
(ω)
r

Γ is strongly

Morita equivalent to C∗
r,ω(Γ).

2.3. Coaction of quantum groups and braided tensor products. Suppose
that A is a C∗

r (Γ)-C
∗-algebra. Thus, A admits a coaction α of C∗

r (Γ) given by a
homomorphism

α : A→ C∗

r (Γ)⊗A

which satisfies the multiplicativity ι ⊗ α ◦ α = δ ⊗ ι ◦ α and the condition that
C∗

r (Γ)1α(A) is dense C
∗
r (Γ)⊗A, called the cancellation property or continuity of α.

We write the coaction as α(x) =
∑

g λg ⊗ α(g)(x). Then x = α(g)(x) is equivalent

to α(x) = λg⊗x. Note that linear span Afin of such elements, the elements of finite
spectrum, are dense in A. This fact will be frequently utilized later to verify the
images of various homomorphisms.

Suppose that A is represented on a Hilbert space H . Then a unitary X ∈
M(C∗

r (Γ) ⊗ K(H)) is said to be a covariant representation for α if it satisfies δ ⊗
ι(X) = X13X23 and X∗(1⊗ a)X = α(a).

By analogy with the case of Γ = Z2 [Yam10, Section 3], we would like to consider

‘the diagonal coaction’ α ⊗ δ
(ω)
l of C∗

r (Γ) on A ⊗ C∗
r,ω(Γ). Nonetheless, a naive

attempt

A⊗ C∗

r,ω(Γ) → C∗

r (Γ)⊗A⊗ C∗

r,ω(Γ), a⊗ x 7→ α(a)12δ
(ω)
l (x)13

does not define an algebra homomorphism unless Γ is commutative. To remedy
this we use the notion of braided tensor product instead.

We consider an action Ad(ω) of Γ on C∗
r,ω(Γ) given by

Ad(ω)
g (λ

(ω)
h ) = λ(ω)

g λ
(ω)
h (λ(ω)

g )∗ = ω(g, h)ω(gh, g−1)ω(g, g−1)λ
(ω)
ghg−1 .

Let Ãd
(ω)

denote the algebra homomorphism

C∗

r,ω(Γ) →M(C0(Γ)⊗ C∗

r,ω(Γ)), x 7→
∑

h

δh ⊗Ad
(ω)
h−1(x).

This is implemented as the adjoint by the ω-representation unitary W (ω), and

satisfies ι ⊗ Ãd
(ω)

◦ Ãd
(ω)

= δ̂ ⊗ ι ◦ Ãd
(ω)

. Hence it defines a coaction of the dual
quantum group (C0(Γ), δ̂).

Combined with the coaction δ
(ω)
l of C∗

r (Γ), the algebra C∗
r,ω(Γ) becomes a Γ-

Yetter–Drinfeld-C∗-algebra [NV10]. Indeed, it amounts to verifying the commuta-
tivity of the diagram [NV10, Definition 3.1]
(6)

C∗
r,ω(Γ)

δ
(ω)
l−−−−→ Ŝ ⊗ C∗

r,ω(Γ)
ι⊗Ãd

(ω)

−−−−−→ M(Ŝ ⊗ S ⊗ C∗
r,ω(Γ))yÃd

(ω)

yΣ12

M(S ⊗ C∗
r,ω(Γ))

ι⊗δ
(ω)
l−−−−→ M(S ⊗ Ŝ ⊗ C∗

r,ω(Γ))
AdW−−−−→ M(S ⊗ Ŝ ⊗ C∗

r,ω(Γ))

,

where Ŝ = C∗
r (Γ), S = C0(Γ), W is the fundamental unitary

∑
h δh ⊗ λh in

M(C0(Γ)⊗C∗
r (Γ)), and Σ is the transposition of tensors. If we track the image of

λ
(ω)
g ∈ C∗

r,ω(Γ) along the top-right arrows, we obtain

λ(ω)
g 7→ λg⊗λ

(ω)
g 7→

∑

h

λg⊗δh⊗(λ
(ω)
h )∗λ(ω)

g λ
(ω)
h 7→

∑

h

δh⊗λg⊗(λ
(ω)
h )∗λ(ω)

g λ
(ω)
h
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Similarly, if we go along the left-bottom arrows, we obtain

λ(ω)
g 7→

∑

h

δh ⊗ (λ
(ω)
h )∗λ(ω)

g λ
(ω)
h 7→

∑

h

δh ⊗ λhgh−1 ⊗ (λ
(ω)
h )∗λ(ω)

g λ
(ω)
h

7→
∑

h

δh ⊗ λg ⊗ (λ
(ω)
h )∗λ(ω)

g λ
(ω)
h ,

where we used

δ
(ω)
l ((λ

(ω)
h )∗λ(ω)

g λ
(ω)
h ) = ω(h, h−1)ω(h−1, g)ω(h−1g, h)λh−1gh ⊗ λ

(ω)
h−1gh

= λh−1gh ⊗ (λ
(ω)
h )∗λ(ω)

g λ
(ω)
h .

