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Abstract

A formalism in terms of Hertz potentials is presented describing

sum-frequency generation in a uniaxial non-linear crystal. A scheme is

proposed consisting in aligning the side-walk propagation of extraordi-

nary waves in combination with phase-matching. Simplified paraxial

equations describing this situation are obtained. Particular attention

is paid to the generation of second harmonics.
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1 Introduction

Sum-frequency and difference-frequency generations are important processes
in nonlinear optics (see, e.g., Ref. [1, 2]). The aim of the present article is
to develop a formalism describing such nonlinear optical processes in terms
of Hertz potentials. The first part of the article is devoted to a derivation
of the equations describing the generation of higher frequencies in a uniaxial
nonlinear (up to second order) crystal in the paraxial approximation. Par-
ticular attention is paid to the fact that, for extraordinary waves, the wave
vectors do not coincide with the group velocity vector. This usually origi-
nates some difficulties in optical experiments and must be taken into account
carefully [3]. In the second part of the article, a possible scheme is proposed
for generating higher frequencies using precisely this side-walk propagation.
The idea is to combine phase matching, which involves wave vectors, with
group velocity vectors. More specifically, the scheme consists in combining
both ordinary and extraordinary beams in such a way that all three waves
involved in the process are aligned in the same direction. The conditions
to be fulfilled by the crystal parameters for this particular configuration are
given explicitly. An analytic solution is also obtained for particular values of
the amplitudes of the initial waves.

The organization of this article is as follows. In section 2, a general for-
mulation of the problem in terms of Hertz potentials is worked out following
Nisbet’s original treatment [4]. The results are applied in section 3 to the
problem of sum-frequency generation. The possible alignment of the three
group velocities involved in the scheme is studied in section 4. The evolution
equations are presented in section 5, together with a particular analytic solu-
tion. Finally, the particular case of second harmonic generation is considered
in section 6.

2 Propagation in a birefringent medium.

Consider an anisotropic medium described by electric and magnetic field
vectors, E andB, and electric displacement vectorD. The Maxwell equations
in the absence of free charges and currents (with magnetic permeability µ = 1
and setting c = 1) are

∇ ·B = 0 , ∇×E+
∂B

∂t
= 0 , (2.1)
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∇ ·D = 0 , ∇×B− ∂D

∂t
= 0 . (2.2)

The effect of the material medium can be described by a polarization
vector P such that

D = E+ 4πP,

the linear part being given in terms of the dyad

ǫ̂ = ǫ⊥1+∆ǫ s s,

where s is the optical axis of symmetry of the medium, and ǫ⊥ and ǫ‖ =
ǫ⊥ + ∆ǫ are the permeability perpendicular and parallel to this symmetry
axis respectively. Then

D(ω, r) = ǫ̂(ω) E(ω, r) + 4πPNL(ω, r)

where PNL is the non-linear contribution to the polarization vector. Here
and in the following, Fourier transforms with respect to time of all quantities
will be used.

Following Nisbet[4], the electromagnetic field can be described by two
scalar Hertz potentials, to be called ΨO and ΨE in the present paper, and
two additional scalar potentials, to be called UO and UE . These potentials
satisfy the equations

∇⊥UE + s×∇UO = 4πP⊥
NL , (2.3)

1

ǫ⊥(ω)
∇ · ǫ̂(ω) · ∇ ΨE + ǫ‖(ω)ω

2ΨE − ǫ‖(ω)

ǫ⊥(ω)
s · ∇UE = −4πPNL

‖ , (2.4)

∇2ΨO + ǫ⊥(ω)ω
2ΨO + iωUO = 0 . (2.5)

In these formulas, ∇⊥ is the gradient operator in the plane perpendicular to
s. Eq. (2.3) implies

∇2
⊥UE = 4π ∇⊥ ·P⊥

NL , (2.6)

∇2
⊥UO = 4π s · (∇×PNL) , (2.7)

which permits to decouple the potentials ΨO and UO from ΨE and UE .
As shown in a previous article (Hacyan and Jáuregui[5]), the advantage

of this formulation is that ΨO and ΨE correspond to the potentials for the
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ordinary and extraordinary waves respectively. The electromagnetic field is
given by

E = − iωs×∇ΨO +
1

ǫ⊥
∇(s · ∇ΨE) + ω2ΨE s− 1

ǫ⊥
∇UE (2.8)

and
B = ∇× [∇× (ΨOs)]− iω∇× (ΨEs) . (2.9)

From these formulas, the two fundamental modes can be identified: the
ordinary wave with s · EO = 0 and the extraordinary wave with s ·BE = 0.
The case PNL = 0 with UO,E = 0 corresponds to the linear limit considered
in [5].

