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Polymer Maximum Drag Reduction: A Unique Transitional State
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The upper bound of polymer drag reduction is identified as a unique transitional state between
laminar and turbulent flow corresponding to the onset of the nonlinear breakdown of flow instabili-
ties.

PACS numbers: Valid PACS appear here

Drag reduction by the addition of long-chain polymers
to flowing liquids is bounded by the so-called maximum
drag reduction (MDR) asymptote [1]. Drag reductions
attained at MDR may be as high as 80% in turbulent
boundary layers and channel flows over smooth plane
walls, and as such, MDR has received extensive research
interest. One characteristic of MDR is that the mean
velocity profile, determined empirically by Virk et al.[1]
as:

u+ = 11.7 log(y+)− 17, (1)

is found to be roughly universal, insensitive to polymer
species, molecular weight, or the polymer-solvent pair.
The superscript + in Eq. (1) denotes normalization by

the friction velocity uτ =
√

τw/ρ and kinematic viscos-
ity ν, where τw is the shear stress at the wall and ρ the
fluid density. While the universality of the Virk profile
is generally well-accepted, a point of controversy is the
behavior of the Reynolds shear stress at MDR. Warholic
et al.[2] measured virtually no Reynolds shear stress and
conjectured that MDR corresponds to the state where
Reynolds stresses are negligible and turbulence is sus-
tained by polymer stresses. However, Ptasinski et al.

[3] reports a reduced, yet finite Reynolds shear stress at
MDR, corresponding to approximately a 50% reduction
in maximum Reynolds shear stress compared to a New-
tonian flow. Nevertheless, despite the differences in high-
order turbulence statistics, both experiments find a mean
velocity profile that agrees reasonably well with Eq. (1).
The question therefore arises whether MDR is uniquely
defined and, as such, can it be uniquely predicted. The
answer to this question is important not only to better
understand the bounding mechanisms of MDR but also
to develop robust models to predict drag reduction given
an initial set of conditions.
This letter tests and demonstrates the hypothesis that

MDR is a unique transitional state between laminar
and turbulent flow and that the state of turbulence at
MDR can be extrapolated by the mechanisms of polymer-
vortex interactions framed by Dubief et al.[4], Terrapon
et al.[5] and Kim et al.[6]. A necessary condition of our
hypothesis is the existence of transitional states in a New-
tonian fluid with velocity statistics similar to MDR states
observed experimentally [2, 3]. To demonstrate that this

condition is satisfied, we have analyzed the DNS data
of bypass transition in a boundary layer flow of Wu
& Moin[7]. Fig. 1a indicates that the region between
Reθ = 200 and 300 best approaches Virk’s asymptotic ve-
locity profile. Here the Reynolds number, Reθ, is based
on the momentum boundary layer thickness θ. Shown
in Fig. 1b is that from Reθ = 200 to Reθ = 300, the
Reynolds shear stress increases from almost negligible
levels (. 10%) of the full turbulent state to roughly half
the fully turbulent level. In between these two states,
the skin friction Cf (Fig. 1c) reaches a minimum, which
marks the end of the instability stage and the begin-
ning of the nonlinear development stage. Collectively,
these data suggest that the MDR state may correspond
to a narrow region near the beginning of the nonlin-
ear breakdown stage, including pre- and post-breakdown
stages. They are also suggestive that the variations in
high-order turbulence statistics, such as Reynolds shear
stress, observed experimentally at MDR may likely be a
consequence of the transitioning between pre- and post-
breakdown stages when computing averaged turbulence
statistics.

Viewed from the framework of the underlying fluid
structure, the nonlinear breakdown stage is associated
with the breakdown of the near-wall low- and high-speed
velocity streaks and the subsequent generation of near-
wall quasi-streamwise vortices. Once triggered, the wall-
shear, velocity streaks, and quasi-streamwise vortices
form the autonomous self-sustaining cycle of wall tur-
bulence [8]. The low- and high-speed streaks span from
the viscous sublayer, a thin region close to the wall where
viscous dissipation dominates, to the adjacent so-called
buffer layer. The quasi-streamwise vortices evolve in the
buffer layer, around the streaks, and create upwash and
downwash flows that (a) are biaxial extensional flows[5]
and (b) contribute to the vertical transfer of momentum
throughout the viscous, buffer and log layers.