Combining these, we conclude that the diagram (6) is commutative.
As proved in [NV10, Theorem 3.2], a Yetter–Drinfeld algebra is the same thing

as an algebra endowed with a coaction of the Drinfeld dual. In our setting the
Drinfeld dual D(Γ) of Γ is represented by the algebra C0(D(Γ)) = C0(Γ) ⊗ C∗

r (Γ)
endowed with the coproduct

∆ = (Σ ◦AdW )23 ◦ δ̂ ⊗ δ : δh ⊗ λg 7→
∑

h′h′′=h

(δh′ ⊗ λh′′gh′′−1 )⊗ (δh′′ ⊗ λg).

The above Yetter–Drinfeld algebra structure on C∗
r,ω(Γ) corresponds to the coaction

C∗

r,ω(Γ) →M(C0(D(Γ)) ⊗ C∗

r,ω(Γ)), λ(ω)
g 7→

∑

h

δh ⊗ λh−1gh ⊗Ad
(ω)
h−1(λ

(ω)
g ).

Let A be a C∗
r (Γ)-C

∗-algebra and ω be a U(1)-valued 2-cocycle on Γ. The
braided tensor product A ⊠ C∗

r,ω(Γ) of A and C∗
r,ω(Γ) [NV10, Definition 3.3] is the

C∗-algebra of operators on the Hilbert C∗-module ℓ2(Γ) ⊗ A ⊗ C∗
r,ω(Γ) generated

by the operators of the form α(a)12Ãd
(ω)

(x)13 for a ∈ A and x ∈ C∗
r,ω(Γ). By

means of the conditional expectation ι⊗ τ from A⊗C∗
r,ω(Γ) onto A, we may regard

A ⊠ C∗
r,ω(Γ) as a subalgebra of L

(
ℓ2(Γ)⊗A⊗ ℓ2(Γ)

)
. Note that our convention

(the Yetter–Drinfeld algebra being the second component in the braided tensor
product) is different from that of [NV10, Definition 3.3].

By [Vae05, Proposition 8.3], we have

A⊠ C∗

r,ω(Γ) = α(A)12Ãd
(ω)

(C∗
r,ω(Γ))13

as linear spaces of L
(
ℓ2(Γ)⊗A⊗ ℓ2(Γ)

)
.

By [NV10, the remark after Definition 3.3], the braided tensor product A ⊠

C∗
r,ω(Γ) admits a coaction α⊗δ

(ω)
l of C∗

r (Γ) which we shall call the diagonal coaction.
It is given by

α⊗ δ
(ω)
l (α(a)12Ãd

(ω)
(x)13) = δ ⊗ ι(α(a))123ι⊗ Ãd

(ω)
(δ

(ω)
l (x))124.

2.4. Exterior equivalence of actions. Let us briefly recall the notion of exterior
equivalence between the (co)actions on C∗-algebras by the locally compact quantum
groups of our interest.

Let α and β be actions of Γ on a C∗-algebra A. These two actions are said
to be exterior equivalent when there exists a family (ug)g∈Γ of unitaries in M(A)
satisfying ugαg(uh) = ugh and βg = Adug

◦αg for any g, h ∈ Γ. Two actions α and
β of Γ on different algebras A and B are said to be outer conjugate if there is an
isomorphism φ : B → A such that the action (φβgφ

−1)g on A is exterior equivalent
to α.

Outer conjugate actions define isomorphic crossed products with conjugate dual
(co)actions. An action is exterior equivalent to the trivial one if and only if it is the
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conjugation action with respect to a group homomorphism from Γ into the unitary
group of M(A).

Similarly, two coactions α and β of C∗
r (Γ) on a C∗-algebra A is said to be

exterior equivalent when there is a unitary element X in C∗
r (Γ) ⊗ A satisfying

X23ι ⊗ α(X) = δ ⊗ ι(X) and Xα(x)X∗ = β(x) for x ∈ A. Such X is called an
α-cocycle.

3. Deformation of algebras

Definition 1. Let A be a C∗-algebra with a coaction α of C∗
r (Γ), and ω be a

U(1)-valued 2-cocycle on Γ. We define the deformation Aα,ω of A with respect to

α and ω (the ω-deformation of A) to be the fixed point algebra (A⊠C∗
r,ω(Γ))

C∗

r (Γ)

under the diagonal coaction α ⊗ δ
(ω)
l . When there is no source of confusion for α

we write Aω instead of Aα,ω.

Proposition 2. Let Γ, ω, and A be as above. Then the deformed algebra Aω

is isomorphic to the subalgebra A′
ω of C∗

r,ω(Γ) ⊗ A consisting of the elements x

satisfying ι⊗ α(x)213 = δ
(ω)
l ⊗ ι(x).

Proof. Note that the C∗-algebras A⊠ C∗
r,ω(Γ) and C

∗
r,ω(Γ)⊗A⊗ C∗

r,ω(Γ) are rep-

resented on ℓ2(Γ)⊗A⊗ C∗
r,ω(Γ). We have a homomorphism Φ from the former to

the latter by x 7→W
(ω)
13 x(W (ω))∗13. The effect of Φ on the generators of A⊠C∗

r,ω(Γ)
is described by

α(x)12 7→
∑

g

λ(ω)
g ⊗ α(g)(x) ⊗ λ(ω)

g , Ãd
(ω)

(y)13 7→ y3.

Thus the image of Φ is A′
ω ⊗ C∗

r,ω(Γ), and the corresponding coaction of C∗
r (Γ) is

simply given by (ι⊗ δ
(ω)
l )213. Hence the fixed point algebra is given by A′

ω. �

Corollary 3. When the C∗
r (Γ)-C

∗-algebra (A,α) is given by the pair (C∗
r (Γ), δ),

the deformed algebra Aω is isomorphic to C∗
r,ω(Γ).

