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Abstract

In this article we obtain asymptotic formulas, uniform with respect to t ∈ [0, 2π),
for eigenvalues and eigenfunctions of the Sturm-Liouville operators Lt(q) with potential
q ∈ L1[0, 1] and t−periodic boundary conditions. Using these formulas, we find some
conditions on q such that the number of spectral singularities in the spectrum of the
Hill operator L(q) in L2(−∞,∞) with q(x) periodic is finite. Then we prove that L(q)
is, in some sense, asymptotically spectral operator if q satisfies these conditions.
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1 Introduction and Preliminary Facts

Let L(q) be the Hill operator generated in L2(−∞,∞) by the expression

− y
′′

+ q(x)y, (1)

where q(x) is a complex-valued summable function on [0, 1] and q(x + 1) = q(x) for a.e.
x ∈ (−∞,∞). It is well-known that (see [7], [23] for real and [5], [16-18] for complex-valued
q) the spectrum S(L(q)) of the operator L(q) is the union of the spectra S(Lt(q)) of the
Sturm-Liouville operators Lt(q) for t ∈ [0, 2π), where Lt(q) is the operator generated in
L2[0, 1] by (1) and the boundary conditions

y(1) = eity(0), y
′

(1) = eity
′

(0). (2)

In this article we obtain asymptotic formulas, uniform with respect to t ∈ [0, 2π), for the
eigenvalues and eigenfunctions of the operator Lt(q). Note that, the formula

f(k, t) = O(h(k)) is said to be uniform with respect to t in a set S if there exists a
positive constants M and N, independent of t, such that | f(k, t)) |< M | h(k) | for all
t ∈ S and | k |≥ N. Then using these asymptotic formulas, we find some conditions on the
potential q such that the number of the spectral singularities in S(L(q)) is finite and L(q)
is, in some sense, asymptotically spectral operator.

The spectral expansion for the self-adjoint operator L(q) is constructed by Gelfand [7]
and Titchmarsh [23]. Tkachenko [24] proved that the non-self-adjoint operator L(q) can
be reduced to triangular form if all eigenvalues of the operators Lt(q) for all t ∈ [0, 2π) are
simple. McGarvey [16-18] proved that L(q) is a spectral operator if and only if the projections
of the operator L(q) are uniformly bounded. However, in general, the eigenvalue of the
operator Lt(q) are not simple and the projections of the operator L(q) are not uniformly
bounded. In fact, Gasymov [6] investigated the operator L(q) with the potentials q which
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can be continued analytically onto the upper half plane and proved that this operator,
in particular L(q) with the simple potential q(x) = ei2πx, has infinitely many spectral
singularities. Note that the spectral singularities of the operator L(q) are the points of its
spectrum in neighborhoods of which the projections of the operator L(q) are not uniformly
bounded. Veliev [26] proved that a number λ = λn(t) ∈ S(L) is a spectral singularity of
L(q) if and only if the operator Lt(q) has an associated function at the point λn(t). In the
paper [25] (see also [27]) we constructed the spectral expansion for the operator L(q) with
a continuous and complex-valued potential. In the paper [28], we obtained the asymptotic
formulas formulas of order O(n−l) ( for all l > 0 ) for the eigenvalue λn(t) and eigenfunction
Ψn,t(x) of Lt(q) for t 6= 0, π with q ∈ L1[0, 1]. Then using these formulas, we proved that the
eigenfunctions and associated functions of Lt form a Riesz basis in L2[0, 1] for t 6= 0, π and
constructed the spectral expansion for the operator L(q) (see also [13,29,30] for the spectral
expansion of the differential operators with periodic coefficients). Recently, Gesztezy and
Tkachenko [8,9] proved two versions of a criterion for the Hill operator L(q) with q ∈ L2[0, 1]
to be a spectral operator of scalar type, one analytic and one geometric. The analytic version
is stated in term of the solutions of Hill’s equation. The geometric version of the criterion
uses algebraic and geometric properties of the spectra of periodic/antiperiodic and Dirichlet
boundary value problems. In this paper we find conditions on the potential q such that the
Hill operator L(q) is, in some sense, asymptotically spectral operator of scalar type.

Since the spectral property of L(q) is strongly connected with the operators Lt(q) for
t ∈ [0, 2π), let us discuss briefly the papers devoted to Lt(q). It is known [14] that the
operator Lt(q) is Birkhoff regular. In the case t 6= 0, π it is strongly regular and the root
functions of the operator Lt(q) form a Riesz basis (this result is proved independently in
[4,12,19]). In the cases t = 0 and t = π the operator Lt(q) is not strongly regular. In the
case when an operator is regular but not strongly regular the root functions, generally, do
not form even usual basis. However, it is known [20, 21] that they can be combined in pairs,
so that the corresponding 2-dimensional subspaces form a Riesz basis of subspaces.

We note that, last times, necessary and sufficient conditions have been established it
order the root functions of periodic and antiperiodic problems to form a Riesz basis. For
brevity, we discuss only the periodic problem. The antiperiodic problem is similar to the
periodic problem. In 1996 at a seminar in MSU Shkalikov formulated the following result.
Assume that q(x) is a smooth potential,

q(k)(0) = q(k)(1), ∀ k = 0, 1, ..., s− 1 (3)

and q(s)(0) 6= q(s)(1). Then the root functions of the operator L0(q) form a Riesz basis in
L2[0, 1]. Kerimov and Mamedov [11] obtained the rigorous proof of this result in the case
q ∈ C4[0, 1], q(1) 6= q(0). Actually, this results remains valid for an arbitrary s ≥ 0. It is
obtained in Corollary 2 of [22].

Another approach is due to Dernek and Veliev [1]. The result was obtained in terms of
the Fourier coefficients of the potential q. Namely, we proved that if conditions

lim
n→∞

ln |n|
nq2n

= 0, (4)

q2n ∼ q−2n (5)

hold, then the root functions of L0(q) form a Riesz basis in L2[0, 1], where qn = (q, ei2πnx)
is the Fourier coefficient of q and everywhere, without loss of generality, it is assumed that
q0 = 0. Here (., .) denotes inner product in L2[0, 1] and an ∼ bn means that an = O(bn)
and bn = O(an) as n → ∞. Makin [15] improved this result. Using another method he
proved that the assertion on the Riesz basis property remains valid if condition (5) holds, but
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condition (4) is replaced by a less restrictive one: q ∈ W s
1 [0, 1], (3) holds and | q2n |> c0n

−s−1

for n ≫ 1 with some c0 > 0, where s is a nonnegative integer. Besides, some conditions
which imply the absence of the Riesz basis property were presented in [15]. The results
which we obtained in [22] are more general and cover all the results discussed above.

Some sharp results on the absence of the Riesz basis property were obtained by Djakov
and Mitjagin [2]. Moreover, recently, Djakov and Mitjagin [3] obtained some interesting
results about Riesz basis property of the root functions of the operators L0(q) with trigono-
metric polynomial potentials. I do not formulate precisely the results of [2,3], since their
formulation takes some additional pages which is not related to this paper. Very recently
Gesztezy and Tkachenko [10] proved a criterion for the root functions of L0(q) to form a
Riesz basis in term of the spectra of periodic and Dirichlet boundary value problems.

The next we present some preliminary facts, from [22, 28, 1], we need in this paper.
Result 1 (see [22]). Let p ≥ 0 be an arbitrary integer, q ∈ W

p
1 [0, 1] and (3) holds with

some s ≤ p. Suppose there is a number ε > 0 such that either the estimate

|q2n − S2n + 2Q0Q2n| ≥ εn−s−2 (6)

or the estimate
|q−2n − S−2n + 2Q0Q−2n| ≥ εn−s−2 (7)

hold, where Qk = (Q(x), e2πikx) and Sk = (S(x), e2πikx) are the Fourier coefficients of

Q(x) =

∫ x

0

q(t) dt, and S(x) = Q2(x).

Then the condition

q2n − S2n + 2Q0Q2n ∼ q−2n − S−2n + 2Q0Q−2n (8)

is necessary and sufficient for the root functions of L0(q) to form a Riesz basis. Moreover
if (6) and (8) hold then all large eigenvalues of L0(q) are simple.

Result 2 (see [28]). The eigenvalue λn(t) and eigenfunction Ψn,t(x) of the operator
Lt(q) for t 6= 0, π, satisfy the following asymptotic formulas

λn(t) = (2πn+ t)2 +O(
ln |n|
n

), Ψn,t(x) = ei(2πn+t)x +O(
1

n
). (9)

These asymptotic formulas are uniform with respect to t in [ρ, π−ρ],where ρ is a sufficiently
small fixed number ( ρ ≪ 1). In the other word, there exist positive numbers N(ρ) and M(ρ),
independent of t, such that the eigenvalues λn(t) for t ∈ [ρ, π−ρ] and | n |> N(ρ) are simple

and the terms O( 1
n
), O( ln|n|

n
) in (9) do not depend on t.