The effect of polymers on turbulent wall-flow is to dis-
rupt and modify the near-wall autonomous cycle of wall
turbulence that results in a net drag reduction. Previ-
ous studies investigating polymer-vortex interactions [4–
6] demonstrated that polymers primarily stretch (and ex-
tract energy) in the upwash and downwash regions gen-
erated by quasi-streamwise vortices and, consequently,
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FIG. 1: Velocity statistics of the transitional boundary layer simulation of [7] for two states whose velocity profiles
approach closely Virk’s asymptotic velocity profile (Eq. 1). (a) Shows Eq. (1) , Reθ = 200 , Reθ = 300

, and Reθ = 900 (fully turbulent flow). (b) Compares Reynolds shear stress, −uv+, for the three flow
states as shown in (a). (c) Plots the distribution of the skin friction coefficient Cf as a function of the Reynolds
number based on the local momentum thickness θ. Arrows point to the statistical profiles plotted in (a) and (b).

dampen the vortices. With increasing drag reduction,
vortices become increasingly weaker and the high- and
low-speed streaks become more coherent [9].

To best frame our hypothesis, let us first consider two
thought experiments using polymers that possess the nec-
essary elasticity to eradicate vortices. In the first exper-
iment, consider that this polymer additive is suddenly
added to fully-developed Newtonian turbulence (say by
some injection scheme). Based on our understanding of
polymer-turbulence interactions, it is expected that af-
ter an initial transient time in which coiled polymers
become sufficiently stretched in the biaxial-extensional
flows around vortices, the vortices will disappear but
streaks will remain. Once all vortices are damped out,
the stretching mechanism for polymers is limited to wall-
shear and spanwise shear layers between streaks, both
modest source of polymer stretching compared to biaxial-
extensional flow [5]. Polymers therefore recoil, allow-
ing instabilities to grow and new vortices to form. The
emerging vortices grow until their biaxial-extensional
flows become sufficiently strong to stretch the coiled poly-
mers and the cycle repeats itself.

For the second thought experiment, let us consider a
transitional flow of a polymer solution (i.e., a polymer
ocean), again with the necessary elasticity to eradicate
vortices. Since the turbulence-reducing mechanisms of
polymers requires vortices to be effective, the impact of
polymers on the linear region of the transition is expected
to be marginal (note that polymers have no drag reduc-
ing effect on wall-bounded laminar flows). However, at
the onset of the nonlinear breakdown of flow instabilities
and the formation of vortices, the polymer drag reducing
mechanisms are activated, the vortices become damped,
and the flow is returned to a pre-breakdown transitional
stage. This scenario is very much consistent with ex-
perimental results that show that polymer solutions that
transition from laminar to MDR, stay at MDR as the
Reynolds number is increased [10].

Based on the two thought experiments described

above, knowledge of the mechanisms of polymer-
turbulence interactions, and the demonstrated existence
of transitional states in a Newtonian fluid with velocity
statistics similar to MDR, the hypothesis presented here
is that a precise definition of MDR is that it is the tran-
sitional state that corresponds to the onset of the non-
linear breakdown stage of transition. In practice, how-
ever, MDR turbulence corresponds to a narrow flow re-
gion centered about the onset of the nonlinear breakdown
stage of transition that includes pre- and post-breakdown
stages. We provide further substantiative evidence that
this hypothesis is correct using direct numerical simula-
tion of transition in a channel flow with polymer addi-
tives. The motivation to use a channel flow over a bound-
ary layer simulation stems from the need to demonstrate
a sustained MDR state. In a boundary layer, the re-
quired streamwise length scale of the domain for accurate
computation and flow development is prohibitively large,
whereas, a channel flow may be reasonably calculated
over a very long time series.
Channel flow simulations are performed in a cartesian

domain defined by the vector base (ex, ey, ez) where x,
y and z are the streamwise, wall-normal and spanwise
directions, respectively. The components of the velocity
vector u are u, v, and w. For a polymer solution, the
flow transport equations are the conservation of mass,
∇ · u = 0, and transport of momentum:

∂u

∂t
+(u ·∇)u = −∇p+

β

Re
∇2u+

1− β

Re
∇ ·T+ g(t)ex,

(2)
where g(t) = −(dP/dx) is used to maintain constant
mass flux. The parameter β is the ratio of solvent viscos-
ity to the zero-shear viscosity of the polymer solution and
affects both the viscous stress and polymer stress terms
in Eq. (2). The polymer stress tensor T is computed us-
ing the FENE-P (Finite Elastic Non-linear Extensibility-
Peterlin) model[11]:

T =
1

We

(

C

1− tr(C)/L2
− I

)