Proof. By Proposition 2, we may identify the braided tensor product with the

subalgebra of C∗
r,ω(Γ) ⊗ C∗

r (Γ) spanned by λ
(ω)
g ⊗ λg for g ∈ Γ. As this is equal to

the image of δ
(ω)
l , we obtain the assertion. �

Corollary 4. Let A be a C∗-algebra with a coaction α of C∗
r (Γ). When the cocycle

ω is trivial, the deformed algebra Aω is isomorphic to A.

Proof. In this case the algebra A′
ω in Proposition 2 is the image of α. Hence we

obtain Aω ≃ A. �

Corollary 5. When the coaction α is trivial, Aω is isomorphic to A for any 2-
cocycle ω.

Remark 6. When a ∈ Afin, we can consider an element
∑

g λ
(ω)
g ⊗ α(g)(a) in

A′
ω. We let a(ω) denote the corresponding element in Aω. The ω-deformation

Aω can be regarded as a certain C∗-algebraic completion of the vector space{
a(ω) | a ∈ Afin

}
≃ Afin endowed with the twisted ∗-algebra structure

a(ω)b(ω) =
∑

g,h

ω(g, h)(α(g)(a)α(h)(b))(ω), (a(ω))∗ =
∑

g

ω(g, g−1)(α(g)(a)∗)(ω).

Example 7. Let A be a Tn-C∗-algebra for some n, and (θjk)jk be a skewsymmetric

real matrix of size n. Then the θ-deformation Aθ of A is given by (A⊗C(Tn)θ)
T
n

,
where C(Tn)θ is the universal C∗-algebra generated by n unitaries u1, . . . , un sat-
isfying ujuk = eiθjkukuj , and Tn acts on A⊗ C(Tn)θ by the diagonal action.
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The algebra C(Tn)θ can be regarded as the twisted group algebra of Zn with
the 2-cocycle ω(x, y) = ei(θx,y). By Proposition 2, Aθ can be identified with Aω.

Example 8. Let B be a Γ-C∗-algebra. Then the reduced crossed product Γ⋉ B is
a C∗

r (Γ)-C
∗-algebra by the dual coaction. If ω is a 2-cocycle on Γ, the deformed

algebra (Γ⋉B)ω can be identified with the twisted reduced crossed product Γ⋉α,ω

B [ZM68].

There is another coaction of C∗
r (Γ) on A⊠ C∗

r,ω(Γ), given by

α(x)12Ãd
(ω)

(y)13 7→ ι⊗ α ◦ α(x)123Ãd
(ω)

(y)24.

We denote this coaction by αω. It is implemented as the adjoint with the dual
fundamental unitary Ŵ =

∑
g λg ⊗ δg. It can be easily seen from the definitions

that the two coactions αω and α⊗ δ
(ω)
l of C∗

r (Γ) commute with each other. Hence

αω restricts to the fixed point subalgebra Aω of α⊗ δ
(ω)
l .

Remark 9. When ω and η are U(1)-valued 2-cocycles on Γ, we have (Aω)η = Aω·η

for any C∗
r (Γ)-C

∗-algebra A.

We have the following generalization of the isomorphism (4).

Proposition 10. The crossed product algebra C0(Γ) ⋉α Aω is isomorphic to the
corresponding algebra C0(Γ)⋉α A of the untwisted case.

Proof. We identify Aω with the algebra A′
ω of Proposition 2. Thus, the crossed

product C0(Γ)⋉αω
Aω is represented by the C∗-algebra of operators generated by

(δh)1 and
∑

g λg ⊗ λ
(ω)
g ⊗ α(g)(x) on ℓ2(Γ)⊗2 ⊗A.

Let V be the unitary operator δk ⊗ δk′ 7→ ω(k−1, k)ω(k−1, k′)δk ⊗ δk′ . The
assertion follows once we prove that the image of Φ = AdV12 : A

′
ω → B(ℓ2(Γ)⊗2⊗A)

is equal to

C0(Γ)⋉A′ = ∨

{
(δh)1,

∑

g

λg ⊗ λg ⊗ α(g)(x) | h ∈ Γ, x ∈ A

}
.

If h ∈ Γ and x ∈ A′
ω has finite spectrum, the action of Φ(αω(x)(δh)1) on the vector

δk ⊗ δk′ ⊗ b is given by
∑

g

δh,kω(k
−1, k)ω(k−1, k′)ω(k−1g−1, gk)ω(k−1g−1, gk′)δgh ⊗ δgk′ ⊗ α(g)(x)b.