Result 3 (see [1]). Let the conditions (4) and (5) hold. Then:
(a) All sufficiently large eigenvalues of the operator L0(q) are simple. They consists of

two sequences {λn,1 : n > N0} and {λn,2 : n > N0} satisfying

λn,j = (2πn)2 + (−1)jp2n +O

(
ln |n|
n

)
(10)

for j = 1, 2, where pn = (qnq−n)
1
2 . The corresponding eigenfunction ϕn,j(x) satisfies

ϕn,j(x) = ei2πnx + αn,je
−i2πnx +O(

1

n
), (11)
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where αn,j ∼ 1, αn,j =
(−1)jp2n

q2n
+O

(
ln|n|
nq2n

)
, j = 1, 2.

(b) The root functions of L0(q) form a Riesz basis in L2(0, 1).
Thus, in the papers [28] and [1] we obtained the asymptotic formulas for the operator

Lt(q), uniform with respect to t ∈ [ρ, π − ρ], and for the operator L0(q) respectively, where
ρ ≪ 1. In this paper we obtain the uniform asymptotic formulas in the more complicated case
t ∈ [0, ρ] ∪ [π − ρ, π], when the potential q satisfies some conditions (see Theorem 2 and 3).
Some estimations and formulas of the Section 2 are similar to the estimations and formulas
that were done in [1], [22] and [28]. However, because of the uniformity, with respect to
t ∈ [0, ρ], we search for we can not cite [1, 22, 28] for the related facts. In the other words, in
this paper we take a closer look the uniformity, with respect to t ∈ [0, ρ], of the formulas and
estimations that were not done in those papers and that is very important in this paper.
Note that the case t ∈ [π − ρ, π] is similar to the case t ∈ [0, ρ] and the eigenvalues of
L−t(q) coincide with the eigenvalues of Lt(q). As a result we get the uniform, with respect
to t in [0, 2π), asymptotic formulas for the operator Lt(q). These formulas imply that if the
potential q satisfies some conditions, then there exists a positive constant R, independent
of t, such that all eigenvalues of Lt(q) lying outside of the disk {λ ∈ C : |λ| ≤ R} are simple
for all value of t in [0, 2π). Since the spectral singularity of the operator L(q) is contained
in the set of multiply eigenvalues of Lt(q) for t ∈ [0, 2π), we obtain sufficient conditions on
q such that the Hill operator L(q) has at most finitely many spectral singularities. Then
we prove that the projections P (γ) of the operator L(q) for arcs γ lying outside of the disk
{λ ∈ C : |λ| ≤ R} are uniformly bounded if q satisfies these conditions, which mains that
L(q) is, in some sense, asymptotically spectral operator.

2 Uniform Asymptotic Formulas for Lt(q)

It is well-known that the eigenvalues of Lt(q) are the squares of the roots of the equation

F (ξ) = 2 cos t, (12)

where F (ξ) = ϕ
′

(1, ξ) + θ(1, ξ), and ϕ(x, ξ) and θ(x, ξ) are the solutions of the equation

−y
′′

+ q(x)y = ξ2y

satisfying the initial conditions θ(0, ξ) = ϕ
′

(0, ξ) = 1, θ
′

(0, ξ) = ϕ(0, ξ) = 0. In [14] (see
chapter 1, sec. 3) it is proved that

F (ξ)− 2 cos ξ = e|Imξ|ε(ξ), lim
|ξ|→∞

ε(ξ) = 0. (13)

Let us consider the functions F (ξ)− 2 cos ξ and 2 cos ξ − cos t on the circle

C(n, t, ρ) =: {ξ ∈ C : |ξ − (2πn+ t)| = 3ρ}, (14)

where t ∈ [0, ρ] and ρ ≪ 1. By (13) there exists a positive number N(0, ρ) such that

|F (ξ) − 2 cos ξ| < ρ2 (15)

for ξ ∈ C(n, t, ρ) whenever n > N(0, ρ) and t ∈ [0, ρ]. On the other hand, using the Taylor
formula of cos ξ at the points 2πn+ t for ξ = 2πn+ t+3ρeiα, where α ∈ [0, 2π), and taking
into account the inequalities |sin t| ≤ ρ and |cos t| > 9

10 for t ∈ [0, ρ], ρ ≪ 1, we obtain

| 2 cos ξ − 2 cos t |= 2 | −3ρeiα sin t+
9

2
ρ2e2iα cos t+O(ρ4) |> 2ρ2. (16)
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By Rouche’s theorem, it follows from (15) and (16) that the equation (12) has the same
number of zeros in C(n, t, ρ), where n > N(0, ρ), as the equation

cos ξ − cos t = 0. (17)

Since the equation (17) has 2 roots inside the circle C(n, t, ρ), the equation (12) has also
2 roots (counting multiplicity) inside this circle for n > N(0, ρ). On the other hand, it is
proved in [14] (see chapter 1, sec. 3) that the estimation

F (ξ) − 2 cos ξ = o(cos ξ − cos t)

holds on the boundaries of the admissible strip Kn =: {ξ : |Re ξ| < (2n+ 1)π} for t ∈ [0, ρ],
ρ ≪ 1. Hence the number of roots of the equations (12) and (17) are the same in the strip Kn

and in the sets Kn+1\Kn for large n. The following remark follows from these arguments.

Remark 1 There exists a large number N(0, ρ) such that the number of the roots of the
equations (12) lying inside of the strip KN is 2N + 1. Denote these roots by ξn(t) for
n = 0,±1,±2, ...,±N. The roots of the equations (12) lying outside of the strip KN consist
of the roots lying in the contours C(n, t, ρ) for n > N(0, ρ). The roots of (12) lying in
C(n, t, ρ) for n > N(0, ρ) consist only of two roots denoted by ξn,1(t) and ξn,2(t). Hence

|ξn,j(t) − (2πn+ t)| < 3ρ, ∀ |n| > N(0, ρ), t ∈ [0, ρ], j = 1, 2. (18)

Since the entire function dF
dξ

has a finite number of zeros inside the circle

{ξ ∈ C : |ξ − 2πn| = 4ρ} and this circle encloses C(n, t, ρ) for all t ∈ [0, ρ], there exists
only finite t1, t2, ..., tk from (0, ρ) for which ξn(tk) is a double root of (12). Let 0 < t1 < t2 <

... < tk < ρ. By implicit function theorem the function ξn,1(t) and ξn,2(t) can be chosen as
analytic in intervals (0, t1), (tk, ρ) and (ts, ts+1) for s = 1, 2, ..., k−1. Let ξ be any limit point
of ξn,1(t) or ξn,2(t) as t → ts. Since F (ξn,j(t)) = 2 cos t for j = 1, 2 and F is continuous,
we have F (ξ) = 2 cos ts. However, this equation has only one double root ξn,1(ts) = ξn,2(ts)
inside C(n, ts, ρ). Thus

lim
t→t−s

ξn,1(t) = lim
t→t+s

ξn,1(t) = lim
t→t−s

ξn,2(t) = lim
t→t+s

ξn,1(t) = ξn,1(ts) = ξn,2(ts)

for s = 1, 2, ..., k. This implies that the eigenvalues λn,1(t) = ξ2n,1(t) and λn,2(t) = ξ2n,2(t) of
Lt(q) can be chosen as continuous function on (0, ρ). By the result of [28] (see introduction)
λn,1(ρ) and λn,2(ρ) are simple eigenvalues of Lρ(q) for n > N(ρ). Moreover, if q ∈ L1[0, 1],
and (4), (5) hold then by the result of [1], similarly if q ∈ W

p
1 [0, 1], and (3), (6), (8) hold

then by the result of [22] λn,1(0) and λn,2(0) are simple eigenvalues of L0 for n > N0. These
arguments imply the continuity of the functions λn,1(t), λn,2(t) and

dn(t) =: |λn,1(t)− λn,2(t)| (19)

on [0, ρ] for n > N =: max{N(0, ρ), N(ρ), N0}. By (18) we have

∣∣λn,j(t)− (2πn+ t)2
∣∣ < 15πnρ (20)

for t ∈ [0, ρ], n > N and j = 1, 2. Thus for t ∈ [0, ρ] and n > N the disk

D(n, t, ρ) =: {λ ∈ C :
∣∣λ− (2πn+ t)2

∣∣ < 15πnρ} (21)

contains two eigenvalues (counting multiplicity) λn,1(t) and λn,2(t) that are continuous func-
tion on the interval [0, ρ]. In addition to these eigenvalues, the operator Lt(q) for t ∈ [0, ρ]
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has only 2N + 1 eigenvalues.