, (3)
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FIG. 2: Polymeric flows at MDR. (a) Shows MDR flow time and space-averaged mean velocity profile and
fluctuations of time-dependent, space-averaged mean velocity (error bars), Eq. (1) , Reθ = 200 , and
Reθ = 300 . (b) Compares Reynolds shear stress, for the three flow states as shown in (a). (c) Plots the

time-evolution of pressure gradient for different flow and initial conditions: Newtonian initiated with isotropic
turbulent entrance flow (turbulent intensity u′/Ub = 0.01), MDR flow (L = 200,Weτ = 720) initiated with
viscoelastic isotropic turbulent entrance flow (u′/Ub = 0.005), and MDR flow (L = 160,Weτ = 200) initiated

from a fully developed turbulent channel flow with C = I condition for the polymer field.

where the tensorC is the local conformation tensor of the
polymer solution and I is the unit tensor. The proper-
ties of the polymer solution are β, the Weissenberg num-
ber based on the solution relaxation time λ and integral
scales,We = λUc/H , or on viscous scales,Weτ = λu2

τ/ν,
and the maximum polymer extension L. The FENE-P
model assumes that polymers may be represented by a
pair of beads connected by a non-linear spring and de-
fined by the end-to-end vector q. The conformation ten-
sor is the phase-average of the tensorial product of the
end-to-end vector q with itself, C = 〈q⊗q〉 whose trans-
port equation is

∂C

∂t
+ (u ·∇)C = C(∇u) + (∇u)TC−T . (4)

On the left hand side of Eq. (4), the first two terms are
responsible for the stretching of polymers by hydrody-
namic forces, whereas the third term models the internal
energy that tends to bring stretch polymers to their least
energetic state (coiled). The FENE-P model has demon-
strated its ability to capture the physics of polymer drag
reduction [4, 12–15]. Eqs. (2-4) are solved using finite
differences on a staggered grid and a semi-implicit time
advancement scheme described elsewhere[16].
Here, we build on previous work[4, 16] in a channel

flow at Reτ = huτ/ν = 300 simulated in a computational
domain of dimensions (20/3)h× 2h× (10/3)h or 2000×
600 × 1000 in Newtonian wall units, and with periodic
conditions in x and z. The bulk Reynolds number Reb =
Ubh/ν is 5000 where Ub and h are the bulk velocity and
channel half-height, respectively. Production runs were
performed in a 256× 161× 256 grid.
The initial flow and polymer conditions consist of a

constant-mass flow, three-dimensional isotropic turbu-
lence generated by Kolmogorov forcing[17]. The compu-
tational domain and grid are those of the channel with
periodic conditions in the wall-normal direction. At time
t = 0, the wall-normal boundary conditions are switched
to no-slip to mimic the entrance of a channel flow, i.e. the

growth and merger of boundary layer, and a bypass tran-
sition induced by free stream turbulence similar to Wu &
Moin[7]. The turbulent intensity of the initial condition
is 0.5% for the polymer solution of interest.

A large parameter space was investigated with L ∈
[100, 200] and Weτ ∈ [120, 720]. All simulations for
Weτ ≥ 120 and L ≥ 160 or Weτ ≥ 300 and L ≥ 100 lead
to drag reduction in the range 68 to 72% and mean ve-
locity profiles in close agreement with Virk’s asymptotic
profile. This extensive study will be discussed in future
publications. This letter focuses on one simulation with
L = 200 and Weτ = 720, whose Reynolds shear stress is
similar to simulations for Weτ ≥ 200.

The mean velocity and Reynolds shear stress of our
polymeric simulation were averaged over homogenous di-
rections and a time duration of 1500h/Ub of the MDR
flow at steady-state. In order to evaluate the envelope of
MDR turbulence (i.e., the extent over which the flow os-
cillates around MDR), we compute both time- and space-
averaged quantities (denoted by •) and time-dependent
quantities averaged over homogenous directions (denoted
by 〈•〉(t)). The latter statistics are calculated over 300

successive snapshots, separated by 5h/Ub. The largest
positive and negative deviations of 〈u〉(t) and −〈uv〉(t)
from u and −uv are displayed in Fig. 2 by error bars.
Fig. 2a compares our simulation’s mean velocity profile
to Eq. (1) and the Newtonian transition data of Fig. 1.
The agreement with Virk is excellent and the error bars
span across Wu & Moin’s Reθ = 200 to 300 states. The
Reynolds shear stress −uv in Fig. 2b is essentially negli-
gible, yet the largest deviations of −〈uv〉(t) exhibit mag-