Using the cocycle identity for ω, we see that this is equal to
∑

g

ω(g, h)δh,kδgh ⊗ δgk′ ⊗ α(g)(x)b,

which is equal to the action of
∑

g ω(g, h)λg ⊗ λg ⊗ α(g)(x)(δh)1. This operator is

indeed in C0(Γ)⋉A′. �

We have the following expression of α̂ω

(7) (α̂ω)k((
∑

g

λg ⊗ λg ⊗ α(g)(x))(δh)1)

= ω(g, hk−1)ω(g, h)(
∑

g

λg ⊗ λg ⊗ α(g)(x))(δhk−1 )1),

regarded as an action on C0(Γ)⋉αA via the isomorphism Φ in the proof of Propo-
sition 10. By the Takesaki–Takai duality, Aω is strongly Morita equivalent to the
crossed product Γ⋉α̂ω

C0(Γ) ⋉αω
Aω with respect to the dual action α̂ω of αω by

Γ.
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For each g ∈ Γ, let Ag denote the corresponding spectral subspace consisting of

the elements x ∈ A satisfying α(g)(x) = x. Recall that the Fell bundle (Ag)g∈Γ

associated to A has the approximation property [Exe97, Definition 4.4] when there
is a sequence ai of functions from Γ into Ae satisfying

(8) sup
i

∥∥∥∥∥
∑

g

ai(g)
∗ai(g)

∥∥∥∥∥ <∞

and

(9) lim
i

∑

h

ai(gh)
∗bai(h) = b (g ∈ Γ, b ∈ Ag).

If Γ is amenable, any C∗
r (Γ)-C

∗-algebra has the approximation property. This
property also holds when A is given as Γ ⋉β B for some amenable action β of a
discrete group Γ on a unital C∗-algebra B.

Lemma 11. Let Γ, ω, and A be as above. The Fell bundle associated to A has the
approximation property if and only if the one associated to Aω has the approxima-
tion property.

Proof. The algebra (Aω)e is naturally isomorphic to Ae. Hence we may regard ai
as a sequence of functions with values in Aω. Then the condition (8) is automatic.
The other one (9) follows from the equalities

∥∥∥b(ω)
∥∥∥ = ‖b‖ , ai(gh)

∗b(ω)ai(h) = (ai(gh)
∗bai(h))

(ω)

for any g ∈ Γ and b ∈ Ag. �

We have the following adaptation of [Rie93, Theorem 4.1] in our context.

Proposition 12. Let Γ, ω, and A be as above, and suppose that the Fell bundle
associated to A has the approximation property. Then Aω is nuclear if and only if
A is nuclear.

Proof. The Fell bundle associated to Aω also has the approximation property by
Lemma 11. By Remark 9, it is enough to prove that Aω is nuclear when A is
nuclear.

By the amenability of the Fell bundle associated to Aω , the maximal and the
reduced crossed product coincide for the dual action of Γ on C0(Γ)⋉αω

Aω [EQ02,
Corollary 3.6]. Since C0(Γ)⋉αω

Aω is nuclear by Proposition 10, we conclude that
its crossed product by Γ is also nuclear, c.f. [AD02, the proof of Theorem 5.3, (2)
⇒ (3)]. �

Proposition 13. Let Γ, ω be as above, and A be a C∗
r (Γ)-C

∗-algebra represented on
a Hilbert space H. Suppose that there is a covariant representation X ∈M(C∗

r (Γ)⊗
K(H)) of C∗

r (Γ). Then, the action of C∗
r,ω(Γ)⊗A on ℓ2(Γ)⊗H restricts to the one

of the algebra A′
ω of Proposition 2 on X∗(δe ⊗H).

Proof. Recall that the dual fundamental unitary Ŵ =
∑

g λ
∗
g ⊗ δg satisfies δ(x) =

Ŵ ∗(1⊗ x)Ŵ . Hence

δ ⊗ ι(X∗) = δ ⊗ ι(X∗)213 = X∗

13X
∗

23

implies

X∗

13X
∗

23(δe ⊗ δe ⊗ ξ) = Ad
Ŵ∗

12
(X∗

23)(δe ⊗ δe ⊗ ξ) = Ŵ ∗

12X
∗

23(δe ⊗ δe ⊗ ξ).

for ξ ∈ H . Thus, any η ∈ X∗(δe ⊗H) satisfies X∗
13(δe ⊗ η) = Ŵ ∗

12(δe ⊗ η).

Conversely, if we had X∗
13(δe ⊗ ξ) = Ŵ ∗

12(δe ⊗ ξ) for some ξ ∈ ℓ2(Γ) ⊗ H , we
can write ξ as

∑
g δg ⊗ ξg and conclude that X∗(δe ⊗ ξg) = δg ⊗ ξg for any g,
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i.e., ξ = X∗(δe ⊗
∑

g ξg). Hence we can identify X∗(δe ⊗ H) with the subspace{
ξ | X∗

13ξ = Ŵ ∗
12ξ
}
of δe ⊗ ℓ2(Γ)⊗H via the embedding ξ 7→ δe ⊗ ξ.

By the covariance of X , we can characterize A′
ω as the subalgebra of C∗

r,ω(Γ)⊗A
satisfying

Ŵ ∗

12(1⊗ a)Ŵ12 = X∗

13(1⊗ a)X13.

If ξ ∈ X∗(δe ⊗H) and a ∈ A′
ω, one has

X∗

13(1⊗ a)(δe ⊗ ξ) = Ŵ ∗

12(1 ⊗ a)Ŵ12X
∗

13(δe ⊗ ξ) = Ŵ ∗

12(1⊗ a)(δe ⊗ ξ),

which proves the assertion. �

Proposition 14. Let α and β be exterior equivalent coactions of C∗
r (Γ) on A, and

ω be a 2-cocycle on Γ. Then the corresponding deformed algebras Aα,ω and Aβ,ω

are strongly Morita equivalent.