Using (20), one can readily see that

∣∣λn,j(t)− (2π(n− k) + t)2
∣∣ > |k| |2n− k| (22)

for k 6= 0, 2n and t ∈ [0, ρ], where n > N and j = 1, 2. To obtain the uniform asymptotic
formula for eigenvalues λn,j(t) and corresponding normalized eigenfunctions Ψn,j,t(x) for
t ∈ [0, ρ], we use (22) and the iteration of the formula

(λn,j(t)− (2π(n− k) + t)2)(Ψn,j,t, e
i(2π(n−k)+t)x) = (qΨn,j,t, e

i(2π(n−k)+t)x). (23)

To iterate (23) we use the following lemma.

Lemma 1 For the right-hand side of (23) the following equality

(qΨn,j,t, e
i(2π(n−k)+t)x) =

∞∑

m=−∞

qm(Ψn,j,t, e
i(2π(n−k−m)+t)x) (24)

and inequality ∣∣∣(qΨn,j,t, e
i(2π(n−k)+t)x)

∣∣∣ < 3M (25)

holds, for all n > N, k ∈ Z, j = 1, 2 and t ∈ [0, ρ], where M = supn∈Z
|qn| , and N

is defined in Remark 1. The eigenfunction Ψn,j,t(x) satisfies the following, uniform with
respect to t ∈ [0, ρ], asymptotic formulas

Ψn,j,t(x) = un,j,te
i(2πn+t)x + vn,j(t)e

i(−2πn+t)x + hn,j,t(x), (26)

where un,j(t) = (Ψn,j,t(x), e
i(2πn+t)x), vn,j(t) = (Ψn,j,t(x), e

i(−2πn+t)x),

(hn,j,t, e
i(±2πn+t)x) = 0, ‖hn,j,t‖ = O(

1

n
), sup

x∈[0,1],
t∈[0,ρ]

| hn,j,t(x) |= O

(
ln |n|
n

)
, (27)

|un,j(t)|2 + |vn,j(t)|2 = 1 +O(
1

n2
). (28)

Proof. The equality (24) is obvious for q ∈ L2(0, 1). For q ∈ L1(0, 1) see Lemma 1 of
[28]. Since qΨn,j,t ∈ L1[0, 1], we have

lim
|m|→∞

(qΨn,j,t, e
i(2π(n−k−m)+t)x) = 0.

Therefore there exists C(t) and k0(t) such that

max
s∈Z

∣∣∣(qΨn,j,t, e
i(2πs+t)x)

∣∣∣ =
∣∣∣(qΨn,j,t, e

i(2π(n−k0)+t)x)
∣∣∣ = C(t).

Now, using (22)-(24) and the obvious relations

|qm| ≤ M,
∑

k 6=0,2n

1

| k(2n− k) | = O

(
lnn

n

)
(29)
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for m ∈ Z, we obtain

C(t) =
∣∣∣(qΨn,j,t, e

i(2π(n−k0)+t)x)
∣∣∣ =|

∞∑

m=−∞

qm(Ψn,j,t, e
i(2π(n−k0−m)+t)x) |=

| q−k0
(Ψn,j,t, e

i(2πn+t)x) + q2n−k0
(Ψn,j,t, e

i(−2πn+t)x) | +

|
∑

m 6=−k0,2n−k0

qm
(qΨn,j,t, e

i(2π(n−k0−m)+t)x)

λn,j(t)− (2π(n− k0 −m) + t)2
|≤ 2M+

∑

m 6=−k0,2n−k0

MC(t)

| λn,j(t)− (2π(n− k0 −m) + t)2 | = 2M + C(t)O

(
lnn

n

)

which imply that C(t) < 3M for all t ∈ [0, ρ]. The inequality (25) is proved. This with (23),
(22) and (29) yields

∑

k 6=±n

∣∣∣(Ψn,j,t, e
i(2πk+t)x)

∣∣∣ = O

(
lnn

n

)
,
∑

k 6=±n

∣∣∣(Ψn,j,t, e
i(2πk+t)x)

∣∣∣
2

= O

(
1

n2

)
.

Now decomposing Ψn,j,t by basis {ei(2πk+t)x : k ∈ Z} and using these equalities we get (26)
and (27). The normalization condition ‖Ψn,j,t‖ = 1 with (26) and (27) imply (28)

Using (24) in (23), replacing k and m by 0 and n1 respectively, and then isolating the
term containing the multiplicand (Ψn,j,t, e

i(−2πn+t)x) we obtain

(λn,j(t)− (2πn+ t)2)(Ψn,j,t, e
i(2πn+t)x)− q2n(Ψn,j,t, e

i(−2πn+t)x) = (30)

∞∑

n1 6=0,2n;n1=−∞

qn1
(Ψn,j,t, e

i(2π(n−n1)+t)x).

Note that if n1 6= 0, 2n then it follows from (23) and (24) that

(Ψn,j,t, e
i(2π(n−n1)+t)x) =

∞∑

n2=−∞

qn2
(Ψn,j,t, e

i(2π(n−n1−n2)+t)x)

λn,j(t)− (2π(n− n1) + t)2
. (31)

We use this formula only for n1 6= 0, 2n, since the denominator of the fraction for n1 = 0, 2n
may be equals to 0, but it is a large number for n1 6= 0, 2n due to (22). Therefore in (30) the
terms with n1 = 0, 2n are isolated. Now we iterate (30) as follows. Use (31) for the terms
in (30) with n1 6= 0, 2n and then again isolate the term containing one of the multiplicands
(Ψn,j,t, e

i(2πn+t)x) , (Ψn,j,t, e
i(−2πn+t)x) (i.e., terms with n1 + n2 = 0, 2n ) to get

(λn,j(t)− (2πn+ t)2)(Ψn,j,t, e
i(2πn+t)x) =

q2n(Ψn,j,t, e
i(−2πn+t)x) +

∞∑

n1=−∞
n1 6=0,2n

qn1
q−n1

(Ψn,j,t, e
i(2πn+t)x)

λn,j(t)− (2π(n− n1) + t)2
+ (32)

∞∑

n1=−∞
n1 6=0,2n

qn1
q2n−n1

(Ψn,j,t, e
i(−2πn+t)x)

λn,j(t)− (2π(n− n1) + t)2
+

∞∑

n1,n2=−∞
n1 6=0,2n, n1+n2 6=0,2n

qn1
qn2

(Ψn,j,t, e
i(2π(n−n1−n2)+t)x)

λn,j(t)− (2π(n− n1) + t)2
.

Now again using (31) for the terms with n1 + n2 6= 0, 2n in the last summation of (32)
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and repeating this process m−times (i.e., m times isolating the terms containing one of the
multiplicands (Ψn,j,t, e

i(2πn+t)x) , (Ψn,j,t, e
i(−2πn+t)x) and using (31) for the others) we get

(λn,j(t)− (2πn+ t)2 −Am(λn,j(t), t))un,j(t) = (q2n +Bm(λn,j(t), t))vn,j(t) +Rm, (33)

where

Am(λn,j(t), t) =

m∑

k=1

ak(λn,j(t), t), Bm(λn,j(t), t) =

m∑

k=1

bk(λn,j(t), t),

ak(λn,j(t), t) =
∑

n1,n2,...,nk

qn1
qn2

...qnk
q−n1−n2−...−nk

[λn,j − (2π(n− n1) + t)2]...[λn,j − (2π(n− n1 − ...− nk) + t)2]
,

bk(λn,j(t), t) =
∑

n1,n2,...,nk

qn1
qn2

...qnk
q2n−n1−n2−...−nk

[λn,j − (2π(n− n1) + t)2]...[λn,j − (2π(n− n1 − ..− nk) + t)2]
,

Rm =
∑

n1,n2,...,nm+1

qn1
qn2

...qnm
qnm+1

(qΨn,j,t, e
i(2π(n−n1−...−nm+1)+t)x)

[λn,j − (2π(n− n1) + t)2]...[λn,j − (2π(n− n1 − ...− nm+1) + t)2]
.