The non-linear polarization vector is usually defined as

PNL
a (ω, r) =

∫
dω1

∫
dω2 δ(ω − ω1 − ω2)χabc(ω1, ω2)Eb(ω1, r)Ec(ω2, r)

(2.10)
in the quadratic approximation, where χabc(ω1, ω2) is the (Fourier trans-
formed) second-order susceptibility tensor (assumed to be homogeneous).

A particularly important case is the one in which there is a discrete set
of well defined frequencies ωi, such that

Ea(ω, r) =
∑

i

δ(ω − ωi)E
(i)
a (r) .

Then the basic equations take the form

∇⊥U
(i)
E (r) + s×∇U (i)

O (r) = 4πP
(i)
⊥ (ωj, ωk, r) , (2.11)

and

−
[
ǫ‖(ωi)ω

2
i+

1

ǫ⊥(ωi)
∇·ǫ̂(ωi)·∇

]
Ψ

(i)
E (r)+

ǫ‖(ωi)

ǫ⊥(ωi)
s·∇U (i)

E (r) = 4πP
(i)
‖ (ωj, ωk, r)

(2.12)
for extraordinary waves and

[
ǫ⊥(ωi)ω

2
i +∇2

]
Ψ

(i)
O (r) + iωiU

(i)
O (r) = 0 (2.13)

for ordinary waves, where (setting ωi = ωj + ωk)

P (i)
a (ωi = ωj + ωk, r) = χabc(ωi = ωj + ωk)E

(j)
b (r)E(k)

c (r) (2.14)

and

P (j)
a (ωj = ωi − ωk, r) = χabc(ωj = ωi − ωk)E

(i)
b (r)E(k)∗

c (r) . (2.15)
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3 Sum-frequency generation

Consider a typical problem of sum-frequency generation. Suppose an or-
dinary and an extraordinary waves, of frequencies ω1 and ω2 respectively,
combine inside the crystal to generate an extraordinary wave of frequency
ω3 = ω1 +ω2. Let ψi be the Hertz potential corresponding to frequencies ωi,
and Ui the associated auxiliary potentials. Accordingly the basic equations
take the form: [

ω2
1ǫ⊥(ω1) +∇2

]
Ψ1(r) = −iω1U1(r) , (3.1)

[
ω2
2ǫ⊥(ω2)ǫ‖(ω2) + ∇ · ǫ̂(ω2) · ∇

]
Ψ2(r) (3.2)

= ǫ‖(ω2) s · ∇U2(r)− 4πǫ⊥(ω2)P
2
‖ (ω2 = ω3 − ω1, r) ,

[
ω2
3ǫ⊥(ω3)ǫ‖(ω3) + ∇ · ǫ̂(ω3) · ∇

]
Ψ3(r) (3.3)

= ǫ‖(ω3) s · ∇U3(r)− 4πǫ⊥(ω3)P
3
‖ (ω3 = ω1 + ω2, r) ,

and
∇2

⊥U1 = 4π s · [∇×P1
⊥(ω1 = ω3 − ω2, r) ] , (3.4)

∇2
⊥U2 = 4π ∇⊥ ·P2(ω2 = ω3 − ω1, r) , (3.5)

∇2
⊥U3 = 4π ∇⊥ ·P3(ω3 = ω1 + ω2, r) , (3.6)

where

P 1
a (ω1 = ω3 − ω2, r) = χabc(ω1 = ω3 − ω2)E

3
b (r)[E

2
c (r)]

∗ (3.7)

P 2
a (ω2 = ω3 − ω1, r) = χabc(ω2 = ω3 − ω1)E

3
b (r)[E

1
c (r)]

∗

P 3
a (ω3 = ω1 + ω2, r) = χabc(ω3 = ω1 + ω2)E

1
b (r)E

2
c (r).