Proof. Let U be an α-cocycle satisfying Uα(x)U∗ = β(x). As in the standard
argument, the rank 1 Hilbert A-module A admits a coaction of C∗

r (Γ) defined by

XU : ξ ⊗ x 7→ α(x)U∗ξ1 (ξ ∈ ℓ2(Γ), x ∈ A).

This coaction is covariant with respect to the coaction α on A for the left A-module
structure and β for the right. Then, as in Proposition 13, we can take the closed
subspaceXU (δe⊗A) in the Hilbert C∗-module C∗

r,ω(Γ)⊗A which is closed under the
left action of A′

α,ω and the right action of A′

β,ω. This bimodule is the imprimitivity
bimodule between the two algebras. �

Corollary 15. Let A be a C∗
r (Γ)-C

∗-algebra and ω be a 2-cocycle on Γ. Then the
deformed algebra Aω is strongly Morita equivalent to the twisted crossed product
Γ⋉α̂,ω C0(Γ)⋉α A.

Proof. The double dual coaction of C∗
r (Γ) on the iterated crossed product C∗

r (Γ)⋉α̂

C0(Γ)⋉α A and the amplification of α on K(ℓ2(Γ))⊗A are outer conjugate by the
Takesaki–Takai duality. The assertion follows from Proposition 14 and the natural
identification (K ⊗A)ω ≃ K ⊗Aω. �

This corollary shows that the twisted crossed product (Example 8) is the univer-
sal example up to the strong Morita equivalence. We can also see that Propo-
sition 10, and the resulting strong Morita equivalence between Aω and Γ ⋉α̂ω

C0(Γ) ⋉α A is an adaptation of the ‘untwisting’ of twisted crossed products by
Packer–Raeburn [PR89, Corollary 3.7].

3.1. K-theory isomorphism of deformed algebras. Let ω be a normalized
U(1)-valued 2-cocycle on γ. For each k ∈ Γ, consider the unitary element

(10) vk =

(
∑

g

ω(gk, k−1)δg

)(
∑

h

λhk−1h−1δh

)

in M(C∗
r (Γ) ⋊δr C0(Γ)) = B(ℓ2(Γ)). The second sum is actually the unitary ρk

which implements the right translation δh 7→ δhk−1 . From the relation

λg′−1vkλg′ =
∑

g

ω(gk, k−1)δg′−1gρk =
∑

g

ω(g′gk, k−1)δgρk,

we conclude

vkλg′v−1
k = λg′

∑

g

ω(g′gk, k−1)ω(gk, k−1)δg.

Combining this and

vkδh′v−1
k = ρkδh′ρ−1

k = δh′k−1 ,
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we obtain
vkλg′δh′v−1

k = ω(g′h′, k−1)ω(h′, k−1)λg′δh′k−1 .

By the cocycle condition for ω and (5), we see that the right hand side above is

equal to (δ̂
(ω)
r )k(λg′δh′).

The failure of the multiplicativity of (vk)k is controlled by the cocycle ω. By

vkvk′ =
∑

g

ω(gk, k−1)δgρk
∑

h

ω(hk′, k′−1)δhρk′

=
∑

g=hk−1

ω(gk, k−1)ω(hk′, k′−1)δgρkk′

and the cocycle relation (1) for g0 = gkk′, g1 = k′−1, and g2 = k−1, we obtain

(11) vkvk′ = ω(k′−1, k−1)vkk′ .

Remark 16. Suppose that the cocycle ω above is of the form eiω0 for some R-valued
2-cocycle ω0. Then we obtain its opposite cocycle ω̃0 as in (3). When H is a finite
subgroup of Γ, the 2-cocycle ω̃0|H is a coboundary because of H2(H,R) is trivial.
Hence there exists a map φ from H into R satisfying

(12) ω̃0(h0, h1) = φ(h0)− φ(h0h1) + φ(h1) (h0, h1 ∈ H).

The normalization condition on ω implies the one φ(e) = 0 for φ. The unitaries

(e−iφ(h)vh)h∈H are multiplicative by (11), and they implement the action δ̂
(ω)
r |H

on C∗
r ⋊ C0(Γ) modulo the isomorphism (4) by (5).

Now, assume that ω is induced by an R-valued 2-cocycle ω0 as above. Our goal
is to show that the K-groups of Aω are isomorphic to those of A.

Let I denote the closed unit interval [0, 1]. Generalizing the method of [ELPW10,
Section 1], we put ωθ = eiθω0 for θ ∈ I and consider the following C∗-C(I)-algebra
Aω⋆

over I, whose fiber at θ is given by Aωθ
.

First, we consider the Hilbert space L2(I; ℓ2(Γ)) ≃ L2(I)⊗ ℓ2(Γ), and the oper-

ators λ
(ω⋆)
g for g ∈ Γ defined by

(λ(ω⋆)
g ξ)θ = λ(ωθ)

g ξθ (ξ ∈ L2(I; ℓ2(Γ)), θ ∈ I).