Note that, here the sums are taken under conditions n1, n2, ..., 6= 0 and n1 + n2 + ...+ ns 6=
0, 2n for s = 1, 2, .... Using (22), (25) and (29) one can easily verify that the equalities

ak = O

(
(
ln |n|
n

)k
)
, bk = O

(
(
ln |n|
n

)k
)
, Rm = O

(
(
ln |n|
n

)m+1

)
(34)

hold uniformly with respect to t in [0, ρ]. In the same way the relation

(λn,j(t)− (−2πn+ t)2 −A
′

m(λn,j(t), t))vn,j(t) = (q−2n +B
′

m(λn,j(t), t))un,j(t) = R
′

m (35)

can be obtained, where

A
′

m(λn,j(t), t) =
m∑

k=1

a′k(λn,j(t), t), B
′

m(λn,j(t)) =
m∑

k=1

b
′

k(λn,j(t), t),

a
′

k(λn,j(t), t) =
∑

n1,n2,...,nk

qn1
qn2

...qnk
q−n1−n2−...−nk

[λn,j − (2π(n+ n1)− t)2]...[λn,j − (2π(n+ n1 + ...+ nk)− t)2]
,

b
′

k(λn,j(t), t) =
∑

n1,n2,...,nk

qn1
qn2

...qnk
q−2n−n1−n2−...−nk

[λn,j − (2π(n+ n1)− t)2]...[λn,j − (2π(n+ n1 + ...+ nk − t))2]
,

a
′

k = O

(
(
ln |n|
n

)k
)
, b

′

k = O

(
(
ln |n|
n

)k
)
, R

′

m = O

(
(
ln |n|
n

)m+1

)
. (36)

Here the sums are taken under the conditions ns 6= 0, n1 + n2 + ... + ns 6= 0,−2n for
s = 1, 2, ..., k.

Now in (33) and (35) letting m tend to infinity, using (34) and (36) we obtain

(λn,j(t)− (2πn+ t)2 −A(λn,j(t), t))un,j(t) = (q2n +B(λn,j(t), t))vn,j(t) (37)

and

(λn,j(t)− (−2πn+ t)2 −A
′

(λn,j(t), t))vn,j(t) = (q−2n +B
′

(λn,j(t), t))un,j(t), (38)
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where

A(λ, t) =

∞∑

k=1

ak(λ, t), B =

∞∑

k=1

bk, A
′

=

∞∑

k=1

a′k, B
′

=

∞∑

k=1

b
′

k. (39)

The main results of this section are obtained from these formulas. For this we use the
following lemmas.

Lemma 2 (a) The following equalities hold uniformly with respect to t in [0, ρ];

A(λn,j(t), t) = O(n−1), A
′

(λn,j(t), t) = O(n−1). (40)

(b) Let q ∈ W
p
1 [0, 1], and (3) holds with some s ≤ p. Then the equalities

B(λn,j(t), t) = o
(
n−s−1

)
, B

′

(λn,j(t), t) = o
(
n−s−1

)
(41)

hold uniformly with respect to t in [0, ρ].

Proof. (a) First, let us prove that

a1(λn,j(t), t) =
1

4π2

∑

k 6=0, 2n

qk q−k

k(2n− k)
+O

(
1

n

)
. (42)

Using (20) and taking into account that t < ρ ≪ 1 one can see that if |k| ≤ 3 |n| then

| λn,j − (2π(n− k) + t)2 − 4π2k(2n− k) |≤ |n| . (43)

Conversely, if |k| > 3 |n| , then

| λn,j − (2π(n− k) + t)2 |> k2 > n2, | 4π2k(2n− k) |> k2 > n2. (44)

Therefore, taking into account the inequality in (29), we obtain

∑

k:|k|>3|n|

qk q−k

λn,j − (2π(n− k) + t)2
− 1

4π2

∑

k:|k|>3|n|

qk q−k

k(2n− k)
= O

(
1

n

)
,

|
∑

k:|k|≤3|n|,k 6=0, 2n

(
qk q−k

λn,j − (2π(n− k) + t)2
− qk q−k

4π2k(2n− k)
) |≤

∑

k:|k|≤3|n|

M2 |n|
k2(2n− k)2

≤
∑

k:|k|≤|n|

M2 |n|
k2n2

+
∑

k:|n|<|k|≤3|n|

M2 |n|
n2(2n− k)2

= O(
1

n
).

Thus (42) holds. In (42) grouping the terms
qk q−k

k(2n−k) and
q−k qk

−k(2n+k) we get

a1(λn,j(t), t) =
1

4π2

∑

k>0, k 6=2n

qk q−k

(2n+ k)(2n− k)
+O

(
1

n

)
. (45)

To estimate the sum in (45) we consider, as in the paper [22], the function

G(x, n) =

∫ x

0

q(t)e−2πi(2n)tdt− q2nx.

The Fourier coefficients Gk(n) =: (G(x, n), e2πikx) of G(x, n) are Gk(n) =
1

2πik q2n+k for k 6=
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0, and hence we have

G(x, n) = G0(n) +
∑

k 6=2n

qk

2πi(k − 2n)
e2πi(k−2n)x.

Therefore using the integration by parts and taking into account the obvious equalities
G(1, n) = G(0, n) = 0, G(x, n) −G0(n) = O(1) we obtain

1

4π2

∑

k>0, k 6=2n

qk q−k

(2n+ k)(2n− k)
=

∫ 1

0

(G(x, n) −G0(n))
2e2πi(4n)x dx =

−1

2πi(4n)

∫ 1

0

2(G(x, n)−G0(n))(q(x)e
−2πi(2n)x − q2n)e

2πi(4n)x dx = O

(
1

n

)
.

This with (45) and (34) imply the first equality of (40). In the same way we get the second
equality of (40).

(b) If the assumptions of (b) hold, then

q2n = o(n−s), qn1
qn2

· · · qnk
q±2n−n1−n2−···−nk

= o(n−s) (46)

(see p. 655 of [22]). Using this and (22), in a standard way, we get

bk(λn,j(t)) = o

(
lnk n

nk+s

)
= o(n−s−1), b

′

k(λn,j(t)) = o

(
lnk n

nk+s

)
= o(n−s−1) (47)

for k ≥ 2. It remains to prove that

b1(λn,j(t)) = o(n−s−1), b
′

1(λn,j(t)) = o(n−s−1). (48)

Instead of the inequality in (29) using the equality qkq2n−k = o(n−s) (see (46)) and arguing
as in the proof of (42) we get

b1(λn,j(t), t) =
1

4π2

∑

k 6=0, 2n

qk q2n−k

k(2n− k)
+ o(n−s−1) (49)

for all t ∈ [0, ρ]. In [22] (see p. 655) the summation in (49) is denoted by S2n and it is proved
that S2n = o(n−s−1) (see p. 658 ). Thus from (49) we obtain the first equality of (48). In
the same way we get the second equality of (48).

Now we consider some properties of the functions A(λ, t), B(λ, t), A
′

(λ, t), B
′

(λ, t)
defined in (39) for t ∈ [0, ρ] and λ ∈ D(n, t, ρ), where D(n, t, ρ) is the disk defined in (21).

Lemma 3 (a) There exists a constant K, independent of n > N and t ∈ [0, ρ], such that

| A(λ, t)−A(µ, t) |< Kn−2 | λ− µ |, | A′

(λ, t) −A
′

(µ, t) |< Kn−2 | λ− µ |, (50)

| C(λn,j(t), t) |< tKn−1, | C(λ, t)) − C(µ, t)) |< tKn−2 | λ− µ | (51)

for all λ, µ ∈ D(n, t, ρ), where C(λ, t) = 1
2 (A(λ, t)−A

′

(λ, t)) and N is defined in Remark 1.

(b) Let q ∈ W
p
1 [0, 1], and (3) holds with some s ≤ p. Then the functions bk(λ, t), b

′

k(λ, t),

B(λ, t), B
′

(λ, t) for λ, µ ∈ D(n, t, ρ), k = 1, 2, ..., satisfy the following, uniform with respect
to t in [0, ρ], condition

f(λ, t)− f(µ, t) = (λ− µ)o(n−s−2). (52)
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Proof. (a) If λ ∈ D(n, t, ρ), then

∣∣λ− (2π(n− k) + t)2
∣∣ > |k| |2n− k| , ∀k 6= 0, 2n. (53)

To prove the estimations (50) and (51) we use (53) and the following obvious equality

∑

k 6=0,−2n

1

| ks(2n− k)m | = O

(
1

np

)
(54)

if max{s,m} ≥ 2, where p = min{s,m} ≥ 1. The inequality (54) with (53) imply that the
series in the formula for the functions ak(λ, t), a

′

k(λ, t), bk(λ, t), b
′

k(λ, t) converge uniformly
in a neighborhood of λ, which yields that these functions are the continuous functions of λ.
Moreover, the estimations (34) and (36) hold if we replace λn,j(t) by λ. Therefore the series

in the formulas for the functions A(λ, t), B(λ, t), A
′

(λ, t) and B
′

(λ, t) converge uniformly
in a neighborhood of λ. Using (53) and (54) one can easily verify that these series can be
differentiated, with respect to λ, term by term. Moreover, taking into account the inequality

| d

dλ
(

1

λ − (2π(n− k) + t)2
) |≤ 1

k2(2n− k)2

and (54), we see that the absolute values of the derivatives of ak(λ, t), a
′

k(λ, t), bk(λ, t),

b
′

k(λ, t) with respect to λ is O(n−k−1). Therefore, these functions satisfy the condition

g(λ, t)− g(µ, t) = (λ − µ)O(n−k−1). (55)

Now (50) follows from (55).
To prove the first inequality of (51) we use substitutions −n1−n2− · · ·−nk = j1, n2 =

jk, n3 = jk−1, . . . , nk = j2 in the formula for the expression a′k. Then the inequalities for
the forbidden indices np 6= 0, n1 + n2 + · · · + np 6= 0,−2n for 1 ≤ p ≤ k in the formula for
a′k take the form jp 6= 0, j1 + j2 + ...+ jp 6= 0, 2n for 1 ≤ p ≤ k, and

a
′

k(λn,j(t)) =
∑

n1,n2,...,nk

qn1
qn2

...qnk
q−n1−n2−...−nk

[λn,j − (2π(n− n1)− t)2]...[λn,j − (2π(n− n1 − ...− nk)− t)2]
.