As a next step, let us assume that the potentials have the form

ψi = Ai(r)e
iki·r (3.8)

where
k2
1 = ǫ⊥(ω1) ω

2
1 (3.9)
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and

kj · ǫ̂(ωj) · kj = ǫ⊥(ωj)k
2
j⊥ + ǫ‖(ωj)k

2
j‖ = ǫ⊥(ωj)ǫ‖(ωj) ω

2
j , (3.10)

for j = 2, 3, and also
U1 = u1(r)e

i(k3−k2)·r , (3.11)

U2 = u2(r)e
i(k3−k1)·r , (3.12)

U3 = u3(r)e
i(k1+k2)·r . (3.13)

In the above equations, Ai(r) and ui(r) are slowly varying functions of r.
Within this same approximation:

E1 ≃ ω1 s× k1A1(r)e
ik1·r (3.14)

and

Ej ≃
[
ω2
j s−

1

ǫ⊥(ωj)
(s · kj)kj

]
Aj(r) e

ikj ·r − 1

ǫ⊥(ωj)
∇Uj . (3.15)

for j = 1, 2. The last term in the above equation is quadratic in the elec-
tromagnetic field; to be consistent, it must be neglected when evaluating the
polarization vector up to second order. Accordingly:

P1(ω1 = ω3 − ω2, r) = p1 A3(r)A
∗
2(r)e

i(k3−k2)·r , (3.16)

P2(ω2 = ω3 − ω1, r) = p2 A3(r)A
∗
1(r)e

i(k3−k1)·r ,

P3(ω3 = ω1 + ω2, r) = p3 A1(r)A2(r)e
i(k1+k2)·r ,

where the vectors pi are given in terms of χabc, s and ki as

p1,a = χabc(ω1 = ω3 − ω2) e3,b e2,c , (3.17)

p2,a = χabc(ω2 = ω3 − ω1) e3,b e1,c ,

p3,a = χabc(ω3 = ω1 + ω2) e1,b e2,c ,

with
e1 = ω1s× k1 , (3.18)

ej = ω2
j s−

1

ǫ⊥(ωj)
(s · kj)kj , (3.19)

for j = 2, 3.
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The basic equations (3.1) to (3.6) now take the form

∇2A1 + 2ik1 · ∇A1 = −iω1u1e
−i∆k·r, (3.20)

∇ · ǫ̂(ω2) · ∇A2 + 2ik2 · ǫ̂(ω2) · ∇A2 (3.21)

=
[
iǫ‖(ω2) s · (k3 − k1)u2 − 4πǫ⊥(ω2)p2‖A

∗
1A3

]
e−i∆k·r ,

∇ · ǫ̂(ω3) · ∇A3 + 2ik3 · ǫ̂(ω3) · ∇A3 (3.22)

=
[
iǫ‖(ω3) s · (k1 + k2)u3 − 4πǫ⊥(ω3)p3‖A1A2

]
ei∆k·r ,

where ∆k = k1 + k2 − k3, and

− (k3⊥ − k2⊥)
2u1 = 4πi [s× (k3 − k2)] · p1⊥ A∗

2A3 (3.23)

− (k3⊥ − k1⊥)
2u2 = 4πi (k3⊥ − k1⊥) · p2⊥ A∗

1A3 , (3.24)

and
− (k1⊥ + k2⊥)

2u3 = 4πi (k1⊥ + k2⊥) · p3⊥ A1A2 , (3.25)

within the same approximation (that is, keeping only terms of order k2).

3.1 Phase matching

The phase matching condition is k3 = k1 + k2, in which case the above
equations somewhat simplify:

∇2A1 + 2ik1 · ∇A1 = −iω1u1, (3.26)

∇·ǫ̂(ω2)·∇A2+2ik2·ǫ̂(ω2)·∇A2 = iǫ‖(ω2) s·k2u2−4πǫ⊥(ω2)p2‖A
∗
1A3 , (3.27)

∇·ǫ̂(ω3)·∇A3+2ik3·ǫ̂(ω3)·∇A3 = iǫ‖(ω3) s·k3u3−4πǫ⊥(ω3)p3‖A1A2 , (3.28)

and

− (k1⊥)
2u1 = 4πi (s× k1) · p1A

∗
2A3 , (3.29)

−(k2⊥)
2u2 = 4πi k2 · p2⊥A

∗
1A3 ,

−(k3⊥)
2u3 = 4πi k3 · p3⊥A1A2 .