nitude slightly larger than the Reθ = 200 Newtonian
transitional state. The largest negative and positive de-
viations of the mean velocity profiles are, not surpris-
ingly, found to correlate with lower and higher values
of −dP/dx or drag, whose time evolution is shown in
Fig. 2c. Conversely, the largest positive deviations of
−〈uv〉(t) are correlated to higher drag event. Fig. 2c
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FIG. 3: Orbits of spatially-averaged wall shear in the
lower wall of the channel as a function of the volume
fraction of the flow region in lower half of the channel

occupied by vortices identified by positive regions of the
second invariant, Q > 0.1, of the velocity gradient[19].

shows that, for both initial conditions envisioned in our
two thought experiments (fully developed turbulent flow
and entrance flow), the flow oscillates between these
lower and higher drag events around MDR, as antici-
pated by our thought experiments. Interestingly, the
polymeric transition breaks down earlier than Newtonian
flows with higher initial turbulent intensities, which is
indicative of a possible destabilizing polymeric effects on
(pre-breakdown) streaks[4, 18].
Another illustration of the oscillatory nature of MDR

turbulence is provided in Fig. 3, which plots the volume
fraction NQ occupied by vortices (identified using the Q
criterion[19]) in the lower half of the channel as a function
of the spatially averaged wall shear S(t) = 〈du/dywall〉(t).

Owing to the inherent subjectivity of threshold selection
in any other vortex identification technique[19], we tested

several threshold in the range Q ∈ [0.01, 1] and veri-
fied that (a) all thresholds gave orbits consistent with
Fig. 3 and (b) the chosen threshold Q = 0.1 depicts
regions where velocity vectors exhibit a rotational pat-
tern. The temporal evolution of NQ>0.1 = f(S(t)) shows
clockwise-rotating orbits centered roughly around the
time-averaged wall shear S = 5.7. For a typical orbit,
starting from a vortex-free state, (i.e., NQ = 0), the wall
shear decreases to a local minimum, lower that the mean
wall shear, at which point vortices appear and grow (i.e.,
NQ > 0). As vortices grow, the wall shear increases.
Eventually, vortices are dampened, shown by the reduc-
tion of NQ. The wall shear continues to increase toward a
local maximum until NQ ∼ 1%, and then decreases back
to a local minimum as the vortical activity disappears.
In conclusion, this letter uniquely defines polymer

maximum drag reduction as the transitional state that
corresponds to the onset of the nonlinear breakdown
stage of transition. Furthermore, MDR turbulence corre-
sponds to oscillations between pre- and post-breakdown
stages. These results not only provide a precise definition
of MDR they also explain observed differences between
experimental data sets at MDR. This letter also achieves
a critical step in the progress toward developing predic-
tive models of polymer drag reduction, as it narrows the
research focus on intermittence and transitional flows.
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[8] J. Jiménez and A. Pinelli, J. Fluid Mech. 389, 335 (1999).
[9] C. White, V. Somandepalli, and M. Mungal, Exp. Fluids

36, 62 (2004).
[10] P. Virk, AIChE Journal 21, 625 (1975).
[11] R. Bird, R. Armstrong, and O. Hassager, Dynamics

of Polymeric Liquids. Vol. 2: Kinetic Theory (Wiley-

Interscience, 1987,, 1987).
[12] R. Sureshkumar, A. Beris, and R. Handler, Phys. Fluids

9, 743 (1997).
[13] E. De Angelis, C. Casciola, and R. Piva, Computers &

Fluids 31, 495 (2002).
[14] P. Ptasinski, B. Boersma, F. Nieuwstadt, M. Hulsen,

B. Van Den Brule, and J. Hunt, J. Fluid Mech. 490,
251 (2003).

[15] T. Min, H. Choi, and J. Yoo, J. Fluid Mech. 492, 91
(2003).

[16] Y. Dubief, V. Terrapon, C. White, E. Shaqfeh, P. Moin,
and S. Lele, Flow, turbulence and combustion 74, 311
(2005).

[17] G. Boffetta, A. Celani, and A. Mazzino, Phys. Rev. E
71, 036307 (2005).

[18] Y. Dubief, C. M. White, E. S. G. Shaqfeh, and V. E. Ter-
rapon, in Annual Research Briefs (Center for Turbulence
Research, Stanford, CA, 2010), pp. 395–404.

[19] Y. Dubief and F. Delcayre, J. of Turbulence 1 (2000).