Using (22) and (54) one can readily see that

∞∑

k=−∞,
k 6=0,2n

| 1

λn,j(t)− (2π(n− k) + t)2
− 1

λn,j(t)− (2π(n− k)− t)2
|= tO(

1

n
).

This with the inequality in (29) imply the first inequality in (51). Now arguing as in the
proof of (50), we get the proof of the second inequality of (51).

(b) Using (46) and repeating the proof of (50) we get the proof of (b)
Now using Lemma 2 and Lemma 3 we prove the following main result.

Theorem 1 Let q ∈ W
p
1 [0, 1] and (3) holds with some s ≤ p. Suppose (5) holds and

| q2n |> cn−s−1 (56)

for some c > 0. If at least one of the following inequalities

Re q2nq−2n ≥ 0, (57)
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| Im q2nq−2n |≥ ε | q2nq−2n | (58)

holds for some ε > 0 and for n > N, where N is defined in Remark 1, then the eigenvalue
λn,j(t) of Lt(q) for n > N, j = 1, 2 and t ∈ [0, ρ] is simple.

Proof. It follows from (56) and (41) that

q2n +B(λn,j(t), t) 6= 0, q−2n + B
′

(λn,j(t), t) 6= 0 (59)

for t ∈ [0, ρ]. Let us prove that this with the formulas (37), (38) and (28) imply that

un,j(t)vn,j(t) 6= 0. (60)

If un,j(t) = 0 then by (28) vn,j(t) 6= 0 and by (37) q2n +B(λn,j(t), t) = 0 which contradicts

(59). Similarly, if vn,j(t) = 0 then by (28) and (38) q−2n+B
′

(λn,j(t), t) = 0 which again con-
tradicts (59). Now multiplying (37) and (38) side by side and then canceling un,j(t)vn,j(t),
we get

(λn,j(t)− (2πn+ t)2 −A(λn,j(t), t))(λn,j(t)− (2πn− t)2 −A
′

(λn,j(t), t)) (61)

= (q2n +B(λn,j(t), t))(q−2n +B
′

(λn,j(t), t).

Introduce the notation x =: λn,j(t)− (2πn+ t)2 −Am(λn,j(t)). Then

λn,j(t)− (2πn− t)2 −A
′

m(λn,j(t)) = x+ 8πnt+Am(λn,j(t))−A
′

m(λn,j(t)).

Using this notation in (61) we get

x2 + (8πnt+Am −A
′

m)x− (q2n +B)(q−2n +B
′

) = 0 (62)

This means that λn,j(t) satisfies either the equation

λ = (2πn+ t)2 +
1

2
(A(λ, t) +A

′

(λ, t)) − 4πnt+
√
D(λ, t) (63)

or

λ = (2πn+ t)2 +
1

2
(A(λ, t) +A

′

(λ, t))− 4πnt−
√

D(λ, t), (64)

where D(λ, t) is the discriminant of (62), that is,

D(λ, t) = (4πnt)2 + q2nq−2n +D1(λ, t) +D2(λ, t), (65)

D1(λ, t) = 8πntC(λ, t) + C2(λ, t), D2(λ, t) = q2nB
′

(λ, t) + q−2nB(λ, t) +B(λ, t)B
′

(λ, t)

and C(λ, t) = A(λ, t)−A
′

(λ, t) (see Lemma 3(a)).
Let us prove that

|D(λn,j(t), t)| >
ε

4
(|q−2nq2n|+ (4πnt)2), (66)

D(λn,j(t), t) = ((4πnt)2 + q2nq−2n)(1 + o(1)). (67)

If follows from (51) and (41), (56), (5) that

D1(λn,j(t), t) = t2O(1), D2(λn,j(t), t) = o(q2nn
−s−1) = o(q2nq−2n). (68)
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Therefore, we have

D1(λn,j(t), t) + D2(λn,j(t), t) = o(|q−2nq2n|+ (4πnt)2). (69)

Thus to prove (66) and (67) it is enough to show that

∣∣q−2nq2n + (4πnt)2
∣∣ > ε

3
(|q−2nq2n|+ (4πnt)2). (70)

For this we consider two cases. First case is (4πnt)2 ≤ 2 |q2nq−2n|). Then

|q2nq−2n| ≥
1

3
(|q2nq−2n|+ (4πnt)2). (71)

If the condition (57) holds then
∣∣q2nq−2n + (4πnt)2

∣∣ ≥ |q2nq−2n| . Therefore (70) follows

from (71). If the condition (58) holds then
∣∣q2nq−2n + (4πnt)2

∣∣ ≥| Im q2nq−2n |≥ ε |q2nq−2n|
and again (70) follows from (71). Now let us consider the second case (4πnt)2 > 2 |q2nq−2n|).
Then ∣∣q2nq−2n + (4πnt)2

∣∣ > (4πnt)2 − |q2nq−2n| >
1

3
(|q2nq−2n|+ (4πnt)2),

that is, (70) holds. Thus (66) and (67) are proved.
Now suppose that both eigenvalues λn,1(t) and λn,2(t) of the operator Lt(q) lying in the

disk D(n, t, ρ) (see (21)) satisfy the equation (63). Then

λn,1(t)−λn,2(t) = [
1

2
(A(λn,1(t), t)−A(λn,2(t), t))+

1

2
(A

′

(λn,1(t), t)−A
′

(λn,2(t), t)]+ (72)

[√
D(λn,1(t), t)−

√
D(λn,2(t), t)

]
.

By (50) we have

| A(λn,1, t)−A(λn,2, t) +A
′

(λn,1, t)−A
′

(λn,2, t) |< 2Kn−2 | λn,1(t)− λn,2(t) | . (73)

Using (65), (51), (46), (41) and Lemma 3(b) one can easily verify that

| D(λn,1(t), t)−D(λn,2(t), t) |≤ (5πt2Kn−1 + n−2s−2) | λn,1(t)− λn,2(t) | . (74)

On the other hand it follows from (67), (70) and (56), (5) that

∣∣∣∣
√
D(λn,1(t), t) +

√
D(λn,2(t), t)

∣∣∣∣ =
∣∣∣∣2
√
D(λn,1(t), t)(1 + o(1))

∣∣∣∣ > γ(n−s−1 + nt), (75)

where γ is a positive constant. From (74) and (75) we obtain that

∣∣∣∣
√
D(λn,1(t), t)−

√
D(λn,2(t), t)

∣∣∣∣ = O(n−1) | λn,1(t)− λn,2(t) | . (76)

Now using this and (73) in (72) we get

λn,1(t) = λn,2(t). (77)

In the same way we prove that if both eigenvalues λn,1(t) and λn,2(t) satisfy the equation
(64) then (77) holds.

Now suppose that one of them, say λn,1(t), satisfies (63) and the other λn,2(t) satisfies
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(64). Then

λn,1(t)− λn,2(t) = [
1

2
(A(λn,1, t)−A(λn,2, t)) +

1

2
(A

′

(λn,1, t)−A
′

(λn,2, t)]+ (78)

[√
D(λn,1(t), t) +

√
D(λn,2(t), t)

]
.