7



Now, if no absorption is present, we have the following general relations:

χ∗
abc(ω3 = ω1 + ω2) = χbca(ω1 = ω3 − ω2) = χcab(ω2 = ω3 − ω1)

(Kleinman [6]). Eqs. (3.17) then imply

e1 · p1 = e2 · p2 = e3 · p∗
3 ≡ −C . (3.30)

With this last condition, it follows after some lengthy but straightforward
algebra [taking relations (3.10) into account] that the basic equations (3.26-
3.28) take the form

∇2A1 + 2ik1 · ∇A1 =
4π

|k1⊥|2
CA∗

2A3 , (3.31)

∇ · ǫ̂(ω2) · ∇A2 + 2ik2 · ǫ̂(ω2) · ∇A2 =
4π

|k2⊥|2
ǫ‖(ω2)ǫ(ω2) CA

∗
1A3 , (3.32)

∇ · ǫ̂(ω3) · ∇A3 + 2ik3 · ǫ̂(ω3) · ∇A3 =
4π

|k3⊥|2
ǫ‖(ω3)ǫ(ω3) C

∗A1A2 . (3.33)

4 Side-walk alignment

Suppose we want to generate a frequency ω3 = ω1+ω2. Since rays 2 and 3 are
extraordinary, they do not propagate along k2 and k3, but rather along the
directions ǫ̂(2) · k2 and ǫ̂(3) · k3 respectively, due to the side-walk effect (see
e.g., Ref. [7]) . It it then possible to choose the directions of propagations
in such a way that the three rays propagates along the same direction, in
addition to the phase matching condition. This can be achieved setting

k1 + k2 = k3 ,

ǫ̂(2) · k2 = ǫ⊥(2)k2⊥ + ǫ‖(2)k2‖s = αk1

ǫ̂(3) · k3 = ǫ⊥(3)k3⊥ + ǫ‖(2)k3‖s = βk1 (4.1)

(in this section, we set ǫ(ωi) → ǫ(i) in order to lighten the notation). This
system of linear equations admits non-trivial solutions if the proportionality
constants α and β take the values:

α =
ǫ‖(2)ǫ⊥(2)∆ǫ(3)

D
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β =
ǫ‖(3)ǫ⊥(3)∆ǫ(2)

D
, (4.2)

where
D ≡ ǫ⊥(3)∆ǫ(2)− ǫ⊥(2)∆ǫ(3). (4.3)

Furthermore, it is evident that the three ray vectors ki and the optical axis
s must be in the same plane.

Dividing the wave vectors into components perpendicular and parallel to
s, we have additionally the conditions

k21⊥ + k21‖ = ǫ⊥(1) ω
2
1 , (4.4)

k22⊥
ǫ‖(2)

+
k22‖
ǫ⊥(2)

= ω2
2 , (4.5)

k23⊥
ǫ‖(3)

+
k23‖
ǫ⊥(3)

= ω2
3 , (4.6)

and since
k2⊥ =

α

ǫ(2)
k1⊥ , k2‖ =

α

ǫ‖(2)
k1‖ ,

k3⊥ =
β

ǫ(3)
k1⊥ , k3‖ =

β

ǫ‖(3)
k1‖ ,

it follows from (4.5) that

∆ǫ(2)k21⊥ =
( ω2D

∆ǫ(3)

)2

− ǫ⊥(1)ǫ⊥(2)ω
2
1 , (4.7)

∆ǫ(2)k21‖ = −
( ω2D

∆ǫ(3)

)2

+ ǫ⊥(1)ǫ‖(2)ω
2
1 . (4.8)

From (4.6) it also follows that

∆ǫ(3)k21⊥ =
( ω3D

∆ǫ(2)

)2

− ǫ⊥(1)ǫ⊥(3)ω
2
1 , (4.9)

∆ǫ(3)k21‖ = −
( ω3D

∆ǫ(2)

)2

+ ǫ⊥(1)ǫ‖(3)ω
2
1 . (4.10)

Accordingly, the following relation is necessary for consistency:

ǫ(1)ω2
1 = D

( ω2
3

∆ǫ(2)
− ω2

2

∆ǫ(3)

)
, (4.11)
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besides, of course, ω1 + ω2 = ω3.
From the above formulas, it follows with some lengthy but straightfor-

ward algebra that the angle θ1 between k1 and s are given by the following
equivalent formulas:

sin2 θ1 =
k21⊥
k1‖2

=
1

ǫ⊥(1)∆ǫ(2)

( ω2D

ω1∆ǫ(3)

)2

− ǫ⊥(2)

∆ǫ(2)
(4.12)

=
1

ǫ⊥(1)∆ǫ(3)

( ω3D

ω1∆ǫ(2)

)2

− ǫ⊥(3)

∆ǫ(3)

=
[ω2∆ǫ(2)]

2ǫ⊥(3)− [ω3∆ǫ(3)]
2ǫ⊥(2)

∆ǫ(2)∆ǫ(3) [ω2
3∆ǫ(3)− ω2

2∆ǫ(2)]
.