Thus we obtain a C∗-C(I)-algebra C∗
r,ω⋆

(Γ), given as the C∗-algebra generated by

these operators and the natural action of C(I) on L2(I; ℓ2(Γ)).
Next, we see that C∗

r,ω⋆
(Γ) is a Γ-Yetter–Drinfeld algebra by the coaction

λ(ω⋆)
g 7→ λg ⊗ λ(ω⋆)

g , f 7→ 1⊗ f (g ∈ Γ, f ∈ C(I))

of C∗
r (Γ) and the one

λ(ω⋆)
g 7→ δh ⊗ (λ

(ω⋆)
h )∗λ(ω⋆)

g λ
(ω⋆)
h , f 7→ 1⊗ f (g, h ∈ Γ, f ∈ C(I))

of C0(Γ). This C(I)-algebra and its Γ-Yetter–Drinfeld algebra structure is induced
by the twisted fundamental unitary

W (ω⋆) =Wω⋆ : δg ⊗ δh 7→ (eθiω0(g,h)δg ⊗ δg,h)θ

on L2(I; ℓ2(Γ)⊗2) which commutes with C(I).
Thus we can take the braided tensor product A ⊠ C∗

r,ω⋆
(Γ) which is again a

C(I)-C∗-algebra with a compatible coaction of C∗
r (Γ). The algebra Aω⋆

is defined
to be the fixed point algebra for this coaction. By an argument analogous to
Proposition 2, this is isomorphic to the subalgebra A′

ω⋆
of A⊗ C∗

r,ω⋆
(Γ) consisting

of the elements a satisfying α13(a) = δ
(ω⋆)
12 (a).

The algebra Aω⋆
admits a coaction αω⋆

of C∗
r (Γ) defined in the obvious way.

The crossed product C0(Γ)⋉αω⋆
Aω⋆

is a Γ-C∗-C(I)-algebra, and the evaluation at
each fiber is a Γ-homomorphism.
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Lemma 17. The C∗-C(I)-algebra C0(Γ) ⋉αω⋆
Aω⋆

is isomorphic to the constant
field with fiber C0(Γ)⋉α A.

Proof. The proof is essentially the same as that of Proposition 10. The formula

(V δk ⊗ δk′)θ = ωθ(k
−1, k)ωθ(k

−1, k′)δk ⊗ δk′ .

defines unitary operator V on L2(I; ℓ2(Γ)⊗2) which commutes with C(I). When x ∈
A and h ∈ Γ, the constant section (

∑
g λg⊗λg⊗α

(g)(x))(δh)1 of C(I)⊗C0(Γ)⋉αA
′

is mapped to the element
((
∑

g

ωθ(g, h)λg ⊗ λ(ωθ)
g ⊗ α(g)(x)

)
(δh)1

)

θ

of C0(Γ)⋉αω⋆
A′

ω⋆
. �

Thus, Aω⋆
is RKK (I,−,−)-equivalent to the crossed product of C(I)⊗C0(Γ)⋉α

A by an action of Γ corresponding to α̂⋆ via the isomorphism of Lemma 17. Us-
ing (7), we can express this action as

(13)

(
(α̂⋆)k

((
∑

g

λg ⊗ λg ⊗ α(g)(x)

)
(δh)1

))

θ

= ωθ(g, hk
−1)ωθ(g, h)

(
∑

g

λg ⊗ λg ⊗ α(g)(x)

)
(δhk−1)1

for x ∈ A and h, k ∈ Γ.

Remark 18. The C∗-C(I)-algebra Aω⋆
becomes a continuous field of C∗-algebras

when the Fell bundle associated to A has the approximation property [Rie89, Corol-
lary 2.7], see also the proof of Proposition 12.

Proposition 19. Let H be any finite subgroup of Γ and θ ∈ I. Then the restriction
of α̂⋆ to H is outer conjugate to the restriction of the constant field of the action
α̂ωθ

.

Proof. We first prove the assertion for the case θ = 0. As in Remark 16, we can
take a map φ from H to R satisfying (12). Now, consider the unitaries

(wk)θ′ = e−iθ′φ(k)
∑

g

ωθ′(gk, k−1)δg (θ′ ∈ I)

in M(C(I)⊗ C0(Γ)) for k ∈ H . This is a δ̂r-cocycle. Indeed, we have

(14)
(
wk(δ̂r)k(wk′ )

)
θ′

= e−iθ′φ(k)

(
∑

g

ωθ′(gk, k−1)δg

)
e−iθ′φ(k′)


∑

g′

ωθ′(g′k′, k′−1)δg′k−1




= e−iθ′(φ(k)+φ(k′))
∑

g

ωθ′(gk, k−1)ωθ′(gkk′, k′−1)δg.

Using (12), one sees that e−iθ′(φ(k)+φ(k′)) is equal to e−θ′φ(kk′)ωθ′(k′−1, k−1). Ap-
plying (1) for g0 = gk, g1 = k′−1, and g2 = k−1, we see that the right hand side
of (14) is equal to wkk′ .

If we regard (wk)k as elements of M(C0(Γ) ⋉α A), they are α̂⋆-cocycle by def-
inition of the dual (co)action. We next see that they implement the conjugation
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between α̂ and α̂ω⋆
. Indeed, recalling that α̂ is the conjugation by (ρg)g, we can

compute
(
Ad(wk)1 ◦ α̂k

((
∑

g

λgα
(g)(x)

)
(δh)1

))

θ′

= Ad
(v

(θ′)
k

)1

((
∑

g

λgα
(g)(x)

)
(δh)1

)

=
∑

g

ωθ′(gh, k−1)ωθ′(h, k−1)λgδhk−1λgα
(g)(x)(δh)1

using the unitaries (v
(θ′)
k )k defined in the same way as (10) but ω being replaced

by ωθ′. By (13) and the cocycle identity for ωθ′ , the right hand side of the above
formula is indeed equal to α̂⋆. Thus we obtain the outer conjugacy of the actions
of H for θ = 0.