Therefore using (73) and (75) we obtain

| λn,1(t)− λn,2(t) |> δ(n−s−1 + nt), (79)

where δ is a positive constant.
Now it follows from (77) and (79) that the value dn(t) of the function dn, defined in

(19), for t ∈ [0, ρ] belongs to the union of the disjoint sets (δ(n−s−1 + nt),∞) and {0}.
Moreover, as it is proved in Remark 1, dn is a continuous function on [0, ρ] which implies
that the set {dn(t) : t ∈ [0, ρ]} is a connected set. Therefore, taking into account that
dn(ρ) ∈ (δ(n−s−1 + nt),∞) (see (9)), we get {dn(t) : t ∈ [0, ρ]} ∈ (δ(n−s−1 + nt),∞). This
mean that λn,1(t) and λn,2(t) are different simple eigenvalues and one of them satisfies (63)
and the other satisfies (64). Without loss of generality, it can be assumed that

λn,j(t) = (2πn+ t)2 +
1

2
(A(λn,j(t), t) +A

′

(λn,j(t), t))− 4πnt+ (−1)j
√
D(λn,j(t), t), (80)

where square root in (81) is taken with positive real part. Note that

Re(
√
D(λn,j(t), t)) 6= 0 (81)

due to the following reason. By (56)-(58))
∣∣arg(q−2nq2n + (4πnt)2)

∣∣ < π−α for some positive
constant α. Thus by (66) and (67) argD(λn,j(t), t) 6= π and hence (81) holds

Lemma 4 Suppose that all conditions of the Theorem 1 hold. Let λn,j(t) be eigenvalue of
Lt(q) satisfying (80), and Ψn,t,j(t) be the corresponding eigenfunction. Then the relations

vn,1(t) ∼ 1, un,2(t) ∼ 1 (82)

hold uniformly for t ∈ [0, ρ].

Proof. Multiplying (37) and (38 ) by vn,j(t) and by un,j(t) respectively and then
subtracting each other we get

(−8πnt+A
′

(t)−A(t))un,j(t)vn,j(t) = (q2n +B(t))v2n,j(t)− (q−2n +B
′

(t))u2
n,j(t), (83)

where, for brevity, A(λn,j(t), t), A
′

(λn,j(t), t), B(λn,j(t), t) and B
′

(λn,j(t), t) is denoted by

A(t), A
′

(t), B(t) and B
′

(t) respectively.
First, suppose that nt ≤ |q2n| . Then it follows from (51) that A

′

(t)−A(t) = o(q2n) and

| −8πnt+A
′

(t)−A(t) |< 9π |q2n| . (84)

On the other hand, the relations (5), (41) and (56) imply that

q2n +B(λn,j(t), t) ∼ q−2n +B
′

(λn,j(t), t) ∼ q2n. (85)
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Therefore using (83)-(85) and taking into account that, if the relation un,j(t) ∼ vn,j(t) does
not hold then un,j(t)vn,j(t) = o(1) (see (28)), we obtain un,j(t) ∼ vn,j(t) ∼ 1 for j = 1, 2.
Thus (82) holds for the case nt ≤ |q2n| .

Now consider the case nt > |q2n| . Using (80) in (37) and (38) we obtain

(C(t)− 4πnt+ (−1)j
√
D(t))un,j(t) = (q2n +B(t))vn,j(t), (86)

(−C(t) + 4πnt+ (−1)j
√
D(t))vn,j(t) = (q−2n +B

′

(t))un,j(t). (87)

Since Re(
√
D(λn,j(t), t)) > 0, it follows from (86) for j = 1 and (51) that

| C(λn,1(t), t)− 4πnt−
√
D(λn,1(t), t) |≥ Re(4πnt(1 +O(n−2)) +

√
D(λn,1(t), t)) > |q2n| .

Using this and (85) in (86) for j = 1 we get vn,1(t) ∼ 1. In the same way we get the second
relation of (82) from (87) for j = 2.

To obtain asymptotic formulas of arbitrary accuracy we define successively the following
functions

Fn,j,1(t) = (2πn+ t)2 − 4πnt+ (−1)j
√
(4πnt)2 + q2nq−2n,

Fn,j,m+1(t) = (2πn+ t)2 +
1

2
(A(Fn,j,m, t) +A

′

(Fn,j,m, t))− 4πnt+ (−1)j
√
D(Fn,j,m, t)

for m = 1, 2, .... Moreover we use the functions A∗ , B∗ which are obtained from A, B

respectively by replacing qn1
with ei(2π(n−n1)+t)x.

Theorem 2 (a)If the conditions of Theorem 1 hold, then the eigenvalue λn,j(t) satisfies
the following , uniform with respect to t ∈ [0, ρ], formulas

λn,j(t) = (2πn+ t)2 − 4πnt+ (−1)j
√
(4πnt)2 + q2nq−2n + O(

1

n
), (88)

λn,j(t) = Fn,j,m(t) +O(
1

nm
), m = 1, 2, .... (89)

(b) The normalized eigenfunction Ψn,j,t(x) corresponding to λn,j(t) is
ϕn,j,t(x)

‖ϕn,j,t(x)‖
, where

ϕn,j,t(x) satisfies the following , uniform with respect to t ∈ [0, ρ], formulas

ϕn,1,t(x) = ei(−2πn+t)x + αn,1e
i(2πn+t)x +A∗(Fn,1,m, t) + αn,1B

∗(Fn,1,m, t) +O(n−m−1),

ϕn,2,t(x) = ei(2πn+t)x + αn,2e
i(−2πn+t)x +A∗(Fn,2,m, t) + αn,2B

∗(Fn,2,m, t) +O(n−m−1),

αn,1(t) =
C(Fn,1,m, t)− 4πnt−

√
D(Fn,1,m, t)

q−2n +B
′(Fn,1,m, t)

+O(
1

q2nnm+1
) = O(1),

αn,2(t) =
−C(Fn,2,m, t)− 4πnt+

√
D(Fn,2,m, t)

q2n +B(Fn,2,m, t)
+O(

1

q2nnm+1
) = O(1).

Proof. By (80) and (40) to prove (88) it is enough to show that

√
D(λn,j(t), t) =

√
(4πnt)2 + q2nq−2n +O(

1

n
). (90)

Using (67) and (70) one can easily verify that

|
√
D(λn,j(t), t) +

√
(4πnt)2 + q2nq−2n |=| (2 + o(1))

√
(4πnt)2 + q2nq−2n |≥
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√
ε

6
(4πnt+ | √q2nq−2n | .

Therefore we have

|
√
D(λn,j(t), t) −

√
(4πnt)2 + q2nq−2n |=| D1(λn,j(t), t) +D2(λn,j(t), t)√

D(λn,j(t), t) +
√
(4πnt)2 + q2nq−2n

|≤

c1(|
D1(λn,j(t), t)

4πnt
| + | D2(λn,j(t), t)√

q2nq−2n
|), (91)

where c1 is a positive, independent of n and t, constant. Moreover from (68) and (5) we
obtain

D1(λ, t)

4πnt
= O(

1

n
),

D2(λ, t)√
q2nq−2n

= o(n−s−1). (92)

Hence (90) follows from (91) and (92). Thus (88) is proved.
It follows from Lemma 3 and from the proof of (76) that the functions A(λ, t), A

′

(λ, t),
B(λ, t), B

′

(λ, t) and
√
D(λ, t) satisfy the equality

f(Fn,j,k(t) +O(n−k), t) = f(Fn,j,k(t), t) + O
(
n−k−1

)
. (93)

Now we prove (89) by induction. It is proved for m = 1 ( see (88) and the definition of
Fn,j,1(t) ). Assume that (89) is true for m = k. Substituting the value of λn,j(t) given by
(89) for m = k, in the right-hand side of (80) and using (93) we get (89) for m = k + 1.

(b) Writing the decomposition of the normalized eigenfunction Ψn,j,t(x) corresponding
to the eigenvalue λn,j(t) by the basis {ei(2π(n−n1)+t)x : n1 ∈ Z} we obtain

Ψn,j,t(x) − un,j(t)e
i(2πn+t)x − vn,j(t)e

i(−2πn+t)x = (94)

∞∑

n1 6=0,2π;n1=−∞

(Ψn,j,t(x), e
i(2π(n−n1)+t)x)ei(2π(n−n1)+t)x.

The right-hand side of (94) can be obtained from the right-hand side of (30) by replacing qn1

with ei2π(n−n1)x. Since (37) is obtained from (30) by iteration, doing the same, we obtain

Ψn,j,t(x) = un,j(t)e
i(2πn+t)x+vn,j(t)e

i(−2πn+t)x+un,j(t)A
∗(λn,j , t)+vn,j(t)B

∗(λn,j , t) (95)

from (94). First let us consider the case j = 2. Using (89) and (93) in (37), taking into
account (41), (56) we get

vn,2(t)

un,2(t)
=

−C(Fn,2,m(t), t)− 4πnt+
√
D(Fn,2,m(t), t)

q2n +B(Fn,2,m(t), t)
+O(

1

q2nnm+1
), (96)

where m > s. Now dividing both sides of (95) by un,2(t), and denoting αn,2(t) =
vn,2(t)
un,2(t)

,

ϕn,2,t(x) =
Ψn,2,t(x)
un,2(t)

we obtain

ϕn,2,t(x) = ei(2πn+t)x + αn,2(t)e
i(−2πn+t)x +A∗(λn,2(t), t) + αn,2(t)B

∗(λn,2(t), t). (97)

Here αn,2(t) = O(1) due to (82). On the other hand one can readily see that the functions
A∗(λ, t) and B∗(λ, t) also satisfy (93). Therefore from (97) we get the proof of (b) for j = 2.
In the same way we get the proof of (b) for j = 1.