The consistency conditions for these equations (since 1 > sin2 θ > 0) are

[
ω3∆ǫ(3)

]2
ǫ‖(2) > (<)

[
ω2∆ǫ(2)

]2
ǫ‖(3) (4.13)

if ω2
3∆ǫ(3) > (<)ω2

2∆ǫ(2).

5 Evolution equations

Eqs. (3.31-3.33) simplify considerably under the assumption that the only
relevant spatial variations are along k1. Choosing the z axis along that
direction, it follows that

d

dz
A1 = C1A

∗
2A3,

d

dz
A2 = C2A

∗
1A3,

d

dz
A3 = − C∗

3A1A2 , (5.1)

where, using (4.1) and (4.2),

C1 =
4π

2ik1|k⊥1|2
C (5.2)

C2 =
D3

ǫ2‖(2)∆ǫ
3(3)

C1 (5.3)
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C3 =
D3

ǫ2‖(3)∆ǫ
3(2)

C1 . (5.4)

Notice that all three coefficients C1, C2 and C3 are complex, but have the
same phase.

From the above equations it follows that there is a conserved quantity:

d

dz

(
C2C

∗
3 |A1|2 + C3C

∗
1 |A2|2 − C1C

∗
2 |A3|2

)
= 0 , (5.5)

which is the Manley-Rowe relation [8].
A particular solution of Eqs. (5.1) is

A1 = a1e
iδ sech(γz)

A2 = a2e
iδ sech(γz)

A3 = a3e
iδ tanh(γz) ,

where δ is the common phase of Ci and ai are real coefficients. Since the
amplitudes of A1 and A2 are given as initial conditions, the amplitude A3 of
the generated wave follows from the relation

a3 = −|C3|a2a2γ−1, (5.6)

with
γ2 = |C1||C3|a22 = |C2||C3|a21. (5.7)

Thus the additional condition |C1|/|C2| = a21/a
2
2 must be fulfilled for the

above analytic solution to be valid. The ratio |C1|/|C2| follows directly from
Eqs. (5.2) and (5.3).

6 Second harmonic generation

Let us consider as a further example the generation of second harmonics by
non-linear effects. Usually, under appropriate conditions, an ordinary wave of
frequency ω gives rise to an extraordinary wave of frequency 2ω. Accordingly,
the process is described by the equations given above, with the following
identification: k1 and k2 correspond to the ordinary and extraordinary rays
respectively, both with frequency ω, and k3 corresponds to the extraordinary
wave of frequency 2ω, that is: ω1 = ω2 ≡ ω and ω3 = 2ω.
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In order to further lighten the notation, let us redefine ǫ⊥(ω) ≡ ǫ and
ǫ⊥(2ω) ≡ ǫ, and similarly for ∆ǫ and ǫ‖.

Then, according to the consistency condition (4.11):

ǫ = D
( 4

∆ǫ
− 1

∆ǫ

)
, (6.1)

from where it follows, using the definition of D, that

ǫ

ǫ
= 1−

[ ∆ǫ

2∆ǫ
− 1

]2
(6.2)

and therefore

D =
ǫ∆ǫ2

4∆ǫ
. (6.3)

It also follows from (6.2) that

0 <
∆ǫ

∆ǫ
< 4 . (6.4)

This inequality must be satisfied in order to have triple alignment of the
velocity vectors.

Also

sin2 θ1 =
∆ǫ2ǫ− 4ǫ∆ǫ2

∆ǫ∆ǫ(4∆ǫ−∆ǫ)
. (6.5)

Thus, if the optical axis s makes an angle φ with the unit normal vector to
the surface of the crystal, then according to Snel’s law,

sin ι =
√
ǫ sin(θ1 − φ), (6.6)

where ι is the incidence angle to which the impinging ray must be directed
in order to have a phase-matching assisted by side-walk alignment. Equation
(6.4) must be satisfied.

The evolution of the field is given by Eqs. (5.1) with its coefficient given
by

C2 =
ǫ3

ǫ2‖

( ∆ǫ

2∆ǫ

)6

C1 ,

C3 =
ǫ3

ǫ2‖

( ∆ǫ

2∆ǫ

)6

C1 . (6.7)
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7 Concluding remarks

The formalism presented in this paper can be applied to other processes,
such as difference-frequency generation and parametric down-conversion (to
be considered in a forthcoming publication). As for the particular scheme of
side-walk alignment herein proposed, it is left as a proposal to find crystals
with the appropriate parameters, and to check its validity experimentally.

Work supported by PAPIIT-UNAM project IN101511.
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