For the general value of θ, we can argue in the same way as above that the actions
α̂ and α̂ωθ

are outer conjugate. Thus we can compose the above outer conjugacy
with the constant field of conjugacy between α̂ and α̂ωθ

, which implies the assertion
for the arbitrary value of θ. �

We recall that the ‘left hand side’ of the Baum–Connes conjecture with coeffi-
cients can be computed in the following way.

Proposition 20 ([ELPW10, Proposition 1.6]). Let G be a second countable locally

compact group, and A and B be G-C∗-algebras. If z ∈ KKG(A,B) induces an
isomorphism KH

∗ (A) → KH
∗ (B) for any compact subgroup H of G, the Kasparov

product with z induces an isomorphism from K
top
∗ (G;A) to Ktop

∗ (G;B).

Theorem 1. Let Γ be a discrete group satisfying the Baum–Connes conjecture
with coefficients, A be a C∗

r (Γ)-C
∗-algebra, and ω0 be an R-valued 2-cocycle on Γ.

Then the K-groups Ki(Aω) (i = 0, 1) of the deformed algebra Aω are isomorphic
to Ki(A) for the cocycle ω = eiω0 .

Proof. It is enough to show that the evaluation map evθ at θ ∈ I for the C∗-C(I)-
algebra Γ ⋉α̂ω⋆

C0(Γ) ⋉αω⋆
Aω⋆

induces an isomorphism in the K-theory for any
θ.

Proposition 19 implies that for any finite group H of Γ, the H-homomorphism
evθ induces an isomorphism of the crossed products by H . By the Green–Julg
isomorphism KH

∗ (X) ≃ K∗(H ⋉ X) which holds for any H-C∗-algebra X , we
obtain that evθ induces an isomorphism on the KH-groups. By Proposition 20, evθ
induces an isomorphism

Ktop
∗ (Γ;C0(Γ)⋉αω⋆

Aω⋆
) ≃ Ktop

∗ (Γ;C0(Γ)⋉αωθ
Aωθ

).

By the assumption on Γ, the both hand sides are isomorphic to the K-groups of
the crossed products by Γ. �

We have a slight variation of the above theorem for the groups satisfying the
strong Baum–Connes conjecture.

Theorem 2. Let Γ be a discrete group satisfying the strong Baum–Connes conjec-
ture, A be a C∗

r (Γ)-C
∗-algebra, and ω0 be an R-valued 2-cocycle on Γ. Then the

deformed algebra Aω is KK-equivalent to A for the cocycle ω = eiω0 .

Proof. Recall the following formulation of the strong Baum–Connes conjecture due
to Meyer–Nest [MN06]. The group Γ satisfies the conjecture with arbitrary coeffi-

cients [MN06, Definition 9.1] if and only if the descent functor KKΓ → KK , A 7→
Γ⋉r A maps weak equivalences to isomorphisms [MN06, p. 213].
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The evaluation maps for the C∗-C(I)-algebra C0(Γ) ⋉αω⋆
Aω⋆

are weak equiv-
alences by Proposition 19. Thus, the reduced crossed products by Γ are KK -
equivalent if Γ satisfies the strong Baum–Connes conjecture. �

Remark 21. Suppose that A is nuclear, the Fell bundle associated to A has the
approximation property, and that Γ satisfies the strong Baum–Connes conjecture.
Then the continuous field Aω⋆

is an RKK -fibration in the sense of [ENOO09] by
Proposition 12, Theorem 2, and [ENOO09, Corollary 1.6].

3.2. Deformation of equivariant spectral triples. We see that the ‘equivari-
ant Dirac operators’ for a given coaction of C∗

r (Γ) give isospectral deformations
on the ω-deformations, which induce the same index map modulo the K-theory
isomorphism of Theorem 1.

As in Proposition 13, let (A,H,X) be a covariant representation of a C∗
r (Γ)-C

∗-
algebra A on H . Suppose that D is a (possibly unbounded) self-adjoint operator
on H , and A is a subalgebra of A such that a(1 +D2)−1 is compact and [D, a] is
bounded for any a ∈ A. Thus, (A, D,H) is an odd spectral triple. By abuse of
notation, we let Idℓ2(Γ) ⊗D the closure of the operator ξ⊗η 7→ ξ⊗Dη for ξ ∈ ℓ2(Γ)
and η ∈ dom(D).

We assume that Idℓ2(Γ) ⊗D commutes X (in particular, X preserves the domain
of (Idℓ2(Γ) ⊗D)) and one has αg(a) ∈ A for any a ∈ A and g ∈ Γ. These conditions
respectively correspond to the equivariance of the Dirac operator and the smooth-
ness of the action. We shall call such a spectral triple as a C∗

r (Γ)-equivariant spectral
triple. By the equivariance of D, the operator Idℓ2(Γ) ⊗D restricts to X∗(δe ⊗H).
This restriction is unitarily equivalent to D.