To obtain the asymptotic formulas for the eigenvalue λn,j(t) for |n| > N and t ∈ [π−ρ, π],
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instead of (30) we use the formula

(λn,j(t)− (2πn+ t)2)(Ψn,j,t, e
i(2πn+t)x)− q2n+1(Ψn,j,t, e

i(−2π(n+1)+t)x) = (98)

∞∑

n1 6=0,2n+1;n1=−∞

qn1
(Ψn,j,t, e

i(2π(n−n1)+t)x).

From (30) we obtained (37), (38). In the same way from (98) we get

(λn,j(t)− (2πn+ t)2 − Ã(λn,j(t), t))un,j(t) = (q2n+1 + B̃(λn,j(t), t))vn,j(t),

(λn,j(t)− (−2π(n+ 1) + t)2 − Ã
′

(λn,j(t), t))vn,j(t) = (q−2n−1 + B̃
′

(λn,j(t), t))un,j(t),

where

Ã(λ, t) =

∞∑

k=1

ãk(λ, t), B̃ =

∞∑

k=1

b̃k, Ã
′

=

∞∑

k=1

ã′k, B̃
′

=

∞∑

k=1

b̃
′

k.

Here ãk, ã
′
k, b̃k, b̃

′
k differ from ak, a

′
k, bk, b

′
k respectively, in the following sense. The sums in

ãk, ã
′
k, b̃k, b̃

′
k are taken under the conditions n1 + n2 + ... + ns 6= 0,±(2n + 1) instead of

the condition n1 + n2 + ... + ns 6= 0,±2n for s = 1, 2, ..., k. Besides in b̃k, b̃
′
k the multipli-

cand q±2n−n1−n2−...−nk
of bk, b

′
k is replaced by q±(2n+1)−n1−n2−...−nk

. Moreover, instead of

F, αn,j , A
∗, B∗ we use F̃ , α̃n,j , Ã

∗, B̃∗ that are defined in a similar way. Thus instead of
(5), (56), (57) and (58) using the relations

q2n+1 ∼ q−2n−1, | q2n+1 |> cn−s−1, (99)

Re q2n+1q−2n−1 ≥ 0, (100)

| Im q2n+1q−2n−1 |≥ ε | q2n+1q−2n−1 | (101)

respectively and repeating the proof of Theorem 1 and Theorem 2 we get:

Theorem 3 Let q ∈ W
p
1 [0, 1] and (3) holds with some s ≤ p. Suppose (99) and at least

one of the inequalities (100), (101) holds. Then the eigenvalue λn,j(t) for n > N and
t ∈ [π − ρ, π] is simple and satisfies the formulas

λn,j(t) = (2πn+t)2−2π(2n+1)(t−π)+(−1)j
√
(2π(2n+ 1)(t− π))2 + q2n+1q−2n−1+O(

1

n
),

(102)

λn,j(t) = F̃n,j,m(t) +O(n−m), m = 1, 2, .... (103)

The normalized eigenfunction Ψn,j,t(x) corresponding to λn,j(t) is
ϕn,j,t(x)

‖ϕn,j,t(x)‖
, where ϕn,j,t(x)

satisfies the following , uniform with respect to t ∈ [π − ρ, π], formulas

ϕn,1,t = ei(−2π(n+1)+t)x+α̃n,1(t)e
i(2πn+t)x+Ã∗(F̃n,1,m, t)+α̃n,1(t)B̃

∗(F̃n,1,m, t)+O(n−m−1),

ϕn,2,t = ei(2πn+t)x+α̃n,2(t)e
i(−2π(n+1)+t)x+Ã∗(F̃n,2,m, t)+αn,2(t)B̃

∗(F̃n,2,m, t)+O(n−m−1).

The following remark follows from Remark 1 and theorems 1-3

Remark 2 Suppose the conditions of Theorem 1 and Theorem3 hold. One can readily see
that (88) for t = 0 and t = ρ give the formulas (10) and (9) respectively, if we use the
notation: λn,1(t) =: λ−n(t) for n = 1, 2, ... and λn,2(t) =: λn(t) for n = 0, 1, 2, ... Similarly
(102) for t = π and t = π−ρ give the formula obtained in [1] for λn,j(π) and (9). Moreover
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there is one-to-one correspondence between the eigenvalues (counting with multiplicities) and
integers. Indeed by (9), Theorems 1-3 and Remark 1 there exists a number N such that for
all |n| > N and for all t ∈ [0, π] the eigenvalues λn(t) and λ−n(t) are simple and the number
of the remaining eigenvalues of Lt(q) is equal to 2N + 1. Using the above notation, we see
that the spectrum of Lt(q) is

S(Lt(q)) = {λn(t) : n ∈ Z} = {λn,1(t) : n = 1, 2, ...} ∪ {λn,2(t) n = 0, 1, 2, ...}. (104)

We use both notation λn(t) and λn,j(t). Since λn(t) for |n| > N is a simple root of

F (λ) = 2 cos t, (105)

where 1
2F (λ) is the Hill’s discriminant, it is an analytic function on neighborhood of [0, π].

Thus we have

F (λn(t)) = 2 cos t,
dF (λn(t))

dλ
6= 0,

dλn(t)

dt
= −(

dF

dλ
)−12 sin t (106)

for |n| > N, and t ∈ [0, π]. This implies that

Γn =: {λn(t) : t ∈ [0, π]} (107)

is a simple (i.e. λn : [0, π] → Γn is injective) analytic arc with endpoints λn(0) and λn(π).
The eigenvalues of L−t(q) coincides with the eigenvalues of Lt(q), because they are roots

of the equation (105) and cos(−t) = cos t. We define the eigenvalue λn(−t) of L−t(q) by

λn(−t) = λn(t), ∀t ∈ (0, π). (108)

Then λn(t) is an analytic function on neighborhood of (−π, π].

Using Theorems 1-3 and taking into account Remark 2, we get

Theorem 4 Let q ∈ W
p
1 [0, 1] and (3) holds with some s ≤ p. If, qn ∼ q−n, | qn |> cn−s−1

and at least one of the following inequalities

Re qnq−n ≥ 0, | Im qnq−n |≥ ε | qnq−n |

holds, where c and ε are positive constants, then the eigenvalues λn(t) of Lt(q) for |n| > N

and t ∈ [0, π] are simple. They and the corresponding eigenfunctions Ψn,t(x) satisfy the
formulas (9) and the formulas obtained in Theorems 2 and 3.

3 Asymptotic Analysis of L(q)

Since the spectrum S(L(q)) of the operator L(q) is the union of the spectra S(Lt(q)) of the
operators Lt(q) for t ∈ [0, 2π), it follows from (104), (107) and (108) that

S(L(q)) = ∪n∈ZΓn.

By (106) and (107) the subset γ =: {λn(t) : t ∈ [α, β]}, where [α, β] ⊂ [0, π], of Γn for
|n| > N is a regular spectral arc of L(q) in sense of [9] (see Definition 2.4 of [9]). Following
[24, 26, 9], we define the projection P (γ) for the arc γ as follows

P (γ)f =
1

2π

∫
γ

(Φ+(x, λ)F−(λ, f) + Φ−(x, λ)F+(λ, f))
ϕ(1, λ)

p(λ)
dλ, (109)
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where p(λ) =
√
4− F 2(λ), F±(λ, f) =

∫
R
f(x)Φ±(x, λ)dx and

Φ±(x, λ) =: θ(x, λ) + (ϕ(1, λ))−1(e±it − θ(1, λ))ϕ(x, λ)

is the Floquet solution. Recall that the spectral singularities of the operator L(q) are the
points of S(L(q)) in neighborhoods of which the projections of the operator L(q) are not
uniformly bounded. To estimate the projections we use the following lemma of the paper[16]:

Lemma 5.12 of [16] Let A
′

be in L∞((0, 2π);B(L2(0, 1))). Then for f in L2(−∞,∞)
the limit in mean

Af = lim
Ni→∞

1

2π

N2∑
−N1

N4∑
−N3

T ∗
j

2π∫
0

eit(j−k)A
′

(t)Tkfdt (110)

exists and defines a bounded operator in L2(−∞,∞) of norm ‖ A ‖≤‖ A
′ ‖∞, where Tk is

defined by Tk(f(x)) = f(x+ k) for x ∈ [0, 1), Tk(f(x)) = 0 for x 6= [0, 1) and
T ∗
j (f(x)) = f(x− j) for x ∈ [j, j + 1), T ∗

j (f(x)) = 0 for x 6= [j, j + 1).
Let {χn,t : n ∈ Z} be the system of the eigenfunctions of L∗

t biorthogonal to {Ψn,t : n ∈ Z}
and Ψ∗

n,t(x) be normalized eigenfunction of (Lt(q))
∗ corresponding to λn(t). Then

χn,t(x)) =
1

αn(t)
Ψ∗

n,t(x), αn(t) = (Ψn,t(x),Ψ
∗
n,t(x))(0,1), (111)

where (., .)(a,b) denotes the inner product in L2(a, b). One can easily verify that