Let Afin denote the subalgebra of A consisting of the elements with finite α-

spectrum. Then the commutators of Idℓ2(Γ) ⊗D and
∑

g λ
(ω)
g ⊗ α(g)(a) ∈ A′

ω for
a ∈ Afin are bounded. Thus, if we let Aω,fin denote the algebra generated by the

a(ω) for a ∈ Afin, we obtain a new spectral triple

(Aω,fin, Idℓ2(Γ) ⊗D|X∗(δe⊗H), X
∗(δe ⊗H)),

which is an isospectral deformation of the original triple. By means of the uni-
tary operator X between H and X∗(δe ⊗H), we consider this as a spectral triple
represented on H , denoted by

(Aω,fin, D,H).

If the original spectral triple (A,D,H) is even, the above construction gives an
even spectral triple over Aω,fin provided X is compatible with the grading on H ,
that is X ∈M(C∗

r (Γ)⊗K(H)even).

Assume that (A,D,H) is an even triple, and let F = D |D|
−1

be the phase of
D. The above construction of the deformed spectral triple give a Fredholm module
(F,H) over Aω, which is in KK 0(Aω ,C). The next theorem shows that this element
induce the essentially same map on the K-group if ω is a real 2-cocycle.

Theorem 3. Suppose that Γ satisfies the Baum–Connes conjecture with coefficients
and ω0 be an R-valued 2-cocycle on Γ. Let A be a C∗

r (Γ)-C
∗-algebra admitting an

equivariant even spectral triple (H,D). Then the even Fredholm module (F,H) for

F = D |D|−1 induce the same map modulo the isomorphism given in Theorem 1.

Proof. The isomorphisms of the K-groups are induced by the evaluation maps of
the C∗-C(I)-algebra A′

ω⋆
.

The algebra A′
ω⋆

acts on the field of Hilbert space X(δe ⊗ H) ⊗ L2(I) over I,
and its elements have the bounded commutator with the self-adjoint operator

(
Idℓ2(Γ) ⊗F |X(δe⊗H)

)
⊗ IdL2(I) .



14 MAKOTO YAMASHITA

This operator defines an element of RKK (I;A′
ω⋆
, C(I)). It is clear from the con-

struction that, if we specialize this element to a point θ ∈ I, we obtain the Fredholm
module (F,H) on Aωθ

. �

Remark 22. There is a corresponding statement for the odd equivariant spectral
triples. It can be proved in the same way, or can be reduced to the even case
by taking the graded tensor product with the standard odd spectral triple over
C∞(S1).

4. Concluding remarks

Remark 23. Suppose that G is a compact group, ω is a 2-cocycle on the dual Ĝ of
G. Wassermann [Was88b] defined a deformation C(G)ω of C(G) as in [Was88b],
endowed with the action λω of G. When G is commutative, this construction can
be identified with ours. More generally, we can generalize this construction to
arbitrary 2-cocycles over discrete quantum groups.

When A is aG-C∗-algebra, we can define its deformation by Aω = (A⊗C(G)ω)
G.

We may expect similar phenomenons in this context too, but we lack nontrivial
examples in this context. For example, the U(1)-valued 2-cocycles on the duals of
semisimple compact Lie groups which can be perturbed to the trivial one are always
induced from the dual of the maximal torus [Was88,NT10]. In general, suppose
that H is a subgroup of G and ω is a cocycle in L(H) ⊗ L(H) ⊂ L(G) ⊗ L(G).

Then we have the natural identification C(G)ω = IndGH C(H)ω which leads to

Aω ≃ (ResGH A)ω for any G-C∗-algebra A. Hence we can reduce the computation

to Ĥ which is an ordinary discrete group if H is commutative. We note that a
recent work of Kasprzak [Kas10] handles this situation.

Remark 24. The compact quantum groups C∗
r (Γ) can be characterized as the com-

mutative ones among the general compact quantum groups. The arguments in
Section 3.1 depend on this commutativity in the following way. If G is a compact
group as above and A is a C∗-algebra endowed with an action α of G, we can define
the deformation of A by taking the fixed point algebra (A ⊗ C(G)ω)

α⊗λω

. When
G is commutative, this algebra is invariant under α (or λω) by

αg ⊗ ι ◦ αh ⊗ λωh = αgh ⊗ λωh = αhg ⊗ λωh = αh ⊗ λωh ◦ αg ⊗ ι.

Then we can take the crossed product G⋉α (A⊗C(G)ω)
α⊗λω

, which is isomorphic
to the corresponding algebra for the case ω = 1. This way we can reduce the

problem of (A ⊗ C(G)ω)
α⊗λω

to the corresponding one for the actions of Ĝ on
G⋉α (A⊗ C(G))α⊗λ.

Remark 25. For a noncommutative compact quantum group G, one may consider
another form of deformation of the function algebra with respect to a 2-cocycle on

the dual discrete quantum group. Namely, if δ̂ is the coproduct of C∗G and ω is

a 2-cocycle, δω = ωδ̂ω−1 defines another coproduct on C∗G. Thus the dual Hopf
algebra Hω of (C∗G, δω) can be regarded as a deformation of C(G). Moreover, the
cocycle condition for ω can be relaxed to the twist condition for some associator Φ.
A result of Neshveyev–Tuset [NT11] for q-deformations of simply connected simple
compact Lie groups suggests that the K-theory of Hω do not change if ω and the
associator Φω vary continuously in an appropriate sense.
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