Ψn,t(x) =
Φ+(x, λn(t))

| Φ+(x, λn(t)) |
, χn,t(x)) =

1

αn(t)

Φ−(x, λn(t))

| Φ−(x, λn(t)) |
, (112)

Ψn,t(x+ 1) = eitΨn,t(x), χn,t(x+ 1) = eitχn,t(x). (113)

Now we are ready to prove the result of this chapter:

Theorem 5 If all conditions of Theorem 4 hold, then
(a) The spectrum of the operator L(q) in a neighborhood of ∞ consist of separated simple

analytic arcs Γn for |n| > N with endpoints λn(0) and λn(π).
(b)The operator L(q) has at most finitely many spectral singularities.
(c) The projections P (γ) of L(q) for all γ ⊂ Γn and |n| > N are uniformly bounded.

Proof. (a) Due to Remark 2 we need only to note that Γn for |n| > N are separated,
that is, Γn ∩ Γk = ∅ for k ∈ Z\{n}. This is true due to the following reason. The equality
λn(t) = λk(t) contradicts the simplicity of λn(t). The equality λn(t) = λk(t

′

) for t′ 6= t and
t′ ∈ [0, π] contradicts the first equality in (106).

(b) By Theorem 4 the equation dF (λ)
dλ

= 0 has no zeros at Γn for |n| > N. Since dF (λ)
dλ

is an entire function it has at most finite number roots on the compact set ∪|n|≤NΓn. Now
the proof of (b) follows from the well-known fact that the spectral singularities of L(q) is

contained in the set {λ : dF (λ)
dλ

= 0, λ ∈ S(L(q))} (see [9,26]).
(c) Changing the variable λ to the variable t in the integral in (109), using

dλ = −p(λ)

(
dF

dλ

)−1

dt,
dF (λn(t))

dλ
= −ϕ(1, λn(t))(Φ+(x, λn(t)),Φ−(x, λn(t)))

(see 106) and (2.33) of [9]) and (112) by simple calculations we get

P (γ)f(x) =
1

2π

∫
δ

(f, χn,t)RΨn,t(x))dt, (114)
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where δ = {t ∈ [0, 2π) : λn(t) ∈ γ}. Let A′

(t) be operator defined by

A
′

(t)f = (f, χn,t)[0,1]Ψn,t(x) (115)

for t ∈ δ and A
′

(t) = 0 for t ∈ [0, 2π)\δ. By (111) we have

‖ A
′

(t) ‖=| αn(t) |−1, (116)

where αn is a continuous function and αn(t) 6= 0 , since λn(t) is a simple eigenvalue for
t ∈ δ. Therefore A

′ ∈ L∞((0, 2π);B(L2(0, 1))).
Let f ∈ C0, where C0 is the set of all compactly supported continuous function, and A

be the operator defined by (110). Then using Lemma 5.12 of [16] and (113)-(115) we get

A = lim
Ni→∞

1

2π

N2∑
j=−N1

N4∑
k=−N3

T ∗
j

2π∫
0

eit(j−k)A
′

(t)Tkf(x)dt =

lim
Ni→∞

1

2π

N2∑
j=−N1

N4∑
k=−N3

T ∗
j

2π∫
0

eitj(f(x+ k)e−itk, χn,t)[0,1]Ψn,t(x)dt =

lim
Ni→∞

1

2π

N2∑
j=−N1

2π∫
0

(f, χn,t)Re
itjT ∗

j Ψn,t(x)dt = P (γ)f(x).

Hence Af = P (γ)f for all f ∈ C0, where C0 is dense in L2(−∞,∞). Moreover A is bounded
by Lemma 5.12 of [16] and P (γ) is bounded since γ ⊂ Γn and Γn for |n| > N does not
contain spectral singularities. Therefore, we have A = P (γ). Now Lemma 5.12 of [16] with
(116) imply that

‖ P (γ) ‖≤ sup
t∈δ

| αn(t) |−1 .

Therefore the proof of (c) follows from the following lemma.

Lemma 5 If all conditions of Theorem 4 hold, then there exists a positive constant d, in-
dependent on n for | n |> N and t ∈ [0, 2π), such that

| αn(t) |−1< d. (117)

Proof. For t ∈ [ρ, π − ρ] the inequality (117) follows from (9). Now we prove this for
t ∈ [0, ρ]. The other cases are similar. Since the boundary condition (2) is self-adjoint we
have (Lt(q))

∗ = Lt(q). Moreover the Fourier coefficients of q has the form

(q, ei2πnx) = q−n.

Therefore one can readily verify that if q satisfies the conditions of Theorem 4 then q also
satisfies these conditions. Thus all formulas and theorems obtained for Lt are true for L∗

t if
we replace qn with q−n. Since formula (26) holds for the operator L∗

t too, we have

Ψ∗
n,j,t(x) = u∗

n,j(t)e
i(2πn+t)x + v∗n,j(t)e

i(−2πn+t)x + h∗
n,j,t(x),

where u∗
n,j(t) = (Ψ∗

n,j,t(x), e
i(2πn+t)x), v∗n,j(t) = (Ψ∗

n,j,t(x), e
i(−2πn+t)x). Then

(Ψn,j,t(x),Ψ
∗
n,j,t(x)) = un,j(t)u∗

n,j(t) + vn,j(t)v∗n,j(t) +O(n−1). (118)

Since Lemma 4 is also true for L∗
t , we have v∗n,1 ∼ 1, u∗

n,2(t) ∼ 1. Using this and (82) in
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(118) for j = 1 we get

(Ψn,1,t,Ψ
∗
n,1,t) = vn,1(t)v∗n,1(t)(1 +

un,1(t)u∗
n,1(t)

vn,1(t)v∗n,1(t)
) +O(n−1). (119)

It follows from (86) and (87) that

un,1

vn,1
=

(q2n +B(t))

(C(t) − 4πnt−
√
D(t))

=
−C(t) + 4πnt−

√
D(t)

(q−2n +B
′(t))

. (120)

Then
u∗

n,1(t)

v∗

n,1(t)
satisfies the formula obtained from (120) by replacing qn with q−n. Hence

u∗

n,1(t)

v∗

n,1(t)

satisfies the formula obtained from (120) by replacing qn with q−n. Thus we have

un,1

vn,1

u∗
n,1(t)

v∗n,1(t)
=

−C(t) + 4πnt−
√
D

(q−2n +B
′(t))

(q−2n +B∗(t))

(C∗(t)− 4πnt−
√
D∗(t))

,

where B∗, C∗ and D∗ are obtained from B,C and D by replacing qn with q−n. Since

(q−2n +B
′

(t)) = q−2n(1 + o(1)), (q−2n +B∗(t)) = q−2n(1 + o(1))

(see (41), (56)) the last equality can be written in the form

un,1

vn,1

u∗
n,1(t)

v∗n,1(t)
=

−C(t) + 4πnt−
√
D(t)

C∗(t)− 4πnt−
√
D∗(t)

(1 + o(1)). (121)

Using (51) and (67) for Lt and L∗
t one can easily see that

| C(t) | + |
√
D(t) | + | C∗(t) | + |

√
D∗(t) |= O(f(n, t)),

where f(n, t) =| 4πnt | + | √q2nq−2n | . This, (119), (121) and the relations vn,1 ∼ 1,
v∗n,1 ∼ 1 yield

1

| (Ψn,1,t,Ψ∗
n,1,t) |

< c2 | C∗(t)− 4πnt−
√
D∗(t)

C∗(t)−
√
D∗(t)− C(t)−

√
D(t) + o(f(n, t))

|, (122)

where c2 is a positive constant, independent on n and t. Now let us estimate the nominator
and denominator of the fraction in (122). Using (51) and (67) for L∗

t we get

| C∗(t)− 4πnt−
√
D∗(t) |<| 9πnt | +2 | √q2nq−2n |< 3f(n, t). (123)

Similarly using (51), (67) and (70) we obtain

| C∗(t)−
√
D∗(t)− C(t) −

√
D(t) + o(f(n, t)) |> c3f(n, t), (124)

where c3 is a positive constant, independent of n and t. Thus using (123) and (124) in (122)
we get the proof of the lemma
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